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Abstract: 

A comprehensive experimental and theoretical study of indirect gap optical absorption in 

bulk Ge is presented. While this topic was the subject of intense studies from the early days of 

semiconductor physics, the resonant aspect of the absorption received very little attention until 

now. This is a unique property of Ge related to the proximity of the direct and indirect gaps.  

The absorption coefficient was measured over the entire spectral range between the two 

gaps for comparison with theory. It is shown that the standard textbook expressions, obtained by 

assuming intermediate states with constant energy, are in very poor agreement with experiment. 

A theory first proposed by Hartman, which takes into account the energy dependence of the 

intermediate states, provides a much better account of the photon-energy dependence of the 

absorption, but the prediction of the experimental absorption strength requires the incorporation 

of excitonic effects. The latter, however, have only been considered by Elliott in the limit of 

constant intermediate state energy. A generalization to the case of energy-dependent intermediate 

states, consistent with Hartman's theory, is presented here. The basic qualitative difference with 

the classical Elliott theory is that the excitonic character of the intermediate states affects the 

computed absorption, generating an additional resonant enhancement that is confirmed by the 

experimental data. The generalized theory presented here agrees very well with the experimental 

absorption using independently determined band structure parameters. 
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I. INTRODUCTION 

The absorption coefficient of indirect gap semiconductors—including its spectral dependence—

has recently become the subject of intense theoretical efforts, following advances that make it 

possible to attempt its calculation from first principles [1-3].  In the case of Si, the energy range 

between the indirect and direct gaps is of foremost practical interest, since it overlaps with the 

visible optical absorption that underpins its photovoltaic applications. Germanium, on the other 

hand, represents a formidable theoretical challenge because the indirect gap energy is only ~0.1 

eV below the lowest direct optical transitions. These transitions appear as intermediate states in 

perturbation theory expansions of the absorption coefficient, and therefore realistic ab initio 

predictions require the ability to reproduce band dispersions with meV accuracy, a difficult task 

even for state-of-the-art band structure calculation methods [4]. The unique resonant character of 

indirect absorption in Ge was recognized as early as 1962 by Hartman, who computed the 

absorption coefficient without relying on the standard textbook assumption of constant 

intermediate state energy [5]. However, Hartman did not compare his expressions with 

experimental data. Furthermore, the available experimental results are not fully satisfactory when 

it comes to this comparison, since the classic papers[6-8] reporting indirect absorption in Ge 

made a number of ad hoc assumptions regarding the energy-dependence of the reflectivity which 

do not apply to the entire spectral range between the indirect and direct gaps. 

Newly discovered optoelectronic applications of Ge and related GeSn alloys [9-12] add a new 

urgency to the need of addressing the poorly understood aspects of indirect absorption in Ge. In a 

recent Rapid Communication, we presented new experimental absorption data for this material 

and compared with theoretical expressions [13]. A major finding of this work, hereafter referred 

to as I, is that excitonic effects must be included in the comparison between theory and 

experiment. For this, a new theoretical model was introduced, since the standard theory of 

excitonic enhancements due to Elliott [14] breaks down when intermediate states cannot be 

assumed to have a constant energy. In this associated article we present an extended set of 

experimental reflectivity and absorption data for Ge, further validating the experimental results 

in I. We also provide full details on the resonant excitonic enhancement model needed to 

describe the experimental data.   

The excitonic structure of band edge absorption in Ge has been studied with exquisite detail 

[15,16], and theoretical models that take into account the complexities of the conduction and 
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valence bands have been shown to be in remarkable agreement with experimental data [17,18]. 

However, these models are limited to the band edge, as their extension to the entire spectral 

range between the indirect and direct edges is not straightforward. Excitonic effects can be 

computed ab initio using the Bethe-Salpeter formalism [19], but this approach does not usually 

lend itself to implementation in fitting routines running on personal computers. In addition, as 

indicated above, the accuracy needed for the underlying band structure is difficult to attain. The 

Elliott model mentioned above makes the drastic approximation of considering isotropic 

parabolic bands [14]. This leads to simple theoretical expressions, which could be used to correct 

the absorption calculated with the Hartman model. However, such approach would be 

inconsistent, since it would include the energy dependence of the intermediate states at the free 

electron-hole pair level but neglect it in computing excitonic effects. By contrast, our resonant 

exciton model treats the intermediate states at the same level as in the Hartmann model, while 

making the same approximations as Elliott [14] regarding band dispersions. This refinement 

leads to qualitatively new physics that is discussed in detail below. The absorption expressions 

derived here are, as expected, more complex than in the Elliott case, but the calculations can be 

carried on personal computers, thereby lending themselves to fits of experimental data. As 

already shown in I, excellent agreement between theory and experiment is obtained at 

intermediate energies between the indirect and the direct gaps using the deformation potential 

that couples the two lowest conduction band valleys as the only adjustable parameter. The fit 

value is found to be in excellent agreement with other independent measurements of this 

quantity.. In this article we also investigate how the approximations made affect the modeling at 

the absorption edge.  

 

The remainder of the paper is organized as follows. In Section II we describe the theory of 

resonant excitonic indirect absorption. Since a key aspect of the comparison between theory and 

experiment is the use of absolute values of the absorption, special care is devoted to the 

definition of all parameters and prefactors needed for the calculation, which are not always used 

consistently in the literature. Explicit expressions for the absorption coefficient are derived that 

allow a direct comparison with experiment, and a detailed discussion of the approximations 

involved is provided. We also show how the Elliot excitonic model and the absorption 

expressions that ignore the excitonic interaction are obtained as appropriate limits of our model.  
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In Section III we discuss our experimental method and present absorption and reflectivity data 

for samples with different thicknesses. This allows us to investigate not only the most resonant 

energy range between the indirect and direct gaps, as in I, but also to study the onset of 

absorption very close to the indirect gap. In Section IV we compare theory and experiment, and 

in Section V we discuss our findings and outline future challenges. 

 

II. THEORY 

A) BASIC ABSORPTION EXPRESSIONS 

 Figure 1 shows schematically the band 

structure of Ge. The top of the valence band, 

where we choose the zero of energy, consists of 

light and heavy holes that are degenerate at the 

Γ-point of the Brillouin zone (BZ).  The spin-

degenerate conduction band has a local 

minimum at the Γ-point with an energy E0 

above the top of the valence band. The Γ-point 

conduction band states have s-like character and 

can be denoted as 

                         Sσ ; σ =↑,↓  , (1) 
where σ indicates the spin degree of freedom. 

The absolute minimum of the conduction band, 

at an energy Eind (the indirect gap) is a spin-

degenerate state at the L-point of the BZ. The 

valence band wave functions at the Γ-point are 

p-like. Their six-fold degeneracy is lifted by the 

spin-orbit interaction. We ignore the split-of 

band here because the spin-orbit splitting is Δ0 ~ 

0.3 eV, so that this band is not involved in the resonant indirect absorption processes that are the 

focus of this paper. Choosing Cartesian axes, the remaining states can be written as[20] 

 
Figure 1 Band structure of Ge showing important 
transition energies and splittings (in red) and 
indirect absorption mechanisms. The sequence 1/2 
is the dominant contribution to resonant indirect 
absorption because the intermediate and final states 
have similar energies. The sequence 1'/2' is far less 
resonant because the intermediate state energy is 
much larger. 
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1 = HH1 = 3
2 ; 3

2 = −
X ↑ + i Y ↑( )

2

2 = LH1 = 3
2 ; 1

2 = −
X ↓ + i Y ↓( )

6
+

2 Z ↑

3

3 = HH 2 = 3
2 ;− 3

2 =
X ↓ − i Y ↓( )

2

4 = LH 2 = 3
2 ;− 1

2 =
X ↑ − i Y ↑( )

6
+

2 Z ↓
3

  (2) 

where the X, Y, Z transform as the coordinates and the wave vector k is along the z direction. In 

both Eq. (1) and (2) the spin direction corresponds to the z-axis. The bands are assumed to have 

parabolic dispersion with effective masses mν (ν = 1,2,3,4) with m1 = m3 = mhh (heavy-hole) and 

m2 = m4 = mlh (light-hole). Corrections for band warping are incorporated into the definition of 

the effective masses, as discussed in Appendix B. Nonparabolicity is ignored.  

Optical absorption across the indirect gap requires the combined interaction of the electron 

system, light and phonons. The electron-radiation interaction is given by the A ⋅ p  term in the 

expansion of the Hamiltonian of an electron in the presence of a field characterized by a vector 

potential A [21]. Using a second-quantization formalism and assuming an incident photon of 

angular frequency ω and polarization μ, we can write this term as 

  . (3) 

Here cσ k
† cσ k( ) is the creation (annihilation) operator for a conduction band electron with wave 

vector k and spin σ, vνk
† vνk( )  the creation (annihilation) operator for a valence band electron  

with wave vector k in band ν = 1,2,3,4, as in Eq. (2), and aμ
† aμ( )  is the creation (annihilation) 

operator for the photon. This Hamiltonian can only induce vertical transitions between bands 

because we are neglecting the photon wave vector, a standard approximation at optical 

frequencies. The electron-light coupling is characterized by a momentum matrix element 

 where êμ  is a unit light polarization vector. In the prefactor MR, nop is the material's 

index of refraction at frequency ω, e is free electron charge, m the free electron mass, and the 

reduced Planck's constant. The normalization volume V is taken as the macroscopic sample 

volume. 
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For states near the Γ-point of the BZ, the momentum matrix elements can be written in terms of 

the k·p-theory parameter P, defined as[20] 

 
P = −i S ↑ Px X ↑ = −i S ↑ Py Y ↑ = −i S ↑ Pz Z ↑

= −i S ↓ Px X ↓ = −i S ↓ Py Y ↓ = −i S ↓ Pz Z ↓
  (4) 

With this definition, the effective mass of electrons in the Γ-valley, meΓ is given by 

 1
meΓ

= 1
m

+ 2
3

P
m

⎛
⎝⎜

⎞
⎠⎟

2 2
E0

+ 1
E0 + Δ0

⎡

⎣
⎢

⎤

⎦
⎥  , (5) 

where m is the free electron mass. For the momentum matrix elements  we neglect, as 

usual, their dependence on the wave vector magnitude k, but we must consider the relative 

orientation between k and the polarization vector eμ . However, since we eventually perform 

integrations over k, we can use angular averages Pσν such that Pσν
2 = lim

k→0
eμ ⋅ Pk ,σ ;k ,ν

2
, as 

discussed in Ref.  [22]. We then obtain 

 

P↑1
2 = P↓3

2 = P2

3

P↑2
2 = P↓4

2 = 2P2

9

P↑4
2 = P↓2

2 = P2

9

 , (6) 

all other couplings being zero.  Using these angular averages in Eq. (3), the electron-radiation 

coupling is characterized by a single parameter P. 

Since HeR can only effect vertical transitions, absorption across the indirect gap requires the 

additional momentum provided by a phonon. The electron-phonon Hamiltonian relevant for 

resonant indirect absorption couples the conduction band states at Γ and L via LA phonons[15]. 

The corresponding Hamiltonian[23,24] is given in second-quantization notation by 

   (7) 

where ρ is the material's density, ΩLA the LA phonon angular frequency, and DΓL is the so-called 

deformation potential (with units of energy/distance). In this expression we are neglecting the 

wave-vector dependence of the deformation potential and phonon frequency, so that their values 

should be viewed as an average. This makes it possible to characterize the electron-phonon 
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interaction with a single parameter, similarly to our approximations for the electron-radiation 

Hamiltonian. 

As we will see later, the value of DΓL is critical for the assessment of any theory of indirect 

optical absorption. From time-resolved transmission experiments, Zhou et al. [25] find  DΓL = 

(4.2±0.2)×108 eV/cm. By studying the pressure dependence of the direct gap exciton at low 

temperature, Li and coworkers[26] obtained an upper limit  DΓL < 4.5×108 eV/cm, which is 

consistent with Zhou's measurements. Theoretical predictions are in good agreement with the 

experimental data. Krishnamurty and Cardona [27] find DΓL = 3.9×108 eV/cm using an ab initio 

tight-binding method and a frozen phonon calculation. From electronic structure calculations 

within the local-density approximation (LDA) to density functional theory, combined with 

density-functional perturbation theory for phonons, Tyuterev et al. obtained DΓL = 4.0×108 

eV/cm [28]. Using instead a frozen-phonon approach, Murphy-Armando and Fahy [29] found 

DΓL = 4.1×108 eV/cm. In our fits of experimental data to be discussed below, DΓL will be taken as 

an adjustable parameter, and the agreement with these well-established values will be an 

important criterion to decide on the absorption model validity. The remaining Ge parameters will 

not be adjusted but taken from the literature [23,25,30-36]. They are summarized in Table I. 

Some of these parameters were computed from available data at low temperature as described in 

Appendix B.  

Using Eq. (3) and Eq. (7), optical absorption can be calculated as an exercise in second-order 

perturbation theory. For this, we note that intermediate as well as final states contain one electron 

in the conduction band and one hole in the valence band, so it is convenient to introduce an 

excitonic representation by defining the operators[37] 

 dλK ,σν
† = 1

N
UλK ,σν R( )

Rk
∑ e− ik⋅Rcσ k

† vν ,k−K   (8) 

Here N is the number of unit cells in the crystal, K is the electron-hole pair's (exciton's) center of 

mass wave vector and λ is an index that represents the internal degrees of freedom of the exciton. 

Table I   Material parameters at the experimental temperature of 301 K used for the calculation of the absorption coefficient of Ge. The 
columns that lack a direct reference were computed from available experimental data as discussed in Appendix B. In the case of nop and ε0, 
they were taken from our own ellipsometric measurements. 
 
meΓ/m m⊥/m m||/m mlh/m mhh/m P2/m 

(eV) 
ℏΩLA 
(meV) 

ℏΩO 
(meV) 

ρ 
(g/cm3) 

DΓL 
(eV/cm) 

d0 
(eV) 

nop ε0 a0 ( Å) 

0.0338 0.0784 1.58a-

c 
0.0385 0.352 12.61 27 d 37.2 e 5.323f 4.2×108 g  41 

h,i 
4.13 16.2 5.6574 

 
aRef. 30; bRef. 31; cRef. 32; dRef. 33; eRef. 31; fRef. 36; gRef. 25. hRef. 34; iRef. 35.  
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The indices σ and ν (from Eqs. (1) and (2)) identify the conduction and valence bands involved, 

and R is a relative lattice vector that represents the electron-hole separation. The function 

UλK ,σν R( ) depends on the electron-hole interaction. For Wannier-like excitons with large 

electron-hole separations, the variable R can be taken as continuous, and one can obtain 

UλK ,σν R( )from the solution of Schrödinger-like differential equations. 

For the purpose of calculating resonant indirect absorption we need to consider two types of 

exciton. When both the electron and hole states are near the Γ point of the BZ, we define a 

function    FλK ,σν R( ) = vc
−1 2e− iseΓν K ⋅RUλK ,σν R( ) , where vc is the volume of the unit cell, and 

seΓν = meΓ M
Γν

, with MΓν = meΓ + mν . In the limit in which R can be taken as a continuum 

variable, FλK ,σν R( ) satisfies a hydrogenic Schrödinger equation with bound eigenvalues 

, n =1,2,3… Here the excitonic Rydberg is 

, where μΓν
−1 = meΓ

−1 + mν
−1 , and ε0 the static dielectric constant. The second 

type of exciton we will consider involves the same hole states as the previous one but electrons 

near the L-point minimum of the CB. Since the conduction band effective mass is very 

anisotropic at this point, the resulting Schrödinger-like equation does not have simple analytical 

solutions. We will therefore follow Elliott and make the drastic approximation that the band 

dispersion is spherically symmetric around L : with kL = π
a0

1,1,1( )  

with a0 being the cubic lattice parameter. The validity of this spherical approximation will be 

discussed below. Under this assumption we recover a hydrogen-like Schrödinger exciton 

equation for , where seLν = mL M
Lν

, shLν = mν M
Lν

and 

M Lν = mL + mν . The corresponding bound eigenvalues are given by 

, n =1,2,3,… with  and 

μLν
−1 = mL

−1 + mν
−1.  

Notice that our description of the excitons assumes separate excitonic states for each valence 

band involved. This is, strictly speaking, never the case, since light- and heavy-holes are 

degenerate at the Γ-point. However, within the spherical approximations to be discussed in Sect. 
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IIC, the problem does reduce to the sum of two separate two-band excitonic contributions, albeit 

with excitons calculated using different effective masses. The expressions derived next contain a 

sum over the two types of hole, which in Sect. IIC will be replaced by a factor of 2 times the 

contribution of a "hybrid" light/heavy hole state. 

The intensity of radiation traveling a distance dx in a medium is attenuated as dI I = −αdx , 

where α is the absorption coefficient. If the transition rate for the process is Ri→f, then 

α = Ri→ f nop c , where c is the speed of light in vacuum. For typical experimental conditions kBT  

<< Eind, where kB is Boltzmann's constant. In this limit it is an excellent approximation to assume 

that the initial state i  consists of an electronic system in its ground state, a phonon bath, and an 

incident photon with fixed polarization μ. We indicate this initial state as aμ
† G .  The final state 

f  consists of an exciton and one additional (creation) or one less (annihilation) phonon. It is 

given in bra form as nqLA +1⎡⎣ ⎤⎦
−1 2

G bqLAdλK ,σν  or nqLA( )−1 2
G bqLA

† dλK ,σν , respectively, where the 

prefactors containing the Bose-Einstein phonon population nqLA insure proper normalization. The 

intermediate states consist of excitons of the form dλK ,σν
† G . Therefore, the dominant 

contributions to the transition rate are, from Fermi's golden rule:  

  (9) 

Here the superscript "+" corresponds to phonon creation and the superscript "-" to phonon 

annihilation. Eq. (9) omits a contribution from terms in which HeL and HeR appear in reverse 

order. These are zero under our assumptions that the electronic system is initially in its ground 

state and that HeL does not couple the valence band with the conduction band.  

The matrix elements in Eq. (9) can be easily computed from the definitions in Eqs. (3), (7), and 

(8), combined with well-known theorems for lattice sums. First we observe that if the final state 

contains a CB electron at the L point, this state can be reached via a direct optical transition at Γ 

followed by an electron-phonon "transfer" of the electron from Γ to L, as shown in Fig. 1 as 

process 1 and 2. Alternatively, it is possible to have a direct optical transition at L (across the so-

called E1 and E1+Δ1 gaps) followed by an electron-phonon "transfer" of the hole from L to Γ. 

This is indicated as processes 1' and 2' in Fig. 1. However, the first process, with intermediate 



 10

energies E ′λ ′K , ′σ ′ν  ~0.8 eV, is far more resonant than the latter, with E ′λ ′K , ′σ ′ν  ~2 eV. Accordingly, 

we will neglect the  contribution from the E1 and E1+Δ1 transitions. In this case, the exciton 

created by the HeR element is a Γ-point exciton, whereas HeL converts this Γ-point exciton into an 

indirect exciton with the electron near L and the hole near Γ. The matrix elements become 

 G d ′λ ′K , ′σ ′ν HeRaμ
† G = δ ′K ,0M RP ′σ ′ν F ′λ 0 , ′σ ′ν

* 0( )  (10) 
and 

 
G bqLAdλK ,σν HeLd ′λ 0, ′σ ′ν

† G = − M PDΓL

V
vc nLA +1[ ]δν ′ν δσ ′σ δ −q,K FλK ,σν

* R( )
R
∑ Fλ 0,σν R( )eishLν K −kL( )⋅R

G bqLA
† dλK ,σν HeLd ′λ 0, ′σ ′ν

† G = M LDΓL

V
vc nLA[ ]δν ′ν δσ ′σ δ q,K FλK ,σν

* R( )
R
∑ Fλ 0,σν R( )eishLν K−kL( )⋅R

  (11) 

Inserting (10) and (11) into Eq. (9), we obtain, 

   (12) 

Substituting the expressions for the momentum matrix elements from Eq. (6): 

   (13) 

where the index h now runs over light and heavy holes. Since all sums over the index ν are 

"collapsed" into a sum over the two types of holes, we will from now replace the subscript "ν" in 

all previously defined symbols with "h", except that shLh and shΓh are simplified as shL and shΓ.  

Eq. (13) transparently displays the new physics required to describe indirect excitons in Ge. If 

the energy denominator  is independent of λ', i.e. if all intermediate states are 

assumed to have the same energy, we are left with the completeness relation 

F ′λ 0,h R( ) F ′λ 0 ,h
* 0( ) = δ

′λ∑ R( ) , and the transition rate becomes proportional to FλK ,h 0( ) 2
. This 

is the result obtained by Elliott [14]. It is similar to the expression for direct excitonic absorption 

in that it depends on the final state excitonic wave function at position R = 0 . Furthermore, since 

the completeness relation is independent of the strength of the electron-hole interaction, the final 

result is identical whether we treat the intermediate states as free electron-hole pairs or as 

excitons. In the case of Ge, however, the approximation of extracting the denominator from the 
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sum over λ' is very poor. This implies that in a realistic theory the nature of the intermediate 

states will affect the transition rate. Furthermore, the transition rate will depend not only on the 

final state excitonic wave function at R = 0but at all values of R . It is therefore inconsistent to 

calculate the indirect absorption using the Hartman model and then attempt to correct for 

excitonic effects using the Elliott approximations.  

B) GREEN'S FUNCTION THEORY 

The computation of Eq. (13) is greatly facilitated by noting that  

   (14) 

is the Green's function for the excitonic Schrödinger equation [38]. For the Γ-point excitons 

relevant to our calculation this Green function has a particularly simple form [39-41] in the limit 

in which R can be considered a continuum variable. In this case the Green's function depends 

only on the magnitude R ≡ R  according to 

   (15) 

with 

   (16) 

Here Γ(z) is the Gamma function (not to be confused with the Γ point in the BZ), and Wκ,n(z) a 

Whittaker function of the first kind. 

Using the Green's function, and converting the sum over R in Eq. (13) into an integral, we obtain 

    (17) 

To evaluate this transition rate we need the final state excitonic wave function FλK ,h R( ) . For 

bound states, the generic index λ can be identified with the hydrogenic quantum numbers n, l, m. 

In the Elliott exciton limit the absorption is proportional to FλK ,h 0( ) 2
, as discussed above, which 
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is non-zero only for the s-like l = 0 excitons. While this is not the case in Eq. (17), the 

contribution from the l ≠ 0 states will be necessarily small because each excitonic state 

contributes a term roughly proportional to n-3. Accordingly, the contribution from the 2p state 

will not exceed 10% and will probably be even less, since it vanishes in the limit of constant 

denominators. Furthermore, we will find below that the excitonic continuum states make a much 

larger contribution to the absorption, so that we will neglect any l ≠ 0 bound state. Under this 

approximation FλK ,h R( )  depends only on the magnitude R and the principal quantum number n 

according to 

   (18)  

where Ln
1 ρ( )  is an associated Laguerre polynomial of order n. Here, in analogy with Eq. (16) 

   (19) 

 

For the continuum limit the index λ becomes a wave vector k, and the corresponding energy is 

, with  k = k . The wave function can be 

written as [42]  

 FλK ,h R( ) ≡ FkK ,h R( ) = 1
V

Γ(1+ iν Lh )eπνLh /2eik⋅R
1F1 −iν Lh ,1,−ikR − ik ⋅ R( )   (20) 

with 

  . (21) 

Here 1 F1 a,b, z( ) is a confluent hypergeometric function of the first kind.  It is interesting to point 

out that Elliott [14] writes his final state wave function as a partial wave expansion into spherical 

harmonics (see Eq. 2.10 in Ref. [14]). Such a form is convenient given the l  = 0 selection rule of 

the Elliott model, but Eq. (20) is far more compact for our purposes. Furthermore, in the limit of 

vanishing Coulomb interaction, νLh →0, and Eq. (20) reduces to a plane wave, which makes it 

very simple to compute the non-excitonic absorption limit.   
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1. Bound exciton calculation 

Even after the considerable simplifications discussed above, the transition rate in Eq. (17) cannot 

be computed analytically. For bound excitons, however, our approximated final state wave 

function as well as the Green's function that appears in the integral over R is spherically 

symmetric. This makes it possible to carry out the angular part of the integration analytically by 

placing the vector K–kL along the z-axis. We then find 

    (22) 

where 

   (23) 

Performing a change of variables k' = K-kL and converting the sum over k' into an integral over 

the variable  , we finally obtain, after some straightforward manipulations, 

   (24) 

where we have multiplied the expression obtained from Eq. (22) by a factor of 8/2=4 to take into 

account the valley degeneracy along the different <111> directions in Ge. We have also used the 

identity M LhμLh = mLmh . The function HLhn is computed by numerical integration. The calculated 

absorption coefficient from Eq. (24) is shown in Fig. 2. Notice the well-known result that bound 

excitons contribute to the absorption above and below the indirect band gap. This is in contrast 

with the direct gap absorption case, in which bound excitons only contribute to below-band gap 

absorption. Therefore, we must take bound exciton absorption into account, even though our 

primary focus is on the more resonant energy range between the indirect and direct gaps. 

However, as seen in Fig. 2 and derived below, the continuum exciton absorption is one order of 

magnitude stronger in this range.  
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2. Continuum exciton calculation 

For the continuum case, the presence of the 

argument k ⋅ R  in Eq. (20) means that the 

integral over R in Eq. (17) involves a non 

trivial angular integration. In addition, the 

final result of this R-integration depends on 

the relative angle between k and K, which 

implies that the complete evaluation of Eq. 

(17) requires a quadruple integral at each 

photon energy. This is computationally too 

costly if we want to run the calculations on 

personal computers and eventually fit 

experimental data. The calculation can be made more manageable if we introduce the 

approximation 

   (25) 
This approximation will be justified below. Qualitatively, this simplification is consistent with 

our neglect of mass anisotropy in the underlying Schrödinger equation. Inserting Eq. (25) into 

(17), and using again the change of variable  k' = K-kL we obtain 

  (26) 

with kh = shL K - kL( ) − k = shL ′k − k . If the integral over R is be carried out in spherical 

coordinates, the angular integrations can be done analytically, and we obtain 

   (27) 

where we have again multiplied the expression by a factor of 4 to account for valley degeneracy. 

The function J Lh k, ′k ,θ( )  is defined as 

 
Figure 2  Calculated absorption coefficient of Ge 
using parameters from Table 1. The dotted line shows 
the bound exciton contribution, from Eq. 24, and the 
solid line corresponds to the continuum exciton 
contribution, Eq. 29. In both cases we use effective 
masses from Eq. 47. 
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   (28) 

where θ is the angle between k and k' such that kh
2 = shL

2 ′k 2 + k 2 − 2shLk ′k cosθ . Next we convert 

the sums over k and k' into integrals and introduce the variables  and 

 , so that we finally obtain 

  (29) 

Eq. (29) is evaluated numerically as a triple integral over the position R, the angle θ and the 

energy ε. 

2. The free electron-hole pair limit 

In the limit of vanishing electron-hole interaction, κΓh →0 in Eq. (16), and since W0,1 2 ρ( ) = e−ρ 2   

and  Γ(1) =1, we obtain 

   (30) 

with  . Also, since νLh→0 and 1F1 0,b,z( ) = 1, Eq. (20) reduces to a plane 

wave FkK ,h R( ) = eik⋅R V  Inserting these limit expressions into Eq. (17), we find 

   (31) 

We now change variables to 

 
kh = shL K − kL( ) − k

ke = seL K − kL( ) + k
  (32) 

so that 
 

   (33) 

Therefore 
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   (34) 

where we have used dReik0R sin khR = kh kh
2 − k0

2( )
0

∞

∫ ; Im k0 > 0  

Converting the sums over ke and kh into integrals and changing variables by defining 

 and , we finally obtain, after some straightforward manipulations,   

 

   (35) 

This expression includes an additional factor of 4 to account for valley degeneracy. The integral 

can be performed analytically, and we finally obtain for the absorption coefficient 

   (36) 

This is exactly equivalent to Hartman's result, except that in a calculation that fully accounts for 

the mass anisotropy of the L valley in the conduction band, one must use . If we 

now define the dimensionless variable 

  , (37) 

it is apparent that the nonresonant limit obtains for y→1. Expanding Eq. (36) to second order in 

η = 1− y( ) y, one obtains the textbook result [24] 

   (38) 
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2. The Elliott limit 

The indirect excitonic absorption proposed by Elliott is obtained, as indicated above, in the limit 

of constant denominators in Eq. (13). In this limit we have 

  , (39) 

and inserting this back into Eq. (17) we obtain 

   (40) 

For the case of bound excitons, using Ln−1
1 0( ) = n in Eq. (18) 

 FλK ,h 0( ) ≡ FnK ,h 0( ) = 1
π naBLh( )3 2   (41)  

whereas for the continuum excitons we have from Eq. (20) 

 FλK ,h 0( ) ≡ FkK ,h 0( ) = 1
V

Γ(1+ iν Lh )eπνLh /2   (42) 

where we have used 1F1 a,b,0( ) = 1. Inserting Eq. (41) or (42) into (40) and performing the 

changes of variables  k' = K-kL, we obtain, after several straightforward steps that mimic our 

derivation of the resonant case,  

   (43) 

For the case of the continuum solution, we find  

   (44) 

from which we obtain, using the properties of the Gamma function and converting the sums over 

wave vector to integrations over energy, 
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   (45) 

Here 

 S ε( ) =
πν Lhe

πν Lh

sinhπν Lh

=
π RyLh εeπ RyLh ε

sinhπ RyLh ε
  (46) 

 
is the Sommerfeld enhancement factor. In the limit of vanishing electron-hole interaction, 

RyLh → 0  and S ε( ) → 1 and Eq. (45) becomes Eq. (38). 

 
C) SPHERICALIZATION APROXIMATIONS 
 
1. Effective masses 

Our model of indirect excitons in Ge is based on assuming that the conduction band around the L 

point of the BZ has an isotropic parabolic dispersion with effective mass mL. This is a very poor 

approximation, since the L valley is characterized by a longitudinal mass  and a 

transverse mass m⊥ = 0.078m , as shown in Table I. However, as indicated above, in the non-

interacting limit we recover the same absorption expression as in the anisotropic case if we use 

. This suggests that we use this expression as our value of mL in all calculations. 

Unfortunately, this simple approach is questionable because the indirect exciton Rydberg 

energies calculated with this mass are ~7 meV for heavy holes and ~2 meV for light holes. 

Experimentally, one sees a single 1s exciton level split into upper and lower components with 

binding energies of 3 meV and 4 meV, respectively [16]. Given our choice of an isotropic mass 

for the L valley, we don't expect to capture the fine structure of the excitons, but the significant 

differences in binding energies suggest that we may be introducing large errors in our calculation 

of excitonic enhancements. Thus a more systematic derivation of our spherical excitonic 

Hamiltonian is needed.  This derivation has been provided by Altarelli and Lipari [17,18], who 

expanded the full anisotropic excitonic Hamiltonian as a series in which the first term is 

spherically symmetric. The effective masses corresponding to this spherically symmetric term 

are, using our notation, 
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 ,      (47) 

and therefore these are the most appropriate 

masses to treat excitons in Ge using a 

spherical dispersion model. The 

corresponding binding energy is RyLh = 2.3 

meV. Since there are two "sphericalized" 

hole bands, the sums over heavy and light 

holes are taken into account by simply 

multiplying times 2 the result obtained with 

Eq. (47). On the other hand, using the 

definitions in Eq. (47) we find that 

 ,  (48) 

which means that in the non interacting limit 

of Eq. (29), the choice of effective masses 

from Eq (47) leads to an absorption 

coefficient that is more than one order of 

magnitude weaker than expected from a free 

electron calculation. It is then apparent that a 

rigorously derived spherical exciton model is inconsistent with the non-interacting limit in Ge.  

We must then resort to an ad hoc correction inspired by the continuum excitonic expression in 

the Elliott limit, in which the excitonic effects appear as an enhancement factor S(ε). The idea is 

to write the absorption coefficient as 

   (49) 

where αfree is given by Eq. (36) with  , and   is the ratio of Eq. (29) and Eq. 

(36) using in both cases the masses in Eq. (47). These enhancement factors are shown in Fig. 3, 

where we also show for comparison the same enhancement factors calculated for the Elliott 

model. As expected, the two theories make drastically different predictions as the resonant direct 

gap is approached. In the resonant excitonic theory presented here, the excitonic nature of the 

 
Figure 3   Excitonic enhancement S computed as a ratio 
of the continuum contribution to the absorption and the 
absorption calculated for free electron-hole pairs. The 
"+" sign in the horizontal axis label applies to the case of 
phonon annihilation; the "-" sign to phonon creation. 
The solid line corresponds to the resonant excitonic 
model introduced here, the dotted line to Elliott's model. 
Note the difference of the two models as the direct gap is 
approached. This is because the resonant model is 
affected by the excitonic character of the intermediate 
states, whereas Elliott's model is independent of the 
character of these states.  



 20

intermediate states leads to a dramatic enhancement as 

E0 is approached. In the Elliott model, as indicated 

above, the excitonic nature of the intermediate states is 

irrelevant. For αbound, since Eq. (24) is proportional to 

mL
3 2mh

3 2
h∑  and we want consistency between bound 

and continuum expressions, we compute Eq. (24) with 

the masses in (47) and then multiply times RF given by 

Eq. (48). This approach, which by design gives the 

correct non-interacting limit, is used below for all 

comparisons with experiment. 

It is interesting to discuss here why a comparable 

correction is far less important when computing the 

excitonic enhancement of direct transitions in Ge [43]. 

If we define a sphericalized reduced mass 

μ−1 = meΓ
−1 + mh

−1, with mh given by Eq. (47), we find that 

           μlh
3 2 + μhh

3 2( ) 2μ3 2( ) = 1.14 . (50) 
If instead we set the above equation equal to unity, and 

use it to compute μ, we obtain the exact non-interacting limit while paying the price of a small 

14% error in the excitonic binding energy.  

2. Final state wave functions 

In the calculation of the continuum contribution to indirect exciton absorption, we reduced the 

number of numerical integrations by approximating the confluent hypergeometric function of the 

first kind as in Eq. (25). To examine the validity of this approximation, we choose the z-axis 

along the k vector and define the angular average 

 
1 F1 −iν ,1,−ikR − ik ⋅ R( ) = 1

2
dθ sinθ

0

π

∫ 1 F1 −iν ,1,−ikR 1+ cosθ( )( )

= 1
2

du
−1

1

∫ 1 F1 −iν ,1,−ikR 1+ u( )( )
  (51) 

Figure 4 compares the average function defined in (51) with the approximated expression in Eq. 

(25). We see that the agreement is very good. This means that our approximation is consistent 

with the use of an angular average of the exact excitonic wave function, and since the wave 

 
Figure 4   Comparison of the approximate 
continuum exciton wave function proposed 
in Eq. 25 (solid line) with the angular 
average of the exact wave function, as in 
Eq. 51 (dashed line). The comparison is 
made for three values of the parameter νLh 
covering the full range of excitonic 
energies.  
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function is integrated over the angles in Eq. (17), the error incurred must be small when using an 

angular average of the wave function rather than the wave function itself. Furthermore, since the 

wave function in Eq. (20) is the solution of the Schrödinger equation with sphericalized effective 

masses, any small differences observed in calculations using the "exact" wave function on the 

left side of Eq. (25) or the approximation on the right-hand side may be physically meaningless. 

We have also verified that the use of the Eq. (25) approximation has a negligible effect on the 

wave function normalization. 

  

III. EXPERIMENT 

Optical transmittance and reflectance measurements were carried out on six Ge specimens. Three 

of these samples were commercial optical windows from ISP OPTICS [44] with thicknesses d = 

1.04 mm, 2.13 mm, and 3.04 mm, respectively. The three remaining samples were double-sided 

polished (roughness < 1nm RMS) commercial epi-ready Ge substrates from UMICORE [45], with 

d = 0.175 mm. The UMICORE substrates have an extremely low impurity concentration below 

2×1010 cm-3, corresponding to a resistivity higher than 57 Ωcm. We used a Perkin Elmer Lambda 

1050 spectrophotometer equipped with an InGaAs sphere detector to measure the regular 

transmittance T under normal incidence. The specular reflectance R was measured at near-

normal incidence (8.0º±0.25º incidence) using a Perkin Elmer Lambda 900 spectrophotometer 

equipped with a VW directional reflectance accessory (PE L6310200) and a PbS sphere detector. 

The use of sphere-based detectors for these optical measurements reduces uncertainties due to 

detector non-linearity, non-uniformity and interreflection effects. The measurements were 

performed at an average temperature T = 301 K, as recorded using a calibrated digital 

thermometer (Fluke Model 1529-R with an uncertainty of ± 0.0025 °C at 25 °C. The 

thermometer was mounted inside the sample compartment. The temperature drift during any 

individual measurement was 3K or less. The regular transmittance measurements are traceable to 

the well-characterized NRC Reference Spectrophotometer [46]. The absolute VW (Strong 

method) specular reflectance measurements were confirmed by comparison with a high 

reflectance dielectric laser mirror optimized for 2037 nm.[47]  

For all wavelengths probed, d >> λ, so that R and T can be obtained by adding incoherently the 

contributions from the two air-sample interfaces. We then obtain 
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   (52) 

where R and T are the reflectance and transmittance at a single air-sample interface and α is the 

absorption coefficient. Similarly, the sample's absorptance A=1-R-T  is given by 

   (53) 

The desired absorption coefficient can be obtained from the experimental R and A. We define 

 z ≡ exp −αd( )  (54) 
so that Eqs. (53) and (52) can be rewritten as 

   (55) 

   (56) 
 
This system can be easily solved by iteration. We can first assume R = R —which corresponds 

to the high absorption limit of Eq. (52)—and calculate z from Eq. (55). Next we insert this z into 

Eq. (56) and solve for R, which is then inserted back into Eq. (55) to continue the iterative 

 
Figure 5  (a) Absorption coefficient α extracted from the experimental data by solving Eqs. (56) and (57) 
iteratively. (a) Corresponding air-germanium interface reflectance obtained by the same procedure, after 
smoothing as described in the text. 
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process. Alternatively, we can start the iteration process by taking the low-absorption limit of Eq. 

(52), R =R/(2-R). For typical values of the experimental quantities, virtually perfect 

convergence is reached in as few as three iterations starting from either limit. Results are shown 

in Fig. 5, where we include only one of the d = 0.175 mm samples, as the others give a virtually 

identical absorption coefficient. As expected, we see from Fig. 5(a) that the d = 0.175 mm 

sample and even the d =1.04 mm sample are too thin for accurate measurements near the 

absorption edge, where the results converge for d > 2 mm. At the other end of the spectrum, we 

observe that only the d = 0.175 mm samples can be used to reach the direct gap, so that the 

samples with this thickness are crucial to study the resonant indirect absorption. At intermediate 

energies, the absorption coefficients from all samples are in excellent agreement, indicating that 

errors are very small and that the method used to extract the absorption is robust. The 

corresponding reflectances are shown in Fig. 5(b). Smoothing has been applied to the reflectance 

curves to eliminate instrumentally induced noise that appears between 0.65 eV – 0.70 eV. The 

observed noise in R can be traced back not only to noise in the raw R data but also to residual 

fluctuations in the transmittance, which has the steepest slope in this spectral range. The 

reflectance curves are also in excellent agreement with each other, with the largest discrepancies 

not exceeding 0.5%.  The local maxima near 0.80 eV is associated with the direct gap E0. 

Fluctuations in the position of these local maxima, within a range of about 10 meV, are apparent 

in the data. Energy shifts of this magnitude are too large to be due to thermal drift, since a 

temperature change ΔT = 3 K corresponds to ΔE0 = -1.3 meV [48]. More likely, the shifts are 

due to residual doping levels. For example, a doping level of 1016 cm-3 corresponds to a band gap 

renormalization of – 5meV  [49]. This interpretation is consistent with the fact that in the high-

resistivity d = 0.175 mm samples the E0 peak is sharper and appears at the highest energy. 
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Fig. 6 compares our measured absorption with data in the literature. Macfarlane et al. [7] 

computed the absorption coefficient from transmission measurements on three Ge specimens. 

The reflectance was not measured independently. Instead, its value below the absorption edge 

was deduced from transmission measurements assuming no residual absorption, and taken as 

independent of energy.  Pankove and Aigrain used a similar approach, setting R = 0.36. We see 

that the Macfarlane curve agrees very well with our data except for a shift to higher energy by 

about 5 meV. This corresponds to a temperature difference ΔT = -11 K, in very good agreement 

with the actual difference ΔT = -10 K between the two data sets. The dispersion of the indirect 

absorption as the direct gap is approached is slightly different in the Pankove-Aigrain data. This 

is not due to their assumption of constant reflectivity, but rather to differences in the 

experimental transmittances. We note, however, that the assumption of constant reflectance must 

be dropped if the absorption coefficient is to be determined with a small fractional error over the 

entire spectral range between the indirect and direct gaps—as done here. For example, if we 

were to process our data using the Pankove-Aigrain assumption R = 0.36, the difference would 

be negligible near the direct gap, but more than a factor of 2 near the onset of absorption at the 

indirect gap. In other words, simultaneous measurements of transmittance and reflectance, as 

presented here, are critical to obtain reliable values of 

the absorption coefficient over the entire spectral 

range. 

 

IV. COMPARISON OF THEORY AND 

EXPERIMENT 

A) ISSSUES IN THE EXTREME RESONANT 

REGIME 

The absorption data just described can be compared 

with the theoretical predictions using Eq. (49). 

However, in the extreme resonant limit very close to 

E0 the analysis is complicated by a number of effects 

not included in the theory developed in Section II. At 

an energy  ~ 36 meV below E0, an additional 

absorption channel becomes possible, namely optical-

 
Figure 6  The solid line shows the measured 
absorption in pure Ge at 301 K. For E < 0.7 
eV we use data from the d = 3.04 mm 
sample, and for E ≥ 0.7 we use data from a d 
= 0.175 mm sample. The dotted line 
corresponds to measurements by Macfarlane 
et al. (Ref. 7) at 291 K, and the dashed-doted 
line is from Pankove and Aigrain (Ref.8) 
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phonon assisted direct transitions. Attempts to observe laser-induced cooling in direct gap 

semiconductors are based on this mechanism [50]. Phonon-assisted direct transitions are allowed 

because the optical phonons couple the light- and heavy-hole bands via the electron-phonon 

interaction. The calculation of this process is quite similar to the indirect absorption theory 

described in Sect. II, and it is sketched in Appendix A. As seen in Fig. A1, the expected phonon-

induced direct gap absorption is weak compared to indirect absorption, but for completeness it 

will be added to our theoretical model.  

An additional issue in the extreme resonant limit is that the contribution from first-order direct 

gap absorption can only be ignored at very low temperatures. But at room temperature the direct 

absorption edge is broadened, and its low-energy tail will overlap with the indirect absorption. 

Since a tail from a first-order process might be comparable in strength with the second-order 

indirect absorption, care must be exercised in analyzing data in this energy range. A possible 

way to extract the "true" indirect absorption would be to fit the direct gap absorption with a 

theoretical expression and subtract the fit curve from the experimental absorption below the 

direct gap. The difference should correspond to the bona fide indirect absorption. However, our 

theoretical expressions for indirect absorption are not adequate for analyzing the resulting data 

because they do not include lifetime effects.  Since Γ-point excitons are the final states in direct-

gap absorption and the intermediate states in indirect gap absorption, consistency requires that 

the same lifetime broadening effects be included in our theoretical account of direct and indirect 

absorption. Furthermore, lifetime effects in Γ-point excitons are actually more important for 

indirect absorption, because our expressions (see for example Eq. (36)) diverge for . 

Accordingly, broadening affects not only the lineshape but also the strength of the resonant 

indirect absorption. Second-order perturbation theory becomes inadequate in this limit, and a 

rigorous theoretical approach requires a treatment beyond the scope of this paper. We then adopt 

a more modest approach that consists in estimating a threshold energy below E0 at which 

broadening effects become small, and excluding from the analysis all photon energy above this 

threshold. 

B) DIRECT ABSORPTION AND LIFETIME EFFECTS 
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The threshold energy below which it is "safe" to use the theory of Section II, which does not 

incorporate lifetime effects, can be estimated from a theoretical analysis of direct gap absorption. 

Fig. 7 shows room temperature experimental data from Ref. [43], and a fit with a theoretical 

expression discussed in Refs. [43] and [51]. The theoretical calculation is based on the Elliott 

analysis for direct transitions [14,20].  The effect of broadening is accounted for by simply 

convoluting the calculated imaginary part of the dielectric function with a normalized Gaussian 

or Lorentzian. The only adjustable parameters are the temperature, which determines the exact 

value of E0 [48]), and the broadening. Notice that there is no ad hoc "amplitude" parameter, so 

that the strength of the absorption is predicted by theory. It is apparent from Fig. 7 that Gaussian 

broadening leads to a remarkable agreement with experiment. The fit values in this case are 

0.015 meV for the broadening (FWHM of the Gaussian) and a temperature T = 300 K. 

Lorentzian broadening, on the other hand, fails to reproduce the experimental lineshape.  The 

deviation between theory and experiment at higher energy is due to band nonparabolicity, which 

is not included in the model. Note that the agreement between theory and experiment is good for 

absorption values as high as α = 5,000 cm-1. This insures that the fit is completely dominated by 

the direct absorption.    

Based on the fit of the direct absorption edge in Fig. 7, we define the threshold energy for 

neglecting broadening effects as the energy at which the tail of the direct absorption fit accounts 

for less than 2% of the experimental absorption at this energy.  We find that this condition is 

satisfied 24 meV below E0.   

C) INDIRECT ABSORPTION FITS 

The above considerations suggest that the theory 

developed in the previous sections should be 

valid at least up to an energy  ~ 0.78 eV. For 

actual fits, however, we need to consider the 

fact that the absorption near this energy is a 

rapidly increasing function of photon energy, so 

that the fit will be dominated by the highest 

energy values unless we introduce some data 

point weight factors that depend on energy. To 

avoid this complication we simply fit the 

 
Figure 7  Theoretical fit of the room-temperature 
direct gap in Ge with the theory described in Ref. 
42. The only adjustable parameters are the band gap 
energy and the magnitude of the broadening. 
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theoretical models to the experimental absorption data for energies  < 0.75 eV. Therefore, the 

agreement between theory and experiment beyond this energy will depend on the quality of the 

predicted lineshapes. In particular, this approach will allow us to verify if the resonant excitonic 

enhancement predicted by our model (Fig. 3) can be observed experimentally. Furthermore, 

since the absorption is very small as the low-energy end of the spectral range is approached, its 

values near this limit do not affect the fit in any substantial way, so that the agreement between 

the fit and the experimental curve near the onset of absorption is also a test of the quality of the 

predicted photon-energy dependence of the absorption coefficient.  

The fit with our full model is shown as a solid blue line in Fig. 8 (a). The curve is computed 

using Eq. (49) and we obtain a fit value DΓL = (4.2±0.1)×108 eV/cm. This is, within error, the 

same as the value DΓL = (4.3±0.1)×108 eV/cm obtained in I using a slightly different energy 

range for the fit. The onset of absorption at the lowest energies is shown on a different scale in 

Fig. 8(b). The lowest-energy threshold corresponds to phonon-annihilation processes, and the 

kink at 0.685 eV marks the onset of phonon-creation absorption. The kink is not obvious in the 

experimental data, most likely as a result of lifetime broadening. To confirm this explanation we 

show in the inset the calculated absorption after convolution with a Gaussian with a FWHM = 

0.015 eV, the broadening used above for direct gap absorption. We see that the resulting curve 

shows a lineshape very similar to the experimental data. A second fit with our theoretical model 

was performed using the factor RF in Eq. (48) as an additional adjustable parameter. This is 

motivated by the fact that the correction of the bound exciton contribution by this factor is 

arguably the least justified assumption in our model. 
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We show two additional theoretical fits in Fig. 8 to help understand the physics involved. In all 

cases, the fit parameter value is shown in the legend. The dash-dotted green line was computed 

using the Elliott model following Eq. (49), i.e. taking αfree as the textbook expression in Eq. (38), 

computing the excitonic enhancement  using the Elliott exciton model, Eq. (45), and 

adding the bound exciton contribution from Eq. (43). The dash-double-dotted purple line 

corresponds to a hybrid approach in which αfree is taken from the Hartman model in Eq. (36), but 

using the excitonic enhancement  from Elliott's model (dashed lines in Fig. 3). This is 

logically inconsistent, as stressed above, but useful for understanding the different contributions 

to the absorption. 

V. DISCUSSION 

 
Figure 8  (a) Circles: experimental absorption coefficient of Ge in the spectral range between the indirect and 
direct band gaps. Only 1/5 of the experimental points are shown to improve visualization. Solid blue line: fit 
with the theory described in this paper, with DΓL as the sole adjustable parameter. Dotted blue line: same as the 
solid blue line but using RF from Eq. (48) as an additional adjustable parameter. Dash-dotted green line: fit with 
full Elliot model that neglects the energy-dependence of the intermediate states. Dash-double-dotted purple line: 
fit with a hybrid model that combines Hartman's theory with Elliott's excitonic enhancement model.  In all cases 
the fit value of the deformation potential is indicated in the legend. (b) Same as (a) but showing the detail at the 
onset of absorption. The inset shows the calculated solid blue line of the main panel convoluted with a Gaussian 
with a FWHM of 0.015 eV to simulate lifetime broadening.
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The solid blue line in Figs. 8(a) and 8(b) is in very good agreement with the experimental data 

over the entire spectral range of the measurement, with a fit DΓL that is equal to the 

independently determined value of this parameter. In other words, our theory makes it possible to 

predict indirect absorption quantitatively without using any adjustable parameter. It is quite 

remarkable that the relative error of the theoretical prediction is small over two orders of 

magnitude in the value of the absorption. The largest discrepancy occurs near the energy of the 

indirect band gap, close to the spectral region where the excitonic effects at low temperature 

cannot be explained with the sphericalization approach used here [15,16]. The small remaining 

discrepancy at higher energies can be further reduced by considering the mass ratio RF in Eq. 

(48) as an adjustable parameter. This factor is used to correct the bound exciton absorption, and 

it is more difficult to justify than the approximations used to deal with the continuum 

contribution. This is because the latter must give αfree in the limit of vanishing excitonic Coulomb 

interaction, but the former simply approaches zero. The result of this exercise is shown as a blue 

dotted line in Fig. 8. The fit deformation potential DΓL = 4.7 eV is still reasonable, but the mass 

ratio RF = 5.5 has decreased by almost a factor of 3 relative to the ansatz in Eq. (48). It is unclear 

if one can assign a definite physical meaning to this reduced value of RF. It could be simply due 

to the fact that our theory neglects band nonparabolicity, which would then by accommodated in 

an effective way by adjusting RF. However, caution is needed in embracing this or any other 

interpretation because the bound exciton contribution is small, and a very large change in RF 

only induces modest changes in the predicted absorption, as seen in Fig. 8. 

The green dash-dotted line corresponding to Elliott's model, the "standard" approach prior to our 

work, is clearly in very poor agreement with experiment. The fit DΓL = 1.1 eV is too small but 

probably meaningless in view of the dramatic difference in lineshape between theory and 

experiment. Since the absorption is dominated by the continuum contribution, which is written in 

Eq. as (49) as , it is instructive to investigate how these two factors combine to 

improve the agreement with theory as we move from the Elliot model to the resonant theory 

developed here. For this purpose, we show as a dash-double dotted purple line a hybrid fit 

consisting of using the Hartman model in Eq. (36) for  together with the excitonic 

enhancement calculated within Elliott's model. We see that the fit is vastly improved 

relative to the dash-dotted green line, indicating that a correct resonant theory for  is the 
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main factor contributing to the agreement between theory and experiment. The Hartman theory 

in Eq. (36), with its  resonant prefactor for , is far superior to the textbook 

expression in Eq. (38), which features a  resonant prefactor. On the other hand, we 

notice that the dash-dotted green line deviates from the experimental absorption at high energies. 

This is precisely the energy range where the excitonic enhancement calculated with a 

resonant excitonic theory departs from Elliott's model the most, as seen in Fig. 3. The latter is not 

affected by the excitonic character of the intermediate states, whereas the former shows a 

pronounced resonance as a result of this character. Therefore, our data confirms that a consistent 

model of indirect absorption in Ge, which considers the energy dependence of the intermediate 

states both in the calculation of  and is needed for an accurate account of the 

experimental results. 

 

CONCLUSION 

In summary, we have presented experimental results for the optical absorption in Ge covering 

the entire spectral range between the indirect and direct gap and we have introduced a theory of 

resonant indirect optical absorption to explain the result. The main ingredient of the theoretical 

approach is a realistic account of the energy dependence of the intermediate states, which in Ge, 

unlike the case of Si, cannot be neglected. The resulting theory is in excellent agreement with 

experiment using independently-determined parameters.  

The theory presented here does not include lifetime broadening. Near the onset of absorption this 

broadening can be incorporated in a phenomenological way by convoluting the calculated 

absorption with a suitable broadening function, as done in the inset in Fig. 8(a). Near the 

resonant direct gap E0, however, the lifetime broadening of E0 plays a more critical role because 

the predicted absorption diverges at E0, so that lifetime effects control not only the precise 

lineshape but also the absorption strength. The validity of second-order perturbation theory is 

questionable in this limit, while a more rigorous theory may be substantially more complicated. 

In this context, we note that the lifetime broadening of E0 cannot be accounted for by adding a 

small imaginary part to the energy. This is equivalent to Lorentzian broadening, which, as shown 

in our analysis of direct gap transitions, fails to account for the experimental data. Even at a 

phenomenological level, a more sophisticated theory of broadening increases the mathematical 
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complexity considerably, even for direct transitions. [52] We have circumvented this problem by 

avoiding the spectral region where broadening effects are likely to be significant. However, this 

approach will break down in the case of Ge1-ySny alloys, for which the separation between the 

direct and indirect gaps can be reduced and reversed [53].(5) In these alloys, resonant indirect 

transitions may affect the optical gain in laser structures and requires further experimental and 

theoretical work. 

The absorption model presented here should be extensible to indirect gap III-V semiconductors 

such as AlAs, GaP, and related alloys.[54] While the Ge case is simpler, since a single resonant 

channel can be isolated, III-Vs should display stronger excitonic effects that may amplify the 

differences between the conventional Elliot treatment and the more rigorous resonant exciton 

model. Finally, our absorption model also provides the tools to calculate indirect gap emission in 

all of these materials using van Rosbroeck-Schockley-type expressions.[55] This is of particular 

interest in Ge and Ge1-ySny alloys in which the relative strengths of direct- and indirect-gap 

emission can be used to monitor the transition from indirect- to direct gap semiconductor.[56] 
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APPENDIX A: PHONON-ASSISTED DIRECT GAP TRANSITION 

The indirect absorption calculated in Sec. II is mediated by LA phonons that couple conduction 

band states at Γ and L. Optical phonons, on the other hand, couple the valence band states, and 

therefore optical-phonon assisted absorption becomes possible just below the direct gap E0. This 

absorption is usually neglected because it is expected to be much weaker than the allowed direct 

gap absorption, although it has played a role in laser cooling proposals [50]. The purpose of this 

work, however, is to model indirect gap absorption with emphasis on the resonant enhancement 

that occurs as the incident photon energy approaches the direct gap, and therefore it is important 

to compare the relative strength of the LA-phonon assisted indirect absorption with optical-

phonon assisted direct absorption.  The coupling of optical phonons with the valence band can be 

described by the Hamiltonian 

   (A1) 

where ΩO is the frequency of the optical phonons, d0 the optical phonon deformation potential, 

and a0 the cubic lattice parameter.  Note that for historical reasons the deformation "potential" in 

Eq. (7) is defined with units of eV/cm, but the deformation "potential" in Eq. (A1) has units of 

eV. As in the case of Eq. (7), we neglect the wave vector dependence of ΩO and d0. The index s 

represents the three optical phonon branches degenerate at Γ, and ês α( )  is the α-cartesian 

component of the unit phonon polarization vector. The sum over α runs over the Cartesian 

coordinates, with the matrices M given by 

 M ′v v x( ) =

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; M ′v v z( ) =

0 0 0 −i
0 0 −i 0
0 i 0 i
i 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

; M ′v v y( ) =

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (A2) 

where ν = 1,2,3,4 as in Eq. (2). It is easy to see by inspection of these matrices that the 

interaction only couples light hole with heavy hole states, so that in a phonon-assisted absorption 

process mediated by this interaction, a final state with a hole in a heavy-hole state requires an 

optical transition from a light-hole state to the conduction band, and viceversa. We are interested 

mainly in phonon annihilation processes that enable optical absorption below the direct gap E0. 

For this, the relevant electron-phonon matrix element becomes, using Eq. (A1):  
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G bqL0
† dλK ,σν HeLd ′λ 0, ′σ ′ν

† G =

= −MO
d0

a0

⎛
⎝⎜

⎞
⎠⎟

nO[ ]vcδσ ′σ δ−q,K FλK ,σν
* R( )F ′λ 0,σ ′ν R( )e−iseΓν K ⋅R M ′ν ν α( ) êLO α( )

α
∑

R
∑

  (A3) 

From Fermi's golden rule we then obtain 

  (A4) 

We now observe that for the sum over s we can take êO = 1,0,0( ), êO = 0,1,0( ), and  êO = 0,0,1( )
. For either of these three cases we find that for a given state ν corresponding to light or heavy 

holes, Eq. (A2) implies that the only nonzero matrix elements occur when ν' corresponds to the 

opposite type of hole, and in that case M ′ν ν α( ) êLO α( )
α
∑ = 1 . Furthermore, when we perform the 

sum over σ we find from Eq. (6) that each ν ↑ /ν ↓   pair contributes P2 3 , and since there are 

two heavy hole and two light hole states giving exactly the same expression we can simply write 

(A4) as: 

   (A5) 

where h now acquires only two values: either heavy or light hole, and h' is the opposite type of 

hole. We have also multiplied times 3 because we obtain the same result for each of the 3-fold 

degenerate phonons at the Γ-point. Using the Green's function definition in Eq. (14), this 

becomes  

   (A6) 

To compute this expression we use for bound excitonic states, in analogy with Eq. (18) 

   (A7)  
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For continuum excitons we have, in analogy with Eq. (20) [42]  

 FλK ,h R( ) ≡ FkK ,h R( ) = 1
V

Γ(1+ iνΓh )eπνΓh /2eik⋅R
1F1 −iνΓh ,1,−ikR − ik ⋅ R( )  (A8) 

with 

   (A9) 

The bound exciton expression then becomes, following steps very similar to the corresponding 
calculation for indirect gap absorption: 

   (A10) 

where 

   (A11) 

 
Figure A1 shows the calculated absorption, using the masses in Eq. (47). For the continuum 
component, we obtain 

   (A12) 

where θ is the angle between the vectors k and K and we have defined the dimensionless quantity 

   (A13) 

with 
 ke

2 = k2 + seΓh
2 K 2 + 2seΓhkK cosθ   (A14) 

Following steps very similar to the derivation of indirect gap absorption, we finally obtain 

 

         (A15) 

 
In the limit of vanishing electron-hole interaction this expression becomes 
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    (A16) 

 
 
 
APPENDIX B: CHOICE OF MATERIAL 

PARAMETERS 

In this appendix we discuss how we arrived at those 

material parameters listed in Table 1 that could not be 

taken directly from the literature, in most cases 

because they were measured at low temperatures. We 

then explain how, starting with the available data at 

low temperatures, one can estimate the corresponding 

values at our experimental temperature of 301 K.  

 

B1. Lattice parameter and Band gaps 

For the cubic lattice parameter we use an expression of the form 

  , (B1) 

where a0(0) = 5.6516 Å, β = 1.315×10-2 Å, and T0 = 355.14 K. We obtain these parameters by 

fitting Eq. (B1) to the lattice constant calculated by using the value at room temperature and an 

integral of the thermal expansion data from Ma and Tse [57]. 

The temperature dependence of all needed band gaps in Ge was assumed to follow the Varshni 

law [48] 

   (B2) 

We used for the indirect gap Eind(0) = 0.742 eV, α = 4.8×10-4 eV/K2, and T0 = 235 K. For the 

direct gap, we took E0(0) = 0.8911 eV, α = 5.82×10-4 eV/K2, and T0 = 296 K. For the calculation 

of effective masses we also need the E1 and E1+Δ1 gaps, corresponding to vertical transitions at 

the L point of the BZ, and the E0' gap, the separation between the valence band and the p-

 
Figure A1. Calculated phonon-assisted direct 
absorption coefficient of Ge using parameters 
from Table 1. The dotted line shows the bound 
exciton contribution, from Eq. 62, and the solid 
line corresponds to the continuum exciton 
contribution, Eq. 67. In both cases we use 
effective masses from Eq. 47. 
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antibonding states. We took their temperature dependence from Viña et al. [58]. The 

corresponding Varshni parameters for E1 are E1(0) = 2.22 eV, α = 6.8×10-4 eV/K2, and T0 = 240 

K. For  E1+Δ1, we use E1+Δ1(0) = 2.42 eV, α = 6.8×10-4 eV/K2, and T0 = 240 K. Finally, for E0' 

we take  E0'(0) = 3.159 eV, α = 3.6×10-4 eV/K2, and T0 = 344 K. 

 

B2. Effective masses and momentum matrix element 

The conduction band effective mass was obtained by Roth et al. [59] by analyzing magneto-

absorption experiments at 4.2 K. They find a value of meΓ = 0.037 eV. A very similar value, meΓ 

= 0.038 eV, was obtained by Aggarwal from stress-modulated magneto reflectance [60]. We 

insert the experimental effective mass into Eq. (5) to obtain the low-temperature momentum 

matrix element P2/m = 12.64 eV, where we used Δ0 = 0.297 eV [60,61]. The momentum matrix 

element is proportional to 1/a0 [20], so that we use 

 
P2 T( )

m
= 12.64eV ×

a0
2 4.2 K( )
a0

2 T( )   (B3) 

For the conduction band masses at the L minimum of the conduction band we start with the 

classic work of Dresselhaus, Kip, and Kittel (DKK)[30]. They report a transverse mass m⊥  = 

0.082m and a longitudinal mass  = 1.58m at 4K. We assume the longitudinal mass to be 

independent of temperature. The transverse mass is written as [20] 

 1
m⊥

= 1
m

+ P
m

⎛
⎝⎜

⎞
⎠⎟

2
1
E1

+ 1
E1 + Δ1

⎛
⎝⎜

⎞
⎠⎟

  (B4) 

By fitting the experimental value at 4K, we find P2 m  =12.96 eV, so that  P  is very similar to 

P2, as expected on theoretical grounds [20]. For the temperature dependence we then use 

 
P2 T( )

m
= 12.96eV ×

a0
2 4K( )
a0

2 T( )   (B5) 

By combining Eq. (B5) with the temperature dependence of E1 and E1+Δ1, we can obtain the 

transverse mass in Eq. (B4) at any temperature. 

The valence bands display a significant level of warping. Effective masses can be introduced as 

suitable angular averages. In spherical coordinates, the energy dispersion can be written 

as[30,62] 
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  . (B6) 

where the parameters A, B, and C were introduced by DKK [30].  The masses that appear in the 

absorption coefficient expressions are elevated to the 3/2 power, corresponding to the density of 

states. Accordingly, we define the angular-averaged effective masses as 

   (B7) 

where the minus sign leads to the heavy hole mass mlh and the plus sign to the light-hole mass 

mlh. The DKK parameters that best describe the 4K data are A = -13.38, B = -8.48, and C  = 

13.14. To obtain values appropriate for room temperature, we use the expressions[20] 

 

A = 1− 2
3

P2

mE0

+ 2Q2

m ′E0

⎡

⎣
⎢

⎤

⎦
⎥

B = 2
3

− P2

mE0

+ Q2

m ′E0

⎡

⎣
⎢

⎤

⎦
⎥

C
2

= 16P2Q2

3m2E0 ′E0

+ Δ

  (B8) 

where the matrix element Q is defined in Ref. [20]. The equation for C
2
 in Ref. [20] lacks the 

additive term Δ that appears in (B8). However, we find that this term is needed for an exact 

match of the low-temperature A,B,C experimental values. This is because the theory leading to 

Eq. (B8) relies on a number of simplifying approximations. However, since we are only 

interested in estimating the temperature dependence of the DKK parameters, we expect this 

theory to provide a good account of this dependence if we adjust the three parameters P, Q, and 

Δ for an exact match of the low-temperature DKK parameters. This leads to P2/m = 13.964 eV 

(slightly different from the value in Eq. (B5) that provides the best fit for the conduction band 

effective mass), Q2/m = 9.287 eV, and Δ = -73.1. We then assume that the temperature 

dependence of P2 and Q2 is given by Eq. (B5) and that the parameter Δ is independent of 

temperature. These values are inserted into Eq. (B8) (combined with the temperature dependence 

of E0 and E0') to obtain the DKK parameters at any temperature. At 301K, our temperature of 

interest, we find A = -14.55, B = -9.58, and C  = 14.25. 
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