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Abstract

We investigated the dielectric properties of the charge-ordered phase of α-(BEDT-TTF)2I3 using

exact numerical calculations of an extended Hubbard model. The electronic contribution to the

electric polarization (electronic polarization) P̄ of the charge-ordered ground state is obtained by

directly calculating the current when transfer integrals were changed adiabatically from symmetric

integrals to integrals for the charge-ordered phase without inversion symmetry. The angle of

P̄ from the positive b−axis is 36◦, which is consistent with experimental results and previous

theoretical results based on density functional theory. Furthermore, we numerically calculated the

dynamics induced by terahertz (THz) pulse excitation. Both the THz-pulse induced variation of

the electronic polarization magnitude and that of the charge disproportionation that shows the

charge-order amplitude, are largest when the electric field of the THz pulse and P̄ have almost

the same direction. This originates from the charge transfer through bond b2′ being dominant in

both the adiabatic flow of current and THz pulse excitation. These results reproduce important

features of experimental results of THz-pulse induced dynamics.
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I. INTRODUCTION

Ferroelectric materials are widely used in various devices, such as random-access memory

devices, capacitors, sensors, piezoelectric actuators, and optical devices.1–3 In conventional

ferroelectrics, electric polarization is governed by the rotation of polar molecules (order–

disorder type) or the displacement of ions (displacive type), and the typical time constants of

polarization change vary from microseconds to milliseconds. If the ferroelectric polarization

could be controlled in the picosecond time domain, ferroelectric materials could be used

for advanced switching devices. Recently, ferroelectricity that arises from electron transfer,

which is termed electronic ferroelectricity,4–6 has been observed in various materials, such

as multiferroics,7–14 transition metal oxides,15–17 and organic molecular compounds,18–37 and

much faster polarization switching is expected for the new type of ferroelectricity.5,6

This paper focuses on α-(BEDT-TTF)2I3 (BEDT-TTF: bis[ethylenedithio]-

tetrathiafulvalene) among various electronic ferroelectrics. The charge-transfer salts

(BEDT-TTF)2X (X: a monovalent anion) can be described as quasi-two-dimensional

strongly correlated electron systems with a quarter-filled valence band in the hole picture.

As a result of the strong Coulomb interaction, α-(BEDT-TTF)2I3 exhibits charge-ordering

transition and a horizontal charge order forms below the transition temperature.26–28,38–46

We show the lattice structure of α-(BEDT-TTF)2I3 in Fig. 1. In the charge-ordered phase,

the crystal symmetry is P1 with no inversion symmetry, and there are crystallographically

4 nonequivalent sites and 12 nonequivalent bonds. They are labeled as indicated in Fig. 1.

Sites A and B (A′ and C) are charge rich (charge poor) in the horizontal charge-ordered

state.

The generation of ferroelectric polarization in the charge-ordered phase has been shown

by optical second-harmonic-generation (SHG) measurement.26,27 In the metallic phase above

the transition temperature, the lattice structure has an inversion symmetry, and sites A and

A′, bonds b1–b4 and b1′–b4′, and bonds a1 and a1′ are equivalent. Because site A (A′)

becomes charge rich (charge poor) as a result of transition to the charge-ordered phase,

it has been considered that ferroelectric polarization is parallel to the a−axis.26 However,

the polarization direction cannot be determined from the second-harmonic measurement.

The dielectric response to the electric field perpendicular to the two-dimensional planes

has been investigated, providing evidence for ferroelectricity of the charge-ordered phase.28
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FIG. 1: (Color online) Anisotropic triangular lattices of the charge-ordered phase of α-(BEDT-

TTF)2I3. The blue square encloses a 4× 4 cluster.

However, it is difficult to investigate the in-plane dielectric response because of the low

in-plane resistivity,47 and in-plane dielectric properties including the polarization direction

have not been clarified.

It has been shown, in the case of tetrathiafulvalene-p-chloranil (TTF-CA), that a tera-

hertz (THz) pulse is a powerful tool to investigate the ultrafast dielectric response of elec-

tronic ferroelectrics.48 Yamakawa et al. recently carried out THz-pump optical-probe and

SHG-probe measurements on the charge-ordered phase of α-(BEDT-TTF)2I3 and obtained

the following results.49 The time profile of the THz-pulse-induced changes ∆ISHG/ISHG of

the SHG intensity ISHG is in good agreement with the normalized THz waveforms. The

nonlinear current flow is induced by static electric fields larger than about 100 V/cm,50,51

but the linear response occurs to THz fields at least up to 60 kV/cm. This sub-picosecond

change in ∆ISHG is much faster than relevant lattice motions, which have the time scale of

1 picosecond,52 and this shows that ∆ISHG originates from the pulse-induced modulation

∆P of the magnitude of ferroelectric polarization per unit cell P̄ . The reflectivity spectral

shape sensitively reflects the charge-order amplitude. The differential reflectivity spectrum

∆RCO−M/R = [RM−R]/R between the metallic and charge-ordered phases exhibits a char-
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acteristic spectrum for 0.5 eV ≤ ω ≤ 1.05 eV, where RM and R are the reflectivity spectra for

the metallic and charge-ordered phases, respectively, and ω is the photon energy. Since the

THz-pulse-induced change ∆R/R of R agrees well with normalized ∆RCO−M/R, ∆R/R in

the ω range reflects the pulse-induced modulation of the charge-order amplitude. Because

ferroelectric polarization is generated by the charge order, it is natural to consider that

∆R/R reflects the pulse-induced modulation of ferroelectric polarization. Yamakawa et al.

investigated how the initial ∆R/R depends on the direction of the THz field and found that

the ∆R/R is initially largest at θ = 27◦, where θ is the angle between the electric field E

of the THz pulse and the positive b−axis (see Fig. 1). This strongly suggests that the angle

of P̄ with respect to the positive b−axis is 27◦. This is consistent with the calculation of

ferroelectric polarization based on density-functional theory.49

However, there are still open problems. The determination of the P̄ direction assumes

that ∆R/R is a maximum when E and P̄ have the same direction. However, there is no di-

rect evidence that justifies the assumption. Furthermore, the charge transfer that dominates

the pulse-induced modulation of ferroelectric polarization, and the origin of the ferroelec-

tricity of the charge-ordered phase including the direction of polarization, have not yet been

revealed. To consider these problems, we theoretically investigate the dynamics induced by

THz pulse excitation from numerical calculations made using the extended Hubbard model

for α-(BEDT-TTF)2I3. The present work finds that the main features of experimental re-

sults are reproduced well by the numerical calculations. The charge transfer through the

strongest b2′ bond is dominant both for the adiabatic flow of current and for THz pulse

excitation, resulting in the characteristic θ dependences of ∆R/R and ∆P and the dielectric

properties of the ground state.

II. MODEL

For holes on a two-dimensional anisotropic triangular lattice, we consider the quarter-

filled extended Hubbard Hamiltonian given by

H =
∑

<n,m>,σ

{βn,m(t)c†n,σcm,σ + h.c.}

+ U
∑
n

nn,↑nn,↓ +
∑

<n,m>

Vn,mnnnm. (1)
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The first term describes the hole transfer between neighboring sites, where c†n,σ (cn,σ) creates

(annihilates) a hole of spin σ at site n, βn,m(t) is the transfer integral between sites n and

m at time t, and < n,m > denotes a pair of neighboring sites. The explicit formula for

βn,m(t) is given later. The second term describes the on-site Coulomb interaction, where

U is the on-site Coulomb interaction energy and nn,σ = c†n,σcn,σ. The third term describes

the Coulomb interaction between neighboring sites, where Vn,m is the Coulomb interaction

energy for sites n and m, and nn =
∑

σ nn,σ. To take account of strong correlations, we

calculate the exact dynamics of the THz-pulse excited state on a small cluster. We consider

the 4 × 4 cluster (system size N = 16) shown in Fig. 1; a periodic boundary condition is

used. We assume that Vn,m = VV (VD) if the pair of neighboring sites < n,m > is on vertical

(diagonal) bonds.

The current operator for bond Y (Y=a1, a1′, · · · , or b4′) is defined by

îY(t) = îm,n(t) = ie
∑
σ

(βn,m(t)c
†
n,σcm,σ − βm,n(t)c

†
m,σcn,σ). (2)

Here, sites n and m are connected by bond Y and satisfy the condition rn,m · êb > 0

(rn,m · êa > 0) if Y is a diagonal (vertical) bond, where rm,n is a bond vector from site n to

site m and the unit vector êa (êb) points in the positive a (b) direction. The positive current

direction through a diagonal (vertical) bond is therefore from left to right (from bottom to

top) in Fig. 1. It is easily shown from the Heisenberg equation of the charge density operator

that the equation of charge conservation is satisfied with the current operator.

III. RESULTS

The transfer integrals for the charge-ordered phase are deduced from the extended Hückel

calculation: β
(CO)
a1 = 0.0308, β

(CO)
a1′ = 0.0495, β

(CO)
a2 = 0.0544, β

(CO)
a3 = −0.0329, β

(CO)
b1 =

−0.1212, β
(CO)

b1′
= −0.1652, β

(CO)
b2 = −0.1577, β

(CO)

b2′
= −0.1773, β

(CO)
b3 = −0.0673, β

(CO)

b3′
=

−0.0656, β
(CO)
b4 = −0.0039, and β

(CO)

b4′
= −0.0323,44 where the transfer integral β

(CO)
n,m for

bond b1 is denoted β
(CO)
b1 . Those at the other bonds and other quantities are denoted in the

same manner. Hereinafter, we use eV as the unit of energy and its reciprocal as the unit of

time, where 1 eV−1 is equal to 0.658 fs. We adopt these transfer integrals for the electronic

Hamiltonian He without electron–light interaction. In other words, βY(t) = β
(CO)
Y holds for

He.
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We calculate the ground state |φ0〉 forHe using the Lanczos method with various Coulomb

parameters, and calculate the charge density

ρ̄n = 〈φ0|nn|φ0〉. (3)

We adopt Coulomb parameters that reproduce experimentally obtained charge densities well:

U =0.9, VV =0.44, and VD =0.40. The calculated charge densities for the charge-ordered

ground state are ρ̄A =0.81, ρ̄A′ =0.28, ρ̄B =0.70, and ρ̄C =0.22, and the experimentally

obtained charge densities in the charge-ordered phase are ρ̄A =0.82, ρ̄A′ =0.29, ρ̄B =0.73,

and ρ̄C =0.26.44 The charge density ρ̄n at site A is denoted ρ̄A while densities at the other

sites and other quantities are denoted in the same manner.

A. Electronic polarization of the charge-ordered ground state

In this section, we calculate the electronic contribution to the electric polarization (elec-

tronic polarization) per unit cell P̄ of the charge-ordered ground state. It is emphasized

that P̄ cannot be determined from the charge distribution in the unit cell but can be de-

termined from the adiabatic flow of current.53–56 Using the approximation based on density

functional theory (DFT), the current can be calculated from the Berry phase,53,54,57 and

different methods have been proposed .58,59 This paper directly calculates the current for

the many-body wave function to fully consider the strong correlation effect.

We introduce an adiabatic parameter λ and consider the Hamiltonian HAC(λ) with the

transfer integrals

βY(λ) = λβ
(CO)
Y + (1− λ)β

(M)
Y . (4)

Here, β
(M)
Y denotes the transfer integral for the metallic phase deduced from the extended

Hückel calculation: β
(M)
a1 = β

(M)
a1′ = 0.035, β

(M)
a2 = 0.0461, β

(M)
a3 = −0.0181, β

(M)
b1 = β

(M)

b1′
=

−0.1271, β
(M)
b2 = β

(M)

b2′
= −0.1447, β

(M)
b3 = β

(M)

b3′
= −0.0629, and β

(M)
b4 = β

(M)

b4′
= −0.0245.44

The Hamiltonian HAC(0) has inversion symmetry, and HAC(1) = He holds. The ground

state of HAC(λ) is denoted |Φ0(λ)〉.
We adiabatically change λ(t) from 0 to 1 with large time interval T by assuming the

relation λ(t) = t/T , and solve the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = HAC(λ(t))|Ψ(t)〉, (5)
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with the initial condition |Ψ(0)〉 = |Φ0(0)〉. As T increases, the solution |Ψ(t)〉 converges to
|Φ0(λ(t))〉. The used time interval (T =6000 eV−1) is large enough that the differences in

the charge densities between |Ψ(t)〉 and |Φ0(λ(t))〉 are less than 1%.

The net charge ∆QY(λ) that transfers through bond Y when the adiabatic parameter

increases from zero to λ is given by the time integration of the adiabatic current flow as

∆QY(λ) = T

∫ λ

0

īY(Tλ
′)dλ′, (6)

where

īY(t) = 〈Ψ(t)|̂iY(t)|Ψ(t)〉. (7)

As seen from the definition of îY, ∆QY(λ) > 0 holds when charge is transferred from left

to right (from bottom to top) in Fig. 1 for a diagonal (vertical) bond. Because HAC(0)

has inversion symmetry, the electronic polarization is zero for |Φ0(0)〉. On this basis, the

electronic polarization P̄ (λ(t)) for |Φ0(λ(t))〉 is obtained from ∆QY(λ) as

P̄a(λ(t)) = a
∑
Y

sin(θY)∆QY(λ),

P̄b(λ(t)) = a
∑
Y

cos(θY)∆QY(λ), (8)

where P̄b(λ(t)) (P̄a(λ(t))) is b−axis (a−axis) component of P̄ (λ(t)), θY = 30◦ holds for

bonds b2, b2′, b4, and b4′, θY = −30◦ holds for bonds b1, b1′, b3, and b3′, and θY = 90◦

holds for bonds a1, a1′, a2, and a3. Here, an equilateral-triangle lattice with lattice spacing

a is assumed for simplicity. The electronic polarization of the charge-ordered ground state is

given by P̄ = P̄ (1). As T increases to 6000 eV−1, P̄ = |P̄ | converges to 0.27ea within error

of 1%. Adopting the average lattice spacing a = 7.0 Å, which is the length of a dominant

diagonal bond,44 and using a unit cell volume of 1639.5 Å3,44 we obtain P̄ = 1.8µC/cm2. This

value is consistent with that calculated from the Berry phase using the DFT (1.2µC/cm2).49

Furthermore, the angle θP̄ of P̄ from the positive b−axis is 36◦ as shown in Fig. 2, and

P̄ is not parallel to the a−axis. The numerically obtained angle θP̄ = 36◦ is consistent

with the experimental result (θP̄ = 27◦) and the previous theoretical result (θP̄ = 16◦)

based on DFT.49 The difference between the present numerically obtained angle and the

experimentally obtained angle is attributed mainly to the difference between equilateral-

triangle lattice considered here and the real lattice structure. This point will be mentioned

later.
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FIG. 2: (Color online) Direction of charge transfer for the five largest bonds by |∆QY(λ)|, and the

direction of electronic polarization P̄ of the charge-ordered ground state.

To understand the direction of P̄ , we consider charge transfer ∆QY(T ) through each

bond and the change in charge density from that of the symmetric initial state |Φ0(0)〉 given
by

∆ρ̄n(λ) = ρ̄n(λ)− ρ̄n(0), (9)

where

ρ̄n(λ) = 〈Φ0(λ)|nn|Φ0(λ)〉. (10)

From charge conservation, ∆ρ̄n(λ) is given using ∆QY(λ). For example, ∆ρ̄n(λ) at site A

is given as

∆ρ̄A(λ) =
1

e
[∆Qa3(λ) + ∆Qb1′(λ) + ∆Qb2′(λ)−∆Qa2(λ)−∆Qb3(λ)−∆Qb4(λ)]. (11)

Here we use the fact that the A site is connected by bonds a2, a3, b1′, b2′, b3, and b4 as

seen from the bond structure shown in Fig. 2. We show the λ dependence of ∆ρ̄X(λ), where

X =A, A′, B, or C, and P̄b(λ) and P̄a(λ) in Figs. 3 (a) and (c), respectively.

The relation ρ̄A(0) = ρ̄A′(0) holds for the initial state |Φ0(0)〉 with the inversion symmetry.

As λ increases, ∆ρ̄A(λ) increases and ∆ρ̄A′(λ) decreases appreciably, and the symmetric

state changes to the charge-ordered ground state |φ0〉 without symmetry, where sites A and
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B (A′ and C) are charge rich (charge poor) and a horizontal charge order is generated. As

mentioned in the previous sections, electronic polarization cannot be determined from the

charge distribution in the unit cell.53–56 The dominant changes in the charge densities at

sites A and A′ do not show that P̄ is nearly parallel to the a−axis.
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and (c) P̄b(λ(t)) and P̄a(λ(t)).

We next consider the origin of the changes in charge density. Because VV is larger

than VD, the vertical charge-ordered states have greater Coulomb interaction energies than

the horizontal and diagonal charge-ordered states, and the horizontal and diagonal charge-

ordered states are degenerate in terms of the Coulomb interaction energy. Bonds form

between the neighboring sites as a result of charge fluctuations induced by the transfer term

even in the charge-ordered states. The energy gain arising from the formation of bond Y is
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given by −βY(λ)p̄Y(λ), where

p̄n,m(λ) = Re[〈Φ0(λ)〉|
∑
σ

c†n,σcm,σ|Φ0(λ)〉] (12)

is the bond order for |Φ0(λ)〉 and |p̄n,m(λ)| is the magnitude of the bond. The degeneracy

between the horizontal and diagonal charge-ordered states is lifted by the energy gain, and

the charge distribution is mainly determined from the bond structure.60–62

To maximize the energy gain, p̄n,m(λ) is larger for the bond with larger |βY(λ)|. The

absolute values |βY(λ)| and therefore the energy gains for bonds b1, b1′, b2, and b2′, shown

by thick lines in Fig. 1, are much larger than those for other bonds. As a result, the charge

distribution is mainly determined from |βY(λ)| for these four dominant bonds as will be

shown later. As seen from Fig. 1, site A is connected by bonds b1′ and b2′, site A′ is

connected by bonds b1 and b2, site B is connected by bonds b2 and b2′, and site C is

connected by bonds b1 and b1′. At λ = 1, |βb2′(1)| ≫ |βb2(1)| ≃ |βb1′(1)| ≫ |βb1(1)| holds.
Because the holes that contribute to the stronger bonds are more stable, sites A and B

(A′ and C), which are (are not) connected by the strongest bond b2′, become charge rich

(charge poor), and the horizontal charge order is generated in the ground state |φ0〉. At

λ = 0, |βb2(0)| = |βb2′(0)| ≫ |βb1(0)| = |βb1′(0)| holds. As a result, site B (C) is charge rich

(charge poor), and ρ̄A(0) = ρ̄A′(0) ≃ 0.5 holds for the symmetric initial state. As λ increases

from 0 to 1, |βb2′(λ)| and |βb1′(λ)| increase, and |βb2(λ)| and |βb1(λ)| decrease, which results

in the charge transfer from site A′ to site A.

The five bonds with the largest |∆QY(1)| are bonds b2′, b2, b1′, a2, and a1 in descending

order. We show ∆QY(λ) for these five bonds in Fig. 3 (b) and their charge transfer directions

in Fig. 2. The absolute values |∆QY(T )| for bonds a2 and a3 are much smaller than those

for bonds b2′ and b2. The indirect charge transfer A′→B→A along the path that consists

of bonds b2′ and b2 with the largest and second largest |βY(λ)| is dominant whereas the

direct transfer A′→A through bond a2 and that through bond a3 are not. As a result, P̄

is nearly parallel to bonds b2′ and b2. The direction of P̄ is mainly determined from the

anisotropy of the transfer integrals.
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B. THz-pulse-induced dynamics

This section shows the time variation in charge density and electronic polarization induced

by a THz pulse. We consider the excitation produced by a half-cycle THz pulse. This pulse

is described by a vector potential A(t) at time t given by

A(t) = Â
A(max)

2
{1 + tanh(

t

D
)}, (13)

where A(max) is the maximum amplitude, D is the pulse duration, and Â is the unit polar-

ization vector. The electric field of the pulse is given by

E(t) = −ÂE(t) (14)

E(t) =
1

2D
A(max) cosh−2(

t

D
).

We adopt the duration D = 300, where the full-width at half-maximum (330 fs) is about the

same as that used in the experiment, and consider the weak-excitation case eaA(max) = 0.001,

where e is the elementary charge.

In the Hamiltonian H(t) coupled with the field of the THz pulse, the electron–field

coupling has been introduced into the transfer integrals as a Peierls phase, and βn,m(t) is

given by

βn,m(t) = β(CO)
n,m exp[−iern,m ·A(t)]. (15)

The THz-pulse-excited state |ψ(t)〉 at time t is obtained by numerically solving the time-

dependent Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, (16)

with the initial condition |ψ(−∞)〉 = |φ0〉.
The time variation of charge density ∆ρn(t) induced by the THz pulse excitation is given

by

∆ρn(t) = 〈ψ(t)|nn|ψ(t)〉 − ρ̄n. (17)

The time variation of the electronic polarization per unit cell ∆P (t) = P (t) − P̄ induced

by the THz pulse excitation, where P (t) is the electronic polarization for |ψ(t)〉, is given

11



by the time integration of current flow. The net charge transfer ∆qY(t) through bond Y

induced by THz pulse excitation is given by

∆qY(t) =

∫ t

−∞

iY(τ)dτ, (18)

where

iY(t) = 〈ψ(t)|̂iY(t)|ψ(t)〉. (19)

The sign of ∆qY(t) is determined so that ∆qY(t) > 0 holds when charge is transferred from

left to right (from bottom to top) in Fig. 1 for a diagonal (vertical) bond as in the case of

adiabatic current. The a [b]-component ∆Pa(t) [∆Pb(t)] of ∆P (t) is given by

∆Pa(t) = a
∑
Y

sin(θY)∆qY(t),

∆Pb(t) = a
∑
Y

cos(θY)∆qY(t). (20)

The time variation of charge density, for example, at site A, is given using ∆qY(t) as

∆ρA(t) =
1

e
[∆qa3(t) + ∆qb1′(t) + ∆qb2′(t)−∆qa2(t)−∆qb3(t)−∆qb4(t)]. (21)

As mentioned before, the THz-pulse-induced reflectivity change ∆R/R reflects the pulse-

induced modulation of the charge-order amplitude.49 Since charge-order generation results in

the charge disproportionation between A and A′ sites, ∆ρA(t)−∆ρA′(t) can be regrded as the

quantity that shows the pulse-induced modulation of the charge-order amplitude. The charge

density changes ∆ρA(t) and ∆ρA′(t) are the quantities that can be directly compared with

∆R/R. Since the THz-pulse-induced changes ∆ISHG/ISHG of the SHG intensity originates

from the pulse-induced modulation of ferroelectric polarization, ∆P (t) = |P (t)| − |P̄ | can
be directly compared with ∆ISHG/ISHG. Furthermore, because ferroelectric polarization is

generated by the charge order, ∆R/R also reflects ∆P (t).

As shown in the Appendix, the adiabatic approximation holds well for |ψ(t)〉 with the

present parameters, and the finite-size effect in the zeroth-order term of ǫ, where ǫ is a small

parameter of the adiabatic approximation, seriously affects these quantities, which are the

first-order terms of ǫ. We therefore show ∆ρn(t) and ∆Px(t) (x = a or b) calculated using

Eqs. (39) and (40), where the finite-size effect is removed, in the following.

We show in Fig. 4 the time profiles of (a) ∆ρX(t) and (c) ∆Px(t) for θ = 230◦, where θ

is the angle between E(t) and the positive b−axis (see Fig. 1). The four bonds with the
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largest |∆qY(t)| are bonds b2′, b1′, b1, and a1 in descending order for θ = 230◦, and we

show ∆qY(t) for these four bonds in Fig. 4 (b). There are almost linear relationships between

∆ρX and E(t), between ∆Px(t) and E(t), and between ∆qY(t) and E(t), showing that these

variables respond to the electric field instantaneously. These almost linear relationships

hold irrespective of the polarization direction θ, resulting in the good reproduction of an

important experimental result that both initial ∆R/R and ∆ISHG/ISHG are reproduced well

by the THz waveform.49 The instantaneous charge and dielectric response results from the

adiabatic nature of |ψ(t)〉 as in the case of TTF-CA63 as shown in the Appendix.

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008
(a)

∆ρ
X

(t
)/

[e
a
A

(m
ax

) ] B

A′

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008
(a)

∆ρ
X

(t
)/

[e
a
A

(m
ax

) ]

C

A

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006

(b)

∆q
Y

(t
)/

[e
2
a
A

(m
ax

) ]

b1′
a1

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006

(b)

∆q
Y

(t
)/

[e
2
a
A

(m
ax

) ]

b1

b2′

-0.01

-0.008

-0.006

-0.004

-0.002

 0

-1000 -500  0  500  1000

(c)

∆
P

x(
t)

/[
e2

a
2
A

(m
ax

) ]

t[eV-1]

a

b

FIG. 4: (Color online) Time profiles of (a) ∆ρX(t), (b) ∆qY(t) for bonds b2
′, b1′, b1, and a1, and

(c) ∆Pa(t) and ∆Pb(t) at θ = 230◦.

We next consider how the THz-pulse-induced dynamics change with θ, which can be seen

from the θ dependence of the peak values of the considered physical quantities because of

the linear relationships. We show the θ dependences of the peak values ∆ρX(0), ∆P (0), and

∆qY(0) in Fig. 5, and compare the θ dependence of ∆R/R at ω =0.65 eV, where ∆RCO−M/R

13



is a maximum, and at the delay time td = 0 experimentally obtained in Ref. 49 with the θ

dependence of ∆ρX(0) [∆P (t)] in Fig. 5 (a) [(c)].

We consider a function S cos(θ −Θ) and calculate the constants S and −90◦ < Θ ≤ 90◦

that best fit the θ dependences of ∆P (0), ∆ρX(0), ∆qY(0), and ∆R/R, which are respectively

denoted ∆P (max)(0) and ΘP , ∆ρ
(max)
X (0) and ΘX, ∆q

(max)
Y (0) and ΘY, and (∆R/R)(max) and

ΘR. We give these values in Table I.

TABLE I: ∆P (max)(0), ΘP , ∆ρ
(max)
X (0), ΘX, ∆q

(max)
Y (0), ΘY

, (∆R/R)(max), and ΘR

∆P (max)(0)/(e2a2A(max)) 0.0104 (∆R/R)(max) 0.00539

ΘP [deg] 32.6 ΘR [deg] 26.8

X A A′ B C

∆ρ
(max)
X (0)/(eaA(max)) 0.00632 -0.00369 -0.00728 0.00541

ΘX [deg] 26.3 30.3 58.0 75.3

Y b1 b1′ b2′ a1

∆q
(max)
Y (0)/(e2aA(max)) 0.00277 -0.00780 0.0115 -0.00216

ΘY [deg] 31.2 79.2 52.4 66.1

We show the fitting curves in Fig. 5. The fitting curves reproduce the numerical results

almost exactly, and the experimental data of ∆R/R are reproduced well by the fitting curve.

The relations ΘR ≃ ΘA and ΘR ≃ ΘA′ hold, showing that the characteristic θ dependence of

∆R/R is reproduced well by our numerical result. Furthermore, ΘP , ΘA, and ΘA′ are nearly

equal, showing that there exists strong positive correlation between the change of the charge-

order amplitude [∆ρA(0)−∆ρA′(0)] and the change of ferroelectric polarization magnitude

[∆P (0)]. The relation ΘP ≃ θP̄ holds, and ∆P is therefore largest (smallest) when the

electric field E(t) of the THz pulse and the electronic polarization P̄ of the charge-ordered

ground state have approximately the same (opposite) directions. In Ref. 49, the direction θP̄

of ferroelectric polarization is obtained based on the assumption that the relation θP̄ ≃ ΘR

holds. This assumption is justified by the present numerical result, and this most important

experimental result can be interpreted on this basis.

In the present formalism based on the time-evolution calculations, the physical quantities

of interest ∆P (t) and ∆ρn(t) are both given by the charge transfer ∆qY(t) for each bond,

14
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FIG. 5: (Color online) θ dependences of (a) ∆ρX(0) and ∆R/R at td = 0, (b) ∆qY(0) for Y=b2′,

b1′, b1, and a1, and (c) ∆P (0) and ∆R/R at td = 0 (dotted lines) and fitting curves (solid lines).

which provides an important view into the origin of the ferroelectricity of the charge-ordered

phase, and the origin of the characteristic θ dependence of THz-pulse induced dynamics, as

will be shown later. The absolute value |∆qY(0)| is largest for bonds b2′, b1′, b2, and a1 in

descending order in most of the θ region. We show the θ dependence of ∆qY(0) for these

four bonds in Fig. 5 (b). The absolute value |∆qb2′(0)| is larger than absolute values for the

other bonds in most of the θ region. Furthermore, |ΘY − θY| for bond b2′ is much smaller

than those for the other bonds. This shows that ∆qb2′(0) is roughly proportional to the

component of E(0) along the direction of bond b2′ (Eb2′), but this holds only for bond b2′.

For example, in the case of bond b1′ with the second largest |∆q(max)

b1′
(0)|, Θb1′ = 79.2◦ is

far from θb1′ = 150◦. We show the charge transfer directions of these four bond at θ = 210◦

in Fig. 6. The direction of charge transfer through bond b1′ is toward the side opposite

the electric field. These results show that the charge transfer from site A to site B through

bond b2′ is induced by the electric field, but charge that transfers through other bonds are

induced to compensate for the excess charge at site B and the deficient charge at site A
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generated by the charge transfer through bond b2′.

The difference between Θb2′ and θb2′ can be attributed to the compensation. For θ = 210◦,

|Eb2′ | is the largest, but charge compensation is prohibited by the electric field E(t). As

θ increases from 210◦ to 240◦, both |Eb2′| and |Eb1′ | decrease, with the decrease in the

latter being greater than that in the former. The charge transfer ∆qb1′(0) is increased by

the larger decrease in |Eb1′ |, and this increases |∆qb2′(0)|. As a result, |∆qb2′(0)| is largest
not at θ = 210◦, where |Eb2′ | is largest, but at θ = 232.4◦. Consequently, charge transfer

through the strongest bond b2′ is dominant, and ∆P (t) is thus largest (smallest) near

θ = θb2′ (θ = θb2′ + 180).
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FIG. 6: (Color online) Directions of charge transfer for the four largest bonds by |∆q
(max)
Y (0)|

shown by arrows.

IV. DISCUSSION

We discuss the implications of the present results of experimentally observed THz-pulse

induced dynamics. As shown in the previous sections, the electronic polarization P̄ of the

charge-ordered ground state is nearly parallel to bond b2′. Furthermore, the THz-pulse-

induced variation in magnitude of the charge-order amplitude |∆ρA(t)−∆ρA′(t)| and that

of electronic polarization |∆P (t)| are both largest when the polarization direction of the

THz pulse is nearly parallel to bond b2′. Therefore, the direction of P̄ is approximately
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given by the polarization direction of the THz pulse when ∆R/R, which shows the THz-

pulse-induced variation of the charge-order amplitude, is largest. Experimental results can

be interpreted on this basis,49 shown for the first time in this paper. This result originates

from the fact that charge transfer through bond b2′ is dominant among all the bonds despite

the difference between the largest transfer integral |βb2′ | and the second largest integral |βb1′ |
being less than 10%.

In the present numerical calculations, an equilateral-triangle lattice is assumed, and the

angle θb2′ between the dominant b2′ bond and b−axis is 30◦. However, it is 23◦ in the real

lattice. The difference θP̄ −θb2′ = 6◦ obtained in the present numerical result is very close to

the experimentally obtained value of 4◦. The difference in θP̄ between the present theoretical

and experimental results is attributed mainly to the difference in the lattice angles between

these two cases.

The magnitude of the polarization change ∆P/P̄ is evaluated to be 1.31% from

∆ISHG/ISHG, and the change in the charge-order amplitude, which corresponds to (∆ρA −
∆ρA′)/(ρ̄A − ρ̄A′), is evaluated to be 1.68% from ∆R/R for E =60 kV/cm and θ = 0.49

Our numerical results give ∆P/P̄ =6.5 % and (∆ρA − ∆ρA′)/(ρ̄A − ρ̄A′) =4.2 % for E =

60kV/cm and θ = 0, where we adopt the average lattice spacing a = 7 Å and assume linear

relationships between ∆ρX and E(t) and between ∆Px(t) and E(t). These two theoretically

obtained values are comparable, which is consistent with experimental results, but these

theoretically obtained values are several factors larger than those obtained experimentally.

α-(BEDT-TTF)2I3 has a large dielectric constant.28,47 The transfer of the valence electron

makes a dominant contribution to the dielectric constant, but the other contributions that

are not considered here are not negligible. The difference of several factors can be attributed

to the screening of the electric field.

V. CONCLUSION

We investigated the dielectric properties of the charge-ordered phase of α-(BEDT-

TTF)2I3 using exact numerical calculations of an extended Hubbard model. The electronic

polarization P̄ of the charge-ordered ground state was obtained by directly calculating the

current when transfer integrals were changed adiabatically from symmetric integrals to in-

tegrals for the charge-ordered phase without inversion symmetry. The angle of P̄ from the
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positive b−axis was 36◦, which is consistent with experimental results and previous theoret-

ical results based on DFT. Furthermore, we numerically calculated the dynamics induced

by THz pulse excitation. There are almost linear relationships between the charge density

variation induced by the THz pulse ∆ρX(t) and the amplitude E(t) of the electric field

E(t) of the pulse and between the time variation of the electronic polarization magnitude

induced by the THz pulse ∆P and E(t) in the case of weak excitation. These properties

are found to originate from the adiabatic nature of the THz-pulse excited sate. Further-

more, the THz-pulse induced variation of charge disproportionation between A and A′ sites,

∆ρA(t) − ∆ρA′(t), which shows the modulation of the charge-order amplitude, and ∆P (t)

are largest when E(t) and P̄ have almost the same direction. This originates from the

fact that the charge transfer through bond b2′ is dominant both in the adiabatic flow of

current and in the THz-pulse excitation case. These results reproduce important features

of experimental results of THz-pulse induced dynamics.

VI. APPENDIX

In Ref. 63, the physical properties arising from the adiabatic nature of THz-pulse excited

state were shown for the one-dimensional extended Hubbard model. This result can be

easily extended to the two- and three-dimensional cases as shown below.

Up to the first order of the small parameter ǫ of the adiabatic approximation, which will

be explicitly given later, the solution |ψ(t)〉 of the time-dependent Schrödinger equation can

be written as

|ψ(t)〉 = exp[−i
∫ t

0

dτE0(τ)]|φ0(t)〉+ |δψ(t)〉, (22)

|δψ(t)〉 =

l 6=0∑
l

cl(t) exp[−i
∫ t

0

dτEl(τ)]|φl(t)〉, (23)

where |φl(t)〉 is the energy eigenstate of H(t) with an energy eigenvalue El(t), and |φ0(t)〉
and E0(t) are respectively the ground state and ground state energy. The first-order term

|δψ(t)〉 is given by the linear combination of |φl(t)〉 with the coefficient cl(t). We divide

the Hamiltonian H(t + ∆t) into the unperturbed part H0(t) = H(t) and perturbed part

H1(t) = H(t+∆t)−H(t). Up to the first order of ∆t, H1(t) can be written as

H1(t) = Ĵ(t)E(t)∆t, (24)
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where Ĵ(t) is given by

Ĵ(t) =
∑

<n,m>

rn,m · Âîm,n(t). (25)

This formula for Ĵ(t) is applicable not only to the one-dimensional case but also to the two-

and three-dimensional cases. Replacing the formula for Ĵ(t) given in Ref. 63 by this more

general one, the results derived in Ref. 63 can be used also in the two- and three-dimensional

cases. From time-dependent perturbation theory, cl(t) satisfies the differential equation

d

dt
cl(t) = exp[i

∫ t

0

dτωl(τ)]E(t)
Jl,0(t)

ωl(t)
, (26)

where Jl,0(t) is the transition dipole moment given by

Jl,0(t) = 〈φl(t)|Ĵ(t)|φ0(t)〉, (27)

and ωl(t) = El(t) − E0(t). As shown later, in the thermodynamic limit, Jl,0(t) and ωl(t)

are constant with time, and Jl,0(t) = Jl,0 and ωl(t) = ωl hold, where Jl,0 and ωl are the

transition dipole moment and the excitation energy when A(t) = 0. We can then solve the

differential equation (26) and obtain cl(t) as

cl(t) = −iJl,0
ω2
l

exp[iωlt]E(t), (28)

where the terms of second order or higher in 1/(ωlD) are neglected. In the case of THz pulse

excitation, 1/(∆ED) ≪ 1 holds, where ∆E is the optical energy gap, in the charge-ordered

ground state. This approximation holds well for almost all insulators. The small parameter

ǫ for the adiabatic approximation is therefore given by

ǫ = max(
|Jl,0|
ω2
l

)
A(max)

D
, (29)

and the adiabatic approximation is good if ǫ≪ 1 holds.

The expectation value of, for example, charge density ρn(t) = 〈ψ(t)|nn|ψ(t)〉 is expanded
into a power series of ǫ as

ρn(t) = ρ(0)n (t) + ρ(1)n (t) + · · · , (30)

where ρ
(i)
n (t) is the ith-order term. The zeroth- and the first-order terms are given by

ρ(0)n (t) = 〈φ0(t)|nn|φ0(t)〉, (31)

ρ(1)n (t) = 2Re[exp[i

∫ t

0

dτE0(τ)]〈φ0(t)|nn|δψ(t)〉]. (32)
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Substituting Eq. (28) into Eq. (31), the first-order term is given by

ρ(1)n (t) = GneaE(t), (33)

Gn = 2Im[

l 6=0∑
l

Jl,0
ω2
l

〈φ0|nn|φl〉]. (34)

We consider the unitary transformation

c̃n,σ = cn,σ exp[−iern · Ā(t)], (35)

where rn is the position vector of site n. When the bond connecting sites n and m does not

cross the periodic boundary, rn,m = rm − rn holds and it can be written as

βn,m(t)c
†
n,σcm,σ = β(CO)

n,m c̃†n,σ c̃m,σ. (36)

When the bond connecting sites n and m crosses the periodic boundary, a phase factor

is added to the transfer integral. Thus, the time- and space- invariant vector potential

introduces a twist in the boundary condition, but does not change H(t) and Ĵ(t) except

for this. The finite-size effect induced by the twist is of the order of 1/
√
N in the present

two-dimensional case. Therefore, ρ(0)(t) = ρ̄ and ∆ρn(t) = ρ
(1)
n (t) hold up to the first order

of ǫ in the thermodynamic limit. The time variation ∆ρn(t) is proportional to E(t) in this

instance.

In the present numerical calculation with the small-size cluster, the artifact ρ(0)(t) − ρ̄

caused by the finite-size effect is of zeroth order in ǫ and is therefore comparable to ρ
(1)
n (t).

It is essential to remove the artifact. We remove ρ(0)(t) − ρ̄ using the numerical method

shown below. We consider the time variation of charge density induced by a pulse with

renormalized duration rD given by

A
(r)(t) = Â

A(max)

2
{1 + tanh(

t

rD
)}. (37)

Because H(r)(rt) = H(t) holds, where H(r)(t) is the Hamiltonian with the pulse described

by A
(r)(t), the time-dependent solution |ψ(r)(t)〉 of H(r)(t) can be written as

|ψ(r)(rt)〉 = exp[−ir
∫ t

0

dτE0(τ)]|φ0(t)〉+ |δψ(r)(rt)〉, (38)

up to the first order of ǫ/r, where |δψ(r)(t)〉 is the first-order term of ǫ/r. The zeroth-order

term can be removed using Eqs. (22) and (38), and ∆ρn is given by

∆ρn(t) =
r

r − 1
{〈ψ(t)|nn|ψ(t)〉 − 〈ψ(r)(rt)|nn|ψ(r)(rt)〉}, (39)
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where the contributions from the terms higher than first order are neglected, and we use

the fact that the leading term of 〈ψ(r)(rt)|nn|ψ(r)(rt)〉 − 〈φ0(t)|nn|φ0(t)〉 is of the first order

of ǫ/r, which can be derived from Eq. (33). The contributions from the terms higher than

first order are negligible with the present small eaA(max). This can be confirmed from the

differences between the values of ∆ρ(t) calculated with r = 2 and 3 being less than 1%.

In the same manner, we can remove the artifact caused by the finite-size effect from

electronic polarization ∆P (t):

∆Pa(t) = a
r2

r2 − 1

∑
Y

sin(θY)

∫ t

−∞

[〈ψ(τ)|̂iY(τ)|ψ(τ)〉 − 〈ψ(r)(rτ)|̂iY(τ)|ψ(r)(rτ)〉]dτ,

∆Pb(t) = a
r2

r2 − 1

∑
Y

cos(θY)

∫ t

−∞

[〈ψ(τ)|̂iY(τ)|ψ(τ)〉 − 〈ψ(r)(rτ)|̂iY(τ)|ψ(r)(rτ)〉]dτ.(40)

We here use the fact that the leading term of 〈ψ(r)(rt)|̂iY(t)|ψ(r)(rt)〉 − 〈φ0(t)|̂iY(t)|φ0(t)〉 is
of the second order of ǫ/r. We also check this on the basis that the difference between the

values of ∆Pa(t) calculated with r = 2 and 3, and that of ∆Pb(t) are both less than 1%.
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