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This work concerns Ising quasiholes in Moore-Read type lattice wave functions derived from
conformal field theory. We commence with constructing Moore-Read type lattice states and then
add quasiholes to them. By use of Metropolis Monte Carlo simulations, we analyze the features of
the quasiholes, such as their size, shape, charge, and braiding properties. The braiding properties,
which turn out to be the same as in the continuum Moore-Read state, demonstrate the topological
attributes of the Moore-Read lattice states in a direct way. We also derive parent Hamiltonians for
which the states with quasiholes included are ground states. One advantage of these Hamiltonians
lies therein that we can now braid the quasiholes just by changing the coupling strengths in the
Hamiltonian since the Hamiltonian is a function of the positions of the quasiholes. The methodology
exploited in this article can also be used to construct other kinds of lattice fractional quantum Hall
models containing quasiholes, for example investigation of Fibonacci quasiholes in lattice Read-
Rezayi states.

I. INTRODUCTION

Strongly correlated quantum many-body systems ex-
hibit a cornucopia of intriguing phenomena that cannot
be perceived in conventional materials and are of great
importance both for fundamental theoretical studies and
experimental points of view. Examples include scenarios
such as quantum phase transitions, quantum spin liquids,
topological quantum systems and many more. Theoret-
ical progress in this direction is hindered due to high
complexity of the many body systems. Numerically the
high complexity arises from strong correlations and the
exponential growth of the Hilbert space with the system
size. Analytical models are therefore very helpful to gain
insight.

The fractional quantum Hall effect was a pioneering
breakthrough in the context of topological systems1–4.
This phenomenon unveils an exotic phase of matter5–16

and is obtainable at very low temperatures. One
of the most important trademarks of fractional quan-
tum Hall states is that they support emergent frac-
tionally charged quasiparticle excitations with non triv-
ial braiding properties17. While fermions obey Fermi-
Dirac statistics and bosons follow Bose-Einstein statis-
tics, these quasiparticles in two dimensional systems fol-
low any-statistics and hence found the nomenclature
as anyons4,17. In most of the states the statistics is
Abelian18 meaning that under an anyonic winding19

around each other the wavefunction acquires only a phase
factor. More interestingly, if the ground state in a sec-
tor is degenerate for fixed anyon positions, an exchange
of the anyons corresponds to a unitary matrix trans-
formation and then those anyons exhibit non-Abelian
braiding statistics20,21. In the present days non-Abelian
anyons22,23 are drawing much attention both from a theo-
retical and a practical viewpoint due to their exceptional
properties and their potential applications in quantum

information especially topologically protected fault tol-
erant quantum computation24.

Analytical trial wavefunctions are of great importance
to understand the fractional quantum Hall effect1. One
of the promising candidates supporting non-Abelian
anyons, the state under consideration here, is the Moore-
Read Pfaffian fractional quantum Hall state25–28 at the
second Landau level with filling ν = 5

2 . Construction of
fractional quantum Hall states in lattices has recently
gained much interest, and the present work is concerned
with similarly constructing trial wavefunctions on the
lattice of Moore-Read states with anyons. The non-
Abelian anyonic excitations29–31 in this state containing
an even number of anyons span a degenerate space. The
positively charged anyons are called quasiholes. Moore
and Read advocated these states containing quasiholes
by exploiting conformal field correlators of the under-
lying Ising conformal field theory (CFT) through the
connection between corresponding low-energy effective
Chern-Simons gauge theories32 and the conformal blocks.

Moore-Read states on lattices without anyons were
constructed33,34 previously and it was found from entan-
glement properties of these states that they are in the
same topological phase as the Moore-Read states in the
continuum. It should hence be possible to also construct
quasiholes in the lattice models. The results of this paper
show that the wavefunctions with quasiholes can be ob-
tained from those without quasiholes in the same way as
for the continuum wavefunctions utilizing CFT. We make
a detailed investigation of the quasiholes, including com-
puting their size, shape, charge and braiding statistics.
We do explicit computations for the square lattice, but
the construction of these states is quite general and the
analytical forms are applicable for arbitrary lattices in
2D. We can make detailed investigations, since the ana-
lytical form of the wavefunctions allow us to do Monte
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FIG. 1. In the 2D complex plane the lattice is defined on a
disk of radius RD as shown in (a). Each site is either empty
(blue circles) or singly occupied (red circles). In (b) we mark
the area of a lattice site with a square. We illustrate the trans-
formation between the continuum limit (η −→ 0+, N −→ ∞,
for fixed ηN) (a) and the lattice limit (η −→ 1) (b). Note
that the lattice filling is η

q
. The interpolation is performed

by fixing the number of particles and changing the number of
lattice sites per particle between q and infinity.

Carlo simulations that can be done for quite large sys-
tems.

It is interesting to ask if these states with quasiholes
are the ground states of some Hamiltonians defined on
the lattice. We exploit the null field construction of the
underlying Ising CFT to construct parent Hamiltonians,
supporting an arbitrary even number of quasiholes. It is
also found that the quasihole excitations in these states

containing Q quasiholes span a 2
Q
2 −1 dimensional degen-

erate space evidencing the degeneracy as the signature of
non-Abelian nature. The Hamiltonians derived are long
ranged and contain five-body interactions.

The structure of the paper is as follows : We fabricate
lattice Moore-Read states without and with quasiholes in
Sec. II. Next, in Sec. III, we analyze the density profile,
charge and size of the quasiholes. The braiding statistics
are investigated in Sec. IV, and parent Hamiltonians are
derived for the aforementioned states in Sec. V. Sec. VI
concludes the paper. The details of the derivation of
the parent Hamiltonians and a sketch of the Metropolis
Monte Carlo technique used are given in the Appendices.

II. LATTICE MOORE-READ PFAFFIAN
STATES CONTAINING QUASIHOLES FROM

CONFORMAL FIELD CORRELATORS

We introduce and explicitly construct the family of
Moore-Read Pfaffian states on lattices hosting quasi-
holes. Earlier Moore and Read in their pioneering work3

used CFT in constructing the states for the continuum.
We exploit their procedure and construct the states on
the lattice. The different members of the family are la-
beled by the filling fraction 1

q .

Let us consider an arbitrary lattice in two dimensions
with N lattice sites positioned at zj , j ∈ {1, 2, ...., N},
and the positions of the Q quasiholes are specified by wk

with k ∈ {1, 2, ...., Q} in the complex plane. We take a
to be the area per lattice site and define η = a

2π . This
corresponds to that we set the magnetic length to unity.
Let us define a local basis at the jth site as |nj〉, where
nj is the number of particles at site j. We have the
local basis states as nj ∈ {0, 1} denoting the occupancy
of site j. Therefore the Hilbert space dimension is 2N .
The parameter η allows us to interpolate between the
lattice limit (η −→ 1) and the continuum limit (η −→
0+, N −→ ∞). When doing the interpolation we keep
ηN fixed. As we shall see below, this means that the
number of particles per area remains the same, while the
number of lattice sites per particle changes from q in the
lattice limit to infinite in the continuum limit as displayed
in Fig 1 for q = 2.

To each lattice site, let us associate the vertex
operator34

Vnj (zj) = χnj (zj)ψ(zj)
∆nj : ei(qnj−η)φ(zj)/

√
q : (1)

χnj (zj) = eiπ(j−1)ηnj (2)

where φ(zj) is the chiral field for the free massless boson
of the U(1) CFT with central charge c = 1, ψ(zj) is the
holomorphic free Majorana fermion field with conformal
dimension hψ = 1

2 of the c = 1
2 Ising CFT associated

with the occupied lattice sites only (since, ∆nj = 1 iff
nj = 1 and 0 otherwise) and : .... : denotes normal order-
ing. The phase factor χnj (zj) could be chosen at will. We
have taken this particular form since it ensures that the
state for q = 1 is SU(2) invariant when we do not have
anyons in the system. Making a different choice of sin-
gle particle phase factors will not affect the entanglement
entropy of the system and hence also not the topologi-
cal entanglement entropy. The braiding properties, we
compute in Sec. IV, are also independent of the choice of
phase factors.

Now, Moore-Read states can host Ising quasiholes35.
So, let us introduce3,36 the vertex operator

W (wk) = σ(wk) : eipkφ(wk)/
√
q :, pk =

1

2
(3)

to each quasihole position wk where σ(wk) is the
holomorphic spin operator of the chiral Ising CFT with
conformal dimension hσ = 1

16 and pk
q is the charge of

the quasihole at wk (we assume the standard charge of
a particle as −1).

The wavefunction is defined as

|Ψα〉 =
1

Cα

∑
n1,....,nN

Ψα(~w;~z)|n1, ...., nN 〉 (4)

where Ψα(~w;~z) can be expressed as conformal blocks
in the CFT, as was first pointed out in Ref. 3 by
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Moore and Read for the continuum and later extended
to lattices34,37. We have

C2
α =

∑
n1,....,nN

|Ψα(~w;~z)|2 (5)

where Cα is taken to be real. The vectors ~w =
(w1, ...., wQ) and ~z = (z1, ...., zN ) represent the set of
quasihole positions and lattice site positions respectively.
The underlying C FT in this case is with central charge
c = 1

2 + 1 where 1
2 and 1 describe the Ising contribution,

i.e. the Pfaffian part, and the Jastrow factor of the wave-
function respectively. One could write the correlator of
the above mentioned operators as the product of the two
aforementioned CFT theories as

Ψα(~w;~z) = 〈0|
Q∏
k=1

W (wk)

N∏
j=1

Vnj (zj)|0〉α

= Iα × J

(6)

with

Iα = 〈0|
Q∏
k=1

N∏
j=1

σ(wk)ψ(zj)
∆nj |0〉α (7)

and

J = 〈0|
Q∏
k=1

N∏
j=1

: eipkφ(wk)/
√
q :: ei(qnj−η)φ(zj)/

√
q : |0〉

(8)
where 〈0|....|0〉 stands for the vacuum expectation value
in the CFT, Iα stands for the Ising contribution and
J for the Jastrow contribution coming from the c = 1
bosonic sector.

The holomorphic spin operators σ of the Ising CFT
have many conformal blocks depending on the number
of quasiholes considered. The total number of different
labels of the conformal blocks which we denote by the

vector α in (4) is 2
Q
2 −1. Hence, the wavefunctions Ψα

represent the degenerate set of wavefunctions for fixed
quasihole positions and thereby forming the basis for
their non-Abelian statistics.

The fusion channel of the Ising fields σ(w2i−1) and
σ(w2i) is specified by the ith entry of the vector α. If
αi = 0 or αi = 1, those fuse to the identity (I) or Majo-
rana fermion field (ψ) respectively by following the fusion
rule, σ × σ = I + ψ. For the correlator to be non-zero,
all the fields must be fused to the identity36 by following
the non trivial Ising fusion algebra35 as

ψ × ψ = I; ψ × σ = σ; σ × σ = I + ψ (9)

Now, the factors coming from the c = 1 CFT theory are
the same for an arbitrary even number of quasiholes but
the c = 1

2 CFT gives rise to different terms depending

on the number of quasiholes in the state36. We derive
the wavefunctions with zero, two and four quasiholes in
details below. In the following we shall use the notation
that (z′1, · · · , z′M ) are the positions of the occupied lattice
sites where we denote M to be the number of particles.

A. The boson (c = 1 CFT) part of the wavefunction
for an arbitrary even number of quasiholes

Explicit evaluation of the correlator in (8) by standard
methods38 results in the following expression

J = δn
∏
i<j

(zi − zj)qninj
∏
i 6=j

(zi − zj)−ηni

×
∏
i<j

(zi − zj)η
2/q
∏
i<j

(wi − wj)pipj/q

×
∏
i,j

(wi − zj)pinj
∏
i,j

(wi − zj)−ηpi/q

(10)

where δn = 1 iff the total number of particles

M =

N∑
j=1

nj = (ηN −
Q∑
k=1

pk)/q (11)

and otherwise δn = 0.
In this model the background charge is included by the

operators in Eq (1). The lattice filling fraction is defined
to be M/N and in the absence of quasiholes (i.e. Q = 0)
and for η = 1 this is equal to the Landau level filling
fraction 1/q in the fractional quantum Hall effect.

The
∏N
i<j(zi − zj)

qninj factor in (10) can be inter-
preted as the attachment of flux q to each particle and

the
∏N
i 6=j(zi − zj)−ηni factor represents the background

charge in the lattice.
The construction in (6) resembles closely the contin-

uum limit where the wavefunctions are generally ex-
pressed in the basis spanned by the position of the parti-
cles. That means (z′1, ...., z

′
M ) form a basis of the Hilbert

space and the background charge is supported by the
Gaussian factors. Hence the charge neutrality is ensured.
Let us take the states (6) on a disk D of radius RD −→∞
andN −→∞ with a fixed number of particlesM to reach
the continuum limit. In this limit, we approach the usual
Gaussian factors39 as it can be shown that∏

j 6=l

(zl − zj)−ηnl ∝ e−i
∑N
l gle−

1
4

2πη
a

∑N
l nl|zl|2

∏
l,j

(wl − zj)−pl/q ∝ e−i
∑Q
l fle−

1
4

2π
a

∑Q
l

pl
q |wl|

2
(12)

where gl = Im [η
∑N
j(6=l) nl ln(zl − zj)] and fl = Im

[ 1
q

∑N
j pl ln(wl − zj)] are real numbers giving rise to the

phase factors (overall gauge factors) that can be trans-
formed away if needed. The phase factors do not hamper
properties like particle-particle correlations and the en-
tanglement entropy of the state.

B. Wavefunction without quasiholes

When there are no quasiholes,
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Iα = 〈ψ(z′1)....ψ(z′M )〉α = Pf

(
1

z′i − z′j

)
(13)

where M is even and ’Pf’ stands for the ’Pfaffian’. The
Pfaffian is antisymmetric, so the states in (6) are bosonic
(fermionic) for q odd (even).

C. The Ising (c = 1
2

CFT) part of the wavefunction
for two quasiholes

We now consider the case of two quasiholes. There
are two independent possibilities depending on the fusion
channel of the two Ising spins σ as mentioned in (9).
When two σ fields fuse to the identity (I) (Majorana
(ψ)), we have an even (odd) number of Majorana fields
in (7) i.e. an even (odd) number of particles M . We
are interested in the fusion channel of output identity
(I) since the expression for the correlator in this case is
simpler. As there exists only a single generator of the
braid group, the two quasiholes behave as if they are
Abelian. Later on we shall see that the presence of four
quasiholes will show that they are really non-Abelian.

The exact form of the conformal blocks can be achieved
through bosonization. Explicit evaluation gives rise to
the factors36

Iα = 2−
M
2 (w1 − w2)−

1
8 ×

∏
i,j

(wi − z′j)−
1
2 × Pf(A) (14)

where

Aij =
(z′i − w1)(z′j − w2) + (z′i − w2)(z′j − w1)

(z′i − z′j)
(15)

and M is even. We have here α = I.

D. The Ising (c = 1
2

CFT) part of the wavefunction
for four quasiholes

To achieve non-Abelian statistics, multiple degenerate
states for fixed quasihole positions are necessary. The
case of four quasiholes is the simplest one to unveil this
behavior27. There are two generators for the four quasi-
hole braid group, giving rise to two different braids, which
do not commute with each other and hence forming non-
Abelian statistics. Here, Q = 4 and hence there are two
conformal blocks for (6) which give rise to the degener-
acy. We denote the conformal block indices as mI = 0
and mψ = 1.

Comprehensive evaluation of the correlator in (7) for

two different fusion channels gives36

Iα = 2−
M+1

2 (w1 − w2)−
1
8 (w3 − w4)−

1
8×∏

i,j

(wi − z′j)−
1
2

(
(1− x)

1
4 +

(−1)mα

(1− x)
1
4

)− 1
2

×(
(1− x)

1
4 Φ(13)(24) + (−1)mα(1− x)−

1
4 Φ(14)(23)

)
(16)

with

Φ(k1k2)(k3k4) =

Pf

(
(wk1 − z′i)(wk2 − z′i)(wk3 − z′j)(wk4 − z′j) + (i←→ j)

(z′i − z′j)

)
(17)

and

x =
(w1 − w2)(w3 − w4)

(w1 − w4)(w3 − w2)
(18)

where M is even and x is the anharmonic ratio. In
Φ(k1k2)(k3k4), the quasiholes are labeled by ki and we
have α ∈ {I, ψ}.

III. DENSITY PROFILE AND CHARGE OF
THE QUASIHOLES

We next investigate important properties of the quasi-
holes. In this section we investigate how the quasiholes
influence the density of the particles in the lattice sites,
what amount of charges are carried by the quasiholes
and how far they extend in the lattice system. We
use Metropolis Monte Carlo simulation to research the
above mentioned properties for two and four quasiholes.
In the numerical computations in this section and the
next, we take q = 2.

Density profile. - We define the lattice density of the
ith lattice site for any state Φ to be 〈n(zi)〉 = 〈Φ|n(zi)|Φ〉.
The density profile of the quasiholes is evaluated as39

ρ(zi) = 〈n(zi)〉Q6=0 − 〈n(zi)〉Q=0 (19)

where 〈n(zi)〉Q6=0 and 〈n(zi)〉Q=0 are the densities of the
ith lattice site in the presence and absence of the quasi-
holes in the states respectively. Since, we have the re-

striction of
∑N
j=1 nj = (ηN −

∑Q
k=1 pk)/q, it is the case

that the insertion of a quasihole leads to the decrement
of the total number of particles in the system by pk

q .

Now, we require the Pfaffian factors in both the wave-
functions containing the quasiholes (Eq. (6)) and without
quasiholes (Eq. (13)) to be non-zero. Thereby, it is neces-
sary to set the number of particles M to be even in both
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FIG. 2. We mark the lattice sites by the circles and quasiholes by stars. (a) − (c) show the difference between the lattice
densities in the presence and absence of the quasiholes in the states (6) i.e. ρ(zi) = 〈n(zi)〉Q6=0 − 〈n(zi)〉Q=0 with the values
represented by the colorbar with an errorbar of size ∼ 10−4 arising from the Monte Carlo simulation. q = 2 and the number
of lattice sites is N = 112. We take the number of particles to be M = 56. In (a), the quasiholes are placed exactly in the
middle of the plaquette. It turns out that they are screened well and localized with radii of a few lattice constants. The circle
shows the radius of an Ising quasihole in the continuum as computed in Ref 40. If the quasiholes approach the lattice sites, no
singularity appears as depicted in (b) and (c). The excess charge (see (21)) of the quasihole Qk, k ∈ {1, 2} is computed from
(a) and plotted in (d) as a function of the radial distance r/2π. The quasihole positions are symmetric with respect to a π
rotation of the lattice. Therefore the two plots are on top of each other. The charges are approaching the expected value ' 0.25
for large r. The colors on the edges appear because we place a charge at infinity in the state with quasiholes as explained in
the text

the cases. Now, by inspecting the δn factor in (6) it is
found that we can not fulfill this condition simultaneously
if we choose the same η value for both the cases. We over-
come this problem by inserting an extra charge P/q at
infinity. By choosing appropriate values of this charge we
can use the same η and make M even in both the cases.

Let us incorporate the operator ΞP(∞) = : e
i P√qφ(∞)

:
of charge Pq , placed at infinity in the correlator of the

wavefunction (6). Then the wavefunction becomes

Ψα(~w;~z)[P(ξ →∞)] ∝ δ′n Iα
∏
i<j

(zi − zj)qninj

×
∏
i 6=j

(zi − zj)−ηni
∏
j

(ξ − zj)Pnj
∏
i,j

(wi − zj)pinj ,

∝ δ′n Iα ξP(N−P)/q
∏
i<j

(zi − zj)qninj

×
∏
i 6=j

(zi − zj)−ηni
∏
i,j

(wi − zj)pinj

∝ δ′n Iα
∏
i<j

(zi − zj)qninj
∏
i 6=j

(zi − zj)−ηni
∏
i,j

(wi − zj)pinj

(20)
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FIG. 3. We mark the lattice sites by the circles and quasiholes by stars. (a) − (c) show the difference between the lattice
densities in the presence and absence of the quasiholes in the states (6) i.e. ρ(zi) = 〈n(zi)〉Q6=0 − 〈n(zi)〉Q=0 with the values
represented by the colorbar with an errorbar of size ∼ 10−4 arising from the Monte Carlo simulation. q = 2 and the number
of lattice sites is N = 112. We take the number of particles to be M = 56. In (a), the quasiholes are placed exactly in the
middle of the plaquette. It turns out that they are screened well and localized with radii of a few lattice constants. The circle
shows the radius of an Ising quasihole in the continuum as computed in Ref 40. If the quasiholes approach the lattice sites, no
singularity appears as depicted in (b) and (c). The excess charge (see (21)) of the quasihole Qk, k ∈ {1, 2, 3, 4} is computed
from (a) and plotted in (d) as a function of the radial distance r/2π. The quasihole positions are symmetric with respect to
a π/2 rotation of the lattice. Therefore the four plots are on top of each other. The charges are approaching the expected
value ' 0.25 for large r. The colors on the edges appear because we place a charge at infinity in the state with quasiholes as
explained in the text

where δ′n = 1 iff the total number of particles M = (ηN−
P −

∑Q
k=1 pk)/q and δ′n = 0 otherwise. Particularly we

take P = −1 and P = −2 for the cases of two and four
quasiholes and P = 0 for the case without quasiholes.
Therefore, with η = 1 we achieve the number of particles
M = N

2 for all the cases with and without quasiholes in
the states. The nonzero charge at infinity leads to edge
effects.

The results are presented in Fig. 2 and Fig. 3 on a
lattice of size N = 112 for two and four quasiholes re-
spectively with their different positions. The values of
the lattice densities are given by the colorbar with an

errorbar of size ∼ 10−4 arising from the Monte Carlo
simulation. It is perceptible that the quasiholes are lo-
calized, screened well and the density profile varies with
the distance from the quasiholes. Fig. 2(b, c) and Fig.
3(b, c) illustrate that there is no singularity in the wave-
function when the quasiholes approach the lattice sites.
It only increases the probability that the corresponding
lattice sites are unoccupied.

The radius of an Ising quasihole in the continuum
was established in Ref 40 by considering the second
moment18,41 of the excess charge distribution, and the
result was 2.8l0, where l0 is the magnetic length. We plot
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this number in Fig. 2(a) and in Fig. 3(a) for comparison.
It is seen that the size of the quasihole in the lattice is
comparable to the size in the continuum. Similar results
were found for Laughlin quasiholes in Ref 41.

Charge. - In the fractional quantum Hall effect, if we
take the charge of the fermionic particles to be −1 then
the quasiholes are expected to carry charge pk

q . Now,

the Ising quasiholes in the Moore-Read states in the con-
tinuum for q = 2 carry an amount of charge 0.25. Ex-
perimental measurements of the quasihole charges are in
Ref. 42–45. It is thereby indispensable to investigate if
they fetch similar charge in the lattice models also. Let
us work out the excess charge of the kth quasihole elu-
cidated to be the sum of minus the density profile ρ(zi)
over a circular region of radius r around the quasihole34

Qk(wk) = −
∑

[i∈{1,2,....,N}
∣∣|zi−wk|≤r] ρ(zi) (21)

where k ∈ {1, 2, ...., Q} and ρ(zi) is defined in (19). The
charge of the quasihole is defined as the value that the
total excess charge converges to for large r, provided the
region is far from the edge and also far from any other
quasiholes in the system.

We use the data of Fig. 2(a) and Fig. 3(a) to com-
pute the excess charges and plot it in Fig. 2(d) and Fig.
3(d) which ensures that with the increment of the radial
distances from the quasiholes, the charges approach the
value of ' 0.25 upto some ignorable uncertainties of or-
der ∼ 10−4 coming from the Monte Carlo simulation for
both the cases of two and four quasiholes concurrently.

IV. QUASIHOLE BRAIDING STATISTICS

The results in Sec. III show that the quasiholes in the
system are localized, well screened with radii of a few
lattice constants and with charge ' 0.25. This provides
support for claiming those as Ising quasiholes. These
license to go for the braiding statistics of the quasiholes.

To compute braiding, we adiabatically circulate one
quasihole around another quasihole along a closed path
Γ (e.g. wk around wj). This compels the normalized state
to pick up a phase matrix and hence, it is transfigured as
|Ψα〉 −→ γMγB |Ψα〉. Here, we have two contributions in
the story namely the monodromy matrix, i.e. the phase
matrix arising from the analytic continuation properties
of the states, which is denoted by γM , and the Berry
matrix γB = eiθB with elements35

[
θB
]
αβ

= i

Q∑
k=1

∮
Γ

〈Ψα|
∂Ψβ

∂wk
〉dwk + c.c. (22)

Now it has been proved for the case of the continuum by
Bonderson et al. in Ref. 35 that if the conformal blocks

of the states (6) exhibit matrix elements, which are in-
dependent of the quasihole positions as long as they are
well separated and also the matrix is diagonal in the ba-
sis specified by the conformal blocks then the Berry ma-
trix becomes trivial i.e. proportional to the identity ma-
trix with an Abelian phase factor as the Aharonov-Bohm
phase due to the circulation of the quasihole in the back-
ground magnetic field. When a particle of charge q′ gets
circulated in a magnetic field B through a closed loop of
area A, it picks up a phase factor of e−2πiq′BA/hc known
as the Aharonov-Bohm phase46, where h is the Planck’s
constant and c is the speed of light in free space. In this
scenario, the quasihole braiding statistics can be read off
directly from the analytic continuation alone.

Now, we investigate the aforesaid conditions for the
case of lattice systems. We inscribe the Berry matrix
elements to circulate the kth quasihole as[

θB
]
αβ

= i

∮
Γ

〈Ψα|
∂Ψβ

∂wk
〉dwk + c.c. (23)

We use |Ψα〉 = 1
Cα

∑
n Ψα|n〉 and |Ψβ〉 = 1

Cβ

∑
n′ Ψβ |n′〉

with 〈n|n′〉 = δnn′ to write

〈Ψα|
∂Ψβ

∂wk
〉 =

∑
n

Ψ̄α

Cα

∂

∂wk

(Ψβ

Cβ

)
=

∂

∂wk

(∑
n

Ψ̄α

Cα

Ψβ

Cβ

)
−
∑
n

Ψβ

Cβ

∂

∂wk

Ψ̄α

Cα

=
∂

∂wk

( 1

CαCβ

∑
n

Ψ̄αΨβ

)
− 1

CαCβ

∑
n

Ψβ
∂Ψ̄α

∂wk

− 1

Cβ

∑
n

Ψ̄αΨβ
∂

∂wk

( 1

Cα

)
(24)

As per our definition the wavefunctions are normalized.
If we show that the wavefunctions are orthogonal i.e.
〈Ψα|Ψβ〉 = δαβ then we can write Eq (24) as

〈Ψα|
∂Ψβ

∂wk
〉 =

∂

∂wk
δαβ −

1

CαCβ

∑
n

Ψβ
∂Ψ̄α

∂wk

− Cαδαβ
∂

∂wk

( 1

Cα

)
= −Cαδαβ

∂

∂wk

( 1

Cα

) (25)

since Ψ̄α is independent of wk (it only depends on w̄k).
Then we can write the Berry matrix elements as[

θB
]
αβ

= −i
∮

Γ

Cαδαβ
∂

∂wk

( 1

Cα

)
dwk + c.c.

= iδαβ

∮
Γ

1

Cα

(∂Cα
∂wk

)
dwk + c.c.

= iδαβ

∮
Γ

Idwk + c.c.

(26)

where I = 1
Cα

(
∂Cα
∂wk

)
= ∂ ln(Cα)

∂wk
. Now, if Cα (hence

ln(Cα)) is periodic in wk then we have that γB is equal to
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a)                                                                              
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b)                                                                                    

P

FIG. 4. In (a) circles denote the lattice sites and stars denote the quasiholes. We move one quasihole around one lattice site
through a closed loop along the path midway in the lattice plaquette while keeping the others fixed. We choose a lattice of size
N = 96 and place the quasiholes in the bulk and sufficiently separated from each other. In (b) the inverse ratio between the

overlaps at its l th and initial (l = 0) positions i.e. P =
C2

0

C2
l

is plotted as a function of the different moves i.e. l of the circulating

quasihole. It shows that the norm of the conformal block varies with the period of the lattice (upto some numerical uncertainty
arising from the simulation and finite size effects).

a)
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b)                                                                                          
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N
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100

lo
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|),
 l
o
g
(|N

|)
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N

FIG. 5. We keep the quasiholes (stars) fixed in the bulk and sufficiently separated from each other and increase the lattice size
by putting more lattice sites as shown in (a). Here circles corresponds to N = 52 to begin with and then we increase the lattice
size for N = 60 (squares), N = 68 (pluses), N = 76 (triangles) and N = 80 (diamonds). We plot in (b) the variations of the
overlaps as O (circles) and N (squares) respectively as a function of the lattice size. The inset shows the data in the semi log
scale. Results depict that the quantities of interest in both the plots are following an exponential decay for sufficiently large
lattice sizes. We show a linear fitting of the data points in the insets to conclude the variations as exponential decay (see text).
So, it is expected that in the thermodynamic limit N −→ ∞, the states ΨI and Ψψ are going to be orthogonal with the same
norm (errorbars are small).

the identity matrix i.e.
[
γB
]
αβ

= δαβ . Under this circum-

stance, the quasihole braiding statistics can be evaluated
directly from the analytic continuation alone. For the
braiding properties to be the same as in the continuum,
we further need that Cα and Cβ are the same. Therefore
we have two sufficient conditions as

(i) |
∑
ni

Ψ∗αΨβ | = Cδαβ up to exponentially small fi-
nite size effects and C is a constant, and

(ii) Cα is periodic when we move one quasihole through
a closed loop

Let us study the braiding statistics extensively for two
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and four quasihole cases by moving the kth quasihole
around the jth one adiabatically through a closed path.

A. Two quasiholes scenario

Below we evaluate the Berry matrix and the mon-
odromy matrix in details.

Berry matrix : We have a single generator of the con-
formal fields and hence only one state from (6). Then the
Berry matrix (22) emerges to be only a phase. We inves-
tigate the variation of C2 with the quasihole coordinates
while placing them in the bulk and isolated from each
other. Henceforth, we keep one quasihole (let us pick
up the kth one with k ∈ {1, 2} symbolizing the quasi-
holes) moving around one lattice site through a closed
loop while keeping the other quasiholes fixed. We choose
the path to be along the midway in the lattice plaquette
as pictured in Fig 4(a) and we expect the same result to
hold if we move the quasihole through any other path as
well. We inspect the inverse ratio between the overlaps
at its l th and initial (l = 0) positions as a function of
the different moves i.e. l of the circulating quasihole. We
denote this ratio as

P =
C2

0

C2
l

(27)

We compute P and find the periodic variation of C2 with
different positions of the moving quasihole as displayed
in Fig 4(b). This indeed satisfies the condition (ii) above
(and since we have only one wavefunction here condition
(i) is not needed). We use Metropolis Monte Carlo
simulation to achieve quite large system sizes. Detailed
analysis for the technique used is explained in Appendix
C. In this case as we pointed out earlier the Berry phase
contribution is given by γB = 1.

Monodromy matrix : Now, the counter-clockwise ex-
change of the two quasiholes gives rise to the monodromy
matrix which is just a phase factor here. This analytic
continuation can be obtained straightforwardly from
the state (6) at face value and it leads to the statistical

phase γM = eiπ
[
pjpk
q −

1
8

]
. Also the counter-clockwise

circulation of the quasihole around the lattice sites gives
rise to the phase e−2πipk/q which can be interpreted
as the Aharonov-Bohm phase of a particle with charge
pk/q circulating around a closed loop which encloses the
background magnetic flux (taking the standard particle
charge = −1)

Investigations of the braiding properties above lead to
the fact that the exchange of two quasiholes gives rise
to a phase factor only. This means the quasiholes here
abide by Abelian braid statistics.

B. Four quasiholes scenario

Let us proceed to study the Berry matrix and the
monodromy matrix extensively in this case.

Berry matrix : We have two conformal blocks giving
rise to two degenerate states denoted by ΨI and Ψψ. In
this case, the Berry matrix elements are given by (26)
with α, β ∈ {I, ψ}. Now, we compute the overlap matrix
between the states and we utilize Metropolis Monte Carlo
simulations to acquire quite large system sizes. We study
now the condition (i). We denote the quantities by O and
N respectively as

O =
|
∑
ni

Ψ∗IΨψ|√∑
ni
|ΨI |2

∑
ni
|Ψψ|2

(28)

and

N = 1−
∑
ni
|ΨI |2∑

ni
|Ψψ|2

(29)

We keep the quasiholes fixed and sufficiently separated
from each other and increase the lattice size by putting
more lattice sites as shown in 5(a). We plot the afore-
mentioned quantities in Fig 5(b) as a function of the lat-
tice size. Detailed analysis for the technique used is dis-
cussed in Appendix C. Fig 5(b) depicts that the quan-
tities of interests follow an exponential decay for suffi-
ciently large lattice sizes. In the inset, we show a linear
fit of the data points to conclude the variations are as
e−λN with a decay factor of λ = 0.058 and 0.061 for
O and N concurrently. So, in the thermodynamic limit
N −→∞, the states are expected to be orthogonal with
the same norm (upto some numerical uncertainty arising
from the simulation). This study license us to note down
|
∑
ni

Ψ∗αΨβ | = Cδαβ + O(e−λN ) where C is a constant

and O(e−λN ) is an exponentially decaying factor of the
system size and in the thermodynamic limit, this factor
is vanished. Henceforth, the overlap matrix becomes the
identity matrix.

Now, to research how C2
α behaves with the quasihole

positions we use the same formalism as in the case of
two quasiholes. We probe here the inverse ratio between
the overlaps at the l th and initial (l = 0) positions of
the moving quasihole (let us choose kth one with k ∈
{1, 2, 3, 4} symbolizing the quasiholes) as a function of its
different moves i.e. l for both the states i.e. α, β ∈ {I, ψ}
by keeping the other quasiholes fixed. Since the overlap
matrix becomes diagonal for sufficiently large N , it is
enough to investigate here only for the diagonal elements
i.e. α = β. We denote this ratio as

Pα =
C2
α0

C2
αl

(30)

with α ∈ {I, ψ}. We compute Pα and found the peri-
odic variation of C2

α for both the states with different
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FIG. 6. In (a) circles denote the lattice sites and stars denote the quasiholes. We place the quasiholes in the bulk and sufficiently
separated from each other. We move one quasihole around one lattice site through a closed loop along the path midway in the
lattice plaquette while keeping the other quasiholes fixed and we choose a lattice of size N = 96. We plot the inverse ratio

between the overlaps at its l th and initial (l = 0) positions for both the wavefunctions i.e. P I =
C2
I0

C2
Il

and Pψ =
C2
ψ0

C2
ψl

(marked

by squares) as a function of the different moves i.e. l of the circulating quasihole in (b) & (c) respectively. It shows that the
norm of the conformal block varies with the period of the lattice (upto some numerical uncertainty arising from the simulation
and finite size effects).

positions of the moving quasihole. This indeed satisfies
the condition (ii). The results are presented in Fig 6(b)
and (c) for the states ΨI and Ψψ respectively affirming
that C2

α varies with the period of the lattice (upto some
numerical uncertainty arising from the simulation and fi-
nite size effects). We move here the quasihole along the
path midway between the lattice sites and we expect the
same to hold if we move the quasihole through any other
path as well. We show here the result for the circulation
of one quasihole. We check that the same happens if we
do similar investigation for the other quasiholes as well.

Under this circumstances as we mentioned before the
Berry matrix contribution is given by γB = Î where Î is
the identity matrix.

Monodromy matrix : Now, let us investigate the an-
alytic continuation of the states (6) at face value and
thereby compute the monodromy matrix γM . We choose
the jth and kth quasiholes (with j, k ∈ {1, 2, 3, 4} sym-
bolizing the quasiholes) to be exchanged in the counter-
clockwise fashion while keeping the others fixed. The
states ΨI and Ψψ are transformed under this exchange
wj � wk as35 follows
For w1 � w2 or equivalently w3 � w4 :

ΨI 7→ eiπ
[
pjpk
q −

1
8

]
ΨI

Ψψ 7→ eiπ
[
pjpk
q −

1
8

]
iΨψ : j = 1(3), k = 2(4)

(31)

For w2 � w3 or equivalently w1 � w4 :

ΨI 7→ eiπ
[
pjpk
q + 1

8

]
ΨI − iΨψ√

2

Ψψ 7→ eiπ
[
pjpk
q + 1

8

]−iΨI + Ψψ√
2

: j = 2(1), k = 3(4)

(32)

For w1 � w3 or equivalently w2 � w4 :

ΨI 7→ eiπ
[
pjpk
q + 1

8

]
ΨI + Ψψ√

2

Ψψ 7→ eiπ
[
pjpk
q + 1

8

]−ΨI + Ψψ√
2

: j = 1(2), k = 3(4)

(33)

where the � symbol is used to denote the exchange of the
quasiholes in the counter-clockwise fashion. Exploitation
of Eq (31) - (33) allows to inscribe the monodromy matrix
under the analytic continuation to transmute the states

[ΨI ,Ψψ]T 7→ γj�k
M [ΨI ,Ψψ]T as

γ
1�2/3�4
M = eiπ

[
pjpk
q −

1
8

] [
1 0
0 i

]
γ

2�3/1�4
M = eiπ

[
pjpk
q + 1

8

]
1√
2

[
1 −i
−i 1

]
γ

1�3/2�4
M = eiπ

[
pjpk
q + 1

8

]
1√
2

[
1 −1
1 1

] (34)

Also the counter-clockwise circulation of the quasihole
around the lattice sites gives rise to the phase e−2πipk/q

which can be interpreted as the Aharonov-Bohm phase
of a particle with charge pk/q circulating around a
closed loop which encloses the background magnetic
flux (taking the standard particle charge = −1). It is
seen in Eq (34) that the monodromy matrices are the
same as found in the continuum35. Also they do not
commute with each other and hence serve themselves
as the members of the braid group. Consequently,
investigation of the exchange operations in Eq (31) -
(33) or coequally the matrices in Eq (34) comprise the
building blocks of the non-Abelian Braid statistics of
the states (6) with four quasiholes and thereby affirming
the quasiholes here as of non-Abelian nature.
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V. PARENT HAMILTONIANS

We have constructed till now Moore-Read wavefunc-
tions hosting two and four quasiholes in lattice systems.
Naturally, it is interesting to investigate whether the
states in (6) could be defined as the ground states of
some Hamiltonians defined on the lattice.

Several works towards this direction have been done
recently, for example, in Ref 39 the Hamiltonian was
proposed for the lattice Laughlin state containing
quasiholes, and in Ref 34, Hamiltonians for the lattice
Moore-Read state without quasiholes were introduced.
In this paper, we fill up the gap by incorporating quasi-
holes in lattice Moore-Read states and evaluating the
Hamiltonian ∀ q ≥ 2 accommodating an even number
Q of quasiholes. We start by computing the Hamiltoni-
ans for η = 1 and afterwards generalize to the η < 1 case.

A. Construction for η = 1

We take η = 1 in (1) for the lattice limit. The CFT
states in (6) are constructed from conformal field corre-
lators which can be utilized to derive the parent Hamil-
tonians by using null fields of the considered CFT. Null
fields have the property that when inserted in conformal
field correlators of primary fields, the expectation value
becomes zero34,39. Explicit derivation of the null fields
are done in appendix A. Now, following the methodology
used in Ref 34 we use the null fields to derive in appendix
B that the following q operators

Λ0 =
∑
i

di, (35)

Λpi
p=1,...,q−2

=
∑
j(6=i)

1

(zi − zj)p
djni, (36)

Λq−1
i =

∑
j(6=i)

djni
(zi − zj)q

+
∑
j( 6=i)

∑
h(6=i)

[qnj − 1]dhni
(zi − zh)q−1(zi − zj)

+
∑
j

∑
h(6=i)

pjdhni
(zi − zh)q−1(zi − wj)

(37)

annihilate the wavefunction in (6), i.e. Λai |Ψα〉 = 0. Here
dj is defined to be the hardcore bosonic/fermionic annihi-
lation operators for q odd/even acting on the lattice site
j. The total number of particles at the jth lattice site is

nj = d†jdj . Explicitly, these operators can be written in

the matrix form with respect to the basis (|0〉, |1〉) acting
on the jth lattice site as

dj =S
[
0 1
0 0

]
, d†j = S

[
0 0
1 0

]
, nj =

[
0 0
0 1

]
,

where S = (−1)(q+1)
∑j−1
k=1 nk is the sign factor.

We have Λai |Ψα〉 = 0, a ∈ {0, 1, ...., q − 1}. It follows
that the Hermitian operator

H =

N∑
i=1

q−1∑
a=0

Λa†i Λai (38)

is a parent Hamiltonian for the state in (6).

B. Construction for η < 1

Following the procedure used in Ref 47 and using the
annihilation operators derived in Eq (35) - (37) we derive
here the parent Hamiltonians for the wavefunction for
η < 1 by placing appropriate charges at infinity. We note
that the wavefunction with η < 1 (let us denote it |Ψη

α〉)
has the number of particles as M = (ηN −

∑Q
k=1 pk)/q

and from Eq (20) we have it as M = (N−P−
∑Q
k=1 pk)/q

for the wavefunction with η = 1 and a charge P at in-
finity. Therefore we have the same number of particles
for both the wavefunctions for the particular choice of
P = N(1 − η). In the Appendix we have found the al-

lowed values of P as P >
(
− 2q −

∑Q
k=1 pk +Q

)
. This,

with the choice of P = N(1− η), leads to the restriction
on η as follows

η < 1 +
1

N

(
2q +

Q∑
k=1

pk −Q
)

(39)

Therefore, in the thermodynamic limit N →∞ the par-
ent Hamiltonians, provided below, are valid for η ≤ 1.

It is to be noted that the wavefunction |Ψη
α〉 differs

from |Ψ1
α〉 by a factor of

∏
j 6=l(zl − zj)

(η−1)nl . Let us
introduce the operator Θ as

Θ =
∏
l

( ∏
j(6=l)

(zl − zj)(η−1)

)nl
=
∏
l

γnll (40)

where we define γl =
∏
j(6=l)(zl − zj)(η−1) and hence we

have Θ|Ψη
α〉 = |Ψ1

α〉. Now, we have Λai |Ψ1
α〉 = 0 and

it immediately follows that Θ−1ΛaiΘ|Ψη
α〉 = 0, a ∈

{0, 1, ...., q − 1}. Let us note that

Θ−1diΘ =
∏
l

γ−nll di
∏
m

γnmm = γ−nii diγ
ni
i = γidi (41)

Using (35)-(37) and (41) we construct the following op-

erators Λ
′a
i = Θ−1ΛaiΘ as

Λ
′0 =

∑
i

γidi, (42)
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Λ
′p
i

p=1,...,q−2

=
∑
j(6=i)

1

(zi − zj)p
γjdjni, (43)

Λ
′q−1
i =

∑
j(6=i)

γjdjni
(zi − zj)q

+
∑
j(6=i)

∑
h(6=i)

[qnj − 1]γhdhni
(zi − zh)q−1(zi − zj)

+
∑
j

∑
h(6=i)

pjγhdhni
(zi − zh)q−1(zi − wj)

(44)

Finally, for a fixed number of particles M = (ηN −∑Q
k=1 pk)/q the positive semi-definite Hermitian opera-

tor (parent Hamiltonians) which annihilates the wave-
function for η < 1 becomes

H =

N∑
i=1

q−1∑
a=0

Λ
′a†
i Λ

′a
i (45)

The states in Eq (6) are ground states of H by
construction, but the above derivation does not exclude
that other states could also be ground states. We have
tested numerically for the states with two and four
quasiholes and different values of q that the ground state
degeneracy in the sector with M particles is, indeed, 1
and 2, respectively.

The Parent Hamiltonian we derived is long ranged
and contains up to five-body terms. In addition to its
interest as an exact Hamiltonian, it can be used as a
test case for numerical techniques. The Hamiltonian is
challenging to implement experimentally, but it may be
a starting point for finding simpler Hamiltonian with
practically the same ground state physics34,48.

VI. DISCUSSION & CONCLUSION

Analytical models are of great importance to study
strongly correlated quantum many-body systems. In this
work we constructed arbitrarily sized fractional quantum
Hall lattice models containing quasiholes. We compre-
hensively derived bosonic and fermionic strongly corre-
lated lattice Moore-Read Pfaffian states supporting an
arbitrary even number of quasiholes for this lattice model
by exploiting conformal field correlators of the underlying
Ising CFT. Our construction allows to make an interpo-
lation between lattice models and the continuum via a
parameter η introduced in the states.

We investigated the relevant properties like density
profile, charge and braiding statistics of the quasiholes
by using Metropolis Monte Carlo simulations for q = 2.
The outcomes displayed that the quasiholes are local-
ized, well screened with radii of a few lattice constants
and contain a charge of ' 0.25 which agrees with the
Ising quasiholes in the continuum. We then probe the

topological properties of the states directly by analyzing
the fractional braiding statistics of the quasiholes. The
investigations show that the two quasiholes behave as if
they are Abelian and the four quasihole case ensures the
non-Abelian nature of the Ising quasiholes.

By using null fields of the underlying Ising CFT we
constructed parent Hamiltonians for η ≤ 1 and ∀ q ≥ 2
containing an even number of quasiholes and spanning
the degenerate space.

Due to extreme complexity of the strongly correlated
electronic systems, investigation of various fascinating
phenomena, for example topology, becomes easier if we
have models with analytical ground states. The findings
of this article represent CFT and Monte Carlo techique as
powerful tools in this direction. Also, analysis and claim
in the context of non-Abelian quasiholes are of particular
importance regarding topological quantum computation.

The methodology used to construct the lattice model
here is quite general and it would be very interesting
to construct and inspect other fractional quantum Hall
lattice models containing Abelian and non-Abelian
quasiholes e.g. Fibonacci quasiholes in Z3 Read-Rezayi
states.
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Appendix A: Null fields of the underlying Ising CFT

In this appendix, following Ref 34, we derive that the
fields defined in (A1)-(A3) below are null fields. From
the c = 1 massless bosonic CFT with compactification
radius

√
q we can define operators39 as two chiral cur-

rents G±(z) = : ψ(z)e±i
√
qφ(z) : and the U(1) conformal

current J(z) = i√
q∂zφ(z).

Then we introduce q + 1 fields as follows

χp(v) =

∮
v

dz

2πi

1

(z − v)p
G+(z)V1(v), (A1)

χq−1(v) =

∮
v

dz

2πi

[
1

(z − v)q−1
G+(z)V1(v)

− 1

(z − v)
V2(v)

]
,

(A2)
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χq(v) =

∮
v

dz

2πi

1

z − v

[
1

(z − v)q−1
G+(z)V1(v)

]
−
∮
v

dz

2πi

1

z − v
qJ(z)V2(v)

(A3)

where we define Vnj (v) = χnj (v)Vnj (v) from Eq (1) - (2).
Eq (A1) represents q−1 fields since p ∈ {0, 1, ...., q−3, q−
2}.

We explicitly derive that the fields in Eq (A1) - (A3)
are null fields. We do the similar calculation for our case
as done in Ref 34. The CFT states are obtained from
the operators Vnj (zj) and Wpj (wj) as defined in Eq (1)
- (3) and we here allow occupancy nj ∈ {0, 1, 2} rather
than just nj ∈ {0, 1}. We here consider the lattice limit
η = 1. We need to use the following expressions34

: eiαφ(z) :: eiβφ(v) : = (z − v)αβ : eiαφ(z)+iβφ(v) :, (A4)

ψi(z)ψj(v) = δij

[
1

z − v
+ (z − v)A(v) + ....

]
, (A5)

eiφ(z) ' ei[φ(v)+(z−v)∂vφ(v)]

= eiφ(v)ei(z−v)∂vφ(v)

' eiφ(v)[1 + i(z − v)∂vφ(v)],

(A6)

∂zφ(z) = ∂vφ(v) + (z − v)∂2
vφ(v) + .... (A7)

where .... stands for terms that are proportional to
(z − v)k with k ≥ 2. The particular form of A(v) is
not required as we keep in mind that the non-zero con-
tributions of the integrals in the null fields come from
the terms having simple poles. The following proofs are
applicable for all q ≥ 2.

1. Null field χq(v)

We write ∀ q ≥ 2

χq(v) =

∮
v

dz

2πi

1

(z − v)q
G+(z)V1(v)

−
∮
v

dz

2πi

1

z − v
qJ(z)V2(v)

= Iq1 (v)− Iq2 (v)

(A8)

where the integration contour is a circle around v and we
consider the counter-clockwise direction as the positive
one per convention. Now, writing the terms explicitly
and using Eq (A4) - (A7), we find the non-zero contribu-

tions as

Iq1 (v) =

∮
v

dz

2πi

1

z − v

[
1

(z − v)q−1
G+(z)V1(v)

]
=

∮
v

dz

2πi

1

z − v

[
1

(z − v)q−1
ψ(z)ψ(v)

×e+i
√
qφ(z)ei(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

1

z − v

[
(z − v)q−1

(z − v)q−1
ψ(z)ψ(v)

×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

1

z − v

[(
1

z − v
+ (z − v)A(v) + ...

)
×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

[
1

(z − v)2
ei
√
qφ(z)+i(q−1)φ(v)/

√
q

]
=

∮
v

dz

2πi

1

z − v

[
i
√
q∂vφ(v)ei(2q−1)φ(v)/

√
q
]

(A9)

and

Iq2 (v) =

∮
v

dz

2πi

1

z − v
[qJ(z)V2(v)]

=

∮
v

dz

2πi

1

z − v

[√
qi∂vφ(z)ei(2q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

1

z − v

[√
qi∂vφ(v)ei(2q−1)φ(v)/

√
q
] (A10)

It is seen that, Iq1 (v) = Iq2 (v) which ensures χq(v) as a
null field.

2. Null field χq−1(v)

We write in this case also ∀ q ≥ 2

χq−1(v) =

∮
v

dz

2πi

1

(z − v)q−1
G+(z)V1(v)

−
∮
v

dz

2πi

1

z − v
V2(v)

= Iq−1
1 (v)− Iq−1

2 (v)

(A11)
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Now, proceeding in the same way as before we get

Iq−1
1 (v) =

∮
v

dz

2πi

1

(z − v)q−1
G+(z)V1(v)

=

∮
v

dz

2πi

[
1

(z − v)q−1
ψ(z)ψ(v)

×e+i
√
qφ(z)ei(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

[
(z − v)q−1

(z − v)q−1
ψ(z)ψ(v)

×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

[(
1

z − v
+ (z − v)A(v) + ...

)
×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

[
1

(z − v)
ei
√
qφ(v)+i(q−1)φ(v)/

√
q

]
=

∮
v

dz

2πi

[
1

(z − v)
ei(2q−1)φ(v)/

√
q

]
(A12)

and

Iq−1
2 (v) =

∮
v

dz

2πi

1

z − v
V2(v)

=

∮
v

dz

2πi

[
1

(z − v)
ei(2q−1)φ(v)/

√
q

] (A13)

It is seen that, Iq−1
1 (v) = Iq−1

2 (v) which ensures χq−1(v)
as a null field.

3. Null fields χp(v), p ∈ {0, 1, ...., q − 2}

These null fields are defined ∀ q ≥ 2 and p ∈
{0, 1, ...., q − 2}. We write

χp(v) =

∮
v

dz

2πi

1

(z − v)p
G+(z)V1(v)

=

∮
v

dz

2πi

[
1

(z − v)p
ψ(z)ψ(v)

×e+i
√
qφ(z)ei(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

[
(z − v)q−1

(z − v)p
ψ(z)ψ(v)

×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

(z − v)q−1

(z − v)p

[(
1

z − v
+ (z − v)A(v) + ...

)
×ei
√
qφ(z)+i(q−1)φ(v)/

√
q
]

=

∮
v

dz

2πi

(z − v)q−1

(z − v)p

[(
1

z − v
+ (z − v)A(v) + ...

)
×ei(2q−1)φ(v)/

√
q[1 + i

√
q(z − v)∂vφ(v) + ....]

]
= 0

(A14)

No term in the above integral has a simple pole to pro-
vide a non-zero contribution since, p ∈ {0, 1, ...., q − 2}
and thereby ensuring χp(v) as null fields.

Appendix B: Operators annihilating the CFT
wavefunctions containing an even number of

quasiholes

In the following subsections we derive a set of operators
annihilating the wave functions when q ≥ 2 and η = 1
for lattice systems with occupancy nj ∈ {0, 1, 2} and
containing an even number of quasiholes. Next we use
these results to derive the same for the lattice systems
with occupancy nj ∈ {0, 1} as given in Eq (35) - (37).
Finally we compute the condition on η as mentioned in
Sec. VB.

We note that if we insert the null fields to the vacuum
expectation value of the primary chiral conformal
fields in (6), it leads to the decoupling equations as,

〈0|
∏Q
k=1W (wk)

∏i−1
j=1 Vnj (zj)χa(zi)

∏N
j=i+1 Vnj (zj)|0〉 =

0. The next step is to rewrite these equations in the
form Λai |Ψα〉 = 0, where Λai are the operators which
annihilate the wavefunction. Finally, the Hamiltonian is

defined as H =
∑
a,i Λa†i Λai .
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1. η = 1 and occupancy nj ∈ {0, 1, 2}

To construct parent Hamiltonians from null fields we
note that the correlator vanishes if the field at site i
is replaced by a null field. Next we derive decoupling
equations satisfied by the CFT correlator in (6) for an
even number of quasiholes by deforming the integration
contour over the complex plane, moving the operators
(G+(z) and J(z)) in the null fields at different positions
and using operator product expansions together with the
commutation relations as below34,39

G+(z)Vnj (zj) ∼(−1)(j−1)

[
δnj ,0δn′j ,1

z − zj

]
Vn′j (zj), (B1)

G+(z)W (wj) ∼ 0, (B2)

Vnj (zj)G+(z) = (−1)(q+1)nj−1G+(z)Vnj (zj), (B3)

J(z)Vnj (zj) ∼
1

q

(qnj − 1)

z − zj
Vnj (zj), (B4)

J(z)W (wj) ∼
1

q

pj
z − wj

Wpj (wj), (B5)

: eiαφ(z) :: eiβφ(zj) : = (z − zj)αβ : eiαφ(z)+iβφ(zj) :,

(B6)

: eiαφ(z) :: eiβφ(zj) : = (−1)αβ : eiβφ(zj) :: eiαφ(z) :,

(B7)

ψi(z)ψj(zj) = δij(−1)njψi(zj)ψj(z) (B8)

where ∼ means that we have considered the operator
product expansion up to the terms which would give non

zero contribution in our results. The total number of
particles at the jth lattice site is nj = n

(1)
j + 2n

(2)
j where

n
(1)
j = d†jdj and n

(2)
j = d′†j d

′
j define individual number

of particles for the two levels |0〉 ↔ |1〉 and |1〉 ↔ |2〉
respectively. Those operators acting on the states of the
three level system lead to the following equations with
proper sign factor as34

dj |nj〉 = (−1)(q+1)
∑j−1
k=1 nk


0 nj = 0

|0〉 nj = 1

0 nj = 2

(B9)

d†j |nj〉 = (−1)(q+1)
∑j−1
k=1 nk


|1〉 nj = 0

0 nj = 1

0 nj = 2

(B10)

d′j |nj〉 = (−1)(q+1)
∑j−1
k=1 nk


0 nj = 0

0 nj = 1

|1〉 nj = 2

(B11)

d′†j |nj〉 = (−1)(q+1)
∑j−1
k=1 nk


0 nj = 0

|2〉 nj = 1

0 nj = 2

(B12)

Explicitly, the above mentioned operators can be written
in the matrix form with respect to the basis (|0〉, |1〉, |2〉)
acting on the jth lattice site as

dj =S

0 1 0
0 0 0
0 0 0

 , d†j = S

0 0 0
1 0 0
0 0 0

 ,
d′j =S

0 0 0
0 0 1
0 0 0

 , d′†j = S

0 0 0
0 0 0
0 1 0

 ,
n

(1)
j =

0 0 0
0 1 0
0 0 0

 , n
(2)
j =

0 0 0
0 0 0
0 0 1

 (B13)

where S = (−1)(q+1)
∑j−1
k=1 nk is the sign factor already

defined before.

Here, we evaluate the annihilation operator for the CFT wavefunction in detail for the null field χq(v),∀ q ≥ 2.
Therefore,

0 = 〈W (w1)....W (wQ)Vn1
(z1)....Vni−1

(zi−1)χq(zi)Vni+1
(zi+1)....VnN (zN )〉

=

∮
zi

dz

2πi

1

(z − zi)q
〈W (w1) . . .W (wQ)Vn1

(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

− q
∮
zi

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)Vn1

(z1) . . . J(z)V2(zi) . . .VnN (zN )〉

= Iq1 + Iq2

(B14)

The term Iq1 evaluates to :
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zi

dz

2πi

1

(z − zi)q
〈W (w1) . . .W (wQ)Vn1

(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

= −
N∑

j=1( 6=i)

∮
zj

dz

2πi

1

(z − zi)q
〈W (w1) . . .W (wQ)Vn1(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

= −(−1)i−1
i−1∑
j=1

∮
zj

dz

2πi

(−1)(q+1)
∑i−1
k=j nk

(z − zi)q
δnj ,0δn′j ,1

z − zj
〈W (w1) . . .W (wQ)Vn1

(z1) . . .Vn′j (zj) . . . V1(zi) . . .VnN (zN )〉

− (−1)i−1
N∑

j=i+1

∮
zj

dz

2πi

(−1)(q+1)(−1)(q+1)
∑j−1
k=i+1 nk

(z − zi)q
δnj ,0δn′j ,1

z − zj
〈W (w1) . . .W (wQ)Vn1

(z1) . . .

. . . V1(zi) . . .Vn′j (zj) . . .VnN (zN )〉

= −(−1)i−1
i−1∑
j=1

(−1)(q+1)
∑i−1
k=j nk

(zj − zi)q
δnj ,0δn′j ,1〈W (w1) . . .W (wQ)Vn1

(z1) . . .Vn′j (zj) . . . V1(zi) . . .VnN (zN )〉

− (−1)i−1
N∑

j=i+1

(−1)(q+1)(−1)(q+1)
∑j−1
k=i+1 nk

(zj − zi)q
δnj ,0δn′j ,1〈W (w1) . . .W (wQ)Vn1

(z1) . . .

. . . V1(zi) . . .Vn′j (zj) . . .VnN (zN )〉

= −(−1)i−1
i−1∑
j=1

∑
n′j

(−1)(q+1)
∑i−1
k=j nk

(zj − zi)q
δnj ,0δn′j ,1〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn′j (zj) . . . V1(zi) . . .VnN (zN )〉

− (−1)i−1
N∑

j=i+1

∑
n′j

(−1)(q+1)(−1)(q+1)
∑j−1
k=i+1 nk

(zj − zi)q
δnj ,0δn′j ,1〈W (w1) . . .W (wQ)Vn1(z1) . . .

. . . V1(zi) . . .Vn′j (zj) . . .VnN (zN )〉

= −
i−1∑
j=1

(−1)(q+1)
∑i−1
k=j+1 nk

(zj − zi)q
δnj ,0Ψα(n1, . . . , 1, . . . , 1, . . . , nN )

−
N∑

j=i+1

(−1)(q+1)(−1)(q+1)
∑j−1
k=i+1 nk

(zj − zi)q
δnj ,0Ψα(n1, . . . , 1, . . . , 1, . . . , nN )

= −
i−1∑
j=1

(−1)(q+1)(−1)(q+1)
∑i−1
k=j+1 nk

(zi − zj)q
δnj ,0Ψα(n1, . . . , 1, . . . , 1, . . . , nN )

−
N∑

j=i+1

(−1)(q+1)
∑j−1
k=i+1 nk

(zi − zj)q
δnj ,0Ψα(n1, . . . , 1, . . . , 1, . . . , nN )

(B15)

To achieve decoupling equations involving the CFT wavefunctions in (6), we multiply (B15) by
|n1, . . . , ni−1, 2, ni+1 . . . , nN 〉 and sum over all nk, k 6= i and thereby end up with

N∑
j=1(6=i)

1

(zi − zj)q
djd
′†
i |Ψα〉 (B16)

Let us evaluate the term Iq2 :
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− q
∮
zi

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)Vn1

(z1) . . . J(z)V2(zi) . . .VnN (zN )〉

= q

N∑
j=1(6=i)

∮
zj

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)Vn1(z1) . . . J(z)V2(zi) . . .VnN (zN )〉

+ q

Q∑
j=1

∮
wj

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)Vn1

(z1) . . . J(z)V2(zi) . . .VnN (zN )〉

=

N∑
j=1( 6=i)

∮
zj

dz

2πi

1

z − zi
(qnj − 1)

z − zj
〈W (w1) . . .W (wQ)Vn1

(z1) . . .Vnj (zj) . . . V2(zi) . . .VnN (zN )〉

+

Q∑
j=1

∮
wj

dz

2πi

1

z − zi
pj

z − wj
〈W (w1) . . .W (wQ)Vn1

(z1) . . . V2(zi) . . .VnN (zN )〉

=

N∑
j=1( 6=i)

(qnj − 1)

zj − zi
〈W (w1) . . .W (wQ)Vn1

(z1) . . .Vnj (zj) . . . V2(zi) . . .VnN (zN )〉

+

Q∑
j=1

pj
wj − zi

〈W (w1) . . .W (wQ)Vn1(z1) . . . V2(zi) . . .VnN (zN )〉

(B17)

Now, we multiply (B17) by
|n1, . . . , ni−1, 2, ni+1 . . . , nN 〉 =∑
n′i
n

(2)
i |n1, . . . , n

′
i, . . . , nN 〉, and sum over all nk,

k 6= i to get

−
N∑

j=1( 6=i)

qnj − 1

zi − zj
n

(2)
i |Ψα〉 −

Q∑
j=1

pj
zi − wj

n
(2)
i |Ψα〉 (B18)

So, summing up (B16) and (B18), we achieve finally,

λqi |Ψα〉 = 0 (B19)

where

λqi =

N∑
j=1( 6=i)

djd
′†
i

(zi − zj)q
−

N∑
j=1( 6=i)

qnj − 1

zi − zj
n

(2)
i

−
Q∑
j=1

pj
zi − wj

n
(2)
i

(B20)

Proceeding in the same way and using the other null
fields in Eq (A1) - (A3) in the main text, we end up
with the following annihilation operators for the CFT
wavefunctions in the spin 1 case as

λ0 =
∑
i

di, (B21)

λpi =
∑
j( 6=i)

1

(zi − zj)p
djd
′†
i , (B22)

λq−1
i =

∑
j(6=i)

1

(zi − zj)q−1
djd
′†
i + n

(2)
i (B23)

2. η = 1 and occupancy nj ∈ {0, 1}

Following the procedure used in Ref 34 we derive here
operators annihilating the wave function for the occu-
pancy nj ∈ {0, 1} by using the operators derived in Eq
(B20) - (B23). We divide the Hilbert space H1 +H2 into
two subspaces H1 and H2. H1 is the space consisting of
all states with no doubly occupied sites, and H2 is the
space consisting of all states with at least one doubly oc-
cupied site. Then operators for the occupancy nj ∈ {0, 1}
system lie in H1 and for the occupancy nj ∈ {0, 1, 2}
system reside in H1 + H2. We project the operators in
H1 +H2 to H1 to get the operators.

We multiply the operators λai , a ∈ {0, 1, ...., q}
derived in Eq (B20) - (B23) by d

′

i from the left.

Since, d
′

id
′†
i = n

(1)
i we have the operators d

′

iλ
a
i , a ∈

{0, 1, ...., q− 2} annihilating the wavefunction for the oc-

cupancy n
(1)
j ∈ {0, 1} since these act on H1 only. It is to

be noted that d
′

iλ
q−1
i annihilates the wavefunctions for

the occupancy nj ∈ {0, 1, 2} and hence we can write

[
d
′

i +
∑
j( 6=i)

1

(zi − zj)q−1
djn

(1)
i

]
|Ψα〉 = 0 (B24)

which allows us to replace the d
′

i operator in d
′

iλ
q
i by

−
∑
h( 6=i)

1
(zi−zh)q−1 dhn

(1)
i . So, after making the projec-

tion the operators become

Λ0 =
∑
i

di, (B25)
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Λpi
p=1,...,q−2

=
∑
j(6=i)

1

(zi − zj)p
djn

(1)
i , (B26)

Λq−1
i =

∑
j(6=i)

djn
(1)
i

(zi − zj)q
+
∑
j(6=i)

∑
h(6=i)

[qn
(1)
j − 1]dhn

(1)
i

(zi − zh)q−1(zi − zj)

+
∑
j

∑
h( 6=i)

pjdhn
(1)
i

(zi − zh)q−1(zi − wj)

(B27)

These operators all annihilate the occupancy n
(1)
j ∈

{0, 1} wave function. In the main text we denote n
(1)
j

as nj .

3. Condition on η

We first derive the condition on the charge P at infinity
and thereby using the relation P = N(1−η) we compute
the condition on η. The starting point is that if we insert
a null field the correlator becomes zero as

〈
Q∏
k=1

W (wk)ΞP(∞)

i−1∏
j=1

Vnj (zj)χa(zi)

N∏
j=i+1

Vnj (zj)〉 = 0

(B28)
where a ∈ {0, 1, ...., q}. Let us derive the above correlator
for different parts of the null fields. For the term

−
∮
v

dz

2πi

1

z − v
qJ(z)V2(v) (B29)

we have

− q
∮
zi

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)ΞP(ξ)Vn1

(z1) . . .

× J(z)V2(zi) . . .VnN (zN )〉
(B30)

Now, we proceed as before and multiply the term
in Eq (B30) by |n1, . . . , ni−1, 2, ni+1 . . . , nN 〉 =∑
n′i
n

(2)
i |n1, . . . , n

′
i, . . . , nN 〉, and sum over all nk, k 6= i

to get

−
N∑

j=1( 6=i)

qnj − 1

zi − zj
n

(2)
i |Ψ

1
α〉 −

Q∑
j=1

pj
zi − wj

n
(2)
i |Ψ

1
α〉

− P
zi − ξ

n
(2)
i |Ψ

1
α〉

(B31)

where the last term in Eq (B31) vanishes in the limit
ξ →∞.

Similarly for the term

−
∮
v

dz

2πi

1

z − v
V2(v) (B32)

we get

−
∮
zi

dz

2πi

1

z − zi
〈W (w1) . . .W (wQ)ΞP(ξ)Vn1

(z1) . . .

× V2(zi) . . .VnN (zN )〉
(B33)

Again by proceeding in the same way as before we find

n
(2)
i |Ψ

1
α〉 (B34)

So it means that the charge at infinity term does not have
any effect on these. Now we consider the following term∮

v

dz

2πi

1

(z − v)a
G+(z)V1(v) (B35)

where a ∈ {0, 1, ...., q}. We have

∮
zi

dz

2πi

1

(z − zi)a
〈W (w1) . . .W (wQ)ΞP(ξ)Vn1

(z1) . . .

×G+(z)V1(zi) . . .VnN (zN )〉
(B36)

The term in Eq (B36) after contour deformation becomes

−
N∑

j=1(6=i)

∮
zj

dz

2πi

1

(z − zi)q
〈W (w1) . . .W (wQ)ΞP(ξ)

× Vn1(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

−
∮
ξ

dz

2πi

1

(z − zi)q
〈W (w1) . . .W (wQ)ΞP(ξ)

× Vn1
(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

(B37)

We proceed as before and multiply the first term in Eq
(B37) by |n1, . . . , ni−1, 2, ni+1 . . . , nN 〉 and sum over all
nk, k 6= i and thereby end up with

N∑
j=1(6=i)

1

(zi − zj)q
djd
′†
i |Ψ

1
α〉 (B38)
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Let us evaluate the second term in Eq (B37) as

−(−1)i−1+p
∑
ni

δni=1

∮
ξ

dz

2πi

(−1)−(i−1)ni

(z − zi)a
(−1)(q+1)

∑i−1
k=1 nk〈W (w1) . . .W (wQ)ΞP(ξ)Vn1

(z1) . . . G+(z)V1(zi) . . .VnN (zN )〉

(B39)

As we know the expression of the correlator, we can compute the contour integral as

− (−1)i−1+PδP<0

∑
ni

δni=1 lim
z→ξ

1

(−P − 1)!

d−P−1

dz−P−1

(−1)−(i−1)ni

(z − zi)a
(−1)(q+1)

∑i−1
k=1 nkδnPf(A)

∏
i,j

(wi − z
′

j)
−1
2

×
∏
j

(z − zj)(qnj−1)
∏
j

(−1)(j−1)nj
∏
j

(ξ − zj)(qnj−1)Pq
∏
j

(−1)(j−1)nj
∏
j<k

(zj − zk)(qnj−1)(qnk−1)/q

∏
j<k

(wj − wk)
pjpk
q

∏
j,k

(wj − zk)(qnk−1)pj/q

(B40)

where δn = 1 iff the total number of particles M =
(N−P−

∑
k pk−q)/q and 0 otherwise. Now Eq (B40) = 0

gives rise to the condition on the choice of P and hence
η. This also keeps the derived annihilation operators un-
changed. It is to be noted that the expression in Eq
(B40) is zero if P > 0 due to the delta factor δP<0.
By inspecting the derivative and the exponent of the
polynomial we find that Eq (B40) is also zero when
P > −q − a −

∑
k pk + Q. Since, a ∈ {0, 1, ...., q} we

can safely use the maximum value of a in that expression
to write P > −2q −

∑
k pk +Q. By using P = N(1− η)

we get immediately the condition on η as.

η < 1 +
1

N

(
2q +

Q∑
k=1

pk −Q
)

(B41)

In the thermodynamic limit N → ∞ this condition
becomes η < 1.

Appendix C: Technical details of the overlap
computation using the Metropolis Monte Carlo

technique

Here we display the numerical details of the Metropo-
lis Monte Carlo technique used to derive the overlaps in
Sec. IV of the main text. We explicitly show here the
computation of the overlap

O =
|
∑
ni

Ψ∗αΨβ |√∑
ni
|Ψα|2

∑
ni
|Ψβ |2

(C1)

with α, β ∈ {I, ψ}, α 6= β and the evaluation of other
overlaps can be done following the same procedure. We
first write

|
∑
ni

Ψ∗αΨβ |√∑
ni
|Ψα|2

∑
ni
|Ψβ |2

=
Λαβ√

ΩαβΩβα
(C2)

where we have

Λαβ =
|
∑
ni
|ΨαΨβ | Ψ∗αΨβ

|ΨαΨβ | |∑
ni
|ΨαΨβ |

Ωαβ =

∑
ni
|ΨαΨβ | |Ψα||Ψβ |∑
ni
|ΨαΨβ |

Ωβα =

∑
ni
|ΨαΨβ | |Ψβ ||Ψα|∑
ni
|ΨαΨβ |

(C3)

Now, the quantities
Ψ∗αΨβ
|ΨαΨβ | ,

|Ψα|
|Ψβ | and

|Ψβ |
|Ψα| can be ob-

tained by Metropolis Monte Carlo sampling over the lat-
tice occupancy distribution with weight |ΨαΨβ |.
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