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Abstract 

An approach previously developed for the calculation of transport coefficients via the Mott 

relations is applied to the calculation of finite temperature transport properties of disordered 

alloys - electrical resistivity and the electronic part of thermal conductivity. The coherent 

potential approximation (CPA) is used to treat chemical disorder as well as other sources of 

electron scattering, i.e. temperature induced magnetic moment fluctuations and lattice 

vibrations via the alloy analogy model. This approach, which treats all forms of disorder on an 

equal first principles footing, is  applied to the calculation of transport properties of a series of  

face-centered crystal cubic (fcc) concentrated solid solutions of the 3d-transition metals Ni, Fe, 

Co and Cr. For the nonmagnetic alloys, Ni0.8Cr0.2, and Ni0.33Co0.33Cr0.3 the combined effects of 

chemical disorder and electron-lattice vibrations scattering result in a monotonic increase in the 

resistivity as a function of temperature from an already large, T=0, residual resistivity. For 

magnetic Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.33Fe0.33Co0.33, whose residual resistivity is small, additional 

electron scattering from temperature induced magnetic moment fluctuations results in a 

further rapid increase of the resistivity as a function of temperature.  

The electronic part of the thermal conductivity in nonmagnetic, Ni0.8Cr0.2, and 

Ni0.33Co0.33Cr0.33, monotonically increases with temperature. This behavior is a result of the 

competition between a reduction in the conductivity due to electron-lattice vibrations 

scattering and temperature induced increase in the number of carriers. In the magnetic alloys, 

electron scattering from magnetic fluctuations leads to an initial rapid decrease in thermal 

conductivity until this is overcome by an increasing number of carriers at temperatures slightly 

below the Curie temperature. Similar to the resistivity above TC, the electronic part of the 

thermal conductivities are close to each other in all alloys studied. 

 

  



 4

I. INTRODUCTION 

Development of a consistent, first principle transport theory is a long-standing problem in 

the theory of metals and alloys. In disordered alloys, depending on composition and the 

chemical types of the alloying elements, the electron mean free path (MFP) can be as large as 

hundreds of lattice parameters or as short as one (Table 1). Consequently, the interpretation of 

charge/heat carriers in a disordered alloys changes from well-defined long-lived quasiparticles 

[1], to  excitations that fall outside the traditional quasiparticle description. In the latter case, 

transport is normally described by diffusive physics [2] and the traditional Boltzmann equation 

approach [1,3,4] is no longer applicable. On the other hand, the Kubo-Greenwood (KG)  [5,6] 

approach to the calculation of the conductivity does not suffer from this problem [7] in that it 

deals directly with the current-current correlation function.  

For disordered alloys, use of the Green’s function formulation of the KG expression makes it 

possible to perform the necessary configurational averages of the conductivity using CPA [8,9]. 

This approach has an advantage of preserving the analytic properties of the conductivity within 

the thermodynamic limit [10,11]; albeit at the expense of the use of mean-field CPA.  

Implemented in conjunction with multiple scattering and density functional theory (DFT) [12], 

the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) [13] provides a fully 

ab initio approach to calculating transport coefficients of disordered alloys. In contrast to KKR-

CPA, a recently developed approach uses DFT super-cell calculations to directly evaluate  the KG 

expression  [14,15,16]. However, for disordered alloys, configurational averaging and the 

thermodynamic limit must be done by hand. A similar situation pertains to another direct 

approach based on the results of time-dependent DFT that has been proposed and tested in the 

case of aluminum, by Andrade, Hamel and Carrea [17].  

Initially, the KKR-CPA approach was applied to the calculation of residual resistivity where 

electron scattering is caused by “chemical” disorder only [11,18]. This parameter-free approach 

leads to a very good agreement with experimental data [19] for nonmagnetic metals. Later, the 
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developed approach was extended to incorporate electron scattering on lattice vibrations 

[20,21] and magnetic moment fluctuations [22,23] within the alloy analogy model. A similar 

approach was used to calculate electric, thermoelectric, and thermal transport properties of 

CoFe alloys based on the Kubo linear  response formalism [24]. 

In the current work, this approach was applied to the calculation of electrical and thermal 

conductivity in fcc concentrated solid solutions of the 3d-transition metals Ni, Fe, Co and Cr . 

This group of alloys, including the extreme case of high entropy alloys (HEA) [25,26], 

demonstrates unusual transport properties [27,28,29,30]. Thus, the low temperature (T = 4 K) 

resistivity in these alloys varies, for example, between 1.3 ߤΩ · ܿ݉ in Ni0.5Co0.5 and 124.8 ߤΩ · ܿ݉ in NiCoFeCrPd [29]. The resistivity of NiCoFeCrPd is within the Mott-Ioffe-Regel (MIR) 

limit [31]. The MFP in such conductors is comparable with the interatomic distances, and 

transport is normally described by diffusive physics. Electrical and thermal conductivities are 

calculated here for Ni, Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.33Co0.33Fe0.33, Ni0.8Cr0.2, Ni0.33Co0.33Cr0.33 . The first 

three alloys in this group are typical representatives of low resistivity alloys ߩ ൏ Ωߤ 10 · ܿ݉ and 

the last two alloys typify high resistivity ones, ߩ  Ωߤ 75 · ܿ݉ [27,28,29].  According to our 

estimations presented in Tab. 1, the MFP value in these alloys varies from 1689 to 4 Հ and the 

last value is comparable to the lattice parameter ( ~3.6 Հ). A unique set of properties such as  

significant variation of the MFP with the alloy concentration, typical metallic number of current 

carriers at the Fermi energy (see Table 1),  almost perfect fcc lattice atomic positions, together 

with the fact that background properties of these alloys can be described within regular DFT 

[27] makes  concentrated solid solutions of 3d-transition metals a perfect playground for the 

investigation of the electronic transport in general. 

In Section II the approaches used to calculate electrical and thermal conductivities of alloys 

are presented together with experimental details of high-temperature resistivity measurements 

in Ni0.33Co0.33Fe0.33 and Ni0.35Co0.35Cr0.30. The calculated electronic structure and magnetic 

properties, including the temperature dependence of the magnetization and the Curie 
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temperatures, are presented in Section III a. In Section III b we discuss the results for electrical 

and thermal conductivities and  we finally conclude in Section IV.  

II. THEORETICAL APPROACHES, DETAILS OF CALCULATIONS AND EXPERIMENTAL 

PROCEDURES.  

The linear response of a system to an electric field, ܧሬԦ and (or)  a temperature gradient, ܶߘ 

is characterized by electric current,  ଔԦ, and energy flux, ଔሬሬሬԦ, densities and is described by the 

linear response equations [7]  

݁ଔԦ ൌ ࣦ݁ଵଵܧሬԦ െ ࣦଵଶ ܶܶߘ
݁ଔԦ ൌ ࣦ݁ଶଵܧሬԦ െ ࣦଶଶ ܶܶߘ ,#ሺ1ሻ  

where ݁ is the electron charge. In the following formalism proposed by Chester and 

Thellung [32,33] based on the Mott relations [34] the transport coefficients, ࣦ , can be 

expressed as follows: 

ࣦఈఈ ൌ ሺെ1ሻା න ߝሻሺߝఈఈሺߪߝ݀ െ ሻାିଶߤ ቈെ ߲݂ሺߝሻ߲ߝ  , #ሺ2ሻ  

where ߤ is the chemical potential and െ߲݂ ሺߝሻ/߲ߝ is the derivative of the Fermi distribution 

function, and ߙ is the Cartesian index. The above relationships may be applied to each spin 

channel separately. This approximation is valid in the limit of weak spin-orbit coupling as is the 

case for the fcc 3d-transition metal alloys that are the subject of this work. ߪఈఈሺߝሻ is calculated 

using the Kubo-Greenwood [5,6] expression for the static conductivity  

ሻߝఈఈሺߪ ൌ ܸߨ ߝሺߜଔఈ̂|ܾۧ|ଶ|ܽۦ|ۃ െ ߝሺߜሻߝ െ ሻ,ߝ ۄ , #ሺ3ሻ  

 where ଔఈ̂ is the current operator. The quantum states |ܽۧ in Eq. (4) represent the exact 

eigenfunctions of a particular configuration of the random potential, and the large angle 

brackets indicate an average over configurations.  
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The expression for static conductivity should be reformulated using a definition of the single 

particle Green’s function [10,11], ܩ, as  

ሻߝఈఈሺߪ ൌ െ ܸߨ Trۃଔఈ̂Imܩሺߝ  ݅0ሻଔఈ̂Imܩሺߝ  ݅0ሻۄ. #ሺ4ሻ  

This expression allows one to calculate transport coefficients in disordered alloys by 

applying the coherent potential approximation (CPA) [8,9] and multiple scattering theory 

formalism [13]. Details of the static conductivity calculation procedure can be found in Butler 

and Butler, Stocks publications [11,18]. 

This approach allows one to calculate the temperature dependence of both the electrical 

conductivity  

ఈఈሺܶሻߪ ൌ ߙߙ11ࣦ ൌ න ሻߝఈఈሺߪߝ݀ ቆെ ߲݂ሺߝ, ܶሻ߲ߝ ቇ , #ሺ5ሻ  

and the electronic part of  the thermal conductivity. 

݁ଶܶߢఈఈሺܶሻ ൌ ߙߙ22ࣦ െ ߙߙ11ࣦߙߙ21ࣦߙߙ21ࣦ . #ሺ6ሻ  

Following Sommerfeld,  expression (6) can be expanded to the second order in ݇ܶ/ߤ,  

ሺܶሻߢ ؆ 13 ቀ݁ߨቁଶ ݇ଶܶ ቊߪሺߤሻ െ ሾ݇ߨܶߪᇱሺߤሻሿଶ ሻߤሺߪ⁄6  ሺ݇ߨܶሻଶߪᇱᇱሺߤሻ 6⁄ ቋ , #ሺ7ሻ  

where ߪᇱሺߤሻ and ߪᇱᇱሺߤሻ are the first and second energy derivatives of the static electrical 

conductivity. The zero order ݇ܶ/ߤ contribution in Eq. (7) corresponds to the Wiedemann-Franz 

law (WF).  

Since the chemical potential, ߤ, in transition metals is comparable to the width of the d-

band (~5 eV in 3d metals) and we focus on intermediate temperatures (ߠ  ܶ  ߤ/ is the Debye temperature, which is ~400 K for the alloys discussed in the text), the condition ݇ܶߠ , whereߠ3 ا 1 is satisfied, and Eq. (7) is applicable if the two first derivatives of ߪሺߤሻ are defined. 
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The deviation from the WF law at low temperatures caused by non-elastic scattering or the 

presence of additional gapless neutral collective degrees of freedom [35,36] is not a subject of 

the current investigation. However, the approach presented allows one to take into account 

details of the electronic structure such as a complicated Fermi surface, electronic bands with 

nontrivial momentum dependence and broadening caused by different types of disorder 

including that induced by temperature. 

The main contributions to the resistivity in magnetic alloys correspond to electron scattering 

caused by chemical disorder, magnetic moment fluctuations and lattice vibrations. By using the 

alloy analogy model all three scattering processes are included in the  CPA resistivity calculation 

on an equal footing [20,21,22,23]. The details of the approach used are given in  a publication 

by Ebert et al. [37]. The electronic structure of the alloys was calculated using the fully 

relativistic SPR-KKR-CPA method [38,39] with the angular momentum cutoff  ݈௫ ൌ 3. The 

resistivity was calculated with ݈௫ ൌ 4. The exchange-correlation energy was calculated using 

both generalized gradient approximation (GGA) with the parametrization by Perdew, Burke, and 

Ernzerhof (PBE) [40], and local spin density approximation (LSDA) with the parametrization by 

Vosko, Wilk, Nusair [41]. (Later in the text the results are obtained using the PBE exchange-

correlation if not specified otherwise.) Mean-square atomic displacements at different 

temperatures were obtained using Debye’s theory with a composition-averaged Debye 

temperature. Neutron scattering measurements showed that the phonon dispersion in all 

discussed alloys is similar to that of nickel [42]. The convergence of the residual resistivity with 

respect to the Brillouin zone (BZ) mesh is extremely sensitive to alloy composition and 

components. The details of the convergence testing for the case of Ni0.5Fe0.5 and Ni0.5Co0.5 alloys 

can be found in the supplementary materials [43 Suppl]. According to our results, the BZ 

integration can be safely executed over ~1.4 ൈ 10ହ  k-points in low resistivity alloys and ~5 ൈ 10ଷ k-points in high resistivity alloys in the full BZ. 

 Magnetic ordering in the alloys was described by the classical Heisenberg model 

ܪ ൌ െ  ܬ Ԧ݁ Ԧ݁,,;ஷ #ሺ8ሻ  
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where Ԧ݁  corresponds to the direction the magnetic moment on atom ݅  and ܬ  is the 

exchange coupling parameter for the atom pair ሺ݅, ݆ሻ. Within this model, magnetic moments are 

treated as rigid and the  ܬ  are calculated using a linear response approach [44] in 

ferromagnetic state. The averaged magnetic moments of alloy components as a function of 

temperature are calculated using the cluster field method (CFM) [45]. The CFM approach is 

equivalent [46] to  the cluster variation method (CVM) [47,48] if the largest size of the clusters 

corresponds to pairs of atoms. It was shown [49] that the Curie temperature obtained within 

this approximation overestimates more accurate technique results (spin dynamics) by ~10%. 

The averaged electronic Fermi velocities ݒۃ௫ଶۄ ൌ ∑ۃ ,௫ଶ൫ሬ݇Ԧݒ ሬԦߝሺߜ൯ߥ ,ఔ െ ிሻሬԦܧ ,ఔ  were calculated ۄ

using tight-binding linear muffin-tin orbitals (TBLMTO) [50] and the CPA formalism [51,52]. The 

calculated velocities were used to estimate values of the MFP through the experimental 

resistivity, ߩ, using the expression 

݈ ൌ 3ሾ݁ߩଶݒۃଶۄଵ/ଶܰሺܧிሻሿ #ሺ9ሻ  

with electron charge, ݁, calculated electron velocity, ݒۃଶۄଵ/ଶ ൌ  ଵ/ଶ, and electronicۄ௫ଶݒۃ3√

density of states at the Fermi energy, ܰሺܧிሻ. The corresponding values for this quantities are  

presented in Tab. 1. The underlying structure symmetry relation for the electron velocity was 

used in Eq. (9).  In magnetic Ni0.5Co0.5, Ni0.5Fe0.5 and Ni0.33Co0.33Fe0.33 alloys, the velocities and 

density of states of the majority spin electrons were taken into account in the MFP calculations, 

since electrons in the minority spin channel don’t significantly contribute to the conductivity 

because of the large scattering in this channel. 

The lattice thermal resistivity caused by phonon-phonon scattering in Ni metal, Ni0.5Co0.5, 

and Ni0.5Fe0.5 alloys was obtained from first-principles electronic structure calculations 

combined with the conventional Boltzmann transport equation and the relaxation time 

approximation. The thermal conductivity tensor is 

ఈఉߢ ൌ 1ܸ ൫߲݊ఒ ߲ܶ⁄ ൯߱ఒݒఒఈఒ ,ఒఉ߬ఒఈݒ #ሺ10ሻ  
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where ܸ is the crystal volume, ߙ and ߚ are Cartesian coordinates,  ݊ఒ is the Bose factor, ߱ఒ is 

the phonon frequency for mode ݒ  , ߣఒఈ  is the group velocity of phonon mode ߣ, and  ߬ఒఈ is the 

phonon lifetime (inverse of the scattering rate) obtained from ab initio calculations of the 

phonon-phonon scattering rate (see more details in Ref. [53,54]). The lattice thermal 

conductivities – due  to phonon-phonon scattering – are then calculated using the ShengBTE 

package [55]. To account for the disordered environment in alloys, the virtual crystal 

approximation was employed. This approximation does not include phonon scattering resulting 

from mass or force disorder (see discussion). The Harmonic force constants were estimated 

using DFPT as implemented in QUANTUM ESPRESSO (QE) [56]. In addition, third order force 

constants were evaluated based on a 64-atom rhombohedral unit cell using the ab initio finite 

difference method in QE. PBE parametrization is used for exchange and correlation in all 

calculations.  The ultra-soft pseudopotential [57] was employed with the plane wave cut-off 

equal to 32 Ry.  The Brillouin Zone (BZ) integration was performed using ߛ-center 16×16×16 

(2×2×2) k-point meshes for primitive cell density functional perturbation [58,59] theory 

calculations and supercell calculations, respectively.  

The electrical resistivity of Ni0.33Co0.33Fe0.33 and Ni0.35Co0.35Cr0.3 was measured to 

approximately 1060 K using a four-point configuration [60] with platinum wires spot welded to 

the samples.  Currents of 0.5 mA and 1.0 mA were employed with alternating bias direction for 

the measurements of Ni0.35Co0.35Cr0.3 and Ni0.33Co0.33Fe0.33, respectively.  The temperature was 

monitored with two type-E thermocouples and an average value is reported, the 

measurements were performed in an argon atmosphere.  The data were collected using a 

Keithley 220 current source and a Keithley 2182 nanovoltmeter with facilitation by a python 

code.  In these resistivity measurements the samples were a single crystal. The composition of 

the experimental Ni0.35Co0.35Cr0.3 sample is slightly different from the one used in theoretical 

calculations, Ni0.33Co0.33Cr0.33, but, according to calculations, this small difference in 

concentration modifies the residual resistivity by no more than 2%. 

 

III. RESULTS AND DISCUSSION 
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a. Electronic structure and magnetic properties 

The investigated concentrated solid solutions are naturally separated into two groups – 

alloys in one group contain Cr (typical representatives are Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.33) and 

alloys from the second group don’t. It should be mentioned that despite the applicability of 

DFT, self-consistent calculations of Ni0.33Co0.33Cr0.33 converged to a magnetic ground state in 

both supercell and CPA approaches experimentally this alloy is nonmagnetic. In addition,  

NiCoCrx exhibits quantum critical behavior near x=0.8 [61].  

To be consistent with experimental results, the Ni0.33Co0.33Cr0.33 alloy was treated in our 

calculations as nonmagnetic. The details of the electronic structure of the group of alloys were 

discussed in our previous publications [27,62,63]. For the convenience of the readers, the 

discussion is reproduced for Ni0.5Co0.5 and Ni0.8Cr0.2. The spin-resolved electronic density of 

states (DOS) are shown in Fig. 1(a) and Fig. 1 (b) for Co and Cr containing alloys respectively 

(DOS for the rest of alloys can be found in supplementary materials [43]). In the figure, the 

Fermi energy is taken as zero. For each alloy panel, the left (right) panels correspond to the DOS 

of majority (minority)-spin states, respectively. Within each panel, the solid red (dashed blue) 

lines correspond to the Ni (second-species) local DOS respectively. Similarly, the horizontal solid 

red (dashed blue) lines denote the centers of gravity of the Ni (second-species) spin-resolved d-

band center of the corresponding species. It equals the resonance energy ܧௗ of the d-wave 

(angular momentum channel ݈ ൌ 2) scattering phase shift ߜௗ  i.e. the energy satisfying the 

conditions ߜௗሺܧௗሻ ൌ ߨ 2⁄  (see discussion in our previous publications [62,63]). A Cr atom 

contains five d-electrons and has a half-filled d-bands whereas Fe, Co, and Ni belong to the 

group of transition metals with an almost filled d-band. This results in different  magnetic 

exchange coupling – 3d-transition metals with almost filled d-bands have a tendency to 

ferromagnetic ordering, while metals with half-filled bands tend to exhibit antiferromagnetic 

ordering [64,65]. Additionally, the electronic structure of metals from these two groups behave 

differently upon alloying. The occupation of d-bands and the resulting position of the Fermi 

level can be approximately obtained by minimization of the band structure energy, ܧ, together 

with additional constraints to preserve atomic charge neutrality. In alloys with a close number 
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of d-electrons (Fe, Co, Ni) ܧ minimization results in the alignment of majority spin d-states in 

Ni0.5Co0.5 with almost negligible splitting, Δ, between Ni and Co d-bands centers (Δ ܹ⁄ ا 1, 

where ܹ is the d-bandwidth). This corresponds to weak scattering in the majority spin channel 

and a low resistivity in this channel. This weak scattering creates a “shortcut” for the electrical 

current resulting in a small total residual resistivity typical for high conductivity alloys. The 

scattering in the minority spin channel can be estimated from the relation between exchange 

splitting and the size of the magnetic moment of each element [62]. The large difference in the 

number of d-electrons in Cr and Ni doesn’t allow  alignment of the d-bands of each component 

while preserving atomic charge neutrality. Together with an absence of spin polarization, this 

results in a large d-band splitting Δ ൌ 0.73 eV in both spin channels with significant electron 

scattering and, as a result, a large residual resistivity. These conclusions agree with 

experimental observations [27,29] that all compounds containing Cr belong to the low 

conductivity group. This analysis can easily be extended to alloys containing more than two 

components [63]. 

Important information about the character of electron dynamics in an alloy can be obtained 

from the values of the MFP. In the current publication the MFP was estimated from the 

resistivity using Eq. (9). Since the main channel for electron propagation in magnetic alloys 

corresponds to majority spin states, the corresponding Fermi velocity, ݒۃ௫ଶሺܧிሻۄଵ/ଶ and density 

of states, ܰሺܧிሻ, are used in Eq. (9). In magnetic alloys, the electronic states at the Fermi level 

in the majority spin channel correspond to sp-electrons (see Fig. 1(a)) with a high velocity of 0.46 ൈ 10 m/s (Table 1) that is only weakly dependent on the chemical composition. Whereas 

in nonmagnetic Cr containing  alloys, the electronic states correspond to d-electrons with low 

energy dispersion (see Fig. 1(b)) and the corresponding velocities are almost a factor of two 

lower ( 0.24 ൈ 10 m/s) than in magnetic alloys. The MFP calculated for Ni0.5Co0.5 equals 1690 Å 

and is comparable to the values for pure transition metals, which is not surprising since the 

electronic structure of a Ni0.5Co0.5 alloy can be described within the virtual crystal 

approximation with high accuracy [27,62]. The MFP in Ni0.5Fe0.5 and Ni0.33Co0.33Fe0.33 are 

significantly smaller, 174 and 478 Å, respectively. However, in all three of these alloys, the 

calculated MFP is significantly larger than the lattice parameter of ~3.6 Å, and consequently 
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electronic transport in the alloys containing all components with almost filled d-electrons states 

can be interpreted as a propagation of well-defined quasiparticles obeying the Boltzmann 

equation [66,67,68]. In contrast to this group of alloys, the presence of Cr dramatically 

increases electron scattering and reduces the MFP to  values equal to 4.1 and 4.0 Å in Ni0.8Cr0.2 

and Ni0.33Co0.33Cr0.33, respectively. These values are comparable with the lattice parameter and 

hence the applicability of the Boltzmann equation to electron transport in these alloys is 

questionable. As we mentioned in the Introduction, the KG formalism allows one to calculate 

both the electronic and thermal conductivity without such limitations. For convenience of the 

readers, the calculated results for residual resistivity, already published in  work by S. Mu, G. 

Samolyuk et al [63], are reproduced in Table 1. As can be seen for the case of iron containing 

alloys, the LSDA result is  ~30% large than the GGA one. For the rest of alloys LSDA and GGA 

results are close to each other. Detailed discussion of residual resistivity results and comparison 

with experiment can be find in reference [63]. 

In the magnetic alloys the contribution of electron scattering by temperature dependent 

magnetic moment fluctuations to the electrical and thermal conductivity was calculated using 

the Heisenberg model, Eq.(8) and the averaged value of the magnetic moment as a function of 

temperature. The calculated zero temperature values of the magnetic moments are weakly 

dependent on alloy composition and are approximately 0.6ߤ, 1.6ߤ and 2.5ߤ for Ni, Co and 

Fe, respectively (Tab. 1). The range of the calculated exchange couplings, ܬ, in alloys doesn’t 

exceed 1.8 lattice parameters (see supplementary materials [43]) and 2.0 lattice parameters in 

pure Ni. In the current calculations, all atomic magnetic moments were treated as rigid vectors 

and the well-known longitudinal fluctuations of Ni [69,70] were not taken into account. This 

results in a significantly underestimated Curie temperature, ܶ, for pure Ni [44,64]  — 342 K, 

calculated using the PBE parametrization of the exchange-correlation energy versus the 

experimental value of 628 K. Below, for the calculation of conductivity, the temperature 

dependence of the magnetization for pure Ni was rescaled by the experimental Curie 

temperature. In the alloys the dominant magnetic interaction corresponds to Fe or Co atoms. 

For these elements, the rigid spin approximation is a very reasonable approach [69] and the 

calculated Curie temperatures are in much better agreement with experiment. The Curie 
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temperatures were overestimated by 6% in Ni0.5Co0.5 and by 20% in Ni0.5Fe0.5 and 

Ni0.33Co0.33Fe0.33 alloys. Curie temperatures obtained within local spin density approximation 

(LSDA) are 10-20% lower compared to GGA PBE ones. The calculated magnetic transition in all  

alloys is of second order. 

b. Results for transport properties 

The electronic part of the alloy thermal conductivity is calculated using Onsager relations 

for the transport coefficients, ࣦఈఈ, Eq. (6), where ࣦఈఈ are obtained through integration over 

energy of the static conductivity and the derivative of the Fermi distribution function, Eq. (2). At 

low temperatures the approximate Eq. (7) is used. A necessary condition for the application of 

expression (7) for the thermal conductivity is “well behaved” on an energy scale of half-width of 

the derivative of the Fermi function at temperature T.  In Fig. 2 the energy dependence of zero 

temperature ߪሺܧሻ is presented for Ni0.5Co0.5, Ni0.5Fe0.5 and Ni0.8Cr0.2. Because of large scattering 

in both spin channels, ߪሺܧሻ in Ni0.8Cr0.2 is a smooth function. While for Ni0.5Co0.5 and Ni0.5Fe0.5, ߪሺܧሻ  changes non-monotonically  near the  Fermi energy. Such a behavior is caused by the Ni, 

Co, Fe majority spin states alignment as discussed above in the text. As a result, electron 

scattering in this spin channel is weak and electron excitations are well-defined long-living 

quasiparticles described by “zero” thickness bands. This results in the presence of fine structure 

in the electronic density of states around the Fermi energy, which is dominated by d-states. In 

these alloys the applicability of Eq. (7) is questionable. However,  ߪሺܧሻ in Eq. (6-7) should be 

calculated at some particular temperature and should include the effects of electron scattering 

on the temperature-induced magnetic moment fluctuations as well as lattice vibrations. After 

incorporation of scattering on just magnetic moment fluctuations, the character of the 

conductivity energy dependence changes dramatically, see Fig. 3. In Ni0.5Co0.5 this dependence 

changes from a set of sharp peaks to a slowly monotonically growing function. Thus, even in the 

worst case of Ni0.5Co0.5 Eq. (7) is applicable and is used in our calculations. 

(i) Results for pure Ni  
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The results for the resistivity of pure Ni are consistent with previously published ones [37]. 

Below the Curie temperature the calculated resistivity, shown by a red solid line with filled 

circles in Fig. 4 (a), systematically overestimates the experimental values [28] by ~10 µΩ · cm. 

The reason for this difference is a discrepancy between the experimental temperature 

dependence of the magnetization and the magnetization calculated from the classical 

Heisenberg model. The calculated magnetization decreases with temperature faster than the 

experimental magnetization  [71] (insert in Fig. 4 (a)), and, as a result, electron scattering on 

magnetic moment fluctuations is overestimated. To prove this statement, the experimental 

magnetization temperature dependence [71] is also used to calculate the resistivity (shown by 

green line with filled down triangles). The deviation from the experimental results in this case is 

below 15% for temperatures up to 400 K.  As the temperature approaches TC the deviation 

from experiment doubles in both types of calculations. This deviation is a result of the rigid 

magnetic moment used in our calculation. The electron scattering by fluctuations of fully 

disordered magnetic moments of 0.6ߤ is significantly larger than the moment  fluctuations of 

ߤ0.3-0.4 experimentally observed near the Curie temperature. (see [72] and reference 

therein).  

Following the publication by Ebert et al. [37], above the Curie temperature the resistivity is 

calculated in the nonmagnetic state. The resistivity in this case is defined by electron scattering 

on lattice vibrations only. The calculated resistivity is in perfect agreement with experiment 

above TC.  

The electronic part of the thermal conductivity calculated from the zero order ሺ݇ܶ/ߤ) 

term in  Eq. (7) (corresponding to the WF law) and the theoretical magnetization, is shown by a 

red line with filled circles in Fig. 4(b). The full calculated electronic ߢ, including second order ሺ݇ܶ/ߤሻ corrections, is shown by empty diamonds. The derivatives of ߪሺܧሻ used in Eq. (7) were 

calculated numerically. As can be seen, there is no visual difference between these two sets of 

data at most temperatures, except a few percent deviations from WF at temperatures between 

550 K and TC.  The lattice contribution to the thermal conductivity is shown by a blue line with 

open circles. Its temperature dependence could be approximately described by a power law, 
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1 ܶఈ⁄ , where ߙ ൌ 0.97, is close to 1. This behavior of lattice thermal conductivity is very typical 

for ordered materials with the main source of phonon scattering coming from the three-

phonon interaction. The total thermal conductivity is shown by a green line with filled down 

triangles. The calculated thermal conductivity above ܶ  is in excellent agreement with 

experiment. This isn’t surprising since  the calculated resistivity reproduces the experiment with 

high accuracy. Below the Curie temperature, the calculated thermal conductivity is 

underestimated by ~20 W/(m K). This is the result of the overestimated  electrical resistivity. 

The total thermal conductivity calculated using the electronic part of the conductivity obtained 

from experimental magnetization data (green triangles in Fig. 4 (a)) is shown by a grey line with 

filled squares. Similar to the resistivity case, incorporation of the experimental temperature 

dependence of the magnetization significantly improves agreement with experiment for all 

temperature regions except the interval between  550 K and TC, where the longitudinal nickel 

magnetic moment fluctuations play an important role. 

(ii) Results for the ferromagnetic Ni0.5Co0.5, Ni0.5Fe0.5 and Ni0.33Co0.33Fe0.33 

Results of resistivity calculations for  Ni0.5Co0.5 alloys are presented in Fig. 5 (a). The 

magnetization as a function of temperature for both alloy components was calculated by 

solving the classical Heisenberg model within the CFM approach. Similar to the case of nickel, 

this approach overestimates the rate of magnetization reduction with the temperature increase 

as compared to experiment. This results in an overestimation of the calculated resistivity 

compared to available experimental data [28]. Cobalt is the main magnetic component in this 

alloy. The longitudinal fluctuations of the Co magnetic moment are much smaller compared to 

nickel [68] and hence the rigid moment approximation used in the calculations is justified. Thus 

in the temperature interval between 200 degrees below and above TC much better agreement 

between the calculated resistivity and experiment is expected. This expectation is supported by 

very good agreement between the calculated and experimental thermal conductivity [29] in 

this interval of temperatures as shown in Fig. 5 (b) by a green line with down triangles for the 

calculated result and up cyan triangles for the experiment. Results for the calculated lattice 

contribution were obtained within the virtual crystal approximation, which has limited 
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applicability. It includes three-phonon scattering only and neglects phonon scattering on lattice 

disorder introduced by a random distribution of different types of atoms in the alloy. As was 

shown by Alam and Mookerjee [73], the temperature dependence of the lattice thermal 

conductivity, defined by phonon scattering on lattice disorder, is very different from the three-

phonon scattering result. The alloy lattice thermal conductivity starts from zero at low 

temperatures and monotonically increases with the temperature until saturation is reached. 

However, above 2ߠ three-phonon scattering dominates. At these temperatures, the VCA can 

be used to estimate the lattice thermal conductivity, and as can be seen from Fig. 5 (b), at these 

temperatures there is reasonable agreement between theory (green line with down triangles) 

and experiment (cyan color up triangles). 

Results for the calculated resistivity in Ni0.5Fe0.5 and Ni0.33Co0.33Fe0.33 are very similar to the 

results obtained for Ni0.5Co0.5. It has a nonzero value at zero temperature, corresponding to the 

residual resistivity, caused by electron scattering on the chemical disorder. Because of majority 

spin states alignment, as discussed in the previous section, the scattering in this channel is small 

and the residual resistivity is below 10 ߤΩ · ܿ݉ – a values typical for low resistivity alloys. As 

temperature increases, the resistivity increases with approximately the same rate and reaches ~100 ߤΩ · ܿ݉ at the Curie temperature, which is between 900 and 1150 K for all three alloys. 

The rapid increase of resistivity for temperatures below the Curie temperature is determined by 

increased scattering by magnetics fluctuations. Above the Curie temperature, the magnetic 

moment disorder reaches saturation when the averaged projection of the magnetic moment to 

the z-direction equals zero, and the strength of electron scattering on magnetic moment 

fluctuations also saturates. The temperature dependence of the resistivity above TC is 

determined by the electron scattering on lattice vibrations, which grow linearly with 

temperature. As a result, above TC the resistivity slowly rises with temperature. It is 

worthwhile to mention that the highest values of resistivity are close to the MIR limit. In the 

limit the electron mean free path is  comparable to an interatomic spacing, the resistivity 

reaches saturation. However, this resistivity saturation never has been reached in both 

calculations and high-temperature experiments for Ni0.33Co0.33Fe0.33, as shown by cyan triangles 

in Fig. 7 (a). The low-temperature experimental data (below 300 K) are taken from Ref. [28], 



 18

while data above 300 K has been obtained in the current work. Agreement between 

experiment and theory is reasonably good. Thus around the Curie temperature the calculations 

reproduce the experimental resistivity with  a few percent accuracy. At temperatures below 

700 K deviation from experiment is more significant. The calculated resistivity increases with 

temperature much faster at low temperatures compared to experiment.  Similar to nickel, this 

inconsistency is a result of the overestimated rate of magnetic moment projection reduction 

with the temperature increase as calculated by solving the classical Heisenberg model. 

Surprisingly, the calculated resistivity in Ni0.5Fe0.5 at temperatures between 200 K and 400 K is 

in much better agreement with experiment, Fig. 6a, than in Ni0.5Co0.5 and Ni0.33Co0.33Fe0.33. This 

difference is caused by the much larger discrepancy between calculated, 2.45 μΩ⋅cm, and 

experimental, 10.37 μΩ⋅cm, residual resistivities (see Table 1). As a result, even if calculated 

resistivity rises faster than the experimental one, due to smaller zero temperature value, the 

calculated resistivity began to be very close to the experimental at approximately 200 K and 

above.  The difference between calculated and experimental residual resistivities is discussed in 

detail in work by S. Mu et al [63].  

The thermal conductivity temperature dependence is also very similar in all three alloys. It 

starts from values 50 െ 65 W/(m K) at approximately 200 K and monotonically decreases until 

reaching values 30 െ 45 W/(m K) at temperature T´ approximately 200 K below TC. This 

decrease is a result of the increase in electron scattering by magnetic moment fluctuations and 

lattice vibrations with increasing temperature, the scattering strength grows faster than the 

number of heat carriers, which is proportional to temperature (T coefficient in Eq. (8)). Above T´ 

the thermal conductivity behavior changes and begins to increase with increasing temperature. 

This change in behavior is caused by the increasing number of heat carriers, which overcomes 

the conductivity decrease caused by electron scattering. This is primarily because scattering by 

magnetic moment fluctuations saturates. Similar to Ni0.5Co0.5 the correction to the WF law, 

shown by white diamonds in Fig. 6 (b) and 7 (b), can be neglected. However, in contrast to the 

Ni0.5Co0.5 alloy, the calculated thermal conductivity in Ni0.5Fe0.5 is overestimated by 

approximately 20% at temperatures above 2ߠ. For Ni0.33Co0.33Fe0.33 the calculated thermal 
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conductivity behaves like the averaged value of the Ni0.5Co0.5 and Ni0.5Fe0.5 conductivities and is 

in surprisingly good agreement with experiment.  

Further, the experimental resistivity was used to calculate the electronic part of the thermal 

conductivity by applying the WF law and this was used as an input for the total thermal 

conductivity. The result is shown by grey squares in Fig. 7 (b). As can be seen, the agreement 

with experiment is not as good as for the conductivity obtained from the calculated 

magnetization. The total ߢ deviates from the experimental data below 700 K and this deviation 

increases with temperature reduction. Since, as was demonstrated above, the deviations from 

the WF law are negligible, the source of this disagreement should be attributed to an 

overestimated lattice thermal conductivity calculated within the VCA. 

(iii) Results for the nonmagnetic Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.33 

The results for electrical resistivity in two representatives of high-resistivity alloys, Ni0.8Cr0.2 

and Ni0.33Co0.33Cr0.33, are presented in Fig. 8 (a) and 9 (a). Both alloys are nonmagnetic, 

consequently, the magnitude and temperature dependence of the conductivity is determined 

by electron scattering on chemical disorder and lattice vibrations only. As a result the 

temperature dependence of the  electrical resistivity is much simpler. It starts from ~80 ߤΩ ·ܿ݉ (residual resistivity) and monotonically increases with the temperature (red line with filled 

dots in Fig. 8 (a) and 9 (a)). The resistivity  increase is slower in Ni0.8Cr0.2, by 7.8  ߤΩ · ܿ݉ for the 

temperature interval between 100 and 1200 K, than for Ni0.33Co0.33Cr0.33, which increases  by 

Ωߤ 16.6 · ܿ݉  over the same temperature interval. The slope of resistivity temperature 

dependence in Ni0.33Co0.33Cr0.33 is slightly lower than the experimental slope as shown by 

triangles in Fig. 9 (a). Also, the experimental slope slightly changes at 800 K. This transition is 

traditionally attributed to a K-state transition and it has been previously observed in 

experimental specific heat capacity measurements [29]. It should be mentioned that even while 

the resistivity starts at much higher values for low temperatures in Cr containing alloys, the so-

called high resistivity alloys, at about 1000 K the resistivity values are similar in all of the 

discussed solid solutions. In low-resistivity alloys the absence of large electrons scattering on 
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chemical disorder is compensated by electron scattering on magnetic moment fluctuations 

increasing with temperature.  

The results for the thermal conductivity in these two alloys are presented in Fig. 8 (b) and 9 

(b) by the filled red circles together with the correction to the WF law as shown by empty 

diamonds. Similar to the case of the low-resistivity alloys, there is no significant deviation from 

the WF law. In Ni0.8Cr0.2 the calculated electronic part of the thermal conductivity (Fig. 8 (b)) is 5 

W/(m K) lower than the experimental one at temperatures below 700 K, shown by blue 

triangles. Above 700 K, according to our results, the lattice contribution to the total 

conductivity equals zero. This result looks especially surprising taking into account the fact that 

traditionally, it is supposed that in highly disordered systems the phonon contribution to the 

total thermal conductivity is larger than the electronic one [74]. The possible reason for this 

disagreement is in an underestimated calculated resistivity. However, the absence of 

experimental data does not allow us to justify this assumption. 

A similar result was obtained in Ni0.33Co0.33Cr0.33 (Fig. 9 (b)). The calculated electronic part of 

the thermal conductivity, shown by a red line with filled circles, equals the total experimental 

conductivity at 600 K and below, and slightly larger than the experiment above this 

temperature. The reason for this discrepancy is that the calculated electrical resistivity is 

approximately 10 ߤΩ · ܿ݉ lower than the experimental one (Fig. 9 (a)). The electronic part of 

the thermal conductivity calculated from the experimental electrical resistivity using the WF 

law (grey squares in Fig. 9 (b)) is in better agreement with experiment. In all intervals of the 

temperature it is lower than the total experimental thermal conductivity. According to the 

calculations, the contribution from the lattice conductivity equals 5 W/(m K) at room 

temperature and is reduced to approximately 2 W/(m K) at the highest temperatures. However, 

similar to Ni0.8Cr0.2, the lattice contribution is unexpectedly small. 

IV. CONCLUSIONS 

The formalism proposed by Chester and Thellung for the calculation of transport 

coefficients of Mott relations was applied to the calculation of alloy transport properties - 
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electrical resistivity and the electronic part of the thermal conductivity. The electrical 

conductivity is used as an input for the calculation of thermal transport properties. The 

electrical conductivity was calculated using the Kubo-Greenwood formalism where the 

coherent potential approximation was applied to obtain the alloy Green’s function. This 

approach allows for a consistent calculation of the properties of  disordered alloys using  

configurational averaging and the thermodynamic limit.  All sources for electron scattering, i.e. 

chemical disorder, and temperature induced magnetic moment fluctuations and lattice 

vibrations are included in the CPA scheme on equal footing using the alloy analogy model. This 

allows one to take into account details of the electronic structure such as a complicated Fermi 

surface, electronic bands with nontrivial momentum dependence and broadening caused by  

disorder. In the current work this approach was applied to the calculation of transport 

properties of the series of  fcc concentrated solid solutions of the 3d-transition metals Ni, Fe, Co 

and Cr . Reasonable agreement with experimental data was obtained. It was demonstrated that 

in all alloys in the temperature interval of  ߠ  ܶ  - the deviation from the Wiedemannߠ3

Franz law is insignificant. This is because of the smearing of features in the electronic structure 

by temperature-induced magnetic moment fluctuations and lattice vibrations.  

For the nonmagnetic alloys, Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.3 the combined effect of chemical 

disorder and electron-phonon scattering results in a monotonic increase in the resistivity as a 

function of temperature starting from a large residual resistivity. For magnetic Ni0.5Co0.5, 

Ni0.5Fe0.5, Ni0.33Fe0.33Co0.33 alloys, the residual resistivity is small, but additional electron 

scattering from  temperature induced magnetic moment fluctuations results in a rapid increase 

of the resistivity as a function of temperature. Above the Curie temperature the electron 

scattering by magnetic moment fluctuations  saturates and the resistivity slowly increases due 

to  electron-phonon scattering.  

The electronic part of the thermal conductivity in nonmagnetic high-resistivity alloys, 

Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.33, monotonically increases with temperature. This behavior is a 

result of competition between conductivity reduction caused by electron-phonon scattering  

and temperature induced increase of the number of heat carriers. In magnetic low-resistivity 
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alloys, the presence of magnetic fluctuations results in a rapid reduction of the thermal 

conductivity until this reduction is overcome by an increasing number of carriers at 

temperatures slightly below the Curie temperature. Similar to the resistivity, above TC the 

electronic part of the thermal conductivities are similar in all investigated alloys. 
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Table 1. Calculated majority (UP) spin states density of states (total in the case of 

nonmagnetic Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.33), ܰሺܧிሻ, and Fermi velocities, ඥݒۃ௫ଶۄ, experimental 

[28] residual resistivity, calculated electron mean free path, , experimental lattice parameter 

[29], calculated magnetic moments of each components (separated by a slash) and Curie 

temperatures, TC, both experimental [29] and calculated, within GGA and LSDA approximation 

for the exchange-correlation energy, and calculated residual resistivity (both GGA and LSDA). 

 Ni Ni0.5Co0.5 Ni0.5Fe0.5 Ni0.33Co0.33Fe0.33 Ni0.8Cr0.2 Ni0.33Co0.33Cr0.33ܰሺܧிሻ (UP), St./Hart. 4.3 2.0 4.0 3.0 45.13 44.05 

ඥݒۃ௫ଶۄ (UP), 106 m/s 0.43 0.46 0.46 0.46 0.24 0.24 

Exp. ߩ, μΩ⋅cm 0.1 2.07 10.37 4.87 77 93.21 

݈ (UP), Å 3595  1689 174 478 4.1 4.0 

ܽ, Å 3.524 3.5345 3.5825 3.569 3.595 3.559 

Magn. Mom., ߤ 0.56 0.62/1.64 0.63/2.54 0.63/1.57/2.42 — — 

Exp. TC, K 628 1117 780 995 — — 

Calc. ܶ  (GGA/LDA), K 342/298 1180/990 955/810 1180/1045 — — 

Calc. ߩ (GGA/LDA), μΩ⋅cm  - 0.7/0.9 [63] 2.1/3.3 [63] 1.9/2.9 [63] 78.1/77.0 68.6/67.6 [63] 
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Figure 1.  Projected density of states of magnetic NiCo (left) and nonmagnetic Ni0.8Cr0.2 

(right) shown by dashed blue lines for Co/Cr and solid red line for Ni atoms. The Fermi energy 

corresponds to zero on the vertical axis. The centers of the d-bands are shown by horizontal 

lines, where splitting is denoted by Δ. 
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Figure 2. Static electrical conductivity as a function of energy calculated in three alloys. The 

Fermi energy corresponds to zero.  
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Figure 3. Electrical conductivity in Ni0.5Co0.5 as a function of energy calculated with magnetic 

moment fluctuation at temperature T=300 K (blue line with triangles) and with perfect 

magnetic ordering (red line with circles). The derivative of Fermi distribution function (-∂ƒ/∂E) 

is shown by black solid (T=300 K) and dashed (T=50 K) lines in relative units. 
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Figure 4. a) Electrical resistivity in Ni as a function of temperature calculated using CFM 

results for the magnetization (red line with filled circles) and experimental magnetization 

(green down triangles), the experimental resistivity is shown by upper triangles [28] and blue 

color filled squares [75]. Both experimental (green down triangles) and calculated (red circles) 

magnetization dependences of T/TC, are shown in the insert. b) Thermal conductivity, κ, as a 

function of temperature calculated using Eq. (7) and theoretical results for magnetization (WF 

law result is shown by red line with filled circles, the result with correction to WF law is shown 

by empty diamonds). The lattice contribution to κ  is shown as blue line with open circles. Total 

κ  calculated using theoretical magnetization is shown as a green line with down triangles, 

whereas,  calculated using experimental magnetization is shown as a grey line with filled 

squares, experiment [29] is shown as upper cyan triangles. The experimental TC is indicated by a 

vertical line. All the calculated dependencies include scattering on both lattice vibrations and 

magnetic moment fluctuations. 
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Figure 5. a) Electrical resistivity, and b) thermal conductivity in Ni0.5Co0.5. For notations see 

Fig. 4. In addition to the contribution from electrons scattering on lattice vibrations and 

magnetic moment fluctuations, the result presented by a red line with filled circles contains a 

contribution from scattering on “chemical” disorder. The calculated TC is indicated by a vertical 

line. 
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Figure 6. a) Electrical resistivity, and b) thermal conductivity in Ni0.5Fe0.5. For notations see 

Fig. 4. In addition to the contribution from electrons scattering on lattice vibrations and 

magnetic moment fluctuations, the result represented by a red line with filled circles contains a 

contribution from scattering on “chemical” disorder. The calculated TC is indicated by a vertical 

line. 
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Figure 7. a) Electrical resistivity, and b) thermal conductivity in Ni0.33Co0.33Fe0.33. For 

notations see Fig. 4. In addition to contribution from electrons scattering on lattice vibrations 

and magnetic moment fluctuations, the result represented by a red line with filled circles 

contains a contribution from scattering on “chemical” disorder. The total thermal conductivity 

calculated as a sum of lattice contribution and the electronic contribution obtained from 

experimental resistivity (cyan triangles in Fig. 7 (a)) through the WF law is shown by grey color 

squares. The calculated, TC, and experimental, TC
exp, Curie temperatures are indicated by solid 

and dashed vertical lines, respectively. 
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Figure 8. a) Electrical resistivity, and b) the electronic part of the thermal conductivity in 

Ni0.8Cr0.2. For notations see Fig. 4. The calculations have been done in the nonmagnetic state.  
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Figure 9. a) Electrical resistivity, and b) the electronic part of the thermal conductivity in 

Ni0.33Co0.33Cr0.33. For notations see Fig. 4. The calculations have been done in the nonmagnetic 

state. The experimental resistivity obtained in the current work for the compound 

Ni0.35Co0.35Cr0.3 is shown as cyan color triangles. The electronic part of the thermal conductivity 

calculated from the experimental resistivity (cyan triangles in Fig. 9 (a)) through the WF law is 

shown as grey color squares. 


