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Recently, a new class of three-dimensional spin liquid models have been theoretically discov-
ered, which feature generalized Coulomb phases of emergent symmetric tensor U(1) gauge theories.
These “higher rank” tensor models are particularly intriguing due to the presence of quasi-particles
with restricted mobility, such as fractons. We investigate universal experimental signatures of tensor
Coulomb phases. Most notably, we show that tensor Coulomb spin liquids (both quantum and classi-
cal) feature characteristic pinch-point singularities in their spin-spin correlation functions, accessible
via neutron scattering, which can be readily distinguished from pinch points in conventional U(1)
spin liquids. These pinch points can thus serve as a crisp experimental diagnostic for such phases.
We also tabulate the low-temperature heat capacity of various tensor Coulomb phases, which serves
as a useful additional diagnostic in certain cases.
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I. INTRODUCTION

Quantum spin liquids describe exotic, interacting spin
systems, in which quantum fluctuations prevent conven-
tional magnetic ordering all the way down to zero tem-
perature. These phases are characterized by a pattern of
long-range quantum entanglement in their ground states
and the presence of exotic fractionalized excitations. Spin
liquids are believed to occur in gapped and gapless vari-
eties [1–6], and are theoretically well-described as emer-
gent gauge theories [7, 8].

The gauge theory description of a spin liquid can take a
number of different forms, ranging from intricate string-
net models [9] to familiar U(1) Maxwell theory. The lat-
ter case has a number of promising experimental can-
didates in the form of the “spin ice” pyrochlore ma-

terials, including the classical spin ices Dy2Ti2O7 and
Ho2Ti2O7, as well as the quantum spin ices Yb2Ti2O7

and Pr2Zr2O7 [7, 10–16]. Over a range of low temper-
atures, these materials exist in a symmetry-preserving
phase consistent with the expected behavior of a decon-
fined Coulomb phase of an emergent U(1) gauge field. It
is possible that in some materials, this emergent elec-
tromagnetism may survive down to zero temperature,
providing an example of a U(1) quantum spin liquid.
Regardless, we may conclusively identify these materials
as having at least classical spin liquid behavior: resisting
symmetry breaking down to unusually low temperatures
due to frustration between many energetically equivalent
classical configurations.

Conventional U(1) spin liquids exhibits striking exper-
imental signatures. Most notably, the Coulomb phase of a
U(1) gauge theory exhibits characteristic “pinch-point”
singularities in its correlation functions; these pinch-
points may be observed in spin-spin correlation functions
that are readily measured via neutron scattering exper-
iments, which have been usefully applied to numerous
spin liquid candidates [3, 17–21]. In the quantum spin
liquid, these singularities arise as a direct consequence
of the gapless excitations of the system, corresponding
to the emergent photon of the U(1) gauge theory. Such
singularities are absent in gapped quantum spin liquids.

The conventional U(1) spin liquid, described in terms
of an emergent Maxwell theory, has been a subject of in-
tense theoretical and experimental study during the past
two decades. We refer the reader to some reviews for
an initial overview [7, 18], and to some selected litera-
ture for further details [8, 10, 11, 17, 19, 22–37]. Mean-
while, recent theoretical developments have uncovered a
new class of generalized U(1) spin liquids which we have
only just begun to understand [38–41]. Instead of the fa-
miliar vector U(1) gauge field of Maxwell theory, these
three-dimensional spin systems are described by the de-
confined “Coulomb” phase of emergent symmetric ten-
sor U(1) gauge fields. Just like their vector gauge theory
counterparts, such symmetric tensor U(1) gauge theo-
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ries have instanton instabilities in two spatial dimensions
arising from issues of compactness, but have stable de-
confined phases in three dimensions (except in certain
special cases) [39–41].1

This new class of spin liquids has some properties
in common with the conventional U(1) spin liquid,
such as protected gapless gauge modes. What sets these
new tensor gauge theories apart, however, is the behav-
ior of the emergent, gapped charge excitations, which
have severe restrictions on their mobility. The gauge
charges can be restricted to motion within one- or two-
dimensional subspaces, or in certain models, can be re-
stricted from moving at all. These immobile, charged ex-
citations (termed “fractons”), as well as the gapped exci-
tations with reduced mobility were first obtained in com-
pletely gapped three-dimensional systems with intricate
patterns of long-ranged entanglement, and have since
been encountered in a wide variety of physical systems.
We refer the reader to a recent review [47] for an overview
of fractons, and to the literature for further details [48–
88]. Gapped fracton phases, such as Haah’s code or the
X-Cube model, display glassy quantum dynamics in their
approach to equilibrium, which may serve as a useful di-
agnostic of these systems [57]. On the other hand, the
“generalized” Hall conductivity predicted for the two-
dimensional chiral gapped tensor gauge theory [56] has
been conjectured to be a manifestation of the torsional
Hall viscosity [77], providing another experimental signa-
ture of fracton physics.

While the gapless tensor U(1) spin liquids have like-
wise been a topic of intense recent theoretical study, little
is known about sharp experimental signatures of these
systems. In the present work, we will identify certain key
signatures which can be used to diagnose the presence
of different types of emergent tensor U(1) spin liquids in
experiments, placing particular emphasis on the rank-2
spin liquids, i.e. where the emergent gauge field in the
system of interest is a two-component symmetric tensor.
Such experimental metrics may provide important clues
which guide the search for physical systems realizing ten-
sor Coulomb behavior.

Most notably, we study the behavior of the spin-spin
correlation functions of these new spin liquids. We be-
gin by studying the ground state correlation functions
of the quantum version of these spin liquids by making
use of their low-energy effective field theory [39–41]. We
show that the spin-spin correlation functions exhibit a
new pinch-point singularity due to the tensor nature of
the gapless gauge excitations. Certain features of these
singularities are universal, independent of details at the
lattice-scale, and are applicable to any microscopic model
featuring a tensor Coulomb phase. These universal fea-
tures allow the tensor U(1) spin liquids to be easily dis-
tinguished from a conventional U(1) spin liquid in ex-

1 Compact anti-symmetric U(1) tensor gauge fields tend to not
have deconfined phases in three or fewer dimensions [42–46].

FIG. 1. The pinch point singularities of a conventional U(1)
spin liquid (left) have a characteristic two-fold symmetry. In
contrast, pinch points of the rank-2 tensor spin liquids (right)
have a characteristic four-fold symmetry, which should allow
for easy distinction in neutron-scattering data. (The two plots
display ⟨Ex

(q)Ey
(−q)⟩ (left) and ⟨Exx

(q)Eyy
(−q)⟩ (right),

with cross-sections taken in the qz = 0 plane.)

periment. For rank-2 tensor models, we show that the
pinch points have a characteristic four-fold symmetry,
as opposed to the two-fold symmetry of pinch points
in more conventional spin liquids (see Figure 1), which
will allow for straightforward detection in experiments.
We note that the singularities generically remain point-
like in these systems, in contrast with the “pinch-line”
singularities seen in certain non-generic tensor spin liq-
uid models [89]. We then move on to study the finite-
temperature spin-spin correlation functions of classical
tensor Coulomb spin liquids, which we show have similar
pinch-point singularities. These pinch points, both clas-
sical and quantum, can be directly accessed via neutron
scattering data. The scattering function for neutrons im-
pinging on the sample is given directly in terms of the
spin-spin correlation functions of the system, which can
thereby be effectively mapped out in order to see pinch-
point singularities [3, 18–21]. The detection of such four-
fold pinch points would be an important confirmation of
an emergent tensor gauge structure, and therefore of frac-
ton behavior. Such an experimental detection of fractons
would be of broad interest to the numerous research com-
munities studying these particles, ranging from quantum
information to many-body localization [47].

In addition to pinch-point singularities, we also tabu-
late the heat capacities of the various tensor U(1) spin
liquids, which should be readily accessible to experi-
ments. The gapless modes of these models lead to a
power-law contribution to the heat capacity, distinguish-
able from that of vector U(1) models in certain cases.
In a conventional U(1) spin liquid, the linear dispersion
of the gauge modes means that their contribution to the
heat capacity cannot be easily separated from that of
phonons, and hence does not serve as a useful experi-
mental probe. In contrast, some of the tensor U(1) spin
liquids have non-linearly dispersing gauge modes which
provide a dominant contribution to the low-temperature
heat capacity and should thus serves as a useful diagnos-
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tic for the tensorial nature of the gauge field.

II. REVIEW OF TENSOR GAUGE THEORY

We here review the basic properties of the two simplest
tensor U(1) quantum spin liquids and refer the reader to
previous literature [39–41] for more details. These spin
liquids are described in terms of an emergent, symmetric
rank-2 tensor field Aij , where all indices refer to spa-
tial coordinates i, j = 1,2,3. This gauge field possesses a
canonical conjugate variable Eij , which corresponds to
a generalized electric field. As we discuss below, there is
a direct microscopic mapping from certain quantum ro-
tor models (equivalent to large-S spin models) onto such
tensor gauge theories, with the gauge invariant observ-
ables, such as electric field, directly corresponding to spin
variables. Multiple such tensor gauge theories may be de-
fined, each of which is uniquely determined by different
chosen forms for Gauss’s law.

A. Scalar Charge Theory

One simple theory we can write down has a Gauss’s
law of the form

∂i∂jE
ij = ρ, (1)

for a scalar-valued charge ρ. (We use the Einstein sum-
mation convention throughout, with repeated indices
summed over.) Within the low-energy sector, the corre-
sponding gauge transformation is

Aij → Aij + ∂i∂jα, (2)

where α is a scalar function with arbitrary spatial depen-
dence. This system admits gapless gauge modes, with a
low-energy Hamiltonian given by

H = ∫ d3x
1

2
(EijEij +BijBij), (3)

where Bij = εiab∂aA j
b is the gauge-invariant magnetic

field operator. This Hamiltonian leads to five gapless
gauge modes, each with a linear dispersion ω ∝ q. The
existence of five gauge modes can be understood via a
simple counting argument. A symmetric tensor in three
dimensions has six independent degrees of freedom. The
scalar charge represents a single gapped degree of free-
dom, which leaves five degrees of freedom for the gapless
gauge modes, as discussed in Refs. [39–41].

Much more notable than the gauge mode, however,
is the charge sector of the theory, which has properties
with no analogue in more conventional gauge theories. In
addition to the conservation of charge

∫ d3xρ = constant, (4)

this theory also exhibits conservation of dipole moment

∫ d3x (ρxi) = constant. (5)

This conservation law has the severe immediate con-
sequence that the fundamental charges of the theory
are strictly immobile i.e. are fracton excitations. Only
charge-neutral bound states, such as dipolar bound
states, are free to move around the system.

B. Vector Charge Theory

It is also possible to consider a slightly modified theory
of a rank-2 tensor, with a different version of Gauss’s law,
which takes the form

∂iE
ij = ρj , (6)

for a vector-valued charge density ρj . The corresponding
low-energy gauge transformation is

Aij → Aij + ∂iαj + ∂jαi, (7)

where αi is a function with arbitrary spatial dependence.
The low-energy Hamiltonian for the gauge sector of this
theory takes the same form as in Eq. (3), but with a mod-
ified magnetic field operator, Bij = εiabεjcd∂a∂cAbd. In
this case, the Hamiltonian leads to three gapless quadrat-
ically dispersing gauge modes, ω ∝ q2. This theory also
possesses an unusual set of charge conservation laws, in
that the vector charges obey not only conservation of
charge,

∫ d3xρi = constant, (8)

but also a second conservation law pertaining to the an-
gular moment of charge,

∫ d3x εijkρjxk = constant. (9)

This second conservation law has the unusual conse-
quence that the vector charges are restricted to motion
only in the direction of their charge vector, while mo-
tion in the perpendicular directions is ruled out by gauge
invariance. This causes the charges to behave like one-
dimensional particles, despite being embedded in three-
dimensional space.

C. Microscopic Models

We here review some microscopic models, first dis-
cussed in Reference [38], which naturally give rise to
the two theories discussed above. These theories can
be realized in the context of lattice quantum rotor sys-
tems, which has a Hilbert space equivalent to that of a
large-S spin system. In fact, both the scalar and vector
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FIG. 2. A microscopic model for the tensor gauge theories
can be easily obtained via quantum rotors, with one quantum
rotor on each plaquette of a cubic lattice, and three rotors on
each site.

charge theories can be realized with the same microscopic
Hilbert space, with different choices of Hamiltonian. We
here focus on the vector charge theory, which is slightly
simpler to construct. We refer the reader to Refs. [38]
and [39] for more details.

The Hilbert space can be constructed by placing quan-
tum rotors on the vertices and plaquettes of a cubic lat-
tice, with each rotor label by its integer angular momen-
tum quantum number, which we write as n. Specifically,
we place one rotor on each plaquette, which we label as
nxy, nxz, or nyz, according to which plane that plaquette
is a part of. We place three rotors on each vertex, which
we label as (nxx, nyy, nzz). This choice of labeling is sug-
gestive, since it shows that the rotors have been placed
in such a way that the components can transform into
each other in a tensorial way under spatial rotations.

We must now write down a Hamiltonian in such a
way as to mimic the desired Gauss’s law. For the case
of the vector charge theory, the low-energy (i.e. charge-
free) Gauss’s law constraint is just ∂iE

ij = 0. One can
naturally regularize this equation on the cubic lattice by
letting the constraint live on links, taking sums and dif-
ferences of all the electric tensor components adjacent to
that link. We can begin to mimic this in rotor language
by writing down a term in the Hamiltonian of the form:

H0 = V ∑
links

(∑
adj

n)
2

(10)

where the outer sum runs over all links of the lattice.
The inner sum runs over all rotors adjacent to that link,
which importantly must also share an index in common
with its direction. For example, for an x directed link, the
sum will include nxx, nxy, and nxz terms. As a technical
detail, we note that vertex variables must actually be
counted twice in this sum, as compared to the plaquette
variables, for reasons discussed in [38]. Note that the form
of the Hamiltonian seen above counts all of the n with
positive signs. In order to obtain the correct behavior of
the Gauss’s law, one must therefore stagger the signs in
mapping from n to E. In other words, we can write Exx =

η nxx, where η alternates positive and negative from one
site to the next, and similarly for all other components.

The Hamiltonian above already captures the Gauss’s
law constraint, which we will see is the most important
piece for understanding the pinch point singularities, to
be discussed next. For a classical spin liquid, at finite
temperature, imposing this constraint is sufficient to ex-
tract all of the relevant physics. For a quantum spin liq-
uid, however, one must add additional terms to the rotor
Hamiltonian in order to mimic the E2 +B2 behavior of
the tensor Maxwell Hamiltonians described above. These
terms can be added in straightforward fashion. We refer
the reader to Refs. [38] and [39] for more details.

III. PINCH-POINT SINGULARITIES

We have seen that the physical spin operators of a spin
liquid can be mapped directly onto gauge-invariant field
operators of an emergent gauge theory. We here focus on
the case where the spins map onto electric field opera-
tors (similar arguments apply when the spins are mapped
onto magnetic operators.). We calculate the correlation
function of a rank-2 electric tensor as

⟨Eij(x)Ek`(0)⟩ (11)

and similarly for tensors of higher rank. The physical spin
correlators in the long distance limit will be dominated
by the correlation functions of the gapless gauge field,
and given by some linear combination of these tensor
correlation functions

⟨Sz(x)Sz(0)⟩ = Cijk`⟨Eij(x)Ek`(0)⟩. (12)

Here the separation x is implicitly large, and the struc-
ture factor Cijk` is constrained by the symmetries of the
underlying lattice. In the following, we focus on the uni-
versal (long distance, small wavevector) behavior of these
correlation functions, which should not depend on the
precise form of the structure factors.

A. Conventional U(1) Spin Liquid

For convenience, we recall the calculation of pinch-
point singularities in a conventional U(1) spin liq-
uid, which will generalize naturally to the tensor case.
The appropriate low-energy Hamiltonian takes the usual
Maxwell form,

H = ∫ d3x
1

2
(EiEi +BiBi), (13)

where Bi = εijk∂jAk, and we implicitly have the gauge
constraint ∂iE

i = 0. In momentum space, the Hamil-
tonian decouples into independent harmonic oscillator
modes, and thus by equipartition, the two terms of the
Hamiltonian contribute equally to the ground state en-
ergy. For Maxwell theory, the dispersion is linear ω ∝ q,
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leading to a zero point energy proportional to q for each
mode, from which we conclude that

⟨Ei(q)Ei(−q)⟩∝ q. (14)

We must now restore the full tensor structure. To do this,
we start with the isotropic result δij , as if all modes were
present, and then project out the divergence mode, which
is absent from the low-energy sector. The final electric
field correlator then takes the form

⟨Ei(q)Ej(−q)⟩∝ q (δij − q
iqj

q2
) . (15)

The second term, arising due to the projection into the
gauge sector, leads to “pinch-point” singularities in the
correlation function, in that the ratio qiqj/q2 has differ-
ent limits upon approaching the origin q = 0 from dif-
ferent directions, as depicted schematically in Figure 1.
These singularities can be easily detected via neutron
scattering, thereby serving as a powerful tool for diag-
nosing U(1) spin liquids in experiments. We note that
an important feature of the correlation function Eq. (15)
is its two-fold symmetry, illustrated explicitly in e.g. the
⟨Ex(q)Ey(−q)⟩ correlator shown in Fig. 1.

One can also consider the finite-temperature behav-
ior of correlation functions in a classical U(1) spin liq-
uid, where the quantum splitting of degeneracies is unim-
portant. In this case, we impose the spin-ice constraint,
∂iE

i = 0, but regard all states within this spin-ice man-
ifold as being roughly energetically equivalent. The free
energy of the system is then set almost entirely by en-
tropic effects, F ≈ −TS. By the central limit theorem, the
probability distribution for the emergent electric field Ei

must be Gaussian in the thermodynamic limit [18], such
that

F /T =K ∫ d3xEiEi, (16)

for some constant K, where the spin-ice constraint ∂iE
i =

0 is left implicit. Were it not for this constraint, we could
simply conclude that ⟨Ei(q)Ej(−q)⟩ ∝ (1/K)δij . After
projecting out the longitudinal component, however, the
correct correlation function behaves as

⟨Ei(q)Ej(−q)⟩c ∝
1

K
(δij −

qiqj

q2
), (17)

where the subscript c denotes “classical,” indicating a
simple thermal correlation function. Note that this clas-
sical correlation function has the same singular tensor
structure as the quantum case, but with a different pre-
factor. Note also that the pinch point structure comes
purely from projection into the spin ice manifold, such
that the basic result is independent of the specific model
(16) used to derive it.

B. Scalar Charge Theory

For the scalar charge theory, defined by the Gauss’s
law ∂i∂jE

ij = ρ, the low-energy Hamiltonian takes the

same schematic form as in Maxwell theory, as seen in
Eq. (3), with the implicit gauge constraint ∂i∂jE

ij = 0.
As in Maxwell theory, the dispersion of the gauge modes
is linear. By the same equipartition argument as before,
the zero-temperature quantum correlation function sat-
isfies

⟨Eij(q)Eij(−q)⟩∝ q. (18)

To get the correct tensor structure, we start with the
isotropic symmetric tensor 1

2
(δikδj` + δi`δjk) and project

out the qiqj component

⟨Eij(q)Ek`(−q)⟩∝ q (1

2
(δikδj` + δi`δjk) − q

iqjqkq`

q4
) ,

(19)
which exhibits a pinch point singularity at q = 0, in the
sense of different limiting behavior when approaching the
origin from different directions. Notice, however, that the
rank-4 tensor structure of the correlation function (19)
manifests itself in a characteristic four-fold singularity
pattern, as opposed to the two-fold symmetry of pinch
points in a conventional U(1) spin liquid. Note also that
the four-fold symmetry is present only in certain com-
ponents of this rank-4 tensor e.g. ⟨ExxEyy⟩, while oth-
ers such as ⟨ExxExx⟩ only possess a two-fold symmetry.
However, the presence of a four-fold symmetry in cer-
tain components of the correlator, as depicted in Fig. 1,
will allow for easy distinction between this tensor gauge
theory and more familiar spin ice models described by
vector gauge theories. Importantly, note that this four-
fold symmetry only holds in the immediate vicinity of the
pinch-point singularity, while the overall symmetry of the
spin-spin correlation functions throughout the Brillouin
zone is determined by the symmetry of the underlying
lattice.

In close analogy with the conventional U(1) spin liq-
uid, we can also consider a classical analogue of this ten-
sor Coulomb phase, where only the “spin-ice” constraint,
∂i∂jE

ij = 0 is important, while the quantum splitting of
degeneracies can be ignored. By the central limit the-
orem, we can once again conclude that the probability
distribution for Eij takes a Gaussian form, such that the
free energy can be written as

F /T =K ∫ d3xEijEij , (20)

for some constant K. The classical correlation function
then takes the form

⟨Eij(q)Ek`(−q)⟩c ∝
1

K
(1

2
(δikδj` + δi`δjk) − q

iqjqkq`

q4
) ,

(21)
which has the same four-fold behavior as the quan-
tum correlation function (19), but with a different, non-
universal pre-factor. Again, the pinch point structure
comes purely from projection into the ‘higher rank’ spin
ice manifold.
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Theory Gauge Dispersion Polarizations Heat Capacity

Scalar Charge ω ∼ q 5 C ∼ T 3

Traceless Scalar Charge ω ∼ q 4 C ∼ T 3

Vector Charge ω ∼ q2 3 C ∼ T 3/2

Traceless Vector Charge ω ∼ q3 2 C ∼ T

TABLE I. Summary of heat capacities for the rank-2 tensor U(1) spin liquids.

C. Vector Charge Theory

For the vector charge theory, defined by ∂iE
ij = ρj ,

the low-energy Hamiltonian leads to gapless gauge modes
with quadratic dispersion ω ∼ q2, unlike the previously
studied theories. The implicit gauge constraint in the
low-energy sector is now ∂iE

ij = 0. By the usual equipar-
tition argument, the zero-temperature quantum correla-
tion function satisfies

⟨Eij(q)Eij(−q)⟩∝ q2. (22)

In order to restore the tensor structure, we can start with
the isotropic symmetric tensor then add terms to project
off components along the q direction,

⟨Eij(q)Ek`(−q)⟩∝ q2[1

2
(δikδj` + δi`δjk) + q

iqjqkq`

q4

− 1

2
(δik q

jq`

q2
+ δjk q

iq`

q2
+ δi` q

jqk

q2
+ δj` q

iqk

q2
)].

(23)

It can be readily checked that this expression annihilates
any rank-2 tensor with a component along q in either
index. This correlation function once again has a pinch
point singularity at q = 0 with a characteristic four-fold
symmetry, similar to that of the scalar charge theory.
However, the pinch point singularity of the vector charge
theory has a different power-law behavior than that of
either the conventional U(1) spin liquid or the scalar
charge theory. The exponent with which this correlator
diverges can thus be readily identified in neutron scat-
tering data, making this type of spin liquid particularly
simple to distinguish in experiments.

In close analogy with the previous section, we can
also immediately write down the finite-temperature cor-
relation function of the corresponding classical tensor
Coulomb phase as

⟨Eij(q)Ek`(−q)⟩∝ 1

K
[1

2
(δikδj` + δi`δjk) + q

iqjqkq`

q4

− 1

2
(δik q

jq`

q2
+ δjk q

iq`

q2
+ δi` q

jqk

q2
+ δj` q

iqk

q2
)],

(24)

which has the same four-fold symmetry as the quantum
case (15).

D. Traceless Theories

For completeness, we briefly discuss the pinch point
singularities of the traceless versions of the rank-2 gauge
theories, which will display the same four-fold symme-
try pattern. When the scalar charge theory is given an
extra tracelessness constraint Ei

i = 0, its dispersion re-
mains linear, and the corresponding pinch points have
the same scaling, ⟨Eij(q)Ek`(−q)⟩ ∝ q, so this theory
is not easily distinguished from its traceful cousin via
neutron scattering. In contrast, when the vector charge
theory has tracelessness imposed, its dispersion becomes
cubic ω ∝ q3. In this case, the scaling of the pinch point
singularities changes to ⟨Eij(q)Ek`(−q)⟩∝ q3, which can
be clearly distinguished in experiments from all of the
previously studied U(1) spin liquids.

IV. HEAT CAPACITY

Besides the ground state correlation functions, another
useful diagnostic for certain tensor Coulomb spin liquids
is the low-temperature heat capacity. Since all the emer-
gent charges are gapped excitations, their contribution
to heat capacity will be exponentially suppressed i.e. fol-
low Arrhenius behaviour, as discussed in Ref. [57]. Hence,
the low-temperature heat capacity will be dominated by
the contribution from the gapless gauge modes, which
depends on both the number of gauge modes and their
dispersion.

Let us assume that the gauge mode has np independent
polarizations and that its dispersion is given by ω ∼ qa.
Then the energy density at temperature T is given by

E/V ∼ np ∫ d3q
qa

eqa/T − 1

= 4πnp

a
Γ(3 + a

a
) ζ (3 + a

a
)T 3+a

a ,

(25)

where we have set kB = 1. For the usual Maxwell theory
in 3+1D, where a = 1 and np = 2, this reproduces the
usual heat capacity

Cv/V =
d

dT
(E/V ) = 8π5T 3

15
, (26)

in units where the speed of light c = 1.
For the tensor U(1) spin liquids, the results are tab-

ulated in Table I. For both the traceful and traceless
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versions of the scalar charge theory Cv ∼ T 3, which is
indistinguishable from the usual Maxwell theory (and
from phonon contributions) since only the numerical pre-
factors are different between these, reflecting the differ-
ence in the number of independent gauge modes. In prin-
ciple, one can imagine detecting the number of gauge
modes in the system by deforming it along different di-
rections by applying stress/strain, which will result in
the gauge modes along that direction gaining a different
dispersion. However, both the traceful and traceless ver-
sions of the vector charge theory display markedly differ-
ent temperature scaling, which should serve as clear and
distinctive experimental signature of these phases.

V. CONCLUSIONS

In this work, we have identified several key signatures
which can be used to diagnose tensor Coulomb spin liquid
phases, which feature an emergent deconfined U(1) sym-
metric tensor gauge theory. Most notably, these phases
exhibit pinch-point singularities in spin-spin correlation
functions, which can be easily observed in neutron scat-
tering data. These pinch-point singularities are qualita-
tively different from those of a conventional U(1) spin
liquid, which will allow these systems to easily be dis-
tinguished from more familiar spin ice materials. Specifi-
cally, a rank-2 tensor model has a characteristic four-fold
symmetry pattern, in contrast with the two-fold symme-
try of pinch points in conventional U(1) spin liquids. For
tensor U(1) spin liquids with rank higher than two, sim-
ilar logic indicates that the pinch point singularity struc-

ture is determined by the properties of the low-energy
gauge modes. For a rank n theory, the resulting pinch
point will have a 2n-fold symmetry.

Additionally, we tabulated the heat capacity of vari-
ous tensor Coulomb spin liquids, which provides an addi-
tional metric for diagnosing certain types of these phases.
These signatures may serve to inform the future search
for material realizations of tensor Coulomb spin liquids.
Apart from the diagnostics considered in this work, there
remain several other features of tensor gauge theories
which are expected to display behaviour distinct from
that of conventional vector gauge theories. For instance,
the linear response coefficients of a tensor gauge the-
ory should provide another useful experimental metric
for establishing the presence of a tensor Coulomb phase,
as should the dynamical behaviour of the spin correla-
tions (for usual vector gauge theories, this was discussed
in [90, 91]). These additional signatures will be discussed
at length elsewhere [92].

ACKNOWLEDGMENTS

We acknowledge useful conversations and correspon-
dence with T. Senthil, Mike Hermele, Han Ma, Leo Radz-
ihovsky, and Han Yan. This work is partially supported
by the DOE Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering under Award de-
sc0010526 (S.V.); by NSF Grant 1734006 (M.P.); by a
Simons Investigator Award to Leo Radzihovsky (M.P.
and Y.-Z.C.); by the Foundational Questions Institute
(fqxi.org; grant no. FQXi-RFP-1617) through their fund
at the Silicon Valley Community Foundation (R.N.).

[1] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and
G. Saito, Spin liquid state in an organic Mott insulator
with triangular lattice. Phys. Rev. Lett. 91, 107001 (2003)

[2] J. S. Helton et al., Spin dynamics of the spin-1/2 kagome
lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett.
98, 107204 (2007)

[3] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A.
Rodriguez-Rivera, C. Broholm, Y. S. Lee, Fractionalized
excitations in the spin liquid state of a kagome lattice
antiferromagnet. Nature 492, 406-410 (2012)

[4] A. Banerjee et al., Proximate Kitaev quantum spin liquid
behavior in a honeycomb magnet. Nature Materials 15,
733740 (2016)

[5] C. Balz et al., Physical realization of a quantum spin liq-
uid based on a complex frustration mechanism. Nature
Physics 12, 942949 (2016)

[6] L. Balents, Spin liquids in frustrated magnets. Nature
464: 199-208 (2010)

[7] L. Savary and L. Balents, Quantum spin liquids. Rep.
Prog. Phys. 80, 016502 (2017), arXiv:1601.03742

[8] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid
states. Rev. Mod. Phys. 89, 025003 (2017)

[9] M. A. Levin and X.-G. Wen, String-net condensation: A

physical mechanism for topological phases. Phys. Rev. B
71 045110 (2005), arXiv:cond-mat/0404617v2

[10] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske,
and K. W. Godfrey, Geometrical frustration in the fer-
romagnetic pyrochlore Ho2T i2O7. Phys. Rev. Lett. 79,
2554 (1997)

[11] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Mag-
netic pyrochlore oxides. Rev. Mod. Phys. 82, 53 (2010)

[12] C. Castelnovo, R. Moessner, and S. L. Sondhi, Spin
ice, fractionalization, and topological order. Annual Re-
view of Condensed Matter Physics 3, 35-55 (2012),
arXiv:1112.3793

[13] M. J. P. Gingras and P. A. McClarty, Quantum spin
ice: a search for gapless quantum spin liquids in py-
rochlore magnets. Rep. Prog. Phys. 77, 056501 (2014),
arXiv:1311.1817

[14] Y. Tokiwa et al., Discovery of emergent photon and
monopoles in a quantum spin liquid. arXiv:1803.05557
(2018)

[15] N. Martin, P. Bonville, E. Lhotel, S. Guitteny, A. Wildes,
C. Decorse, M. Ciomaga Hatnean, G. Balakrishnan, I.
Mirebeau, and S. Petit, Disorder and quantum spin ice.
Phys. Rev. X 7, 041028 (2017), arXiv:1708.01845



8

[16] J.-J. Wen et al., Disordered Route to the Coulomb Quan-
tum Spin Liquid: Random Transverse Fields on Spin
Ice in Pr2Zr2O7. Phys. Rev. Lett. 118, 107206 (2017),
arXiv:1609.08551v2

[17] C. L. Henley, Power-law spin correlations in pyrochlore
antiferromagnets. Phys. Rev. B 71, 014424 (2005)

[18] C. L. Henley, The “Coulomb phase” in frustrated systems.
Annual Review of Condensed Matter Physics. Vol. 1: 179-
210 (2010)

[19] T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D.
Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. Mc-
Morrow, and S. T. Bramwell, Magnetic Coulomb phase
in the spin ice Ho2T i2O7. Science 326: 415 (2009)

[20] S. T. Bramwell et al., Spin correlations in Ho2T i2O7.
Phys. Rev. Lett. 87, 047205 (2001)

[21] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B.
Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant,
R. Moessner, and S. E. Nagler, Neutron scattering in
the proximate quantum spin liquid α-RuCl3. Science 356:
6342 (2017)

[22] O. I. Motrunich and T. Senthil, Exotic order in simple
models of bosonic systems. Phys. Rev. Lett. 89, 277004
(2002)

[23] R. Moessner and S. L. Sondhi, Three dimensional res-
onating valence bond liquids and their excitations. Phys.
Rev. B 68, 184512 (2003)

[24] M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore
photons: The U(1) spin liquid in a S = 1/2 three-
dimensional frustrated magnet. Phys. Rev. B 69, 064404
(2004)

[25] O. I. Motrunich and T. Senthil, On the origin of artificial
electrodynamics and other stories in three-dimensional
bosonic models. Phys. Rev. B 71, 125102 (2005)

[26] M. Levin and X.-G. Wen, Quantum ether: Photons and
electrons from a rotor model. Phys. Rev. B 73, 035122
(2006)

[27] B. Canals and D. A. Garanin, Classical spin liquid:Exact
solution for the infinite-component antiferromagnetic
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