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We demonstrate that the parity-time (PT) symmetric interfaces formed between non-Hermitian amplifying 
(“gainy”) and lossy topological crystals exhibit PT phase transitions separating phases of lossless and 
decaying/amplifying topological edge transport. The spectrum of these interface states exhibits exceptional 
points (EPs) separating (i) PT symmetric real-valued regime with evenly distributed wavefunction in both 
gainy and lossy domains and (ii) PT broken complex-valued regime, in which edge states predominantly 
localize in one of the domains. Despite its complex-valued character, the edge spectrum remains gapless 
and interconnects complex-valued bulk bands through the EPs. We found that the regimes exist when the 
real edge spectrum is embedded into the bulk continuum without mixing, indicating that the edge states are 
protected against leakage into the bulk by the PT symmetry. Two exemplary PT symmetric systems, 
exhibiting valley and Chern topological phases, respectively, are investigated and the connection with the 
corresponding Hermitian systems is established. Interestingly, despite the complex bulk spectrum of the 
Chern insulator, the bulk-interface correspondence principle still holds, as long as the topological gap 
remains open. The proposed systems are experimentally feasible in photonics, which is evidenced by our 
rigorous full-wave simulations of PT-symmetric silicon-based photonic graphene. 

INTRODUCTION 

Unique characteristics of surface states emerging at the boundaries of topological materials have led to a 
huge recent interest in topological phases of solid matter [1-7], photonics [8-15] and mechanical systems 
[16-19]. While the most common edge configuration encountered in condensed matter physics is the free 
boundary of the topological materials, in classical systems, photonics in particular, the other kind of 
topological interfaces, commonly referred to as domain walls consisting of two topologically distinct 
domains, can be easily created and can be advantageous over the free boundary [9]. In particular, the shape 
of domain walls, defining the path of the edge states, can be reconfigurable [14,20]. As we show in this 
letter, introduction of an additional parity-time symmetry of domain walls can further enrich physics of 
topological systems, giving rise to a fundamentally different properties of the surface states compared to 
the free boundary configuration.  

Symmetries of interfaces in topological materials defined by the direction of a cut are known to have a 
direct impact on surface states. For systems with topological properties emerging from spatial symmetries, 
such as crystalline topological insulators, respecting of the essential symmetries at interfaces is determining 
for the very existence of topological surface states [21]. In the case of domain walls formed between crystals 
of commensurate lattice structure the interfaces can possess even higher symmetry [22], i.e. they can obey 
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inversion and glide symmetries, which are absent in the case of free standing edges and surfaces. These 
additional symmetries, in their turn, define the symmetry of the wavefunction of the topological surfaces 
states supported by the domain wall. As an example, the reversal of a synthetic gauge field represents one 
of the most common topological domain walls in photonics [9,14]. In this case the topological invariant, 
i.e. Chern or spin-Chern number, in two adjacent domains has the same magnitude, but reverses its sign 
across the domain wall, leading to the doubling of the number of edge states compared to the case of free-
standing boundaries of the same crystals. Due to the presence of inversion symmetry across the interfaces, 
the edge states confined to the domain wall can be immediately classified as odd or even with respect to 
this symmetry. Interestingly, any reduction of the domain wall symmetry, i.e. change of its direction, leads 
to cross-scattering between these states, but does not affect their chiral character, and the backscattering 
remains inhibited. This simple example shows that the symmetry of the domain walls can be exploited to 
control distribution of energy between multiple surface states, which can be utilized to selectively steer 
electromagnetic states in multiplexed topological photonic systems [20,23,24].     

In this article, by considering non-Hermitian parity-time-symmetric (PT) Hamiltonians [25,26], we show 
that the domain wall geometry allows to expand the role of interface symmetries even further. While non-
Hermitian topological systems have recently attracted a great deal of attention, it was suggested that non-
Hermitian potentials alone cannot yield new topological phases [27]. On the other hand,  
the effect of PT-symmetric potentials on topological edge states is the most fascinating theoretical questions 
being explored in recent publications [28-37].  

Whereas the combination of Hermitian topology and non-Hermitian perturbing potentials may have 
some interesting impact on the bulk spectrum leading to topological phase transitions [28-37], no general 
topological classification of non-Hermitian band structures is yet available. Fundamentally new concepts 
are required to account for the non-Hermiticity in topological systems. The domain walls, offer a natural 
way to consider the role of non-Hermiticity in a context of PT-symmetry; assuming an interface between 
topologically distinct crystals with gain and loss, one enables a new configuration of PT symmetric domain 
walls. Whereas the bulk states of such two crystals separately are expected to be complex valued, one can 
argue that the PT symmetry of the domain wall formed between them may still warrant real spectrum of 
the surface states [38-41], at least in some range of values of gain/loss and wavenumber.  

Another intriguing question is how the bulk-interface correspondence principle will apply to such 
a system with complex-valued bulk spectrum, and whether the edge spectrum will adopt to interconnect 
such bulk bands and in what form. Here, we discover that despite the non-Hermiticity, the bulk-interface 
correspondence holds in a wide range of gain/loss, but the edge spectrum exhibits a transition from PT 
preserved phase to spontaneously PT broken phase. In the case of PT preserved phase, the wavefunction of 
the edge state is evenly distributed between gainy and lossy domains, leading to the formation of PT 
symmetric edge states with real spectrum. In the second case the PT symmetry of edge states is 
spontaneously broken, and their wavefunction is predominantly confined to a particular (gainly or lossy) 
domain, resulting in complex edge spectrum. The transition between two phases is separated by EPs where 
the edge states coalesce [42-44]. Nonetheless, the number of the edge states is preserved across such PT-
transition, and the edge spectrum interconnects complex bulk bands along the imaginary energy direction. 
Recent successes in experimental realization of non-Hermitian topological photonic systems make us 
believe that PT-symmetric domain walls may lead to a variety of novel approaches to actively control robust 
guiding, lasing, and nonlinear optical effects, thus further expanding toolkit of topological photonics [45-
47]. 

Below we present a set of thorough analytical and numerical studies of several two-dimensional (2D) 
models of PT-symmetric domain walls separating non-Hermitian honeycomb lattices with gain and loss. 
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The paper is organized as follows. First, we show that for a valley-Hall-like lattice, there exist real-energy 
edge states that form loops in the complex energy diagram, bridging the two valleys of the Brillouin zone.  
In the limiting case of vanishing gain and loss, these “PT edge states” reduce to conventional valley edge 
states (Sec. II). They are sensitive to the local domain wall symmetry, but robust to the strength of the gain 
and loss for the case of a locally parity-symmetric wall. Next, the interplay of non-Hermiticity and topology 
with broken time reversal (TR) symmetry in the context of a non-Hermitian variant of the Haldane model 
with and without PT symmetric interface is analyzed (Sec. III) and nonreciprocal PT edge states located at 
the PT symmetric interface are observed. To test our analytic predictions in experimentally feasible context, 
an optical analogue of graphene with and without PT symmetric interface is studied both by rigorous full-
wave simulations and within the analytical continuous kp-type plane wave approximation (Sec. IV). 

BRIDGING VALLEYS BY PT EDGE STATES  

We first consider a 2D honeycomb valley-Hall lattice model shown in Fig. 1. The lattice consists of two 
domains, with gain (loss) for site A (B) in the upper domain II and loss (gain) for site B (A) in the lower 
domain I. The structure has a strip geometry: it is periodic along the x direction, parallel to the interface, 
and has a finite width 2(𝑁 + 1)𝑎( along the y direction with zigzag cut at the ends, where 𝑎( is the lattice 
constant. Onsite perturbed potentials are also introduced for site A (B) in domain I and site B (A) in the 
domain II, as shown in Fig. 1(a) (Fig. 1(b)). The lattices with bearded cut and armchair cut at the PT 
interface have the same orientation of the strip as that of zigzag cut, in Fig. 1(c) and Fig. 1(d). Equations of 
motion are derived from the following tight binding model (TBM) (for details, refer to Supplementary 
Material I): 

𝜖𝜓+,-(𝑛) = −𝜓+,1(𝑛 + 1) − 𝑔3𝜓+,1(𝑛) − Π𝑚𝜓+,-(𝑛), 𝑛 = 0,1,2, … ,𝑁 − 1,	
𝜖𝜓+,1(𝑛) = −𝜓+,-(𝑛 − 1) − 𝑔3𝜓+,-(𝑛) − Π(𝑚𝜓+,1(𝑛), 𝑛 = 1,2, … ,𝑁; 

𝜖𝜓++,-(𝑛) = −𝜓++,1(𝑛 − 1) − 𝑔3𝜓++,1(𝑛) − Π(𝑚∗𝜓+,-(𝑛),			𝑛 = 1,2, … ,𝑁,	
𝜖𝜓++,1(𝑛) = −𝜓++,-(𝑛 + 1) − 𝑔3𝜓++,-(𝑛) − Π𝑚∗𝜓++,1(𝑛), 𝑛 = 0,1,2, … ,𝑁 − 1.              (1) 
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FIG. 1. Different types of PT-symmetric interfaces (valley-Hall domain wall), with different local symmetry of the 
wall (see the red-dashed rectangle) (a) Zigzag cut with real (locally parity preserved) domain wall. (g) Zigzag cut 
with imaginary (locally parity broken) domain wall. (c) Bearded cut with real domain wall. (d) Armchair cut with 
real left part of domain wall and imaginary right part of the domain wall.  

 

Here,𝑔3 = 2𝑐𝑜𝑠(𝑘@ 2⁄ ), 𝑘@  is the momentum vector along the 𝑥 direction,  𝜓C,D(𝑛) is the component of the 
wave function within the domain 𝑠 = 𝐼, 𝐼𝐼 at site (𝑛, 𝑗), 𝑗 = 𝐴, 𝐵. 𝑚 = 𝑚I + 𝑖𝑚K, 𝑚I and 𝑚K are the real 
and imaginary part of perturbing onsite potential, respectively. For the sake of generality, we consider two 
cases that are both PT-symmetric but differ by the microscopic structure of the interface between the 
domains. We call these configurations “locally P-symmetric” and “locally P-broken” domain walls, and 
they are shown in Fig. 1(a) and Fig. 1(b), respectively. In the first case, 𝛱 = 1,𝛱( = 0,  the local parity of 
the sites at the boundary (red rectangle in Fig. 1(a)) is preserved, and the on-site energies adjacent to the 
wall are real. In the second case, 𝛱 = 0,𝛱( = 1, the local parity at the boundary is broken, while the 
adjacent on-site energies are imaginary. Globally, both domain wall configurations are PT-symmetric.  

At the domain wall, the TBM equations are 

𝜖𝜓+,1(0) = −𝜓++,-(0) − 𝑔3𝜓+,-(0) − Π(𝑚𝜓+,1(0)	
                                    𝜖𝜓++,-(0) = −𝜓+,1(0) − 𝑔3𝜓++,1(0) − Π(𝑚∗𝜓+,-(0)                                      (2) 

While at the outer boundaries of the strip 

𝜖𝜓+,-(𝑁) = −𝜓++,1(𝑁) − 𝑔3𝜓+,1(𝑁) − Π𝑚𝜓+,-(𝑁)	
𝜖𝜓++,1(𝑁) = −𝜓++,-(𝑁) − 𝑔3𝜓++,-(𝑁) − Π𝑚∗𝜓++,1(𝑁).                                  (3) 

 

In Fig. 2, we show the effect of gain and loss on the complex band structure. The complex energies are 
calculated from Eqs. 1-3 for different values of gain/loss parameter 𝑚K but the same 𝑚I = 0.3. Real-valued 
energies of discrete edge states are found for both locally P-symmetric and P-broken domain walls, and 
shown in Fig. 2(a)-(b) by thick blue and red lines, respectively. In the case when 𝑚I is much larger than 
𝑚K, shown in Fig. 2(a), these lossless edge states look much like the conventional valley edge states. Four 
edge states are embedded into the bulk spectrum and continuous along 𝑘@ . If 𝑚K is increased and becomes 
comparable with 𝑚I (𝑚K = 𝑚I = 0.3 in Fig. 2(b)), the dispersion curves of the edge bands form two heart-
shaped loops which are different in size. The edge states for the large loop correspond to the locally P-
symmetric domain wall, while those for small loop correspond to the locally P-broken domain wall. If 𝑚K 
becomes much larger than 𝑚I, the smaller loop shrinks and eventually vanish, while the larger loop persists 
(Fig.2(c)). Lossless edge states for the locally P-symmetric domain wall survive even for very strong 
gain/loss. Interestingly, we see in Fig. 2(d) that when 𝑚K is large enough to split the loop bands into separate 
bands, the lossless edge bands persist, embedded within the bulk continuum.   

It is interesting to take a closer look at the band structures in the 3D complex space. Fig. 3 demonstrates the 
same cases as ones in Fig. 2, with the imaginary part of energies being plotted in the 3rd dimension. Because 
of the PT symmetry of the Hamiltonian, the complex bulk bands have inversion symmetry with respect to 
the 𝜖K = 0 plane. When 𝑚K is small compared to 𝑚I, both the edge states and a few bulk states have real 
energies. If the magnitude of 𝑚K increases, these bulk states undergo a PT-breaking transition and split into 
complex conjugated pairs [Fig. 3(b-d)], and there are two regimes describing the behaviors of the edge 
states. In the first regime in Fig. 3(b-d), edge dispersion curves are real-valued lying in the 𝜖K = 0 plane, 
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and their wavefunctions are distributed evenly along the domain wall, as shown in Fig. 3(e). In the second 
regime in Fig. 3(b-c), however, the wavefunctions of edge states with the complex-valued energies become 
unevenly distributed among the domains across the domain wall, and this asymmetry increases as one 
moves farther away from the EPs. The edge states with energies above and below the 𝜖K = 0 plane are 
complex conjugated partners (for example the black and green dots in Fig. 3(b)), and their respective 
wavefunctions are symmetric to each other (in Fig. 3(f)). The two scenarios are connected by exceptional 
points (EPs), where multiple (usually two) eigenvalues and their associated eigenstates coalesce, and the 
Hamiltonian becomes defective [42, 43]. For a zigzag cut, the edge curves in the second regime will 
disappear if the magnitude of 𝑚K is too small or too large, as shown in Fig. 3(a) and Fig. 3(d). In the 
following text we study these peculiar behaviors of the edge states with a non-perturbative analytical 
method. 

 

FIG. 2. Energy spectra (grey color) calculated from the TBM and edge states found analytically for locally P-
symmetric (blue) and locally P-broken (red) zigzag domain walls. The parameters are (a) 𝑚I = 0.3,𝑚K = 0.05. 
(b) 𝑚I = 0.3;𝑚K = 0.3. (c)𝑚I = 0.3,𝑚K = 1.2.(d) 𝑚I = 0.3,𝑚K = 3. Number of cells for each domain is 
𝑁 = 50. 
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FIG. 3. Complex band structure of the same cases in (a-d) as ones in Fig.2. The wavefunction profiles of (e) PT 
edge states indicated by orange dot in Fig. 3(b) and complex-valued edge states with complex conjugated pairs 
indicated by black and green dots in Fig. 3(b) are schemed.  

PT edge states 

Next, we derive analytic descriptions for the real-energy edge states in the first regime preserving the PT 
phase, which we will henceforth refer to as ‘PT edge states’. We start from the equations of motion (1,2). 
The stripe is considered finite, which formally implies the following boundary conditions at the external 
boundaries of the stripe  

𝜓+ ++⁄ ,1 -⁄ (𝑁 + 1) = 0.                                                                        (4) 

Clearly, for 𝑁 → ∞ any edge states localized at the ends of the stripe barely feel the effects of gain/loss in 
the other domain; therefore, they possess complex energies with imaginary parts equal to the magnitude of 
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the gain/loss in their respective domains. Here, we focus on the edge states confined to the central domain 
wall, whose properties are inherently related to the PT symmetric configuration of the structure.  

We observe that the Hamiltonian constructed from Eqs. (1-2, 4) remains invariant under the action of PT 
symmetry operator defined upon the wave functions as 

  𝑃𝑇𝜓(𝑦) = 𝜓∗(−𝑦).	                                                                         (5) 

Consequently, if the eigenstates of the Hamiltonian are simultaneously the eigenstates of the PT-
symmetry operator, different from the Hermitian case, the antiunitary operator follows 

𝑃𝑇𝜓(𝑦) = 𝑒UKV𝜓(𝑦).                                                                        (6) 

where 𝑒UKV is the eigenvalue of the PT operator, then the eigenvalues of Hamiltonian corresponding to such 
eigenstates are real; and these states possess the specific symmetry. If the PT symmetric phase is 
spontaneously broken by tuning the Hamiltonian parameters, the energy eigenvalues are divided into 
complex conjugate pairs after their states coalesce at the EPs [44] (but still merge with bulk continuum). 
Both extended and localized states may or may not have PT symmetry phase, and PT symmetry phase is 
broken for all extended states if the gain/loss is tuned to be large. 

Based on Eqs. (5-6), the wavefunction components in the two domains should be related as  

𝜓+,-/1(𝑛) = 𝑒KV𝜓++,1/-∗(𝑛).                                                                     (7) 

Thereby, we recover the relation  

  𝑒UKX = YZ,[,\(])
YZ,[,^(]_`)

= YZ,[[,^
∗ (])

YZ,[[,\
∗ (]_`)

= YZ,[[,\(()
YZ,[,^(()

= YZ,[,^
∗ (()

YZ,[[,\
∗ (()

,		                                             (8) 

where we have introduced another phase factor  𝛽 = 𝜑 − 2	arg	(𝜓f,++,-(0)). Eqs. (8) equivalently yield 

𝜓f,+,-(𝑛) = 𝑒UKX𝜓f,+,1(𝑛 + 1) 

𝜓f,++,-(𝑛 + 1) = 𝑒UKX𝜓f,++,1(𝑛), 𝑛 = 0,1, … ,𝑁 − 1.                                     (9) 

The edge states satisfying Eqs. (7) belong to the PT symmetric phase, and the corresponding energy spectra 
are real.  PT edge states are supposed to be localized at the domain wall; moreover, they are concentrated 
at sites (0, 𝐵) in domain I and sites (0, 𝐴)in domain II.  

Thus, the solutions for the edge states assume the Bloch form  

𝜓f,+,-(𝑛) = 𝑎+𝑒K3g,[(]_`), 𝜓f,++,-(𝑛) = 𝑎++𝑒K3g,[[] 

𝜓f,+,1(𝑛) = 𝑏+𝑒K3g,[],𝜓f,++,1(𝑛) = 𝑏++𝑒K3g,[[(]_`), 𝑛 = 0,1, … ,𝑁 − 1.                        (10) 

where, due to the PT symmetry condition Eq. (7), the wave vectors and Bloch function amplitudes are 
related as  𝑘i,+ = −𝑘i,++∗ = 𝑝 + 𝑖𝜅,		𝑎+ = 𝑒KV𝑏++∗ ,  𝑏+ = 𝑒KV𝑎++∗  . The parameter 𝜅U`characterizes the decay 
length away from the interface. Remarkably, utilizing the Bloch ansatz Eq. (10) in Eqs. (8) with the 
boundary Eqs. (2,3), we get the continuity condition for the Bloch vector components 𝑎+ = 𝑎++, 𝑏+ = 𝑏++ , 
being of the same absolute value  

𝑎+
𝑏+∗
=
𝑎++
𝑏++∗

=
𝑎+
𝑏++∗

=
𝑏+
𝑎++∗

= 𝑒KV. 
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Substituting Eq. (10) into Eq. (1), we then obtain 

l
m𝜖f +𝑚 + 𝑒KXn𝑒UK3g,[ 𝑔3

𝑔3 m𝜖f + 𝑒UKXn𝑒K3g,[
o 𝑢f = 0,                                   (11) 

where 𝑢f = [𝑎+, 𝑏+]s. Solving the secular equation Eq. (11) and separating the real and imaginary parts, 
we get two equations, which define the dispersion of PT edge states  

                                      𝑚Km𝜖f + 𝑐𝑜𝑠(𝛽)n +𝑚I𝑠𝑖𝑛(𝛽) = 0, 

                             (𝜖f +𝑚I)𝜖f + 2𝑐𝑜𝑠(𝛽)𝜖f +𝑚I𝑐𝑜𝑠(𝛽) − 𝑚K𝑠𝑖𝑛(𝛽) − 𝑔3t + 1 = 0.                        (12) 

Alternatively, denoting the ratio of real and imaginary parts of the mass term 𝑟 = 𝑚I 𝑚K⁄ , we rewrite Eq. 
(12) as 

(𝑟t − 1)𝜖ft + (1 + 𝑟t)𝑚I𝜖f − (1 + 𝑟t)m𝑔3t − 1n = ±m2𝑟𝜖f +𝑚I(𝑟 + 𝑟U`)nw−𝜖ft + 𝑟t + 1 .  (13) 

The analytically derived dispersion of the edge modes perfectly agrees with the numerical tight-binding 
calculations.   

Remarkably, the parity symmetry with respect to the interface is restored if no gain/loss is present at the 
lattice sites, i.e. 𝑚K = 0. Consequently, the phase difference may take two values 𝛽 = 0, 𝜋, which clearly 
corresponds to the symmetric and anti-symmetric wave functions of the Hermitian valley edge states, 
respectively [48]. Therefore, the valley edge states of the Hermitian model can be regarded as special cases 
of the PT symmetric edge states analyzed above.  We will now compare the representative cases of 𝑚K = 0 
and 𝑚I = 0 in more detail. Fig. 4 presents the tight-binding calculations for these two cases in the whole 
Brillouin zone. Fig. 5 schematically shows the results of the kp approximation in the vicinity of the Dirac 
points for the case of a locally P-symmetric domain wall (for details, see Supplementary Material III). The 
calculation demonstrates that both these cases inherit the general characteristics of lossless edge states, with 
the gap either in real [𝑚K = 0, panels (a),(c) of Figs. 4,5]  or imaginary [𝑚I = 0, panels (b,d)]  part of the 
bulk spectrum crossed by the edge states.  

In particular, for 𝑚K = 0 Eqs. 12 yield the solutions  

𝜖f =

⎩
⎪
⎨

⎪
⎧
±1−

}~U�}~
�_����

t
,			locally	P − symmetric	domain	wall,

±1 −
}~_�}~

�_����

t
, locally	P − broken	domain	wall.

                            (14) 
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FIG. 4. Comparison of real (a,b) and imaginary (c,d) energy dispersion for  two extreme cases, namely, valley edge 
states with 𝑚I = 0.3 and 𝑚K = 0, (a,c) and PT edge states with 𝑚I = 0 and 𝑚K = 0.3(b,c).  Grey shaded regions 
represent the bulk bands, red and blue lines correspond to the edge states at locally P-broken  and P-symmetric 
interfaces, and the solid dots are the EPs. Number of cells employed in the tight-binding method for each domain is 
𝑁 = 50. 

Four valley edge states located at the locally P-symmetric (red bands) and locally P-broken (blue bands) 
domain walls are found, among which two bands with parity +1 (symmetric wave function along the 
interface) cross the band gap and other two with parity -1 (antisymmetric wave function along the interface) 
lie at the edges of the bulk spectrum, as seen in Fig. 4(a). From Eq. (14) it follows that at 𝑘 = 𝜋 the valley 
edge states have energy 𝜖f = ±1 for the locally P-symmetric domain wall, which is a general property of 
the PT edge states. Near the Dirac points, the valley edge states have the well-known linear dispersion [blue 
line in Fig. 5(a)] 

𝜖f =
U}~
t
± 𝑣𝑘                                                                        (15) 

traversing the gap between the Dirac cones of bulk states [shaded areas  in Fig. 5(a)]. Here,𝑘 = 𝑘@ − 𝜋 ∓
�
�
 

is the detuning of the wave vector from the Dirac point, 𝑣 = √�
t

 is the Fermi velocity and we assume that 
𝑚I is small. These valley edge states are associated with the valley Hall effect [49], and they can be gapped 
from bulk states by increasing the magnitude of 𝑚I.  

In contrast to the valley edge states, which have been widely explored in the literature, the edge states 
located the PT symmetric interface appearing solely due to 𝑚K have not been studied thus far. Though the 
real bulk spectra are not gapped, the imaginary parts of the bulk bands are discontinuous at 0, and the PT 
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edge bands in the first regime stay within the plane Im(𝜖f) = 0  and connect with the bulk bands through 
parabolic edge bands in the second regime, as indicated by solid dots in Fig. 4(b,d)  as long as 𝑚K ≤ 3. 
There is no connection between the PT edge bands and the bulk bands if  𝑚K > 3, as will be shown in the 
following section from the analysis of EPs in Fig. 6(a). The energies of the PT edge states can be expressed 
in the compact form 

𝜖f = ±√1 − 𝑡 ,                                                                 (16) 

𝑡 =
t��

�_}�
�±�mt��

�_}�
�n�U���

�

t
 . 

where the ± signs in 𝑡 correspond to the points in the large and small loops, for locally P-symmetric and 
locally P-broken cases, respectively. The spectra of the edge states when 𝑚K = 0.3 are plotted in red and 
blue color in Fig. 4(b,d). They form two loops and exactly reproduce the numerical tight-binding 
calculations. Analysis of the PT-symmetric case with 𝑚I = 0, |𝑚K| ≪ 1 near the Dirac point is presented 
in Fig. 5(b,d). Both the tight-binding calculation in  Fig. 4(d), and kp results in Fig. 5(d), show that the 
imaginary part of the complex bulk spectrum has a gap of width 	𝑚K, that is traversed by the parabolic 
dispersion of edge states 

𝜖ft = 𝑚K ± 2𝑣𝑘 .                                                                  (17) 

It demonstrates that the presence of the lossless edge states does not require a gap in the real bulk bands, 
allowing these edge states to be embedded in the continuum of bulk modes. The spectrum changes 
dramatically at the EPs 𝑘 = ∓𝑚K (2𝑣)⁄ , where the gap in the real part of the bulk spectrum vanishes and 
the edge states exhibit the PT phase transition from complex energy (dotted blue curves in Fig. 5) to real 
energy (solid blue curves). Interestingly, the group velocity corresponding to the dispersion law Eq. (17) 
diverges at the EPs, although the concept of group velocity should be used with care in the context of non-
Hermitian system [50]. 
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FIG. 5. Same as Fig. 4, but in the kp approximation near the Dirac point. Panels (a-d) illustrate schematics of two 
extreme cases, namely, valley edge states with 𝑚K = 0 and PT edge states with 𝑚I = 0 (b,d). Dispersion of real 
(a,b) and imaginary (c,d) parts of the complex energies are shown by shaded areas and blue curves for bulk 
continuum states and PT edge states, respectively. (e,f) Profiles of the real parts of the envelope wavefunction of 
interface states.  Bloch function structure and the on-site potential  𝛿𝑢 for each domain are indicated. 

In order to further elucidate the difference between the P-symmetric and PT-symmetric interface states we 
plot in Fig. 5(e-f) the wave functions of interface states in the kp model. The wave functions satisfy the 
general symmetry considerations established in Eqs. (8,9). Namely, for valley states the wave function 
envelope is real and monotonously decays from the interface, while the corresponding Bloch function has 
a certain parity, 𝛽 = 0, 𝜋. For PT edge states the envelope function exhibits damped oscillations with 
distance y from the interface ∝ exp	(𝑖𝑝𝑦 − 𝜅|𝑦|)	, as shown in Fig. 5(f).   

 

Effect of local symmetry at the domain wall 

Here we examine the effect of the different domain terminations on the existence of edge states. We stress 
that although Eqs. (13) fully recover the edge states energies, they are obtained without explicit use of the 
boundary conditions Eqs. (2,3) and rely only on assumption of PT symmetry. Additional insights about the 
edge states can be drawn from the local P-symmetry of the PT-symmetric domain wall, which is preserved 
in Fig. 1(a) and broken in Fig. 1(b). Since 𝑔(𝑘@ = 𝜋) = 0, it follows from Eqs. (1) that the PT edge states 
at 𝑘@ = 𝜋 residing at the domain wall are completely decoupled from the nearest neighbors. This suggests 
a short decay length 𝜅U` ≪ 1 at 𝑘@ = 𝜋, which is verified by the numerical calculation in Fig. S1(a). 
Consequently, these strongly localized PT edge states only ‘see’ the local wall symmetry in the red dashed 
region. The wall in Fig. 1(a) is locally parity-symmetric, and thus the PT edge states can be assigned a 
certain parity, and their energies derived from Eq. (13) are always equal to 𝜖f = ±1 at 𝑘@ = 𝜋 no matter 
what the ratio 𝑟 = 𝑚I 𝑚K⁄  is. In Fig. 1(b), the parity symmetry for the wall is broken (while the global PT-
symmetry is still preserved). Consequently, the PT edge states do not necessarily have a certain parity. The 
existence of an edge state with energy 𝜖f depends on the magnitude of 𝑟 and 𝑚K, and the PT edge states 
vanish if 𝑚K is too large. For example, when 𝑟 = 0, 𝜖f = ±w1 − 𝑠𝑖𝑛(𝛽)𝑚K, and if 𝑚K > 𝑠𝑖𝑛(𝛽)U`, 𝜖f 
becomes complex which contradicts the precondition of PT edge states, so the PT edge states don’t exist, 
only complex-conjugated pair of edge states appear inside the bandgap. 

With the distinct properties of PT edge states for different domain walls explored, we can easily distinguish 
between the edge states corresponding to the large loop, which are localized at a locally P-symmetric 
domain wall, and those corresponding to the small loops, which are localized at a locally P-broken wall for 
specific parameters (𝑚K,𝑚I). The decay length 𝜅U`of the PT edge states is calculated from the conditions 
Eqs. (2) combined with the solutions for different configurations, and is extensively discussed in the 
Supplementary Material II and IV.  

Exceptional points 

The case 𝛽 = ±�
t
 is examined in detail here. Since the Hamiltonian is non-Hermitian,𝐻 ≠ 𝐻¦, the right 

eigenstate |𝜓f§(𝑘)〉 and the left eigenstate |𝜓f©(𝑘)〉 have to be defined separately to satisfy the eigenvalue 
equations  

𝐻(𝑘)|𝜓f§(𝑘)〉 	= 𝜖f|𝜓f§(𝑘)〉	, 

𝐻¦(𝑘)|𝜓f©(𝑘)〉 	= 𝜖f|𝜓f©(𝑘)〉,                                                        (18) 
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where 𝜖f is the eigenenergy of the lossless edge states in the first regime, which is real. The eigenstates 
|𝜓f

§ ©⁄ (𝑘)〉 are given explicitly by 

|𝜓f
§/©(𝑘)〉 	= ∑ 𝜓f,C,D(𝑛)C,],D |𝑢C,D,]

§/© (𝑘)〉, 𝑛 = 	0,1, … ,𝑁                                (19) 

Using the normalization condition 〈𝑢K©(𝑘)|𝑢D§(𝑘)〉 	= 𝛿KD [51], and the fact that the vectors 
(¬𝑢D§(𝑘)〉, |𝑢D©(𝑘)〉) form a complete basis in the Hilbert space (dual space), the norm of the edge 
eigenstates is 

〈𝜓f©(𝑘)|𝜓f§(𝑘)〉 	= ∑ m𝑒KtX + 1n(¬𝜓f,+,-(𝑛)¬
t
+ ¬𝜓f,+,1(𝑛)¬

t
)] , 𝑛 = 	0,1, … ,𝑁.                   (20) 

 Here, we have exploited the PT-symmetry condition Eq. (7) and the phase factor 𝛽 defined in Eq. (8). 
Therefore, if 𝑒KX = ±𝑖, then 〈𝜓f©(𝑘)|𝜓f§(𝑘)〉 	= 0. The vanishing of the norm indicates that the 
eigenstates are no longer linearly independent, while having the same eigenvalues. This is the condition 
for an EP, which is distinct from the case of a band degeneracy [44]. Therefore, the two dispersion curves 
of PT edge states coalesce at EPs when 𝛽 = ±�

t
, with the PT symmetric phase being spontaneously 

broken.    

Now we examine the dependence of the position of EPs on the gain/loss parameter 𝑚K based on the 
discussion above. From Eq. (12) one finds that 𝜖f = ±𝑟 if  𝛽 = ±�

t
. Since the EPs of the PT edge states 

cannot be at 𝑘@ = 𝜋, we obtain 𝛽 = −�
t
 for locally P-symmetric domain wall, and  𝛽 = �

t
 for locally P-

broken domain walls, thus 

𝑔3 = ­
±w(𝑟t + 1)(𝑚K + 1),			locally	P − symmetric	domain	wall;
±w(𝑟t + 1)(1 −𝑚K), 	locally	P − broken	domain	wall.

                            (21) 

Interestingly, instead of relying on the conventional bulk-edge correspondence, the existence of PT edge 
states can be judged by evaluating the position of their EPs. The presence of EPs ensures the edge bands 
forming loops and crossing the bulk bandgap by going through these EPs, and the absence of EPs indicate 
PT edge states are either absent or gapped out from complex-valued bulk bands. Using the condition 0 ≤
𝑔3t ≤ 4, we find that the EPs stay near the Dirac points if 𝑟 = 0,𝑚K → 0. In another words, the PT symmetry 
of the modes near the Dirac points is most easily broken compared to modes at other 𝑘 in the Brillouin 
zone. This is generally true for bulk modes of the zigzag cut structure because the imaginary part of the 
complex bulk frequency abruptly changes at the Dirac points due to the perturbation of gain/loss. For a 
locally P-symmetric domain wall, if 𝑚I is fixed and 𝑚K is continuously increased from 0, the PT edge states 
first form two separate continuous dispersion curves along the 𝑘@  direction, then the EPs of edge states 
appear at 𝑘@ = 0 or 2𝜋 which divide the edge states into PT edge states and the complex-valued edge states 
regimes, and move toward 𝑘@ =

t�
�

 and ��
�

 and two edge state dispersion curves form a loop during this 
transition. . In the second regime edge states have parabolic dispersion curves and link the edge bands with 
bulk bands. Before reaching the Dirac point, the EPs recede back to 𝑘@ = 0 and 2𝜋, and completely vanish 
after 𝑚K is tuned to make (𝑟t + 1)(𝑚K + 1) > 4. This phase transition in the position of the EPs is shown 
in Fig. 6(a). In the light red shaded area, no EPs exist, but the PT edge states at 𝑘 = 𝜋 do, indicating only 
first regime exists. Therefore, these edge states are continuous along 𝑘@  and gapped at 𝑘@ = 0, 2𝜋, and the 
bulk and PT edge bands are no longer connected through parabolic edge bands (Fig. 2(a,d)). For large 
enough values 𝑚I, EPs are absent at any 𝑚K, and the edge bands detach from the bulk bands completely 
and remain real-valued.. In case of a locally P-broken wall, as shown in Fig. 1(b), if 𝑚I is fixed and 𝑚K is 



13 
 

continuously increased from 0, the PT edge states have continuous dispersion curves along 𝑘@ , then the EPs 
appear at 𝑘@ = 0 and 2𝜋 and move toward 𝑘@ = 𝜋. If 𝑚K = 1, the EPs merge at 𝑘@ = 𝜋, which indicates 
that the edge states have broken PT symmetry, as shown in Fig. 6(b). In fact, complex dispersion of edge 
states is linear and ‘degenerate’ at 𝑘@ = 𝜋. If 𝑚K > 1, the PT edge states completely vanish and only the 
second regime exists, corresponding to the light blue region in Fig. 6(b). This is consistent with the absence 
of PT edge states shown at the locally P-broken domain wall in Fig. 2(c-d).  

 

FIG. 6. Variation of the EPs’ position in the Brillouin zone obtained from Eqs. 21,22 depending on 𝑚K and 𝑚I for 
(a) zigzag cut and locally P-symmetric domain wall, (b) zigzag cut and locally P-broken domain wall, (c) bearded 
cut and locally P-symmetric and (d) bearded cut and locally P-broken domain wall. EPs don’t exist in light red and 
blue shaded regions, PT edge states are present in the light red region, but not in the light blue region.  

We have also investigated the PT symmetric interfaces with other cuts at the end of the strip, like bearded 
and armchair cuts, as shown in Fig. 1(c-d). The PT edge states are expected to exist in these configurations 
as well due to the PT symmetry of Hamiltonian. The study of these cases is summarized in the 
Supplementary Material IV. For the bearded cut, the positions of the EPs for locally P-symmetric and 
locally P-broken domain walls are given by 

𝑔3 =

⎩
⎪
⎨

⎪
⎧±`

t
¯𝑚K − �𝑚K

t + �
I�_`

° ,				locally	P − symmetric	domain	wall,

± `
t
¯𝑚K + �𝑚K

t + �
I�_`

° ,				locally	P − broken	domain	wall.
                        (22) 

For a locally P-symmetric domain wall, the EPs move in 𝑘@  between ±±t�
�
, 𝜋² (Fig. 6(c)) and never vanish 

since 0 < |𝑔3| < 1 as long as 𝑚K ≠ 0. Thus, the loop-shaped dispersion curves of PT edge states located 
at the locally P-symmetric domain wall always exist, and are robust against the perturbation of both the real 
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and imaginary part of onsite potential. For a locally P-broken domain wall, the EPs exist between wave 
number ±(0, 𝜋) and disappear if 𝑚K is large enough to make |𝑔3| > 1 (Fig. 6(d)). Note that the decay 
length 𝜅U` of the PT edge states for the bearded cut keeps approaching zero within a larger range in 𝑘@  if 
𝑚K increases, and it is smaller on average than that for the zigzag cut. PT symmetric interfaces for armchair 
cuts, however, always have two PT edge loops or four gapped PT edge bands that are doubly degenerate in 
energy, since there is no parity difference between the inner and the outer domain walls. The above analysis 
indicates that the robustness of PT edge states against the magnitude of gain/loss is a special feature of the 
honeycomb lattice, although PT edge states might exist in other lattice structures with PT symmetric 
interfaces.  

 

Our analysis also clearly demonstrates the importance of local P-symmetry of the domain wall for the 
system with gain/loss, this symmetry enforces the presence of edge states, and prevents the breaking of 
global PT-symmetry. The comparison between the valley edge states and PT-edge states for both domain 
wall configurations is summarized in Table I.  

TABLE I. Comparison between P-symmetric and PT-symmetric edge states for two types of domain walls. 

 P-symmetric P-broken, PT-symmetric 
Locally P-broken domain wall Valley edge states PT edge states for small gain/loss 
Locally P-symmetric domain wall PT edge states for arbitrary gain/loss 

 

Other configurations of gain and loss crystals without PT symmetric interface, schematized in Fig. S4, do 
not support lossless edge states. Hamiltonians constructed from these configurations are not PT-invariant. 
Details for different non-PT symmetric interfaces are explained in Supplementary Material V. 

NON-HERMITIAN HALDANE MODEL 

The second type of NH model we consider is a Haldane honeycomb lattice consisting of two domains with 
zigzag cuts at the ends of the strip [52]. Next nearest neighbor (NNN) complex hopping is considered with 
amplitude 𝑡´and phase factor 𝑒UKµ  corresponding to the Haldane flux. In order to construct the PT 
symmetric interface, we introduce gain at the A sites in domain I, and loss at the B sites in domain II. 
Periodic boundary conditions are applied along the direction 𝑥` and open boundary conditions are applied 
at the ends of strip along 𝑥t (Fig. 5). If the magnetic fluxes in domain I and II have the same distribution 
(Fig. 5(a)), then PT symmetry along the domain wall is destroyed by the local magnetic flux. PT symmetry 
of the interface can be restored by switching the direction of magnetic fluxes in either one of the domains, 
as seen in Fig. 5(b). The equations of motion for the two configurations are 

𝜖𝜓+,-(𝑛) = −ℎ_𝜓+,-(𝑛) − 𝑔U ±𝜓+,-(𝑛 + 1) + 𝜓+,-(𝑛 − 1)² − 𝜓+,1(𝑛 + 1) − 𝑔(𝜓+,1(𝑛) − 𝑖𝑚K𝜓+,-(𝑛),	

𝜖𝜓+,1(𝑛) = −ℎU𝜓+,1(𝑛) − 𝑔_ ±𝜓+,1(𝑛 + 1) + 𝜓+,1(𝑛 − 1)² − 𝜓+,-(𝑛 − 1) − 𝑔(𝜓+,-(𝑛); 

𝜖𝜓++,-(𝑛) = −ℎ±𝜓++,-(𝑛) − 𝑔∓ ±𝜓++,-(𝑛 + 1) + 𝜓++,-(𝑛 − 1)² − 𝜓++,1(𝑛 − 1) − 𝑔(𝜓++,1(𝑛),	

𝜖𝜓++,1(𝑛) = −ℎ∓𝜓++,1(𝑛) − 𝑔± ±𝜓++,1(𝑛 + 1) + 𝜓++,1(𝑛 − 1)² − 𝜓++,-(𝑛 + 1) − 𝑔(𝜓++,-(𝑛) +
𝑖𝑚K𝜓+,-(𝑛), 𝑛 = 1,2, … ,𝑁 − 1.   

                                               (23) 
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where ℎ± = 2𝑡´cos	(𝑘 ± Φ), 𝑔± = 2𝑡´cos	(𝑘/2 ± Φ), 𝑔( = 2 cos ±3
t
². The magnetic fluxes are not 

present at the domain wall, thus the boundary conditions are 

𝜖𝜓+,-(0) = −ℎ_𝜓+,-(0) − 𝑔U ±𝜓+,-(1) + 𝜓++,-(0)² − 𝜓+,1(1) − 𝑔(𝜓+,1(0) + 𝑚𝜓+,-(0),	

𝜖𝜓+,1(0) = −ℎU𝜓+,1(0) − 𝑔_ ±𝜓+,1(1) + 𝜓++,1(0)² − 𝜓++,-(0) − 𝑔(𝜓+,-(0), 

𝜖𝜓++,-(0) = −ℎ±𝜓++,-(0) − 𝑔∓ ±𝜓++,-(1) + 𝜓+,-(0)² − 𝜓+,1(0) − 𝑔(𝜓++,1(0),	

𝜖𝜓++,1(0) = −ℎ∓𝜓++,1(0) − 𝑔± ±𝜓++,1(1) + 𝜓+,1(0)² − 𝜓++,-(1) − 𝑔(𝜓++,-(0) +𝑚∗𝜓+,-(0),     (24) 

where 𝑚 = 𝑖𝑚K. From the previous analysis, we predict that the PT edge states localized at the domain wall 
cannot exist in the first configuration shown in Fig. 7(a), but might be present in the second configuration 
shown in Fig. 7(b) as long as the PT symmetry of the edge states is preserved. The bulk topological invariant 
of the Haldane model is not changed by introducing the gain/loss into the system without closing the bulk 
bandgap, though Berry connection is redefined in the context of NH system. The completeness and 
orthogonality conditions are only satisfied in the biorthogonal basis [34], and correspondingly Chern 
number is defined as 

𝑐 = 𝑐¸,¹ = 𝑐¹,¸, 𝜁, 𝜂 = 𝑅, 𝐿, 𝜁 ≠ 𝜂,                                                              (25) 

where the subscript denotes the right/left basis. It can be shown that the Chern number in Eq. (25) is 
uniquely defined and is quantized the same way as in the Hermitian context. The details of the gauge 
transformation and derivation of Berry connection for the NH Haldane model are given in the 
Supplementary Material VI. Based on the bulk-interface correspondence, we predict that topological edge 
states will be present and localized at the ends of the strip and at the domain wall even though their energies 
might be complex valued, as long as the bulk band gap are not closed.  

 

FIG. 7. Schematics of non-Hermitian Haldane model without (a) and with (b) the PT-symmetric interface. 

These predictions are verified by the TBM, and the complex band structures for two configurations are 
shown in Fig. 8. In both cases all the edge bands are connected with the bulk bands. One-way propagation 
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is also observed for the edge states, revealing the nonreciprocal (chiral) nature of topological edge states in 
the Haldane model. In the second configuration, edge states localized at the PT symmetric interface have 
two regimes as well, namely, PT symmetry preserved regime and PT symmetry spontaneously broken 
regime, and these regimes are connected by the EPs. Theedge states bridge the gapped bulk bands in the 
both directions of real and imaginary energies through the two parabolic edge bands (Fig. 8(b)), while edge 
states discussed in the valley case bridge gapped bulk bands only in the direction of imaginary energy. If 
the magnitude of gain/loss is very large, the bulk bands above and below PT edge states in the imaginary 
energy direction merge with each other, causing the disappearance of topological edge states localized at 
the ends of chain, while edge states at the interface of two domains always survive.. Hence, the robustness 
of PT symmetry is demonstrated by the fact that topological edge states at ends of chain vanish but edge 
states located at PT symmetric interface survive beyond the critical value of gain and loss. 

 

FIG. 8. Complex band structures with 𝑚K = 0.8, 𝑡´ = 0.2,(a) 𝜙 = �
�
  for both domains (b)𝜙 = �

�
 in the domain I 

and 𝜙 = −�
�

 in domain II. The cyan curves show the topological edge states located at the ends of the strip, and the 
red and blue bands in (a) are topological edge states at the domain wall, while the red loop bands in (b) are the 
topological PT edge states following from topological bulk invariance. Number of unit cells for each domain is 𝑁 =
60. 

OPTICAL IMPLEMENTATION OF PT SYMMETRIC INTERFACES IN PHOTONIC 
GRAPHENE 

PT symmetric systems can be realized in various settings including optical lattices, coupled waveguides, 
micro resonators and metamaterials [53-59]. To confirm our analytical prediction of PT edge states in the 
first regime, we now consider an electromagnetic model relevant to photonics. Specifically, we emulate PT 
symmetric interfaces in 2D honeycomb photonic crystals composed of dielectric rods (photonic graphene) 
with the imaginary corrections introduced to the dielectric permittivities of the rods, Im(𝜖-) = Δ  at sites 
A in domain I and Im(𝜖1) = −Δ at sites B in domain II.  

The effective photonic Hamiltonian near the Dirac points for the photonic crystal with the gain/loss 
introduced at one site of the unit cell is derived by using the plane-wave expansion of Maxwell’s equations 
(Supplementary Material V) 

𝐻ÂÃ(Ã´) = Ω( + 𝛿Ω( ± 𝑉𝛿𝑘@𝜎Ç@ + 𝑉𝛿𝑘i𝜎Çi +𝑚𝜎ÇÈ                                         (26) 
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where Ω( = 𝐾t(𝜖̃( + 𝜖̃̀ )  stands for the unperturbed onsite frequency, 𝛿𝛺( denotes the complex correction 
of the onsite energy, 𝑚 is the complex mass term due to gain/loss of the material, and 𝑉 = 𝐾(𝜖̃( + 𝜖̃̀ ) is 
the Fermi velocity. We list the values of 𝑚 and 𝛿𝛺( for different configurations of the unit cell in Table I. 
Among them, the crystals 𝜖- = 𝜖` ∓ 𝑖𝛥, 𝜖1 = 𝜖` and 𝜖- = 𝜖`, 𝜖1 = 𝜖` ± 𝑖𝛥 are PT-symmetric partners.  

As follows from Eq. (26), the band degeneracy at the Dirac point is slightly lifted due to the real part of the 
mass term 𝑚I being of order 𝛥t and inducing inversion symmetry breaking in the unit cell. Moreover, the 
bulk bands become flattened near the Dirac point due to the imaginary part 𝑚K ∝ 𝛥. These peculiar 
properties, not observed in Hermitian systems, are confirmed by both tight-binding and plane-wave 
expansion calculations (Fig. S7). Therefore, photonic lattices with a PT symmetric interface exhibit an 
effective onsite perturbed potential ∝ 𝛥t at sites A in domain I and at sites B in domain II. This corresponds 
to the model discussed in Section II with 𝑚I < 𝑚K (see Fig. 2(c)). To model the non-PT symmetric 
interface, we build the structure in such a way that Im(𝜖-) = Δ in domain I and Im(𝜖-) = −Δ in domain 
II, which corresponds to the third configuration discussed in Supplementary Material V. 

 

 𝜖- = 𝜖` −
𝑖𝛥, 𝜖1 = 𝜖` 

𝜖- = 𝜖` +
𝑖𝛥, 𝜖1 = 𝜖` 

𝜖- = 𝜖`, 
𝜖1 = 𝜖` −

𝑖𝛥 

𝜖- = 𝜖`, 𝜖1 =
𝜖` + 𝑖𝛥 

𝑚 Í
𝛥
𝜖`
− 𝑖Î𝑀 Í

𝛥
𝜖`
+ 𝑖Î𝑀 Í

−𝛥
𝜖`

+ 𝑖Î𝑀 −Í𝑖 +
𝛥
𝜖`
Î𝑀 

𝛿𝛺( Í
𝛥
𝜖`
+ 𝑖Î𝑀´ Í

𝛥
𝜖`
− 𝑖Î𝑀´ Í

𝛥
𝜖`
+ 𝑖Î𝑀´ Í

𝛥
𝜖`
− 𝑖Î𝑀´ 

 

While the effective kp Hamiltonian Eq. (26) accurately describes the bulk dispersion in the vicinity of the 
Dirac points, it requires corrections that are quadratic in 𝛿𝑘 to reproduce the dispersion of the PT edge 
states. This is in obvious contrast to the valley edge states, which are captured already by a linear-in-𝛿𝑘 
Hamiltonian. In Supplementary Material III we present a rigorous derivation of the effective 𝒌𝒑 
Hamiltonian with 𝛿𝑘t terms from the tight-binding method and establish the correspondence between 𝒌𝒑 
and tight-binding considerations of PT and valley edge states near the Dirac point, discussed in Sec. II. The 
𝛿𝑘t corrections to the Hamiltonian Eq. (26) can be straightforwardly derived from the plane-wave 
expansion in the same fashion. 

The full-wave simulations of electromagnetic response of the photonic crystal supercells with different cuts 
at the interfaces (zigzag, bearded and armchair) are performed using a finite-element method (FEM) solver 

(COMSOL Multiphysics). Periodic boundary conditions are imposed in 𝑥` = (1,0) and 𝑥t = (`
t
, √�
t
) 

directions of the supercell, with domains I and II in the lower and upper regions, respectively (Fig. 9, left 
panel). Thereby, two PT symmetric interfaces are simultaneously present in the geometry. Results of first-
principle simulations are summarized in Fig. 9.  

First, we model PT and non-PT interfaces with zigzag cuts at the boundaries. In the middle panel of Fig. 
9(a) the lossless loop bands (blue color) centered at 𝑘@ = 𝜋 𝑎(⁄  are observed, and these PT edge states are 
localized at the locally P-symmetric domain wall only, as shown in the left panel. The magnitude of 
gain/loss 𝛥 is chosen large enough to make EPs of the PT edge states located at the locally P-broken domain 

Table II. Complex frequency correction 𝛿𝛺( and mass term 𝑚 in the effective 
Hamiltonian due to gain, loss, and inversion symmetry breaking. 𝑀,𝑀´ ∝ 𝛥. 
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wall disappear, but not large enough to separate the loop bands for PT edge states located at locally P-
symmetric domain wall.  

Second, for the bearded locally P-symmetric and locally P-broken interfaces,  PT edge states with large and 
small loop bands are observed centered at 𝑘@ = 0, as seen in Fig. 9(b). We notice that the edge modes at 
the bearded cut generally decay faster away from the domain wall than those at the zigzag cut. This property 
is mentioned in Section II and discussed in detail in Supplementary Material II and IV.  

Third, two lossless loop bands are found at the armchair PT interfaces and localized at both the domain 
walls, since the domain walls in this geometry locally have no parity difference. 

For all three non-PT symmetric interfaces, no PT edge states in the bandgaps of bulk modes are found, as 
seen in the right panel of Fig. 9. Thus, our numerical results are consistent with the tight-binding 
calculations and analytical predictions.  

 

FIG. 9. Optical implementation of PT interfaces in photonic graphene with different cuts at the interfaces (indicated 
by black dash line): (a) zigzag, (b) bearded, and (c) armchair shaped boundaries. Left panels: Normal electric field 
|𝐸|profiles for the edge modes localized at different cuts of interfaces between photonic crystals with gain and loss.  
Middle panels: dispersion (the real part of frequency) for PT-symmetric domain walls. Right panels: dispersion for 
non-PT domain walls. Branches of PT edge states located at locally parity-symmetric and parity-broken interface are 
shown in blue and red, respectively, and bands of dissipative bulk modes in grey. Bandgap is indicated by pink 
shaded region. The crystals are made of dielectric rods of radius 𝑟Ó = 𝑟Ô = 0.15𝑎( with permittivity  𝜖` = 14 and 
gain/loss parameter 𝛥 = 5 embedded in air.  
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CONCLUSIONS 

In this paper we have demonstrated that PT symmetric interfaces between domains of non-Hermitian 
lattices with ‘gain’ and ‘loss’ support edge states which exhibit PT phase transitions. Two model systems, 
based on valley insulator and Chern insulator models, are investigated. For the valley-Hall insulator, a 
rigorous symmetry analysis unifying the conventional (Hermitian) valley edge states and the edge states of 
the PT-symmetric structure is presented. We found that if the local parity symmetry at the domain wall is 
broken, the PT edge states preserving the PT symmetric phase exist only for certain values of the gain/loss 
parameters, underlining the important role of spatial symmetries at the interface for the valley Hall systems. 
The existence of these edge states is linked to EPs in the edge band; by tuning the magnitude of the gain/loss, 
it is possible to annihilate the EPs, so that the PT symmetry is spontaneously broken and edge spectrum 
becomes complex-valued. If the domain wall is locally parity-symmetric, the PT edge states are always 
present no matter how the system is perturbed by onsite potential or gain/loss.  

To further explore the interplay of non-Hermiticity and topology, we studied the non-Hermitian Haldane 
model and demonstrated the robustness of its topological features to the introduction of gain/loss. We found 
the one-way edge states localized to the PT symmetric interfaces which also exhibit PT phase transition 
and interconnect bulk bands by branching out into imaginary energy dimension. Since these edge states are 
strong in a topological sense (as opposed to the valley states), they persist for large magnitudes of gain/loss, 
as long as bulk states are gapped. 

Last but not least, experimentally feasible optical analogous of honeycomb lattices with and without PT 
symmetric interface have been studied using first-principles numerical methods, which confirmed the 
analytical predictions. This work envisions a generalization of Hermitian topological edge states into the 
NH topological edge states which exhibits a PT phase transition. 
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