This is the accepted manuscript made available via CHORUS. The article has been published as:

PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators
Xiang Ni, Daria Smirnova, Alexander Poddubny, Daniel Leykam, Yidong Chong, and Alexander B. Khanikaev
Phys. Rev. B 98, 165129 — Published 17 October 2018
DOI: 10.1103/PhysRevB.98.165129
We demonstrate that the parity-time (PT) symmetric interfaces formed between non-Hermitian amplifying (“gainy”) and lossy topological crystals exhibit PT phase transitions separating phases of lossless and decaying/amplifying topological edge transport. The spectrum of these interface states exhibits exceptional points (EPs) separating (i) PT symmetric real-valued regime with evenly distributed wavefunction in both gainy and lossy domains and (ii) PT broken complex-valued regime, in which edge states predominantly localize in one of the domains. Despite its complex-valued character, the edge spectrum remains gapless and interconnects complex-valued bulk bands through the EPs. We found that the regimes exist when the real edge spectrum is embedded in the bulk continuum without mixing, indicating that the edge states are protected against leakage into the bulk by the PT symmetry. Two exemplary PT symmetric systems, exhibiting valley and Chern topological phases, respectively, are investigated and the connection with the corresponding Hermitian systems is established. Interestingly, despite the complex bulk spectrum of the Chern insulator, the bulk-interface correspondence principle still holds, as long as the topological gap remains open. The proposed systems are experimentally feasible in photonics, which is evidenced by our rigorous full-wave simulations of PT-symmetric silicon-based photonic graphene.

INTRODUCTION

Unique characteristics of surface states emerging at the boundaries of topological materials have led to a huge recent interest in topological phases of solid matter [1-7], photonics [8-15] and mechanical systems [16-19]. While the most common edge configuration encountered in condensed matter physics is the free boundary of the topological materials, in classical systems, photonics in particular, the other kind of topological interfaces, commonly referred to as domain walls consisting of two topologically distinct domains, can be easily created and can be advantageous over the free boundary [9]. In particular, the shape of domain walls, defining the path of the edge states, can be reconfigurable [14,20]. As we show in this letter, introduction of an additional parity-time symmetry of domain walls can further enrich physics of topological systems, giving rise to a fundamentally different properties of the surface states compared to the free boundary configuration.

Symmetries of interfaces in topological materials defined by the direction of a cut are known to have a direct impact on surface states. For systems with topological properties emerging from spatial symmetries, such as crystalline topological insulators, respecting of the essential symmetries at interfaces is determining for the very existence of topological surface states [21]. In the case of domain walls formed between crystals of commensurate lattice structure the interfaces can possess even higher symmetry [22], i.e. they can obey
inversion and glide symmetries, which are absent in the case of free standing edges and surfaces. These additional symmetries, in their turn, define the symmetry of the wavefunction of the topological surfaces states supported by the domain wall. As an example, the reversal of a synthetic gauge field represents one of the most common topological domain walls in photonics [9,14]. In this case the topological invariant, i.e. Chern or spin-Chern number, in two adjacent domains has the same magnitude, but reverses its sign across the domain wall, leading to the doubling of the number of edge states compared to the case of free-standing boundaries of the same crystals. Due to the presence of inversion symmetry across the interfaces, the edge states confined to the domain wall can be immediately classified as odd or even with respect to this symmetry. Interestingly, any reduction of the domain wall symmetry, i.e. change of its direction, leads to cross-scattering between these states, but does not affect their chiral character, and the backscattering remains inhibited. This simple example shows that the symmetry of the domain walls can be exploited to control distribution of energy between multiple surface states, which can be utilized to selectively steer electromagnetic states in multiplexed topological photonic systems [20,23,24].

In this article, by considering non-Hermitian parity-time-symmetric (PT) Hamiltonians [25,26], we show that the domain wall geometry allows to expand the role of interface symmetries even further. While non-Hermitian topological systems have recently attracted a great deal of attention, it was suggested that non-Hermitian potentials alone cannot yield new topological phases [27]. On the other hand, the effect of PT-symmetric potentials on topological edge states is the most fascinating theoretical questions being explored in recent publications [28-37].

Whereas the combination of Hermitian topology and non-Hermitian perturbing potentials may have some interesting impact on the bulk spectrum leading to topological phase transitions [28-37], no general topological classification of non-Hermitian band structures is yet available. Fundamentally new concepts are required to account for the non-Hermiticity in topological systems. The domain walls, offer a natural way to consider the role of non-Hermiticity in a context of PT-symmetry; assuming an interface between topologically distinct crystals with gain and loss, one enables a new configuration of PT symmetric domain walls. Whereas the bulk states of such two crystals separately are expected to be complex valued, one can argue that the PT symmetry of the domain wall formed between them may still warrant real spectrum of the surface states [38-41], at least in some range of values of gain/loss and wavenumber.

Another intriguing question is how the bulk-interface correspondence principle will apply to such a system with complex-valued bulk spectrum, and whether the edge spectrum will adopt to interconnect such bulk bands and in what form. Here, we discover that despite the non-Hermiticity, the bulk-interface correspondence holds in a wide range of gain/loss, but the edge spectrum exhibits a transition from PT preserved phase to spontaneously PT broken phase. In the case of PT preserved phase, the wavefunction of the edge state is evenly distributed between gainy and lossy domains, leading to the formation of PT symmetric edge states with real spectrum. In the second case the PT symmetry of edge states is spontaneously broken, and their wavefunction is predominantly confined to a particular (gainly or lossy) domain, resulting in complex edge spectrum. The transition between two phases is separated by EPs where the edge states coalesce [42-44]. Nonetheless, the number of the edge states is preserved across such PT-transition, and the edge spectrum interconnects complex bulk bands along the imaginary energy direction. Recent successes in experimental realization of non-Hermitian topological photonic systems make us believe that PT-symmetric domain walls may lead to a variety of novel approaches to actively control robust guiding, lasing, and nonlinear optical effects, thus further expanding toolkit of topological photonics [45-47].

Below we present a set of thorough analytical and numerical studies of several two-dimensional (2D) models of PT-symmetric domain walls separating non-Hermitian honeycomb lattices with gain and loss.
The paper is organized as follows. First, we show that for a valley-Hall-like lattice, there exist real-energy edge states that form loops in the complex energy diagram, bridging the two valleys of the Brillouin zone. In the limiting case of vanishing gain and loss, these “PT edge states” reduce to conventional valley edge states (Sec. II). They are sensitive to the local domain wall symmetry, but robust to the strength of the gain and loss for the case of a locally parity-symmetric wall. Next, the interplay of non-Hermiticity and topology with broken time reversal (TR) symmetry in the context of a non-Hermitian variant of the Haldane model with and without PT symmetric interface is analyzed (Sec. III) and nonreciprocal PT edge states located at the PT symmetric interface are observed. To test our analytic predictions in experimentally feasible context, an optical analogue of graphene with and without PT symmetric interface is studied both by rigorous full-wave simulations and within the analytical continuous kp-type plane wave approximation (Sec. IV).

BRIDGING VALLEYS BY PT EDGE STATES

We first consider a 2D honeycomb valley-Hall lattice model shown in Fig. 1. The lattice consists of two domains, with gain (loss) for site A (B) in the upper domain II and loss (gain) for site B (A) in the lower domain I. The structure has a strip geometry: it is periodic along the x direction, parallel to the interface, and has a finite width $2(N + 1)a_0$ along the y direction with zigzag cut at the ends, where a_0 is the lattice constant. Onsite perturbed potentials are also introduced for site A (B) in domain I and site B (A) in the domain II, as shown in Fig. 1(a) (Fig. 1(b)). The lattices with bearded cut and armchair cut at the PT interface have the same orientation of the strip as that of zigzag cut, in Fig. 1(c) and Fig. 1(d). Equations of motion are derived from the following tight binding model (TBM) (for details, refer to Supplementary Material I):

$$
\epsilon \psi_{I,A}(n) = -\psi_{I,B}(n + 1) - g_k \psi_{I,B}(n) - \Pi m \psi_{I,A}(n), \ n = 0, 1, 2, ..., N - 1,
$$

$$
\epsilon \psi_{I,B}(n) = -\psi_{I,A}(n - 1) - g_k \psi_{I,A}(n) - \Pi_0 m \psi_{I,B}(n), \ n = 1, 2, ..., N;
$$

$$
\epsilon \psi_{II,A}(n) = -\psi_{II,B}(n - 1) - g_k \psi_{II,B}(n) - \Pi_0 m^* \psi_{II,A}(n), \ n = 1, 2, ..., N,
$$

$$
\epsilon \psi_{II,B}(n) = -\psi_{II,A}(n + 1) - g_k \psi_{II,A}(n) - \Pi m^* \psi_{II,B}(n), \ n = 0, 1, 2, ..., N - 1.
$$

(1)
FIG. 1. Different types of PT-symmetric interfaces (valley-Hall domain wall), with different local symmetry of the wall (see the red-dashed rectangle) (a) Zigzag cut with real (locally parity preserved) domain wall. (g) Zigzag cut with imaginary (locally parity broken) domain wall. (c) Bearded cut with real domain wall. (d) Armchair cut with real left part of domain wall and imaginary right part of the domain wall.

Here, \(g_k = 2\cos(k_x/2) \), \(k_x \) is the momentum vector along the \(x \) direction, \(\psi_{s,j}(n) \) is the component of the wave function within the domain \(s = I, II \) at site \((n,j) \), \(j = A, B \). \(m = m_r + im_i \) and \(m_r \) and \(m_i \) are the real and imaginary part of perturbing onsite potential, respectively. For the sake of generality, we consider two cases that are both PT-symmetric but differ by the microscopic structure of the interface between the domains. We call these configurations “locally P-symmetric” and “locally P-broken” domain walls, and they are shown in Fig. 1(a) and Fig. 1(b), respectively. In the first case, \(I = 1, \Pi_0 = 0 \), the local parity of the sites at the boundary (red rectangle in Fig. 1(a)) is preserved, and the on-site energies adjacent to the wall are real. In the second case, \(I = 0, \Pi_0 = 1 \), the local parity at the boundary is broken, while the adjacent on-site energies are imaginary. Globally, both domain wall configurations are PT-symmetric.

At the domain wall, the TBM equations are

\[
\begin{align*}
\epsilon \psi_{I,B}(0) &= -\psi_{II,A}(0) - g_k \psi_{I,A}(0) - \Pi_0 m \psi_{I,B}(0) \\
\epsilon \psi_{II,A}(0) &= -\psi_{I,B}(0) - g_k \psi_{II,B}(0) - \Pi_0 m^* \psi_{I,A}(0)
\end{align*}
\]

(2)

While at the outer boundaries of the strip

\[
\begin{align*}
\epsilon \psi_{I,A}(N) &= -\psi_{II,B}(N) - g_k \psi_{I,B}(N) - \Pi m \psi_{I,A}(N) \\
\epsilon \psi_{II,B}(N) &= -\psi_{I,A}(N) - g_k \psi_{II,A}(N) - \Pi m^* \psi_{II,B}(N)
\end{align*}
\]

(3)

In Fig. 2, we show the effect of gain and loss on the complex band structure. The complex energies are calculated from Eqs. 1-3 for different values of gain/loss parameter \(m_i \) but the same \(m_r = 0.3 \). Real-valued energies of discrete edge states are found for both locally P-symmetric and P-broken domain walls, and shown in Fig. 2(a)-(b) by thick blue and red lines, respectively. In the case when \(m_r \) is much larger than \(m_i \), shown in Fig. 2(a), these lossless edge states look much like the conventional valley edge states. Four edge states are embedded into the bulk spectrum and continuous along \(k_x \). If \(m_i \) is increased and becomes comparable with \(m_r \) (\(m_i = m_r = 0.3 \) in Fig. 2(b)), the dispersion curves of the edge bands form two heart-shaped loops which are different in size. The edge states for the large loop correspond to the locally P-symmetric domain wall, while those for small loop correspond to the locally P-broken domain wall. If \(m_i \) becomes much larger than \(m_r \), the smaller loop shrinks and eventually vanish, while the larger loop persists (Fig. 2(c)). Lossless edge states for the locally P-symmetric domain wall survive even for very strong gain/loss. Interestingly, we see in Fig. 2(d) that when \(m_i \) is large enough to split the loop bands into separate bands, the lossless edge bands persist, embedded within the bulk continuum.

It is interesting to take a closer look at the band structures in the 3D complex space. Fig. 3 demonstrates the same cases as ones in Fig. 2, with the imaginary part of energies being plotted in the 3rd dimension. Because of the PT symmetry of the Hamiltonian, the complex bulk bands have inversion symmetry with respect to the \(\epsilon_i = 0 \) plane. When \(m_i \) is small compared to \(m_r \), both the edge states and a few bulk states have real energies. If the magnitude of \(m_i \) increases, these bulk states undergo a PT-breaking transition and split into complex conjugated pairs [Fig. 3(b-d)], and there are two regimes describing the behaviors of the edge states. In the first regime in Fig. 3(b-d), edge dispersion curves are real-valued lying in the \(\epsilon_i = 0 \) plane,
and their wavefunctions are distributed evenly along the domain wall, as shown in Fig. 3(c). In the second regime in Fig. 3(b-c), however, the wavefunctions of edge states with the complex-valued energies become unevenly distributed among the domains across the domain wall, and this asymmetry increases as one moves farther away from the EPs. The edge states with energies above and below the $\epsilon_i = 0$ plane are complex conjugated partners (for example the black and green dots in Fig. 3(b)), and their respective wavefunctions are symmetric to each other (in Fig. 3(f)). The two scenarios are connected by exceptional points (EPs), where multiple (usually two) eigenvalues and their associated eigenstates coalesce, and the Hamiltonian becomes defective \cite{42, 43}. For a zigzag cut, the edge curves in the second regime will disappear if the magnitude of m_i is too small or too large, as shown in Fig. 3(a) and Fig. 3(d). In the following text we study these peculiar behaviors of the edge states with a non-perturbative analytical method.

FIG. 2. Energy spectra (grey color) calculated from the TBM and edge states found analytically for locally P-symmetric (blue) and locally P-broken (red) zigzag domain walls. The parameters are (a) $m_r = 0.3, m_i = 0.05$. (b) $m_r = 0.3; m_i = 0.3$. (c) $m_r = 0.3, m_i = 1.2$. (d) $m_r = 0.3, m_i = 3$. Number of cells for each domain is $N = 50$.

\[\text{Diagram showing energy spectra for different parameters.}\]
FIG. 3. Complex band structure of the same cases in (a-d) as ones in Fig. 2. The wavefunction profiles of (e) PT edge states indicated by orange dot in Fig. 3(b) and complex-valued edge states with complex conjugated pairs indicated by black and green dots in Fig. 3(b) are schemed.

PT edge states

Next, we derive analytic descriptions for the real-energy edge states in the first regime preserving the PT phase, which we will henceforth refer to as ‘PT edge states’. We start from the equations of motion (1,2). The stripe is considered finite, which formally implies the following boundary conditions at the external boundaries of the stripe

$$\psi_{I/II,B/A}(N + 1) = 0.$$ \hspace{1cm} (4)

Clearly, for $N \to \infty$ any edge states localized at the ends of the stripe barely feel the effects of gain/loss in the other domain; therefore, they possess complex energies with imaginary parts equal to the magnitude of
the gain/loss in their respective domains. Here, we focus on the edge states confined to the central domain wall, whose properties are inherently related to the PT symmetric configuration of the structure.

We observe that the Hamiltonian constructed from Eqs. (1-2, 4) remains invariant under the action of PT symmetry operator defined upon the wave functions as

$$PT\psi(y) = \psi^*(-y).$$ \(5\)

Consequently, if the eigenstates of the Hamiltonian are simultaneously the eigenstates of the PT-symmetry operator, different from the Hermitian case, the antiunitary operator follows

$$PT\psi(y) = e^{-ip} \psi(y).$$ \(6\)

where e^{-ip} is the eigenvalue of the PT operator, then the eigenvalues of Hamiltonian corresponding to such eigenstates are real; and these states possess the specific symmetry. If the PT symmetric phase is spontaneously broken by tuning the Hamiltonian parameters, the energy eigenvalues are divided into complex conjugate pairs after their states coalesce at the EPs [44] (but still merge with bulk continuum). Both extended and localized states may or may not have PT symmetry phase, and PT symmetry phase is broken for all extended states if the gain/loss is tuned to be large.

Based on Eqs. (5-6), the wavefunction components in the two domains should be related as

$$\psi_{I,A/B}(n) = e^{i\varphi} \psi_{II,A/B}^*(n).$$ \(7\)

Thereby, we recover the relation

$$e^{-i\beta} = \frac{\psi_{e,I,A}(n)}{\psi_{e,I,B}(n+1)} = \frac{\psi_{e,II,A}(n)}{\psi_{e,II,B}(n+1)} = \frac{\psi_{p,I,A}(0)}{\psi_{p,I,B}(0)} = \frac{\psi_{p,II,A}(0)}{\psi_{p,II,B}(0)},$$ \(8\)

where we have introduced another phase factor $\beta = \varphi - 2 \arg(\psi_{e,I,A}(0))$. Eqs. (8) equivalently yield

$$\psi_{e,I,A}(n) = e^{-i\beta} \psi_{e,I,B}(n + 1)$$

$$\psi_{e,I,A}(n + 1) = e^{-i\beta} \psi_{e,I,B}(n), n = 0,1, ..., N - 1.$$ \(9\)

The edge states satisfying Eqs. (7) belong to the PT symmetric phase, and the corresponding energy spectra are real. PT edge states are supposed to be localized at the domain wall; moreover, they are concentrated at sites $(0,B)$ in domain I and sites $(0,A)$ in domain II.

Thus, the solutions for the edge states assume the Bloch form

$$\psi_{e,I,A}(n) = a_I e^{i\kappa y_I(n+1)}, \psi_{e,II,A}(n) = a_{II} e^{i\kappa y_{II}n}$$

$$\psi_{e,I,B}(n) = b_I e^{i\kappa y_{II}n}, \psi_{e,II,B}(n) = b_{II} e^{i\kappa y_{II}(n+1)}, n = 0,1, ..., N - 1.$$ \(10\)

where, due to the PT symmetry condition Eq. (7), the wave vectors and Bloch function amplitudes are related as $\kappa y_I = -\kappa y_{II} = p + ik$, $a_I = e^{i\varphi} b_I^*$, $b_I = e^{i\varphi} a_I^*$. The parameter κ^{-1} characterizes the decay length away from the interface. Remarkably, utilizing the Bloch ansatz Eq. (10) in Eqs. (8) with the boundary Eqs. (2,3), we get the continuity condition for the Bloch vector components $a_I = a_{II}$, $b_I = b_{II}$, being of the same absolute value

$$\frac{a_I}{b_I} = \frac{a_{II}}{b_{II}} = \frac{a_I}{b_I} = \frac{b_I}{a_{II}} = e^{i\varphi}.$$
Substituting Eq. (10) into Eq. (1), we then obtain

\[
\begin{bmatrix}
\epsilon_e + m + e^{i\beta}e^{-ik_yl} & g_k \\
g_k & \epsilon_e + e^{-i\beta}e^{ik_yl}
\end{bmatrix} u_e = 0,
\]

where \(u_e = [a_l, b_l]^T \). Solving the secular equation Eq. (11) and separating the real and imaginary parts, we get two equations, which define the dispersion of PT edge states

\[
m_i(\epsilon_e + \cos(\beta)) + m_r \sin(\beta) = 0,
\]

\[
(\epsilon_e + m_r)\epsilon_e + 2\cos(\beta)\epsilon_e + m_r \cos(\beta) - m_i \sin(\beta) - g_k^2 + 1 = 0.
\]

Alternatively, denoting the ratio of real and imaginary parts of the mass term \(r = m_r/m_i \), we rewrite Eq. (12) as

\[
(r^2 - 1)\epsilon_e^2 + (1 + r^2)m_r\epsilon_e - (1 + r^2)(g_k^2 - 1) = \pm (2r\epsilon_e + m_r(r + r^{-1}))\sqrt{-\epsilon_e^2 + r^2 + 1}.
\]

The analytically derived dispersion of the edge modes perfectly agrees with the numerical tight-binding calculations.

Remarkably, the parity symmetry with respect to the interface is restored if no gain/loss is present at the lattice sites, i.e. \(m_i = 0 \). Consequently, the phase difference may take two values \(\beta = 0, \pi \), which clearly corresponds to the symmetric and anti-symmetric wave functions of the Hermitian valley edge states, respectively [48]. Therefore, the valley edge states of the Hermitian model can be regarded as special cases of the PT symmetric edge states analyzed above. We will now compare the representative cases of \(m_i = 0 \) and \(m_r = 0 \) in more detail. Fig. 4 presents the tight-binding calculations for these two cases in the whole Brillouin zone. Fig. 5 schematically shows the results of the \(kp \) approximation in the vicinity of the Dirac points for the case of a locally P-symmetric domain wall (for details, see Supplementary Material III). The calculation demonstrates that both these cases inherit the general characteristics of lossless edge states, with the gap either in real \([m_i = 0, \text{panels (a),(c) of Figs. 4,5}] \) or imaginary \([m_r = 0, \text{panels (b,d)}] \) part of the bulk spectrum crossed by the edge states.

In particular, for \(m_i = 0 \) Eqs. 12 yield the solutions

\[
\epsilon_e = \begin{cases}
\pm 1 - \frac{m_r - \sqrt{m_r^2 + 4g_k^2}}{2}, & \text{locally P - symmetric domain wall,} \\
\pm 1 - \frac{m_r + \sqrt{m_r^2 + 4g_k^2}}{2}, & \text{locally P - broken domain wall.}
\end{cases}
\]
FIG. 4. Comparison of real (a,b) and imaginary (c,d) energy dispersion for two extreme cases, namely, valley edge states with \(m_r = 0.3 \) and \(m_l = 0 \), (a,c) and PT edge states with \(m_r = 0 \) and \(m_l = 0.3 \), (b,c). Grey shaded regions represent the bulk bands, red and blue lines correspond to the edge states at locally P-broken and P-symmetric interfaces, and the solid dots are the EPs. Number of cells employed in the tight-binding method for each domain is \(N = 50 \).

Four valley edge states located at the locally P-symmetric (red bands) and locally P-broken (blue bands) domain walls are found, among which two bands with parity +1 (symmetric wave function along the interface) cross the band gap and other two with parity -1 (antisymmetric wave function along the interface) lie at the edges of the bulk spectrum, as seen in Fig. 4(a). From Eq. (14) it follows that at \(k = \pi \) the valley edge states have energy \(\epsilon_e = \pm 1 \) for the locally P-symmetric domain wall, which is a general property of the PT edge states. Near the Dirac points, the valley edge states have the well-known linear dispersion [blue line in Fig. 5(a)]

\[
\epsilon_e = \frac{-m_e}{2} \pm \nu k
\]

traversing the gap between the Dirac cones of bulk states [shaded areas in Fig. 5(a)]. Here, \(k = k_x - \pi \mp \frac{\pi}{3} \) is the detuning of the wave vector from the Dirac point, \(\nu = \frac{\sqrt{3}}{2} \) is the Fermi velocity and we assume that \(m_r \) is small. These valley edge states are associated with the valley Hall effect [49], and they can be gapped from bulk states by increasing the magnitude of \(m_r \).

In contrast to the valley edge states, which have been widely explored in the literature, the edge states located the PT symmetric interface appearing solely due to \(m_l \) have not been studied thus far. Though the real bulk spectra are not gapped, the imaginary parts of the bulk bands are discontinuous at 0, and the PT
edge bands in the first regime stay within the plane $\text{Im}(\epsilon_e) = 0$ and connect with the bulk bands through parabolic edge bands in the second regime, as indicated by solid dots in Fig. 4(b,d) as long as $m_i \leq 3$. There is no connection between the PT edge bands and the bulk bands if $m_i > 3$, as will be shown in the following section from the analysis of EPs in Fig. 6(a). The energies of the PT edge states can be expressed in the compact form

$$
\epsilon_e = \pm \sqrt{1 - t},
$$

where the \pm signs in t correspond to the points in the large and small loops, for locally P-symmetric and locally P-broken cases, respectively. The spectra of the edge states when $m_i = 0.3$ are plotted in red and blue color in Fig. 4(b,d). They form two loops and exactly reproduce the numerical tight-binding calculations. Analysis of the PT-symmetric case with $m_r = 0, |m_i| \ll 1$ near the Dirac point is presented in Fig. 5(b,d). Both the tight-binding calculation in Fig. 4(d), and kp results in Fig. 5(d), show that the imaginary part of the complex bulk spectrum has a gap of width m_i, that is traversed by the parabolic dispersion of edge states

$$
\epsilon_e^2 = m_i \pm 2\nu k.
$$

It demonstrates that the presence of the lossless edge states does not require a gap in the real bulk bands, allowing these edge states to be embedded in the continuum of bulk modes. The spectrum changes dramatically at the EPs $k = \mp m_i/(2\nu)$, where the gap in the real part of the bulk spectrum vanishes and the edge states exhibit the PT phase transition from complex energy (dotted blue curves in Fig. 5) to real energy (solid blue curves). Interestingly, the group velocity corresponding to the dispersion law Eq. (17) diverges at the EPs, although the concept of group velocity should be used with care in the context of non-Hermitian system [50].
FIG. 5. Same as Fig. 4, but in the kp approximation near the Dirac point. Panels (a-d) illustrate schematics of two extreme cases, namely, valley edge states with $m_t = 0$ and PT edge states with $m_r = 0$ (b,d). Dispersion of real (a,b) and imaginary (c,d) parts of the complex energies are shown by shaded areas and blue curves for bulk continuum states and PT edge states, respectively. (e,f) Profiles of the real parts of the envelope wavefunction of interface states. Bloch function structure and the on-site potential δu for each domain are indicated.

In order to further elucidate the difference between the P-symmetric and PT-symmetric interface states we plot in Fig. 5(e-f) the wave functions of interface states in the kp model. The wave functions satisfy the general symmetry considerations established in Eqs. (8,9). Namely, for valley states the wave function envelope is real and monotonously decays from the interface, while the corresponding Bloch function has a certain parity, $\beta = 0, \pi$. For PT edge states the envelope function exhibits damped oscillations with distance y from the interface $\propto \exp (ipy - \kappa|y|)$, as shown in Fig. 5(f).

Effect of local symmetry at the domain wall

Here we examine the effect of the different domain terminations on the existence of edge states. We stress that although Eqs. (13) fully recover the edge states energies, they are obtained without explicit use of the boundary conditions Eqs. (2,3) and rely only on assumption of PT symmetry. Additional insights about the edge states can be drawn from the local P-symmetry of the PT-symmetric domain wall, which is preserved in Fig. 1(a) and broken in Fig. 1(b). Since $g(k_x = \pi) = 0$, it follows from Eqs. (1) that the PT edge states at $k_x = \pi$ residing at the domain wall are completely decoupled from the nearest neighbors. This suggests a short decay length $\kappa^{-1} \ll 1$ at $k_x = \pi$, which is verified by the numerical calculation in Fig. S1(a). Consequently, these strongly localized PT edge states only ‘see’ the local wall symmetry in the red dashed region. The wall in Fig. 1(a) is locally parity-symmetric, and thus the PT edge states can be assigned a certain parity, and their energies derived from Eq. (13) are always equal to $\epsilon_e = \pm 1$ at $k_x = \pi$ no matter what the ratio $r = m_r/m_t$ is. In Fig. 1(b), the parity symmetry for the wall is broken (while the global PT-symmetry is still preserved). Consequently, the PT edge states do not necessarily have a certain parity. The existence of an edge state with energy ϵ_e depends on the magnitude of r and m_t, and the PT edge states vanish if m_t is too large. For example, when $r = 0$, $\epsilon_e = \pm \sqrt{1 - \sin(\beta)m_t}$, and if $m_t > \sin(\beta)^{-1}$, ϵ_e becomes complex which contradicts the precondition of PT edge states, so the PT edge states don’t exist, only complex-conjugated pair of edge states appear inside the bandgap.

With the distinct properties of PT edge states for different domain walls explored, we can easily distinguish between the edge states corresponding to the large loop, which are localized at a locally P-symmetric domain wall, and those corresponding to the small loops, which are localized at a locally P-broken wall for specific parameters (m_t, m_r). The decay length κ^{-1} of the PT edge states is calculated from the conditions Eqs. (2) combined with the solutions for different configurations, and is extensively discussed in the Supplementary Material II and IV.

Exceptional points

The case $\beta = \pm \frac{\pi}{2}$ is examined in detail here. Since the Hamiltonian is non-Hermitian,$H \neq H^\dagger$, the right eigenstate $|\psi_e^R(k)\rangle$ and the left eigenstate $|\psi_e^L(k)\rangle$ have to be defined separately to satisfy the eigenvalue equations

$$H(k)|\psi_e^R(k)\rangle = \epsilon_e|\psi_e^R(k)\rangle,$$
$$H^\dagger(k)|\psi_e^L(k)\rangle = \epsilon_e|\psi_e^L(k)\rangle,$$

(18)
where ϵ_e is the eigenenergy of the lossless edge states in the first regime, which is real. The eigenstates $|\psi_e^{R/L}(k)\rangle$ are given explicitly by

$$|\psi_e^{R/L}(k)\rangle = \sum_{s,n,j} \psi_{e,s,j}(n) |u_{s,j,n}^{R/L}(k)\rangle, \quad n = 0,1,...,N$$ \hspace{1cm} (19)$$

Using the normalization condition $\langle u_i^L(k)|u_j^R(k)\rangle = \delta_{ij}$ [51], and the fact that the vectors $(|u_i^R(k)\rangle, |u_i^L(k)\rangle)$ form a complete basis in the Hilbert space (dual space), the norm of the edge eigenstates is

$$\langle \psi_e^L(k)|\psi_e^R(k)\rangle = \sum_n (e^{i2\beta} + 1)(|\psi_{e,L,n}(n)|^2 + |\psi_{e,R,n}(n)|^2), \quad n = 0,1,...,N.$$ \hspace{1cm} (20)$$

Here, we have exploited the PT-symmetry condition Eq. (7) and the phase factor β defined in Eq. (8). Therefore, if $e^{i\beta} = \pm i$, then $\langle \psi_e^L(k)|\psi_e^R(k)\rangle = 0$. The vanishing of the norm indicates that the eigenstates are no longer linearly independent, while having the same eigenvalues. This is the condition for an EP, which is distinct from the case of a band degeneracy [44]. Therefore, the two dispersion curves of PT edge states coalesce at EPs when $\beta = \pm \frac{\pi}{2}$, with the PT symmetric phase being spontaneously broken.

Now we examine the dependence of the position of EPs on the gain/loss parameter m_t based on the discussion above. From Eq. (12) one finds that $\epsilon_e = \pm \pi$ if $\beta = \pm \frac{\pi}{2}$. Since the EPs of the PT edge states cannot be at $k_x = \pi$, we obtain $\beta = -\frac{\pi}{2}$ for locally P-symmetric domain wall, and $\beta = \frac{\pi}{2}$ for locally P-broken domain walls, thus

$$g_k = \begin{cases}
\pm \sqrt{(r^2 + 1)(m_t + 1)}, & \text{locally P-symmetric domain wall;} \\
\pm \sqrt{(r^2 + 1)(1-m_t)}, & \text{locally P-broken domain wall.}
\end{cases}$$ \hspace{1cm} (21)$$

Interestingly, instead of relying on the conventional bulk-edge correspondence, the existence of PT edge states can be judged by evaluating the position of their EPs. The presence of EPs ensures the edge bands forming loops and crossing the bulk bandgap by going through these EPs, and the absence of EPs indicate PT edge states are either absent or gapped out from complex-valued bulk bands. Using the condition $0 \leq g_k^2 \leq 4$, we find that the EPs stay near the Dirac points if $r = 0$, $m_t \to 0$. In another words, the PT symmetry of the modes near the Dirac points is most easily broken compared to modes at other k in the Brillouin zone. This is generally true for bulk modes of the zigzag cut structure because the imaginary part of the complex bulk frequency abruptly changes at the Dirac points due to the perturbation of gain/loss. For a locally P-symmetric domain wall, if m_r is fixed and m_t is continuously increased from 0, the PT edge states first form two separate continuous dispersion curves along the k_x direction, then the EPs of edge states appear at $k_x = 0$ or 2π which divide the edge states into PT edge states and the complex-valued edge states regimes, and move toward $k_x = \frac{2\pi}{3}$ and $\frac{4\pi}{3}$ and two edge state dispersion curves form a loop during this transition. In the second regime edge states have parabolic dispersion curves and link the edge bands with bulk bands. Before reaching the Dirac point, the EPs recede back to $k_x = 0$ and 2π, and completely vanish after m_t is tuned to make $(r^2 + 1)(m_t + 1) > 4$. This phase transition in the position of the EPs is shown in Fig. 6(a). In the light red shaded area, no EPs exist, but the PT edge states at $k = \pi$ do, indicating only first regime exists. Therefore, these edge states are continuous along k_x and gapped at $k_x = 0, 2\pi$, and the bulk and PT edge bands are no longer connected through parabolic edge bands (Fig. 2(a,d)). For large enough values m_r, EPs are absent at any m_t, and the edge bands detach from the bulk bands completely and remain real-valued. In case of a locally P-broken wall, as shown in Fig. 1(b), if m_r is fixed and m_t is
continuously increased from 0, the PT edge states have continuous dispersion curves along k_x, then the EPs appear at $k_x = 0$ and 2π and move toward $k_x = \pi$. If $m_i = 1$, the EPs merge at $k_x = \pi$, which indicates that the edge states have broken PT symmetry, as shown in Fig. 6(b). In fact, complex dispersion of edge states is linear and ‘degenerate’ at $k_x = \pi$. If $m_i > 1$, the PT edge states completely vanish and only the second regime exists, corresponding to the light blue region in Fig. 6(b). This is consistent with the absence of PT edge states shown at the locally P-broken domain wall in Fig. 2(c-d).

FIG. 6. Variation of the EPs’ position in the Brillouin zone obtained from Eqs. 21,22 depending on m_i and m_r for (a) zigzag cut and locally P-symmetric domain wall, (b) zigzag cut and locally P-broken domain wall, (c) bearded cut and locally P-symmetric and (d) bearded cut and locally P-broken domain wall. EPs don’t exist in light red and blue shaded regions, PT edge states are present in the light red region, but not in the light blue region.

We have also investigated the PT symmetric interfaces with other cuts at the end of the strip, like bearded and armchair cuts, as shown in Fig. 1(c-d). The PT edge states are expected to exist in these configurations as well due to the PT symmetry of Hamiltonian. The study of these cases is summarized in the Supplementary Material IV. For the bearded cut, the positions of the EPs for locally P-symmetric and locally P-broken domain walls are given by

$$g_k = \begin{cases} \pm \frac{1}{2} \left(m_i - \sqrt{m_i^2 + \frac{4}{r^2+1}} \right), & \text{locally P-symmetric domain wall}, \\ \pm \frac{1}{2} \left(m_i + \sqrt{m_i^2 + \frac{4}{r^2+1}} \right), & \text{locally P-broken domain wall}. \end{cases}$$

(22)

For a locally P-symmetric domain wall, the EPs move in k_x between $\pm \left(\frac{2\pi}{3}, \pi \right)$ (Fig. 6(c)) and never vanish since $0 < |g_k| < 1$ as long as $m_i \neq 0$. Thus, the loop-shaped dispersion curves of PT edge states located at the locally P-symmetric domain wall always exist, and are robust against the perturbation of both the real
and imaginary part of onsite potential. For a locally P-broken domain wall, the EPs exist between wave number \(\pm (0, \pi) \) and disappear if \(m_1 \) is large enough to make \(|g_1| > 1 \) (Fig. 6(d)). Note that the decay length \(\kappa^{-1} \) of the PT edge states for the bearded cut keeps approaching zero within a larger range in \(k_x \) if \(m_1 \) increases, and it is smaller on average than that for the zigzag cut. PT symmetric interfaces for armchair cuts, however, always have two PT edge loops or four gapped PT edge bands that are doubly degenerate in energy, since there is no parity difference between the inner and the outer domain walls. The above analysis indicates that the robustness of PT edge states against the magnitude of gain/loss is a special feature of the honeycomb lattice, although PT edge states might exist in other lattice structures with PT symmetric interfaces.

Our analysis also clearly demonstrates the importance of local P-symmetry of the domain wall for the system with gain/loss, this symmetry enforces the presence of edge states, and prevents the breaking of global PT-symmetry. The comparison between the valley edge states and PT-edge states for both domain wall configurations is summarized in Table I.

<table>
<thead>
<tr>
<th></th>
<th>P-symmetric</th>
<th>P-broken, PT-symmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locally P-broken domain wall</td>
<td>Valley edge states</td>
<td>PT edge states for small gain/loss</td>
</tr>
<tr>
<td>Locally P-symmetric domain wall</td>
<td>PT edge states for arbitrary gain/loss</td>
<td></td>
</tr>
</tbody>
</table>

Other configurations of gain and loss crystals without PT symmetric interface, schematized in Fig. S4, do not support lossless edge states. Hamiltonians constructed from these configurations are not PT-invariant. Details for different non-PT symmetric interfaces are explained in Supplementary Material V.

NON-HERMITIAN HALDANE MODEL

The second type of NH model we consider is a Haldane honeycomb lattice consisting of two domains with zigzag cuts at the ends of the strip [52]. Next nearest neighbor (NNN) complex hopping is considered with amplitude \(t^\prime \) and phase factor \(e^{-i\phi} \) corresponding to the Haldane flux. In order to construct the PT symmetric interface, we introduce gain at the A sites in domain I, and loss at the B sites in domain II. Periodic boundary conditions are applied along the direction \(x_1 \) and open boundary conditions are applied at the ends of strip along \(x_2 \) (Fig. 5). If the magnetic fluxes in domain I and II have the same distribution (Fig. 5(a)), then PT symmetry along the domain wall is destroyed by the local magnetic flux. PT symmetry of the interface can be restored by switching the direction of magnetic fluxes in either one of the domains, as seen in Fig. 5(b). The equations of motion for the two configurations are

\[
\begin{align*}
\epsilon_1 \psi_{1,A}(n) &= -h_+ \psi_{1,A}(n) - g_- \left(\psi_{1,A}(n + 1) + \psi_{1,A}(n - 1) \right) - \psi_{1,B}(n + 1) - g_0 \psi_{1,B}(n) - \imath m_1 \psi_{1,A}(n), \\
\epsilon_2 \psi_{1,B}(n) &= -h_- \psi_{1,B}(n) - g_+ \left(\psi_{1,B}(n + 1) + \psi_{1,B}(n - 1) \right) - \psi_{1,A}(n - 1) - g_0 \psi_{1,A}(n); \\
\epsilon_3 \psi_{11,A}(n) &= -h_+ \psi_{11,A}(n) - g_- \left(\psi_{11,A}(n + 1) + \psi_{11,A}(n - 1) \right) - \psi_{11,B}(n + 1) - g_0 \psi_{11,B}(n), \\
\epsilon_4 \psi_{11,B}(n) &= -h_- \psi_{11,B}(n) - g_+ \left(\psi_{11,B}(n + 1) + \psi_{11,B}(n - 1) \right) - \psi_{11,A}(n + 1) - g_0 \psi_{11,A}(n) + \imath m_1 \psi_{1,A}(n), \\
&\quad n = 1, 2, ..., N - 1.
\end{align*}
\]
where \(h_\pm = 2t' \cos (k \pm \Phi) \), \(g_\pm = 2t' \cos (k/2 \pm \Phi) \), \(g_0 = 2 \cos \left(\frac{k}{2} \right) \). The magnetic fluxes are not present at the domain wall, thus the boundary conditions are

\[
\begin{align*}
\epsilon \psi_{I,A}(0) &= -h_- \psi_{I,A}(0) - g_+ \left(\psi_{I,A}(1) + \psi_{I,B}(0) \right) - \psi_{I,B}(1) + g_0 \psi_{I,B}(0) + m \psi_{I,A}(0), \\
\epsilon \psi_{I,B}(0) &= -h_- \psi_{I,B}(0) - g_+ \left(\psi_{I,B}(1) + \psi_{I,A}(0) \right) - \psi_{I,A}(1) - g_0 \psi_{I,A}(0), \\
\epsilon \psi_{II,A}(0) &= -h_- \psi_{II,A}(0) - g_+ \left(\psi_{II,A}(1) + \psi_{II,B}(0) \right) - \psi_{II,B}(1) - g_0 \psi_{II,B}(0), \\
\epsilon \psi_{II,B}(0) &= -h_- \psi_{II,B}(0) - g_+ \left(\psi_{II,B}(1) + \psi_{II,A}(0) \right) - \psi_{II,A}(1) - g_0 \psi_{II,A}(0) + m^* \psi_{I,A}(0),
\end{align*}
\]

(24)

where \(m = im_1 \). From the previous analysis, we predict that the PT edge states localized at the domain wall cannot exist in the first configuration shown in Fig. 7(a), but might be present in the second configuration shown in Fig. 7(b) as long as the PT symmetry of the edge states is preserved. The bulk topological invariant of the Haldane model is not changed by introducing the gain/loss into the system without closing the bulk bandgap, though Berry connection is redefined in the context of NH system. The completeness and orthogonality conditions are only satisfied in the biorthogonal basis [34], and correspondingly Chern number is defined as

\[
c = c^\xi \eta = c^{\eta \xi}, \xi, \eta = R, L, \xi \neq \eta, \tag{25}
\]

where the subscript denotes the right/left basis. It can be shown that the Chern number in Eq. (25) is uniquely defined and is quantized the same way as in the Hermitian context. The details of the gauge transformation and derivation of Berry connection for the NH Haldane model are given in the Supplementary Material VI. Based on the bulk-interface correspondence, we predict that topological edge states will be present and localized at the ends of the strip and at the domain wall even though their energies might be complex valued, as long as the bulk band gap are not closed.

FIG. 7. Schematics of non-Hermitian Haldane model without (a) and with (b) the PT-symmetric interface.

These predictions are verified by the TBM, and the complex band structures for two configurations are shown in Fig. 8. In both cases all the edge bands are connected with the bulk bands. One-way propagation
is also observed for the edge states, revealing the nonreciprocal (chiral) nature of topological edge states in the Haldane model. In the second configuration, edge states localized at the PT symmetric interface have two regimes as well, namely, PT symmetry preserved regime and PT symmetry spontaneously broken regime, and these regimes are connected by the EPs. The edge states bridge the gapped bulk bands in the both directions of real and imaginary energies through the two parabolic edge bands (Fig. 8(b)), while edge states discussed in the valley case bridge gapped bulk bands only in the direction of imaginary energy. If the magnitude of gain/loss is very large, the bulk bands above and below PT edge states in the imaginary energy direction merge with each other, causing the disappearance of topological edge states localized at the ends of chain, while edge states at the interface of two domains always survive. Hence, the robustness of PT symmetry is demonstrated by the fact that topological edge states at ends of chain vanish but edge states located at PT symmetric interface survive beyond the critical value of gain and loss.

FIG. 8. Complex band structures with $m_l = 0.8, t' = 0.2$, (a) $\phi = \frac{\pi}{3}$ for both domains (b) $\phi = \frac{\pi}{3}$ in the domain I and $\phi = -\frac{\pi}{3}$ in domain II. The cyan curves show the topological edge states located at the ends of the strip, and the red and blue bands in (a) are topological edge states at the domain wall, while the red loop bands in (b) are the topological PT edge states following from topological bulk invariance. Number of unit cells for each domain is $N = 60$.

OPTICAL IMPLEMENTATION OF PT SYMMETRIC INTERFACES IN PHOTONIC GRAPHENE

PT symmetric systems can be realized in various settings including optical lattices, coupled waveguides, micro resonators and metamaterials [53-59]. To confirm our analytical prediction of PT edge states in the first regime, we now consider an electromagnetic model relevant to photonics. Specifically, we emulate PT symmetric interfaces in 2D honeycomb photonic crystals composed of dielectric rods (photonic graphene) with the imaginary corrections introduced to the dielectric permittivities of the rods, $\text{Im}(\epsilon_A) = \Delta$ at sites A in domain I and $\text{Im}(\epsilon_B) = -\Delta$ at sites B in domain II.

The effective photonic Hamiltonian near the Dirac points for the photonic crystal with the gain/loss introduced at one site of the unit cell is derived by using the plane-wave expansion of Maxwell’s equations (Supplementary Material V)

$$
\hat{H}_{K(K')} = \Omega_0 + \delta \Omega_0 \pm V \delta k_x \hat{\sigma}_x + V \delta k_y \hat{\sigma}_y + m \hat{\sigma}_z
$$

(26)
where $\Omega_0 = K^2(\tilde{\varepsilon}_0 + \tilde{\varepsilon}_1)$ stands for the unperturbed onsite frequency, $\delta \Omega_0$ denotes the complex correction of the onsite energy, m is the complex mass term due to gain/loss of the material, and $V = K(\tilde{\varepsilon}_0 + \tilde{\varepsilon}_1)$ is the Fermi velocity. We list the values of m and $\delta \Omega_0$ for different configurations of the unit cell in Table I. Among them, the crystals $\varepsilon_A = \varepsilon_1 + i\Delta$, $\varepsilon_B = \varepsilon_1$ and $\varepsilon_A = \varepsilon_1$, $\varepsilon_B = \varepsilon_1 + i\Delta$ are PT-symmetric partners.

As follows from Eq. (26), the band degeneracy at the Dirac point is slightly lifted due to the real part of the mass term m_e being of order Δ^2 and inducing inversion symmetry breaking in the unit cell. Moreover, the bulk bands become flattened near the Dirac point due to the imaginary part $m_t \propto \Delta$. These peculiar properties, not observed in Hermitian systems, are confirmed by both tight-binding and plane-wave expansion calculations (Fig. S7). Therefore, photonic lattices with a PT symmetric interface exhibit an effective onsite perturbed potential $\propto \Delta^2$ at sites A in domain I and at sites B in domain II. This corresponds to the model discussed in Section II with $m_r < m_t$ (see Fig. 2(c)). To model the non-PT symmetric interface, we build the structure in such a way that $\text{Im}(\varepsilon_A) = \Delta$ in domain I and $\text{Im}(\varepsilon_A) = -\Delta$ in domain II, which corresponds to the third configuration discussed in Supplementary Material V.

<table>
<thead>
<tr>
<th>m</th>
<th>$\delta \Omega_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_A = \varepsilon_1 - i\Delta$, $\varepsilon_B = \varepsilon_1$</td>
<td>$(\Delta + i)M$, $(\Delta - i)M'$</td>
</tr>
<tr>
<td>$\varepsilon_A = \varepsilon_1 + i\Delta$, $\varepsilon_B = \varepsilon_1$</td>
<td>$(\Delta - i)M'$, $(\Delta + i)M$</td>
</tr>
<tr>
<td>$\varepsilon_A = \varepsilon_1$, $\varepsilon_B = \varepsilon_1 - i\Delta$</td>
<td>$(\Delta + i)M$, $(\Delta - i)M'$</td>
</tr>
</tbody>
</table>

While the effective kp Hamiltonian Eq. (26) accurately describes the bulk dispersion in the vicinity of the Dirac points, it requires corrections that are quadratic in δk to reproduce the dispersion of the PT edge states. This is in obvious contrast to the valley edge states, which are captured already by a linear-in-δk Hamiltonian. In Supplementary Material III we present a rigorous derivation of the effective kp Hamiltonian with δk^2 terms from the tight-binding method and establish the correspondence between kp and tight-binding considerations of PT and valley edge states near the Dirac point, discussed in Sec. II. The δk^2 corrections to the Hamiltonian Eq. (26) can be straightforwardly derived from the plane-wave expansion in the same fashion.

The full-wave simulations of electromagnetic response of the photonic crystal supercells with different cuts at the interfaces (zigzag, bearded and armchair) are performed using a finite-element method (FEM) solver (COMSOL Multiphysics). Periodic boundary conditions are imposed in $x_1 = (1,0)$ and $x_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ directions of the supercell, with domains I and II in the lower and upper regions, respectively (Fig. 9, left panel). Thereby, two PT symmetric interfaces are simultaneously present in the geometry. Results of first-principle simulations are summarized in Fig. 9.

First, we model PT and non-PT interfaces with zigzag cuts at the boundaries. In the middle panel of Fig. 9(a) the lossless loop bands (blue color) centered at $k_x = \pi/a_0$ are observed, and these PT edge states are localized at the locally P-symmetric domain wall only, as shown in the left panel. The magnitude of gain/loss Δ is chosen large enough to make EPs of the PT edge states located at the locally P-broken domain.
wall disappear, but not large enough to separate the loop bands for PT edge states located at locally P-symmetric domain wall.

Second, for the bearded locally P-symmetric and locally P-broken interfaces, PT edge states with large and small loop bands are observed centered at $k_x = 0$, as seen in Fig. 9(b). We notice that the edge modes at the bearded cut generally decay faster away from the domain wall than those at the zigzag cut. This property is mentioned in Section II and discussed in detail in Supplementary Material II and IV.

Third, two lossless loop bands are found at the armchair PT interfaces and localized at both the domain walls, since the domain walls in this geometry locally have no parity difference.

For all three non-PT symmetric interfaces, no PT edge states in the bandgaps of bulk modes are found, as seen in the right panel of Fig. 9. Thus, our numerical results are consistent with the tight-binding calculations and analytical predictions.

FIG. 9. Optical implementation of PT interfaces in photonic graphene with different cuts at the interfaces (indicated by black dash line): (a) zigzag, (b) bearded, and (c) armchair shaped boundaries. Left panels: Normal electric field $|E|$ profiles for the edge modes localized at different cuts of interfaces between photonic crystals with gain and loss. Middle panels: dispersion (the real part of frequency) for PT-symmetric domain walls. Right panels: dispersion for non-PT domain walls. Branches of PT edge states located at locally parity-symmetric and parity-broken interface are shown in blue and red, respectively, and bands of dissipative bulk modes in grey. Bandgap is indicated by pink shaded region. The crystals are made of dielectric rods of radius $r_a = r_b = 0.15a_0$ with permittivity $\varepsilon_1 = 14$ and gain/loss parameter $\Delta = 5$ embedded in air.
CONCLUSIONS

In this paper we have demonstrated that PT symmetric interfaces between domains of non-Hermitian lattices with ‘gain’ and ‘loss’ support edge states which exhibit PT phase transitions. Two model systems, based on valley insulator and Chern insulator models, are investigated. For the valley-Hall insulator, a rigorous symmetry analysis unifying the conventional (Hermitian) valley edge states and the edge states of the PT-symmetric structure is presented. We found that if the local parity symmetry at the domain wall is broken, the PT edge states preserving the PT symmetric phase exist only for certain values of the gain/loss parameters, underlining the important role of spatial symmetries at the interface for the valley Hall systems. The existence of these edge states is linked to EPs in the edge band; by tuning the magnitude of the gain/loss, it is possible to annihilate the EPs, so that the PT symmetry is spontaneously broken and edge spectrum becomes complex-valued. If the domain wall is locally parity-symmetric, the PT edge states are always present no matter how the system is perturbed by onsite potential or gain/loss.

To further explore the interplay of non-Hermiticity and topology, we studied the non-Hermitian Haldane model and demonstrated the robustness of its topological features to the introduction of gain/loss. We found the one-way edge states localized to the PT symmetric interfaces which also exhibit PT phase transition and interconnect bulk bands by branching out into imaginary energy dimension. Since these edge states are strong in a topological sense (as opposed to the valley states), they persist for large magnitudes of gain/loss, as long as bulk states are gapped.

Last but not least, experimentally feasible optical analogous of honeycomb lattices with and without PT symmetric interface have been studied using first-principles numerical methods, which confirmed the analytical predictions. This work envisions a generalization of Hermitian topological edge states into the NH topological edge states which exhibits a PT phase transition.

ACKNOWLEDGMENTS

We thank Konstantin Bliokh for helpful discussions. The authors gratefully acknowledge financial support from the National Science Foundation grants CMMI-1537294 and EFRI-1641069. ANP acknowledges support by the Australian Research Council and by the Russian “Basis” Foundation.