This is the accepted manuscript made available via CHORUS. The article has been published as:

Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs

Shreyas Patankar, Liang Wu, Baozhu Lu, Manita Rai, Jason D. Tran, T. Morimoto, Daniel E. Parker, Adolfo G. Grushin, N. L. Nair, J. G. Analytis, J. E. Moore, J. Orenstein, and D. H. Torchinsky
Phys. Rev. B 98, 165113 - Published 10 October 2018
DOI: 10.1103/PhysRevB.98.165113

Shreyas Patankar, ${ }^{1,2}$ Liang Wu, ${ }^{1,2,3}$ B. Z. Lu, ${ }^{4,5}$ M. Rai, ${ }^{4,5}$ J. D. Tran, ${ }^{4,5}$ T. Morimoto, ${ }^{1}$ D. Parker, ${ }^{1}$ Adolfo G. Grushin, ${ }^{1,6}$ N. L. Nair, ${ }^{1}$ J. G. Analytis, ${ }^{1,2}$ J. E. Moore, ${ }^{1,2}$ J. Orenstein, ${ }^{1,2,{ }^{*}}$ and D. H. Torchinsky ${ }^{4,5, \uparrow}$
${ }^{1}$ Department of Physics, University of California, Berkeley, California 94720, USA
${ }^{2}$ Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{3}$ Department of Physics \& Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
${ }^{4}$ Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
${ }^{5}$ Temple Materials Institute, Temple University, Philadelphia, Pennsylvania 19122, USA
${ }^{6}$ Institut Néel, CNRS and Université Grenoble Alpes, F-38042 Grenoble, France

(Dated: September 4, 2018)

Abstract

The second-order conductivity of a material, $\sigma^{(2)}$, relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of $\sigma^{(2)}$-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV . Here, we present measurements of the SHG spectrum of TaAs revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV , at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on $\sigma^{(2)}$, which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or "skewness") of the polarization distribution function in the ground state.

I. INTRODUCTION

Beginning with the work of Pierre Curie [1], a comprehensive theory of the role of symmetry in classifying the transport properties and optical response of materials has been developed. More recently there has been a growing appreciation that symmetry constraints combine with the geometry and topology of the relevant Hilbert space to shape the electrodynamic response functions of crystalline solids and artificial meta-crystals. 2] The newly discovered Weyl semimetals are currently a focus of intense research as examples of systems in which the combination of symmetry-breaking and bandstructure geometry may lead to novel and/or enhanced electronic response functions.

In the case of the Weyl semimetal TaAs, which is a focus of this work, breaking of inversion symmetry allows non-degenerate linearly dispersing electron bands to cross at isolated points, or Weyl nodes, in momentum space. Topologically, Weyl nodes are monopoles of the Berry curvature of the electron wavefunctions, 3] whose presence generates disconnected lines of Fermi contour (Fermi arcs) at the surface. 4] The existence of Weyl nodes in the bandstructure of TaAs was confirmed through the observation of the predicted Fermi arcs by angle-resolved photoemission. [5-7]
Following this demonstration, research has focused on discovering the defining electromagnetic response func-

[^0]tions of Weyl semimetals. As the current linearly proportional to a single potential does not show very distinctive behavior, [8, 9] interest has focused on higher-order response functions, such as the electrical conductivity in the presence of a magnetic field $[10-12$ and the secondorder optical conductivity, $\sigma^{(2)}$. The latter response function, which is allowed only in media that break inversion, describes the current generated to second-order in a timevarying electric field and quantifies a wide-variety of optical phenomena, including sum and difference frequency generation.

For excitation within a narrow band of frequency centered on ω_{0}, the second-order current is centered at $\omega \approx 0$ and $\omega \approx 2 \omega_{0}$. The radiation arising from the frequency-doubled current is the phenomenon of second harmonic generation (SHG). The $\omega \approx 0$ (DC) current goes by a variety of names, including optical rectification, circular and linear photogalvanic effects [13-15], and shift current [16, 17] that reflect the variety of underlying mechanisms and dependences on the polarization state of the light at ω_{0}. Shift current, for example, denotes the contribution to the linear photogalvanic that is a property of the intrinsic bandstructure, as distinguished from extrinsic components that arise from asymmetric scattering off defects and phonons.

To date, much of the theoretical work on nonlinear optical effects in TaAs and other Weyl semimetals has focused on the role of Berry monopoles in generating quantized, and/or strongly enhanced second-order responses. The possibility of a quantized circular photogalvanic response arising from Berry monopoles was addressed by de Juan et al., [18] who found that quantization requires
lowering of symmetry beyond inversion breaking such that all mirror planes are removed. Other theoretical predictions suggested that non-quantized circular and linear photogalvanic effects can be large, although their existence depends crucially on deviations from the simplest form of Weyl node, requiring either tilting [19] or curvature [20] of the bands near the crossing point. Experimentally, linear and circular photogalvanic currents have been detected in TaAs, 21, 22] by excitation with 100 meV photons. Ma et al. [21] determined the chirality of the Weyl nodes in TaAs from the sign of the photocurrent and reported a photocurrent amplitude smaller than the theoretical prediction of Ref. [19]. On the other hand Osterhoudt et al. [22] observed a large amplitude photogalvanic response in the same material, although using a different, smaller scale electrode configuration.
In this work, we focus on the companion phenomenon to intrinsic photogalvanic effects, namely the sumfrequency response that leads to SHG. This study was motivated by a previous report that TaAs, as well as closely related Weyl materials TaP and NbAs, exhibited the largest SHG response of any known crystal when photoexcited at 800 nm , which corresponds to a photon energy of 1.5 eV . [23] The existence of Berry monopoles is not expected to play a critical role in generating this phenomenon, as the energy scale for the Weyl-like electron dispersion does not exceed approximately 100 meV . In this paper we attempt to identify the factors that do contribute to the uniquely large SHG response of the TaAs family of Weyl semimetals.

In Section II we present measurements that spectrally resolve the SHG response function, extending previous results beyond the single 1.5 eV photon energy to a broad range from $0.5-1.5 \mathrm{eV}$. These measurements reveal that 1.5 eV actually lies in the high-frequency tail of a far stronger resonant response near 0.7 eV . In Section III we address the question of the roles of symmetry breaking and band geometry in determining the amplitude of the nonlinear optical response function. We demonstrate theoretically a general relationship, applicable to both SHG and shift current, between the strength of $\sigma^{(2)}$ and a measure of the polarity of the material. As TaAs is conducting, this measure cannot be simply the ground state polarization. We show instead that the correct measure of polarity for nonlinear properties is the skew of the polarization distribution function, which is embodied in a gauge-invariant cumulant of the bandstructure. In Section III we introduce a phenomenological description of the nonlinear response function that makes use of the analytical solution for a three-dimensional array of ferroelectric (Rice-Mele) chains.

II. EXPERIMENTAL RESULTS

Figure 1 shows a schematic of the apparatus used to measure the spectrum of the SHG response tensor, which 124 is formally written as $\sigma_{i j k}(2 \omega ; \omega, \omega)$ and hereafter short-
${ }_{25}$ ened to $\sigma_{i j k}^{\text {shg }}(\omega)$, or simply $\sigma_{i j k}$. The measurements are 126 enabled by a laser/optical parametric amplifier system ${ }_{127}$ that generates pulses of duration ~ 50 fs at a 5 kHz repe${ }_{128}$ tition rate in the range of photon energies $0.5-1.5 \mathrm{eV}$. As the crystals are opaque (optical penetration depth of approximately $200 \mathrm{~nm}[24$) the SHG intensity is measured in reflection. As shown in the Figure 1a., a polarizer P, and a halfwave plate in front of the sample select the orientation of the electric field (referred to by $\hat{\mathbf{e}}$) of the fundamental light at frequency ω, and a second analyz${ }_{35}$ ing polarizer A selects the polarization of the light at ${ }_{36}$ frequency 2ω that reaches the detector.

FIG. 1. Schematic of the experimental apparatus used to study the spectrum of the nonlinear optical response in TaAs. Laser pulses of pulse width 50 fs , at a repetition rate of 5 kHz with photon energy between $0.5 \mathrm{eV}-1.6$ eV are generated by an optical parametric amplifier coupled to an regeneratively amplified laser. The incident radiation passes through a neutral density filter (ND), polarizer (P), and a low pass filter (LF), to lower the incident intensity, and to remove spurious polarizations, and wavelengths, respectively. A halfwave plate (HW) is used to rotate the incident linear polarization over 360°. The incident laser radiation is then focused on to the TaAs sample (S) using a reflective objective (RO), which is insensitive to the photon energy, in contrast with conventional refractive microscope objectives. The SHG radiation from the sample is collimated by the RO, and picked off by a D-mirror (D), and passed through an analyzing polarizer (A), whose polarization state is determined by the scan being measured (see text). The radiation then passes through a stack of short pass filters (SF) to remove any incident light, and then focused by a lens (L) onto a photomultiplier tube (PMT) for detection. Inset: A single crystal of TaAs with the (112) facet visible.

The structure of TaAs (point group $4 m m$) contains two perpendicular glide planes, which are equivalent to mirror planes for optical response functions [25, 26]. The normal directions of these two planes determine the two equivalent directions of the tetragonal unit cell, which we label as x and y. The direction perpendicular to the $x y$ plane is the polar, or z axis. The $4 m m$ point group allows three independent nonvanishing components of the
conductivity tensor, $\sigma_{z z z}, \sigma_{z x x}=\sigma_{z y y}$, and $\sigma_{x z x}=\sigma_{y z y .}{ }^{203}$ To avoid using a surface obtained by cutting and subse- 204 quent polishing, which are known to affect the nonlinear 205 optical response, we perform nonlinear reflectance mea- 206 surements using the (112) surface, as it forms a naturally 207 flat and smooth growth facet. Figure 1p shows a photo- 208 graph of the (112) surface used for the measurement. The 209 two high symmetry directions in the plane of this surface are $[1,-1,0]$, which is perpendicular to the polar axis, and [1,1,-1].

We performed two pairs of polarization scans at each wavelength. In the first pair, $\hat{\mathbf{e}}$ and A are co-rotated with their relative angle fixed at 0 and 90°. This is equivalent to rotating the sample, but with the advantage that the position of the laser focus on the sample surface remains constant. These scans are primarily used to determine the high symmetry directions. However, as will be discussed below, they provide additional evidence for the existence of a sharp resonance in the nonlinear response function in the infrared. In the second pair of scans A is fixed parallel to either of the $[1,-1,0]$ or $[1,1,-$
 From this pair of scans we obtain the three combinations of tensor components that are available from reflection measurements performed on the (112) surface: $\left|\sigma_{z x x}\right|$, $\left|\sigma_{x z x}\right|$, and $\left|\sigma_{\text {eff }}\right| \equiv\left|\sigma_{z z z}+2 \sigma_{z x x}+4 \sigma_{x z x}\right|$ [27]. Analysis of the polarization scans at a given wavelength determines the relative magnitudes of these tensor components, i.e., $\left|\sigma_{z x x}\right| /\left|\sigma_{\text {eff }}\right|$ and $\left|\sigma_{x z x}\right| /\left|\sigma_{\text {eff }}\right|$.

Measurements of absolute, as opposed to relative, magnitudes of $\sigma_{i j k}$ components over a broad range of frequency were accomplished by using GaAs to calibrate the response at 1.5 eV . Determining the effective $\sigma_{i j k}(\omega)$ at lower photon energies required characterization of the wavelength dependence of all components of the optical setup, such as wavelength-sorting filters, attenuators, and photodetectors, as well as spectral variation of the laser focal spot size and pulse duration. An extensive discussion of the calibration procedure is provided in Appendix A.

Polarization scans were performed at incident wavelengths in the interval from 800 to 2500 nm ; a complete library of these data is available upon request. Figure 2 (ac) shows representative scans at wavelengths 800,1560 , and $2200 \mathrm{~nm}(1.55,0.80$, and 0.56 eV , respectively) with co-rotating parallel polarizations. The co-rotation plot at 800 nm illustrates the extreme anisotropy of the nonlinear optical response of TaAs. The solid curve through the data points is proportional to $\left|\sigma_{z z z}\right|^{2} \cos ^{6} \theta$, which is the dependence predicted for a crystal that responds only to E parallel to its polar axis and radiates second harmonic light that is likewise fully z-polarized. The polar plots at longer wavelength indicate that the amplitudes of the off-diagonal components, $\left|\sigma_{z x x}\right|$ and $\left|\sigma_{x z x}\right|$, begin to increase relative to $\left|\sigma_{\text {eff }}\right|$ as the fundamental photon energy approaches 0.7 eV from above, although they remain approximately an order of magnitude smaller, as is shown below.

Figure 3 illustrates the spectral dependence of the SHG response function of a TaAs crystal at room temperature. Figure 3 a shows $\left|\sigma_{\text {eff }}\right|,\left|\sigma_{z x x}\right|$, and $\left|\sigma_{x z x}\right|$ vs. fundamental photon energy as solid circles (the solid lines are guides to the eye). The y-axis scale expresses $\sigma^{\text {shg }}$ in units of the conductance quantum per Volt, to facilitate comparison with theory. In SI units, the corresponding peak value of $\sigma^{\text {shg }}$ at 0.7 eV is approximately $5 \times 10^{-3}(\Omega \mathrm{~V})^{-1}$. The dashed line is the spectrum of $\sigma_{x y z}$ in GaAs as reported in Ref. [28, multiplied by a factor 10 so that it can be compared with the TaAs spectra. As reported previously, the SH response measured at 1.5 eV in TaAs exceeds the peak response of GaAs by a factor ~ 10. The measurements reported here show that $\left|\sigma_{\text {eff }}\right|$ becomes even larger with decreasing frequency, reaching a peak near 0.7 eV where it is $\sim 2 \times 10^{2}$ larger than the maximum response of GaAs.

Although the diagonal response function $\left|\sigma_{z z z}\right|$ is not determined directly from the SHG intensity, its range of values is highly constrained through analysis of the polarization scans 27. The shaded region in Figure 3b illustrates the upper and lower bounds on $\left|\sigma_{z z z}\right|$. The dashed line that lies within the shaded region is a best fit to a phenomenological model described below, which is seen to capture the basic features of the resonance enhancement of $\left|\sigma_{z z z}\right|$.

III. NONLINEAR CONDUCTIVITY SUM RULE

We now turn to a theoretical discussion of the fundamental causes for this giant second harmonic response. As this response is large it is reasonable to start with a discussion of bounds or ultimate limits on SHG, which is relevant not only to SHG, but to sensitivity of photodetectors and efficiency of solar cells based on intrinsic photogalvanic effects as well. As with linear response, the true measure of the strength of the nonlinearity is the frequency-integrated response function, rather than its amplitude at any single frequency. In the case of linear response, the frequency integral corresponds to the well-known f-sum rule. We have discovered an analogous sum rule that connects second harmonic generation and the modern theory of polarization. The rule is elucidated in this section, then in the subsequent section we see it in action with a minimal model for TaAs.

The SHG response in Fig. 3 appears to consist of a single peak and thus we may assume that it arises from a single resonance between two bands. For the two-band case, there is close relationship between the current generated at twice the excitation frequency and at zero frequency. The real part of the $z z z$ component of the SHG tensor can be expressed in terms of the shift current tensor as follows [29],

$$
\begin{equation*}
\operatorname{Re}\left\{\sigma_{z z z}^{\text {shg }}(\omega)\right\}=-\frac{1}{2} \sigma_{z z z}^{\text {shift }}(\omega)+\sigma_{z z z}^{\text {shift }}(2 \omega) \tag{1}
\end{equation*}
$$

FIG. 2. Second harmonic generation polarimetry. SHG intensity measured in the "parallel" scan as a function of the incident polarization angle, plotted on a normalized scale, for three different incident photon wavelengths. The polar pattern changes from a two-fold pattern at shorter wavelengths ($800 \mathrm{~nm}=1.55 \mathrm{eV}$) to a six-fold pattern at longer wavelengths (2200 $\mathrm{nm}=0.56 \mathrm{eV}$)

FIG. 3. Measured nonlinear optical conductivity as a function of incident photon energy. (a) Spectra of the conductivity components $\left|\sigma_{z x x}\right|,\left|\sigma_{x z x}\right|$, and $\left|\sigma_{\text {eff }}\right|=\mid \sigma_{z z z}+$ $4 \sigma_{x z x}+2 \sigma_{z x x} \mid$. The solid lines are guides to the eye. The nonlinear optical conductivity of GaAs, $\left|\sigma_{x y z}\right|$ is multiplied by 100 and plotted for comparison. (b) The (expt) lower and upper bounds of $\left|\sigma_{z z z}\right|$ are estimated using measured values of $\left|\sigma_{\text {eff }}\right|,\left|\sigma_{z x x}\right|$, and $\left|\sigma_{x z x}\right|$ from experiment. The dashed black line depicts the best fit to $\left|\sigma_{z z z}\right|$ using the phenomenological model described in the text.
condition $\hbar \omega=E_{\text {gap }}(k)$ and the second ("two-photon") term corresponds to $\hbar \omega=E_{\text {gap }}(\mathbf{k}) / 2$, where $E_{\text {gap }}(\mathbf{k})$ is the energy gap at wavevector \mathbf{k}. Clearly the total $\sigma_{z z z}^{\text {shg }}$ response integrates to zero, but we shall show below that for some models each shift current term has a geometrical interpretation in terms of the skewness or intrinsic asymmetry of the ground-state polarization distribution.
In Appendix C we derive the following sum rule for 274 the shift current conductivity in the two-band approxi275 mation, which holds regardless of dimensionality d and 276 the range of electron hopping amplitude,

$$
\begin{equation*}
\Sigma_{z}^{\text {shift }} \equiv \int \sigma_{z z z}^{\text {shift }}(\omega) d \omega=\frac{2 \pi e^{3}}{V \hbar^{2}} C_{3} \tag{2}
\end{equation*}
$$

${ }_{27}$ where,

$$
\begin{equation*}
C_{3}=-\frac{V}{(2 \pi)^{d}} \int d^{d} k \operatorname{Im}\left[c_{3}-3 c_{2} c_{1}+2 c_{1}^{3}\right] \tag{3}
\end{equation*}
$$

${ }_{278} c_{n} \equiv\left\langle u_{0}(k)\right|\left(i \partial_{k}\right)^{n}\left|u_{0}(k)\right\rangle$, and the periodic gauge is as${ }_{279}$ sumed for the valence-band Bloch wavefunction $\psi_{0 k}(r)=$ ${ }_{280} u_{0 k}(r) e^{i k r}$. The quantity C_{3} is a member of a set of ${ }_{21}$ gauge invariant quantities, C_{n}, that are cumulants of the 282 electronic polarization 30, 31. Briefly, the quantity C_{1} 283 is exactly the average macroscopic polarization, which 284 coincides with the first moment of the polarization dis285 tribution [32]. Accordingly, C_{3} is the third cumulant, 286 or "skewness" of the distribution, which vanishes in the ${ }_{287}$ presence of inversion symmetry. C_{1} is controlled by the ${ }_{288}$ center-of-mass location of the polarization, while C_{3} de289 scribes the intrinsic asymmetry in the shape of the po${ }^{200}$ larization distribution, independent of its center-of-mass location.

In addition to providing a very satisfying connection 293 between the nonlinear response and ground state fluctu294 ations of the polarization, equation (2) speeds the search 295 for effective Hamiltonians with large nonlinear response. 296 If a material is known to have a large skew in its polar${ }_{297}$ ization distribution, then the sum rule guarantees it will
have a large shift current and, in turn, large second harmonic generation. In the next section we will see this in action with a minimal model for TaAs.

FIG. 4. The Rice-Mele model. Depiction of the model of coupled Rice-Mele chains (center) used to reproduce the experimentally observed second harmonic generation in TaAs (left). A zoom on the shaded unit-cell is depicted on the right specifying the different hopping terms present in the model.

IV. PHENOMENOLOGICAL MODEL OF THE SHG SPECTRUM

Under the assumption that TaAs is a weakly interacting system, $\sigma_{i j k}^{\text {shg }}(\omega)$ can in principle be calculated by combining ab initio bandstructure and the general theory of the second order nonlinear response function [17]. In reality this is a challenging calculation, as it requires knowledge of the gradients of the wavefunction throughout the Brillouin zone with high resolution in momentum. Nevertheless, a first principles calculation of $\sigma_{i j k}^{\text {shift }}(\omega)$ has been published recently 33, although restricted to the energy range from $20-200 \mathrm{meV}$ and thus not directly relevant to our measurements. Given the lack of a first principles calculation for energies of order 1 eV , we present below a phenomenological theory based on an analytical solution for a model Hamiltonian. This Hamiltonian is not intended as a tight-binding parameterization of the TaAs bandstructure, rather our purpose is to highlight some of the features that a successful first principles theory must reproduce.

The key features of the nonlinear conductivity in TaAs - strong anisotropy and a single, sharp resonant peak suggest that a quasi-one dimensional, two-band model is sufficient to capture much of the physics involved. The minimal model required to reproduce this physics is a modified version of the Rice-Mele (RM) Hamiltonian 34, which is a one-dimensional (1D) tight-binding model of a semiconductor with broken inversion symmetry. The RM model played a crucial role in the development of

$$
\begin{equation*}
\sigma_{z z z}^{\text {shift }}(\omega)=\frac{2 e^{3}}{\hbar \Delta}\left(\frac{1}{4 \pi}\right)^{3} \frac{c^{2}}{a b} F\left(\tilde{\omega} ; \tilde{\delta}, \tilde{t}, \tilde{t}_{A B}\right), \tag{5}
\end{equation*}
$$

368 where F is a dimensionless function of frequency ω and 369 the parameters of $H_{R M}$ (the tildes indicate normalization 370 by $\Delta) ; a, b$, and c are lattice constants in the x, y, and $371 z$ directions, respectively [27]. The real part of the SHG 32 conductivity can easily be expressed in terms of the shift 37 conductivity by using Eq. (11).

The dash-dotted curve in Figure $3 b$ is a fit to $\left|\sigma_{z z z}^{\mathrm{shg}}\right|$ 55 based on the two-photon term in Eq. (1). Despite the simplicity of the model relative to the complexity of the TaAs bandstructure, the quasi-one dimensional version of the RM model describes the data remarkably well. The peak position, low, and high energy tails of the spectrum so are best described using parameters $\tilde{t}=1.5, \delta=1.4$, $\tilde{t}_{A B}=0.02$, and $\Delta=0.428$. The corresponding bandstructure consists of relatively flat valence and conduc-

436

tion bands separated by about 1.4 eV , as is required to produce a the narrow resonance near 0.7 eV . Finally, we use the TaAs lattice parameters, $c=1.165 \mathrm{~nm}$, and $b=a=0.344 \mathrm{~nm}$ as input to the dimensionless geometric factor $c^{2} / a b$ in Eq. 5.

We note that our minimal model of the SHG resonance implies a corresponding resonant peak in the linear conductivity $\sigma_{z z}(\omega)$ near 1.4 eV . The ratio of the spectral weight of the nonlinear to linear resonance is $\left(e / \hbar \omega_{0}\right)\left(C_{3} / C_{2}\right)$, and in the RM model $C_{3} / C_{2}=2 c / 3$. Based on this ratio, and the fact that the width of the nonlinear resonance peak is half that of the linear one, the model predicts $\sigma_{z z}(\omega) \approx 2 \times 10^{4} \Omega^{-1}-\mathrm{cm}^{-1}$ at the peak energy of 1.4 eV . This prediction is as yet to be tested, as to date the linear optical conductivity in TaAs has been measured by reflection from the (001) surface, probing only $\sigma_{x x}(\omega)$ or $\sigma_{y y}(\omega)$. Measuring $\sigma_{z z}(\omega)$ on TaAs is not straightforward as this requires a large (100) surface which does not arise naturally during growth. Moreover it has been found that cutting and polishing the surface of TaAs for reflectivity measurement results in a loss of the bulk property.

V. SUMMARY AND CONCLUSIONS

In Section II of this paper we reported SHG spectra of TaAs, demonstrating a ten-fold resonant enhancement of the response at 0.7 eV as compared with the previously reported, and already quite large, response at 1.5 eV . The large amplitude led us to consider bounds on the strength of optical nonlinearity, as embodied in the frequency-integrated second-order conductivity (or spectral weight). In Section III we presented a new theorem that links the spectral weight of the nonlinear conductivity to the geometry of the bandstructure. The link is closely related to the connection between geometry and ferroelectricity in the "modern theory of polarization." We showed that for general two-band models the spectral weight is proportional to the skew of the polarization distribution, which itself is proportional to the third gauge-invariant cumulant, C_{3}. This result is analogous to the relation between the polarization and C_{1}, which is the integral of the Berry connection over the Brillouin zone.
In Section IV we combined the insight gained from the spectral weight theorem with a model of a quasi-1D polar semiconductor to identify the factors contributing to large SHG in TaAs. Specifically, we introduced the RiceMele chain, which is parameterized by alternating on-site energies $(\pm \Delta)$ and nearest-neighbor hopping amplitudes $(t \pm \delta)$. We note that although this model is very useful, the relationship between the RM phenomenology and the actual electronic wavefunctions and bandstructure of TaAs remains to be understood.

We found that the third-cumulant for the RM model (and indeed all nearest-neighbor 1D Hamiltonians) is ${ }_{37}$ bounded, such that $C_{3} \leq 0.3 c^{2}$ (for each spin), where
${ }_{438} c$ is the dimension of the 1D unit cell 27. For a 3D ar${ }_{439}$ ray of weakly interacting RM chains, the spectral weight ${ }_{440}$ of $\sigma_{z z z}^{s h g}(\omega)$, or Σ_{z} is bounded by,

$$
\begin{equation*}
\Sigma_{z} \leq \frac{e^{2}}{\hbar} C_{3} P_{z} \tag{6}
\end{equation*}
$$

${ }_{41}$ where $P_{z} \equiv e c / V$ is the "polarization quantum" and V ${ }_{442}$ is the 3 D unit cell volume.

Maximizing Σ_{z} requires, first, a strongly polar chain, that is one that approximately saturates the bound $C_{3} / c^{2} \leq 0.3$. For the RM model, strong polarity occurs when the parameters t, δ, and Δ are roughly equal, as shown in Ref. 43. A second large contributing factor is the dimensionless ratio of the square of the lattice parameter along the chain axis, c^{2}, to area per chain, $a b$. We note that as there are four Ta -As chains per unit cell, the spatial packing factor $c^{2} / a b$ is large, ≈ 45. In addition, the peak SHG response will become large when the total spectral is concentrated in a narrow resonance, as will occur in the RM parameterization for $t \approx \delta$, i.e., 455 the limit of weakly interacting dimers. Finally, we note ${ }_{56}$ that the bound on C_{3} obtained in nearest-neighbor models is not an ultimate limitation on nonlinear response. This bound is exceeded when next-neighbor hopping is introduced, and can diverge when the fundamental gap is driven to zero (see Appendix C.5). This result is consistent with the recent analysis of Tan and Rappe 41], who suggested that Σ_{z} can be greatly enhanced when the range of inter-site hopping becomes larger than the lattice parameter.

VI. ACKNOWLEDGEMENTS

Measurements and modeling were performed at the 7 Lawrence Berkeley National Laboratory in the Quantum Materials program supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Spectroscopy measurements were performed at the Department of Physics, Temple University. The authors would like to thank B. Xu for sharing ellipsometry data of TaAs. We would also like to thank Balasz Hetényi for helpful communication. J.O. and L.W. received support for performing and analyzing optical measurements from the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4537 to J.O. at UC Berkeley. Sample synthesis by N.N. and J.A. was supported by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4374. Work by N.N. and J.A. was supported by the Office of Naval Research under the Electrical Sensors and Network Research Division, Award No. N00014-15-1-2674. T.M. and J.E.M. were supported by 86 the Quantum Materials program under the U.S. Department of Energy. T.M was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative Theory Center Grant to UC Berkeley. A.G.G. was supported by the

90

491

\qquad
\qquad
494
495
496

497

4

500

Appendix A: Data acquisition and processing

1. Extracting susceptibility components from SHG polar patterns

To calculate the components of the third rank susceptibility tensor $\overleftrightarrow{\chi}^{(2)}$ from the measured data, we start with the relation defining the second harmonic suscepti- ${ }_{52}$ bility in terms of the electric fields of the incident $\mathbf{E}^{1 \omega}$ and radiated $\mathbf{E}^{2 \omega}$ fields:

$$
\begin{equation*}
E_{i}^{2 \omega}=\chi_{i j k}^{\operatorname{shg}} E_{j}^{1 \omega} E_{k}^{1 \omega} \tag{A1}
\end{equation*}
$$

${ }_{09}$ where a sum over repeated indices is implied. We use 10 the notation $\hat{x}, \hat{y}, \hat{z}$, to correspond to the crystalline axes $[1,0,0],[0,1,0],[0,0,1]$, and for brevity, we shall drop the superscript "shg" in the following. The crystal structure of TaAs corresponds to the point group $4 m m$, which allows only three distinct components of the $\chi_{i j k}$ tensor: $\chi_{z z z} ; \chi_{z x x}=\chi_{z y y} ; \chi_{x x z}=\chi_{x z x}=\chi_{y y z}=\chi_{y z y}$. As noted in the main text, the experiments were performed by measuring the second harmonic intensity with light incident on the naturally occuring (112) facet of a TaAs 9 single crystal. The SHG intensity was measured in three ${ }_{20}$ polarization "channels":

1. parallel: the polarization state of the analyzer is set to be parallel to the polarization state of the incident radiation, while both rotate from 0° to 360°
2. vertical: the polarization state of the analyzer is set to be parallel to the in-plane polar direction $(1,1,-1)$ of the TaAs crystal, while the polarization state of the incident radiation rotates from 0° to 360°
3. horizontal: the polarization state of the analyzer is set to be perpendicular to the in-plane polar direction $(1,1,-1)$ of the TaAs crystal, while the polarization state of the incident radiation rotates from 0° to 360°

It is useful to label the in-plane component of the polar axis $[1,1,-1]$ as the axis " γ ", and correspondingly label the perpendicular in-plane direction $[-1,1,0]$ as the axis " α ". If the incident light has intensity I_{0}, with linearly polarized electric field expressed by $\mathbf{E}^{1 \omega}=\sqrt{I_{0}}(\hat{\alpha} \sin \theta+\hat{\gamma} \cos \theta)$, in the parallel channel, the intensity can be expressed in terms of the angle θ of the incident polarization state with respect to the " γ " axis:

$$
\begin{aligned}
I_{\mathrm{para}}(\theta) & =\left|E_{\alpha}^{2 \omega} \sin \theta+E_{\gamma}^{2 \omega} \cos \theta\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left(-E_{x}^{2 \omega}+E_{y}^{2 \omega}\right) \sin \theta+\frac{1}{\sqrt{3}}\left(E_{x}^{2 \omega}+E_{y}^{2 \omega}-E_{z}^{2 \omega}\right) \cos \theta\right|^{2}
\end{aligned}
$$

${ }^{534}$ We wish to express this in terms of the tunable quantities $E_{z}^{1 \omega}=-\frac{E_{\gamma}^{1 \omega}}{\sqrt{3}}$ and $E_{\gamma}^{1 \omega}=\sqrt{I_{0}} \cos \theta$. To do this, we first ${ }_{535}$ expand $\boldsymbol{E}^{2 \omega}$ in terms of $\boldsymbol{E}^{1 \omega}$ via $E_{x}^{2 \omega}=2 \chi_{x x z} E_{x}^{1 \omega} E_{z}^{1 \omega}, E_{y}^{2 \omega}=2 \chi_{y y z} E_{y}^{1 \omega} E_{z}^{1 \omega}, E_{z}^{2 \omega}=\chi_{z x x}\left(E_{x}^{1 \omega}\right)^{2}+\chi_{z y y}\left(E_{y}^{1 \omega}\right)^{2}+$ ${ }_{536} \chi_{z z z}\left(E_{z}^{1 \omega}\right)^{2}$. and transform back from the $x y z$ to the $\alpha \gamma$ basis via $E_{x}^{1 \omega}=-\frac{E_{\alpha}^{1 \omega}}{\sqrt{2}}+\frac{E_{\gamma}^{1 \omega}}{\sqrt{3}}, E_{y}^{1 \omega}=\frac{E_{\alpha}^{1 \omega}}{\sqrt{2}}+\frac{E_{\gamma}^{1 \omega}}{\sqrt{3}}$, ${ }_{537} E_{z}^{1 \omega}=-\frac{E_{\gamma}^{1 \omega}}{\sqrt{3}}$. This yields

$$
\begin{aligned}
I_{\text {para }}(\theta) & =\frac{I_{0}^{2}}{3}\left|\chi_{x x z} \cos \theta \sin ^{2} \theta+\left(\frac{4}{3} \chi_{x x z} \cos ^{2} \theta+\chi_{z x x}\left(\sin ^{2} \theta+\frac{2}{3} \cos ^{2} \theta\right)+\frac{1}{3} \chi_{z z z} \cos ^{2} \theta\right) \cos \theta\right|^{2} \\
& =\frac{I_{0}^{2}}{27}\left|3 \chi_{x x z} \cos \theta \sin ^{2} \theta+\left(4 \chi_{x x z} \cos ^{2} \theta+\chi_{z x x}\left(3 \sin ^{2} \theta+2 \cos ^{2} \theta\right)+\chi_{z z z} \cos ^{2} \theta\right) \cos \theta\right|^{2} \\
& =\frac{I_{0}^{2}}{27}\left|\left(6 \chi_{x x z}+3 \chi_{z x x}\right) \cos \theta \sin ^{2} \theta+\left(4 \chi_{x x z}+2 \chi_{z x x}+\chi_{z z z}\right) \cos ^{3} \theta\right|^{2}
\end{aligned}
$$

${ }_{538}$ We define $\chi_{\mathrm{eff}}=\chi_{z z z}+2 \chi_{z x x}+4 \chi_{x x z}$, which gives us the expression,

$$
\begin{equation*}
I_{\mathrm{para}}=\frac{I_{0}^{2}}{27}\left|3\left(2 \chi_{x x z}+\chi_{z x x}\right) \cos \theta \sin ^{2} \theta+\chi_{\mathrm{eff}} \cos ^{3} \theta\right|^{2} \tag{A2}
\end{equation*}
$$

FIG. 5. Minimized mean-squared deviation fits (solid lines) to the SHG intensity data (points) as a function of the incident polarization angle θ, in three polarization channels (a) parallel, (b) vertical, (c) horizontal, for incident photon wavelength $\lambda=1400 \mathrm{~nm}$, plotted on a normalized scale. (d) Fits to the SHG intensity in the vertical channel assuming the relative sign between $\chi_{z x x}$ and $\chi_{z z z}$ to be (+) (dashed line), and (-) (solid line).

We can similarly obtain expressions for the other two channels:

$$
\begin{equation*}
I_{\text {vertical }}(\theta)=\left|E_{3}^{2 \omega}\right|^{2}=\left|\frac{1}{\sqrt{3}}\left(E_{x}^{2 \omega}+E_{y}^{2 \omega}-E_{z}^{2 \omega}\right)\right|^{2}=\frac{1}{27}\left(3 \chi_{z x x} \sin ^{2} \theta+\chi_{\mathrm{eff}} \cos ^{2} \theta\right) \tag{A3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\text {horiz }}(\theta)=\left|E_{\alpha}^{2 \omega}\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(-E_{x}^{2 \omega}+E_{y}^{2 \omega}\right)\right|^{2}=\frac{1}{3} I_{0}^{2}\left|\chi_{x x z}\right|^{2} \sin 2 \theta . \tag{A4}
\end{equation*}
$$

Figure 5 d shows the SHG intensity data as a func- 560 With the additional information about the relative tion of the polarization of incident photons in the paral- 561 signs, the calculated values of $\left|\chi_{\text {eff }}\right|=\mid \chi_{z z z}+2 \chi_{z x x}+$ lel, vertical, and horizontal channel, with fits to the ex- ${ }_{562} 4 \chi_{x x z} \mid$ can be used to place bounds on the values of $\left|\chi_{z z z}\right|$ pressions in equation (A2), (A3), (A4) respectively. The 563 with an upper bound (UB) and lower bound (LB) examplitudes of the fitting parameters $\left|\chi_{x x z}\right|,\left|\chi_{z x x}\right|,\left|\chi_{\text {eff }}\right|{ }_{564}$ pressed as (see figure 3 in the main text):
thus obtained are then multiplied by various wavelengthdependent correction factors described below.
Although the fitting scheme described above is not sufficient to obtain the complete amplitude and phase information for the three components $\left|\chi_{x x z}\right|,\left|\chi_{z x x}\right|,\left|\chi_{\text {eff }}\right|$, we are nevertheless able to definitively say that for all incident photon energies, $\chi_{z x x}$ and $\chi_{z z z}$ have a relative phase of π. Figure 5 shows the best fits to the data ${ }^{56}$ at incident photon wavelength $\lambda=1400 \mathrm{~nm}$ in the "vertical" channel, using two contrasting assumptions 56 for the relative signs of the fitting parameters, $(+1)$ or 567 (-1). The fits with relative (-) signs are are observed ${ }_{568}$ to be better approximations to the data.

$$
\begin{align*}
& \left|\chi_{z z z}^{U B}\right|=\left|\chi_{\text {eff }}\right|+2\left|\chi_{z x x}\right|+4\left|\chi_{x x z}\right| \tag{A5}\\
& \left|\chi_{z z z}^{L B}\right|=\left|\chi_{\text {eff }}\right|+2\left|\chi_{z x x}\right|-4\left|\chi_{x x z}\right| . \tag{A6}
\end{align*}
$$

2. Wavelength dependent correction factors

We provide a brief summary of the factors that must necessarily be taken into consideration to accurately determine the second harmonic susceptibility tensor ele${ }_{569}$ ments $\chi_{i j k}^{\text {shg }}$ and the procedure we followed to experimen570 tally measure them.

The electric field of the incident laser pulse can be well 52 approximated by a simple Gaussian field as

$$
\begin{gather*}
\mathbf{E}_{\omega}(\mathbf{r}, t)=E_{0} e^{-i\left(k_{0} z-\omega t\right)} \exp \left(-\frac{x^{2}+y^{2}}{w_{0}^{2}}\right) \\
\times \exp \left[-\left(\frac{z-c t}{c \tau}\right)^{2}\right] \hat{x} \tag{A7}
\end{gather*}
$$

$$
\begin{equation*}
I_{\omega} \propto E_{0}^{2} w_{0}^{2} \tau \tag{A9}
\end{equation*}
$$

$$
\begin{align*}
I_{2 \omega} & \left.=\left.\frac{1}{2} \epsilon_{0} \int\langle | \mathbf{E}_{2 \omega}(\mathbf{r}, t)\right|^{2}\right\rangle d \mathbf{r} \\
& \left.\left.\propto \int\langle | \overleftrightarrow{\chi}^{\text {shg }}\right|^{2}\left|\mathbf{E}_{\omega}(\mathbf{r}, t)\right|^{4}\right\rangle d \mathbf{r} \tag{A10}\\
& \propto\left(E_{0}^{2} \chi_{i j k}^{\operatorname{shg}}\right)^{2} w_{0}^{2} \tau
\end{align*}
$$

$$
\begin{equation*}
I_{2 \omega} \propto\left(\chi_{i j k}^{\mathrm{shg}}\right)^{2} \frac{I_{\omega}^{2} d^{2}}{f^{2} \lambda^{2} \tau} \tag{A11}
\end{equation*}
$$

${ }_{600}$ Therefore, accurate measurement of the elements of $\chi^{\text {shg }}$
When this latter result is combined with equation A9) to eliminate the electric field E_{0}, we determine that $I_{2 \omega} \propto$ $\left(\chi_{i j k}^{\text {shg }}\right)^{2} I_{\omega}^{2} / w_{0}^{2} \tau$. However, for Gaussian fields such as in equation A7, the beam waist at the focus w_{0} can be described in terms of the incident beam diameter d, lens focal length f and beam wavelength λ as $w_{0} \propto f \lambda / d$, yielding must be controlled for incident integrated pulse intensity (equivalently, energy), diameter, wavelength and duration as well as the extrinsic factor of the lens focal length. Since the value for $\chi_{i j k}^{\text {shg }}$ at 800 nm is known from previous study [23], all measurements were normalized to our

FIG. 6. Measured FROG spectrum for input fields $\lambda=$ 1100 nm (nominally) showing the projection of the data along the temporal (above) and spectral (right) axes. Fits of the projected data to Guassian models, as described in the text, produced the observed pulse duration τ, the center SHG wavelength λ and the spectral width of the pulse $\Delta \lambda$.
measured response at 800 nm . In addition, the relative enhancement of second harmonic response between TaAs and GaAs was checked independently using a two color Er:doped fiber laser with source photon wavelengths of 1550 nm and 780 nm respectively.
3. Experimental measurement of correction factors
a. Intrinsic factors

Even though a commercially supplied wavelength separator was employed, a number of parasitic wavelengths were present due to a combination of leakage of other responses from the Optical Parametric Amplifier, as well as their sum-frequency, difference-frequency, and second harmonic responses among the signal, idler and second stage pump fields. At each individual wavelength, we computed these parasitic wavelengths and assembled a combination of longpass and shortpass filters of minimum ND8 to remove the parasitics before measuring the incident power. This power was recorded after the last longpass filter (LF in figure 1 of the main text), and a set of reflective neutral density filters of value ND chosen to maintain a calculated incident fluence of roughly \sim $20 \mathrm{~mJ} / \mathrm{cm}^{2}$. As the measured average power P is simply proportional to the energy per pulse through a factor of the repetition rate, the value $P / 10^{N D}$ was divided from the measured power to provide a measure of the incident integrated intensity I_{ω}.
The spectral and temporal characteristics of the OPA beam were measured using a homebuilt Frequency Resolved Optical Gating (FROG) apparatus over the range

${ }^{677}$ setup was used for every data point, necessitating only ${ }_{678}$ measurement of the beam diameter w_{0}.

674

675

FIG. 7. (a) Representative data from knife-edge measurement of the beam diameter and corresponding fit for $\lambda_{0}=1100 \mathrm{~nm}$ incident light. (b) Experimentally measured transmittance of the 540 nm bandpass filter. (c) The linear optical correction factor $B P(\omega)$ as a function of incident photon energy.
from incident wavelength $\lambda=800 \mathrm{~nm}$ to $\lambda=2000 \mathrm{~nm}$. In all cases, the FROG measurement was performed on the beam before its entrance into the reflective objective (i.e., in between LF and RO in figure 1 of the main text) in order to account for the filtering and dispersive characteristics of the preceding optics. While we did not use the same ND filters for the FROG measurement as we did in the experiments, we did use the same number of filters of identical material (UV grade fused silica) and thickness as those used in data collection. A representative FROG trace is shown in figure 6. The FROG apparatus used a $100 \mu \mathrm{~m}$ thick β-Barium Oxide (BBO) crystal, the radiated second harmonic spectrum was determined via simulation with lab2.de software 45 to be virtually identical to that which would derive from a thin layer of a bulk response reflection experiment as occurred here on TaAs.

The pulse duration of the incident second harmonic field was determined from numerically summing the FROG trace along the spectral dimension and fitting the resulting data to a Gaussian of the form $I_{2 \omega}(t)=$ $I_{0} \exp \left[-\left(\left(t-t_{0}\right) / \tau\right)^{2}\right]$, as shown in the top panel of figure 6. We note that from evaluation of the convolution of a Gaussian with itself, the pulse duration at 2ω is related to that at ω through a numerical factor as $\tau_{2 \omega}=\tau_{\omega} / \sqrt{2}$. In order to determine the radiated central 2ω wavelength and bandwidth, we numerically summed the FROG trace along the temporal dimension and fit the result to a Gaussian of the form $I_{2 \omega}(\lambda)=I_{0} \exp \left[-\left(\left(\lambda-\lambda_{0}\right) / \Delta \lambda\right)^{2}\right]$, as shown on the righthand panel. These data allowed us to determine the fundamental wavelength as $2 \lambda_{0}$ and the spectral bandwidth of the SHG pulse $\Delta \lambda$.

The knife-edge method was used to measure the beam diameter w_{0} immediately before the reflective objective as a function of incident wavelength λ for all wavelengths in the study. Representative data at $\lambda=1100 \mathrm{~nm}$ and the corresponding fit to the complementary error function $I(x)=I_{0} \operatorname{erfc}\left(\sqrt{2}\left(x-x_{0}\right) / w_{0}\right)$ are shown in figure 7. A basic Gaussian beam propagation could be used to determine the beam at the focus. However, this 6 was unnecessary since the identical, all-reflective optical

b. Extrinsic factors

Experimentally, the measured second harmonic inten681 sity is also proportional to the spectral response of the ${ }_{82}$ detector $\mathcal{D}(\lambda)$ and the transmittance $\mathcal{T}(\lambda)$ of the filters 683

$$
\begin{equation*}
\frac{1}{\sqrt{\pi} \Delta \lambda} \int_{-\infty}^{\infty} \mathcal{T}(\lambda) \exp \left[-\left(\left(\lambda-\lambda_{0}\right) / \Delta \lambda\right)^{2}\right] d \lambda \tag{A12}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{R}^{\mathrm{shg}}=\frac{\chi^{\mathrm{shg}}}{(\sqrt{\epsilon(2 \omega)}+\sqrt{\epsilon(\omega)})(\sqrt{\epsilon(2 \omega)}+1)} T(\omega)^{2} \tag{A13}
\end{equation*}
$$

${ }^{32}$ where $\chi_{R}^{\text {shg }}$ denotes the nonlinear susceptibility in reflec${ }_{33}$ tion geometry, as measured in the experiment, $\epsilon(\omega)$, and 734 '

$$
\begin{equation*}
B P(\omega) \equiv \frac{T(\omega)^{2}}{(\sqrt{\epsilon(2 \omega)}+\sqrt{\epsilon(\omega)})(\sqrt{\epsilon(2 \omega)}+1)} \tag{A14}
\end{equation*}
$$

${ }_{38}$ which can be calculated as a function of incident pho${ }_{39}$ ton energy based on values of the dielectric constant ${ }^{40}$ as measured by ellipsometry. 47. (See figure 7.) Op74 tical conductivity is more conveniently modeled than ${ }_{42}$ susceptibility, and can be obtained using the relation: ${ }_{43} \sigma_{i j k}^{\text {shg }}(\omega)=-2 i \epsilon_{0} \omega \chi_{i j k}^{\text {shg }}(\omega)$

751 of the TaAs lattice as well as the observation that ${ }_{752} \sigma_{z z z}$ is the dominant component of the SHG response. ${ }_{753}$ This is reminiscent of a 1D system, in which $\sigma_{z z z}$ is the 754 only non-zero component. We consider a quasi-one di${ }_{755}$ mensional model composed of 1D Rice Mele chains in 756 the z-direction [34] with only weak couplings in the $x y$ ${ }_{757}$ plane. In momentum space it takes the form of a two ${ }_{758}$ band model $H_{\boldsymbol{k}}=\boldsymbol{d}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma}$ with

$$
\begin{align*}
d_{x} & =t \sin \left(c k_{z} / 2\right) \\
d_{y} & =\delta \cos \left(c k_{z} / 2\right) \tag{B1}\\
d_{z} & =\Delta+t_{A B}\left(\cos \left(b k_{x}\right)+\cos \left(b k_{y}\right)\right)
\end{align*}
$$

${ }^{759}$ Here b and c are the dimension of the unit cell in the x 760 and z directions. Along lines in the z-direction there is 761 a staggered onsite potential $\pm \Delta$ and staggered hopping ${ }_{762} t \pm \delta$. The parameter $t_{A B}=t_{\|, A}-t_{\|, B} \ll \Delta$ represents ${ }_{763}$ the difference between the inter-chain hopping strengths. 764 When $t_{A B}=0$, this reduces to an ensemble of indepen765 dent Rice-Mele models. The overall energy scale is set 766 by fixing Δ; there are three independent parameters of ${ }_{767}$ the model: $\tilde{t}=t / \Delta, \tilde{\delta}=\delta / \Delta$, and $\tilde{t}_{A B}=t_{A B} / \Delta$.

2. Calculation of SHG Response

The second-order conductivity tensor is defined via

$$
\begin{equation*}
J_{a}\left(\omega_{0}\right)=\sum_{b, c} \sigma_{a b c}\left(\omega_{0} ; \omega_{1}, \omega_{1}\right) E_{b}\left(\omega_{1}\right) E_{c}\left(\omega_{2}\right) \tag{B2}
\end{equation*}
$$

Appendix B: Quasi-One Dimensional Model for Second Harmonic Generation

1. Model details

This Appendix describes the details of the phenomenological model of Rice-Mele chains used in the main text, and details the calculation of its second harmonic response. The model is inspired by the polar character

770 where $\omega_{0}=\omega_{1}+\omega_{2}$ is the frequency of the emit771 ted photon The second harmonic response is $\sigma_{a b c}^{\text {shg }}(\omega)=$ $772 \sigma_{a b c}(2 \omega ; \omega, \omega)$. We will also frequently invoke the shift 773 current, $\sigma_{a b c}^{\text {shift }}(\omega)=\sigma_{a b c}(0 ;-\omega, \omega)$. The shift current 774 may be thought of as the "solar panel response": the 775 amount of DC current generated under illumination.

In two band models, the diagonal components of $\sigma_{a b c}$ 77 are particularly simple. For $\omega>0,20,29$

$$
\begin{align*}
\operatorname{Re} \sigma_{a a a}^{\text {shift }}(\omega) & =\frac{2 \pi e^{3}}{\hbar^{2} \omega^{2}} \int[d \boldsymbol{k}] f_{10} v_{01}^{a} w_{10}^{a a} \delta\left(\omega_{10}-\omega\right) \tag{B3}\\
\operatorname{Re} \sigma_{a a a}^{\text {shg }}(\omega) & =\frac{\pi e^{3}}{2 \hbar^{2} \omega^{2}} \int[d \boldsymbol{k}]\left[f_{10} v_{01}^{a} w_{10}^{a a} \delta\left(\omega_{10}-2 \omega\right)-2 f_{10} v_{01}^{a} w_{10}^{a a} \delta\left(\omega_{10}-\omega\right)\right] \tag{B4}
\end{align*}
$$

778 where $\int[d \boldsymbol{k}]=\int \frac{d^{d} \boldsymbol{k}}{(2 \pi)^{d}}$ is the normalized integral over 779 the Brillouin zone, 0 and 1 refer to the valence and 780

$$
781
$$

\qquad conduction bands respectively, f_{01} is the difference in Fermi factors, ω_{01} is the difference in band frequencies, ${ }_{82} v^{a}=\partial_{k_{a}} H$ is the velocity operator, and $w^{a a}=\partial_{k_{a}} \partial_{k_{a}} H$.
${ }_{783}$ Taken together, these lead to the convenient identity (see ${ }_{784}$ equation (3) of the main text)

$$
\begin{equation*}
\operatorname{Re} \sigma_{a a a}^{\text {shg }}(\omega)=-\frac{1}{2} \operatorname{Re} \sigma_{a a a}^{\mathrm{shift}}(\omega)+\operatorname{Re} \sigma_{a a a}^{\text {shift }}(2 \omega) \tag{B5}
\end{equation*}
$$

785 Again, these equations only hold for two band models. ${ }_{7}$ We focus on the two-photon term of the SHG. Differen788 tiating equation (B1),

$$
\begin{equation*}
\hat{v}^{z}=\frac{c}{\hbar 2}\left[-t \sin \left(\frac{k_{z} c}{2}\right) \sigma^{x}+\delta \cos \left(\frac{k_{z} c}{2}\right) \sigma^{y}\right] \tag{B6}
\end{equation*}
$$

89 and

$$
\begin{equation*}
\hat{w}^{z z}=\frac{c^{2}}{4 \hbar}\left[-t \cos \left(\frac{k_{z} c}{2}\right) \sigma^{x}-\delta \sin \left(\frac{k_{z} c}{2}\right) \sigma^{y}\right] . \tag{B7}
\end{equation*}
$$

${ }_{90}$ Hence, using $\sigma^{i} \sigma^{j}=i \varepsilon_{k}^{i j} \sigma^{k}$,

$$
\begin{equation*}
\hat{v}^{z} \hat{w}^{z z}=\frac{1}{\hbar^{2}}\left(\frac{c}{2}\right)^{3}\left[\frac{t^{2}-\delta^{2}}{2} \sin \left(\frac{2 k_{z} c}{2}\right)+i t \delta\right] \sigma^{z} \tag{B8}
\end{equation*}
$$

793 which leads to the eigenvector equation $H|0\rangle=\varepsilon_{0}|0\rangle$ 794 with

$$
\begin{equation*}
|0\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \varphi}} \tag{B10}
\end{equation*}
$$

795 and eigenvalue $\varepsilon_{v}=-d$. Therefore

$$
\begin{equation*}
\langle 0| \sigma^{z}|0\rangle=\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)=\cos \theta=\frac{d_{z}}{d} . \tag{B11}
\end{equation*}
$$

Combining (B8) and B11) shows that the two-photon

$$
\begin{equation*}
\operatorname{Re} \sigma_{z z z}^{\operatorname{shg} 2 \mathrm{p}}(\omega)=\frac{\pi e^{e}}{2 \hbar^{2} \omega^{2}} \int[d \boldsymbol{k}] f_{10} v_{01}^{z} w_{10}^{z z} \delta\left(\omega_{01}-2 \omega\right)=i \frac{\pi e^{3}}{2 \hbar^{2} \omega^{2}} \int[d \boldsymbol{k}](-1) \frac{1}{\hbar^{2}}\left(\frac{c}{2}\right)^{3} i t \delta \frac{d_{z}}{d} \delta\left(\omega_{10}-2 \omega\right) \tag{B12}
\end{equation*}
$$

798 Note that the $\sin \left(k_{z} c\right)$ term integrates to zero and can be ignored. What remains is to de-dimensionalize the integral 799 and simplify the expression somewhat. Define $\varepsilon(k)=d(k)=\hbar \omega_{10} / 2$. Then

$$
\begin{equation*}
\operatorname{Re} \sigma_{z z z}^{\operatorname{shg} 2 \mathrm{p}}(\omega)=\frac{\pi e^{3}}{2 \hbar^{2}}\left(\frac{c}{2}\right)^{3} t \delta \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{d_{z}}{\varepsilon(k) \omega^{2}} \frac{\hbar}{2} \delta(\varepsilon(k)-\hbar \omega) . \tag{B13}
\end{equation*}
$$

To account for physical broadening of the peak, we use a Lorentzian $\delta(\varepsilon-\omega) \rightarrow \frac{1}{\pi} \frac{\gamma}{(\varepsilon-\omega)^{2}+\gamma^{2}}$. Furtheremore, we convert the remaining factors of ω into ε to remove an unphysical diverges at $\omega \rightarrow 0$ in numerical evaluation. So

$$
\begin{equation*}
\operatorname{Re} \sigma_{z z z}^{\operatorname{shg} 2 \mathrm{p}}(\omega)=\frac{\pi e^{3}}{\hbar}\left(\frac{c}{2}\right)^{3} t \delta \frac{1}{4 \pi} \int[d \boldsymbol{k}] \frac{d_{z}}{\varepsilon(k)^{3}} \frac{\gamma}{(\varepsilon(k)-\omega)^{2}+\gamma^{2}} \tag{B14}
\end{equation*}
$$

Now we de-dimensionalize by normalizing energies to Δ, and henceforth represent Δ-normalizes quantities with a tilde. For example, $\tilde{t} \equiv t / \Delta$. Furthermore, let us define $X \equiv k_{x} b, Y \equiv k_{y} b, Z \equiv k_{z} c$. This gives

$$
\begin{equation*}
\widetilde{\varepsilon}=\sqrt{\tilde{\delta}^{2} \cos (Z / 2)^{2}+\tilde{t}^{2} \sin (Z / 2)^{2}+\widetilde{d}_{z}^{2}} \text { and } \widetilde{d}_{z}=1+\tilde{t}_{A B}[\cos (X)+\cos (Y)] . \tag{B15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sigma_{z z z}^{\operatorname{shg} 2 \mathrm{p}}(\omega)=\frac{e^{3}}{\hbar}\left(\frac{c}{2}\right)^{3} \frac{\widetilde{t} \delta}{\Delta} \frac{1}{4} \frac{1}{(2 \pi)^{3} a b c} \int_{-\pi}^{\pi} d X d Y d Z \frac{\tilde{d}_{z}}{\tilde{\varepsilon}(k)^{3}} \frac{\tilde{\gamma}}{(\tilde{\omega}-\tilde{\varepsilon}(k))^{2}+\tilde{\gamma}^{2}} \tag{B16}
\end{equation*}
$$

802 To match with experimental data, one should multiply by degeneracy factors that account for the spin degeneracy ${ }_{803} g_{s}=2$ and orbital degeneracy $g_{O}=4$ for the number of Rice-Mele chains per unit cell. Rearranging, we arrive at the 804 two-photon contribution to the SHG

$$
\begin{equation*}
\sigma_{z z z}^{\operatorname{shg2p}}(\omega)=\left[\frac{e^{2}}{\hbar} \frac{e}{\Delta}\right] \frac{c^{2}}{b^{2}}\left(\frac{1}{4 \pi}\right)^{3} F\left(\tilde{\omega} ; \tilde{\delta}, \tilde{t}, \tilde{t}_{A B}, \tilde{\gamma}\right) \tag{B17}
\end{equation*}
$$

where the term in brackets has units of conductance per Volt, and the integral has been re-packaged as

$$
\begin{align*}
& F\left(\tilde{\omega} ; \tilde{\delta}, \tilde{t}, \tilde{t}_{A B}, \tilde{\gamma}\right)=g_{s} g_{O} \frac{\tilde{\delta} \tilde{t}}{4} \int_{-\pi}^{\pi} d X \int_{-\pi}^{\pi} d Y \int_{-\pi}^{\pi} d Z \frac{1+\tilde{t}_{A B}[\cos (X)+\cos (Y)]}{\left(\tilde{\delta}^{2} \cos (Z / 2)^{2}+\tilde{t}^{2} \sin (Z / 2)^{2}+\left(1+\tilde{t}_{A B}[\cos (X)+\cos (Y)]\right)^{2}\right)^{3 / 2}} \\
& \times \frac{\tilde{\gamma}}{\left(\tilde{\omega}-\left[\tilde{\delta}^{2} \cos (Z / 2)^{2}+\tilde{t}^{2} \sin (Z / 2)^{2}+\left(1+\tilde{t}_{A B}[\cos (X)+\cos (Y)]\right)^{2}\right]^{1 / 2}\right)^{2}+\tilde{\gamma}^{2}} \tag{B18}
\end{align*}
$$

${ }_{805}$ By Equation (B5), $\operatorname{Re} \sigma_{z z z}^{\text {shift }}(\omega)=-2 \sigma_{z z z}^{\text {shg2p }}(\omega)$ (see equation (2) of the main text).
It is worth examining the special case where $t_{A B}=0$, i.e. an ensemble of uncoupled Rice-Mele chains. Here the integral becomes analytically tractable. Converting the Lorentzian back to a δ function,

$$
\begin{align*}
& \int_{0}^{\infty} d \omega F\left(\widetilde{\omega} ; \tilde{\delta}, \tilde{t}, \tilde{t}_{A B} \rightarrow 0, \tilde{\gamma} \rightarrow 0\right) \tag{B19}\\
& =\frac{4 \pi^{3} \Delta g_{s} g_{O} \tilde{\delta} \tilde{t}}{\hbar} \int_{-\pi}^{\pi} \frac{d Z}{\left(\tilde{\delta}^{2} \cos (Z / 2)^{2}+\tilde{t}^{2} \sin (Z / 2)^{2}+1\right)^{3 / 2}} \tag{B20}\\
& =g_{s} g_{0} \frac{\Delta}{\hbar} \frac{2(2 \pi)^{3} \tilde{\delta} \tilde{t}}{4} \frac{E_{2}\left(\frac{\tilde{\delta}^{2}-\tilde{t}^{2}}{1+\tilde{\delta}^{2}}\right)}{\left(1+\tilde{t}^{2}\right) \sqrt{1+\tilde{\delta}^{2}}} \tag{B21}
\end{align*}
$$

where

$$
\begin{equation*}
G(\tilde{\delta}, \tilde{t}) \equiv g_{s} g_{O} \frac{\tilde{\delta} \tilde{t}}{8} \frac{E_{2}\left(\frac{\tilde{\delta}^{2}-\tilde{t}^{2}}{1+\tilde{\delta}^{2}}\right)}{\left(1+\tilde{t}^{2}\right) \sqrt{1+\tilde{\delta}^{2}}} \tag{B23}
\end{equation*}
$$

Appendix C: Gauge-Invariant Cumulants and a new sum rule

This appendix reviews the theoretical machinery of gauge-invariant cumulants (GICs) that underlies the relationship between ground-state polarization distributions and the frequency-integrated nonlinear response described in the last part of the main text. We restrict the analysis to two-band tight-binding models, relevant for this work, to show that this connection can be made exact. It generalizes the known relationships between the Berry connection and polarization, as well as the relation between the spread of Wannier functions with linear response. The last part of the Appendices shows how this connection gives a guide to construct a model whose spectral weight exceeds the maximum spectral weight possible in the Rice-Mele model 34.

1. The polarization distribution

Let us start with the macroscopic polarization of a solid [31, 32, 35-38 and Kohn's theory of the insulating state 48. Consider a solid with N electrons and M nuclei in any dimension d. The macroscopic polarization operator is

$$
\begin{equation*}
\widehat{\boldsymbol{P}}=\frac{1}{V}\left(e \widehat{\boldsymbol{X}}+q_{\mathrm{nuc}} \widehat{\boldsymbol{X}}_{\mathrm{nuc}}\right) \tag{C1}
\end{equation*}
$$

${ }^{829}$ where $\widehat{\boldsymbol{X}}=\sum_{i=1}^{N} \hat{\boldsymbol{x}}_{i}$ is the center-of-mass position of the electrons (resp. $\widehat{X}_{\text {nuc }}$ of the nuclei). Within the clamped ${ }_{31}$ nuclei approximation, the nuclei do not move and we can set $\widehat{X}_{\text {nuc }}=0$ by a choice of coordinates. The macroscopic polarization is the expectation $\langle\widehat{\boldsymbol{P}}\rangle$.

The GICs are a systematic way to extract further ${ }_{35}$ information from $\widehat{\boldsymbol{P}}$ that we now exploit. Computing $\langle\widehat{\boldsymbol{P}}\rangle=\langle\Psi| \widehat{\boldsymbol{P}}|\Psi\rangle$, averages over many different centers of charge. Following Souza et al 31 we define the distribution of those centers of charge, i.e. the spatial distribu${ }_{39}$ tion of polarization, via

$$
\begin{equation*}
p(\boldsymbol{X})=\langle\Psi| \delta(\widehat{\boldsymbol{X}}-\boldsymbol{X})|\Psi\rangle \tag{C2}
\end{equation*}
$$

840

FIG. 8. A schematic of the first three cumulants of the polarization distribution. In each panel, one cumulant is varied while the others are held fixed. Note that the true polarization distribution is periodic in L.
the fact that the position operator $\widehat{\boldsymbol{X}}$ is ill-defined 49. This implies that, even knowing the exact eigenvectors of the system, $p(X)$ cannot be straightforwardly computed and, moreover, it is not immediately clear if $p(X)$ is even a well-defined distribution. A key result of Souza et al is that $p(X)$ can be carefully defined, rendering its cumulants computable.

2. Definition of gauge-invariant cumulants

Recall that the first several cumulants C_{n} of a distribution $p(X)$ can be written in terms of the moments as

$$
\begin{align*}
C_{1}^{i} & =\left\langle X^{i}\right\rangle \tag{C3}\\
C_{2}^{i j} & =\left\langle X^{i} X^{j}\right\rangle-\left\langle X^{i}\right\rangle\left\langle X^{j}\right\rangle \tag{C4}\\
C_{3}^{i j k} & =\left\langle X^{i} X^{j} X^{k}\right\rangle+2\left\langle X^{i}\right\rangle\left\langle X^{j}\right\rangle\left\langle X^{k}\right\rangle \tag{C5}\\
& -\left\langle X^{i} X^{j}\right\rangle\left\langle X^{k}\right\rangle-\left\langle X^{i} X^{k}\right\rangle\left\langle X^{j}\right\rangle-\left\langle X^{j} X^{k}\right\rangle\left\langle X^{i}\right\rangle
\end{align*}
$$

61 where $i, j, k \in\{x, y, z\}$ are spatial indices. The first cu662 mulant is the same as the first moment, the second is
${ }_{863}$ the variance, and the third cumulant is often called the 664 skew of the distribution. A schematic of the first three ${ }_{65}$ cumulants is shown in figure (8).

A convenient way to compute the moments is in terms 867

$$
\begin{equation*}
\mathcal{C}(\boldsymbol{\alpha})=\left\langle e^{-i \boldsymbol{\alpha} \cdot \boldsymbol{X}}\right\rangle \tag{C6}
\end{equation*}
$$

868 so that $\left\langle X^{i} X^{j} \cdots X^{k}\right\rangle=\left.i \partial_{\alpha_{i}} i \partial_{\alpha_{j}} \cdots i \partial_{\alpha_{k}} C(\boldsymbol{\alpha})\right|_{\boldsymbol{\alpha}=0}$. The ${ }_{669}$ cumulants are likewise obtained by differentiating the log 80 of the characteristic function

$$
\begin{equation*}
C_{n}^{i j \ldots k}=\left.i \partial_{\alpha_{i}} i \partial_{\alpha_{j}} \cdots i \partial_{\alpha_{k}} \ln \mathcal{C}(\boldsymbol{\alpha})\right|_{\boldsymbol{\alpha}=0} \tag{C7}
\end{equation*}
$$

Following [31, we define

$$
\begin{equation*}
\ln \mathcal{C}(\boldsymbol{\alpha})=\frac{V}{(2 \pi)^{d}} \int[d \boldsymbol{k}] \ln \left\langle\Psi_{\boldsymbol{k}}\right| e^{-i \boldsymbol{\alpha} \cdot \widehat{\boldsymbol{X}}}\left|\Psi_{\boldsymbol{k}+\boldsymbol{\alpha}}\right\rangle \tag{C8}
\end{equation*}
$$

372 where V is the volume of the system, $\int[d \boldsymbol{k}]$ denotes the ${ }_{873}$ normalized integral over the Brillouin zone, and $\left|\Psi_{k}\right\rangle$ 874 is the many-body wavefunction with boundary condi875 tions twisted by $e^{i k L}$. In a single-particle description, ${ }^{876}\left|\Psi_{k}\right\rangle=\prod_{n} u_{\boldsymbol{k} n} c_{\boldsymbol{k} n}^{\dagger}|0\rangle$ where the Bloch wavefunctions ${ }_{877} \psi_{\boldsymbol{k} n}(\boldsymbol{r})=u_{\boldsymbol{k} n}(\boldsymbol{r}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$ are chosen to satisfy a smooth, ${ }_{878}$ periodic gauge: $\psi_{\boldsymbol{k} n} \equiv \psi_{\boldsymbol{k}+\boldsymbol{G}, n}$ for reciprocal lattice vec${ }_{879}$ tors \boldsymbol{G}. The cumulants of the polarization distribution 880 can be computed via differentiating (C8). The first three 881 are

$$
\begin{align*}
C_{1}^{i} & =i V \int[d \boldsymbol{k}] \operatorname{Tr}\left[c_{1}^{i}\right] \tag{C9}\\
C_{2}^{i j} & =i^{2} V \int[d \boldsymbol{k}] \operatorname{Tr}\left[c_{2}^{i j}-c_{1}^{i} c_{1}^{j}\right] \tag{C10}\\
C_{3}^{i j k} & =i^{3} V \int[d \boldsymbol{k}] \operatorname{Tr}\left[c_{3}^{i j k}-c_{2}^{i j} c_{1}^{k}-c_{2}^{j k} c_{1}^{i}-c_{2}^{k i} c_{1}^{j}+2 c_{1}^{i} c_{1}^{j} c_{1}^{k}\right] \tag{C11}
\end{align*}
$$

where the trace is over occupied bands, and the c 's are 885 matrices in the band space whose matrix elements are

$$
\begin{align*}
c_{1}^{i} & =i\left\langle u_{k n} \mid \partial_{k_{i}} u_{k m}\right\rangle \tag{C12}\\
c_{2}^{i j} & =i^{2}\left\langle u_{k n} \mid \partial_{k_{i}} \partial_{k_{j}} u_{k m}\right\rangle \tag{C13}\\
c_{3}^{i j k} & =i^{3}\left\langle u_{k n} \mid \partial_{k_{i}} \partial_{k_{j}} \partial_{k_{j}} u_{k m}\right\rangle \tag{C14}
\end{align*}
$$

882 One can show that the cumulants are gauge-invariant- 88 ${ }_{883}$ hence the name - and purely real in the presence of 884 time-reversal symmetry.

To compute the cumulants numerically, it is advanta${ }_{886}$ geous to use an alternative formulation (written here for 887 a single occupied band in 1D) 30

$$
\begin{equation*}
\Delta k \prod_{i=0}^{M-1} \ln \left\langle u_{k_{i}} \mid u_{k_{i+1}}\right\rangle=\sum_{n=1} \frac{(i \Delta k)^{n}}{n!} C_{n} \tag{C15}
\end{equation*}
$$

${ }^{888}$ where $k_{i+1}-k_{i}=\Delta k=2 \pi / M$, and again using a pe${ }_{89}$ riodic gauge for the Bloch wavefunctions ψ_{k}. The cu${ }_{90}$ mulants can be measured by computing the left-hand 891 side on successively finer meshes of k-points and fitting

The second cumulant then gives a great deal of information about the character of the material. In a metalinsulator transition, for instance, the localization length diverges, and hence so does the second cumulant. Physically, the electrons in a metal are almost entirely delocalized, so the polarization distribution should be nearly flat, with variance on the order of the size of the system.
It is useful to contrast the information in C_{2} with the Wannier functions. In 1d, the maximally localized Wannier functions have the property that the their centers are governed by the centers of polarization, and their variance is proportional to the squared localization length. We stress, however, that this does not imply the Wannier density is the same as the polarization distribution. In dimensions greater than one, there are no unique maximally-localized single-particle Wannier functions, and all Wannier functions have variance strictly larger than the squared localization length.

As an optical response, the second cumulant encodes the all-frequency linear response of the system. A standard application of the flucutation-dissipation theorem shows that the fluctuations in the polarization distribution $\left(C_{2}\right)$ is related to the total current response of the system: 31]

$$
\begin{equation*}
\frac{\pi e^{2}}{V^{2} \hbar} C_{2}^{\alpha \beta}=\frac{d \omega}{\omega} \operatorname{Re} \sigma^{\alpha \beta}(\omega) \tag{C18}
\end{equation*}
$$

${ }_{937}$ where $\sigma^{\alpha \beta}$ is the linear conductivity.

$$
952
$$

$$
\begin{equation*}
\Sigma_{a}^{\mathrm{shift}}=\frac{2 \pi e^{3}}{V \hbar^{2}} C_{3}^{a} \tag{C19}
\end{equation*}
$$

${ }_{954}$ where

$$
\begin{equation*}
\Sigma_{a}^{\text {shift }}=\int_{0}^{\infty} d \omega \operatorname{Re} \sigma^{a a a}(0 ;-\omega, \omega) \tag{C20}
\end{equation*}
$$

and, specializing to the case of two bands,

$$
\begin{equation*}
C_{3}^{a}=-V \int \frac{d^{d} \boldsymbol{k}}{(2 \pi)^{d}} \operatorname{Im}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right] \tag{C21}
\end{equation*}
$$

${ }^{56}$ where $c_{n}=\langle 0|\left(i \partial_{k_{a}}\right)^{n}|0\rangle$ for the valence band Bloch 57 wavefunction $|0\rangle=\left|u_{0}(\boldsymbol{k})\right\rangle$.

Integrating (B4), the spectral weight of the shift current in a two-band model is

$$
\begin{equation*}
\Sigma_{a}^{\text {shift }}=\frac{2 \pi e^{3}}{\hbar^{2}} \int[d \boldsymbol{k}] \frac{\operatorname{Im}\left[\langle 0| \partial_{k} H|1\rangle\langle 0| \partial_{k}^{2} H|0\rangle\right]}{\left(\epsilon_{1}-\epsilon_{0}\right)^{2}} \tag{C22}
\end{equation*}
$$

${ }_{958}$ where $|0\rangle$ and $|1\rangle$ denote valence and conduction bands, ${ }_{59}$ respectively, and $\varepsilon_{n}=\varepsilon_{n}(k)$ are the band energies.

The Schrödinger equation and its k derivatives give

$$
\begin{align*}
& H|n\rangle=\epsilon_{n}|n\rangle \tag{C23}\\
& \partial_{k} H|n\rangle+H\left|\partial_{k} n\right\rangle=\partial_{k} \epsilon_{n}|n\rangle+\epsilon_{n}\left|\partial_{k} n\right\rangle, \tag{C24}\\
& \partial_{k}^{2} H|n\rangle+\partial_{k} H\left|\partial_{k} n\right\rangle+H\left|\partial_{k}^{2} n\right\rangle \tag{C25}\\
& \quad=\partial_{k}^{2} \epsilon_{n}|n\rangle+\partial_{k} \epsilon_{n}\left|\partial_{k} n\right\rangle+\epsilon_{n}\left|\partial_{k}^{2} n\right\rangle
\end{align*}
$$

Taking inner products and applying $|0\rangle\langle 0|+|1\rangle\langle 1|=I$ 961 implies

$$
\begin{align*}
\langle 0| \partial_{k} H|1\rangle= & \left(\epsilon_{1}-\epsilon_{0}\right)\left\langle 0 \mid \partial_{k} 1\right\rangle \tag{C26}\\
\langle 1| \partial_{k}^{2} H|0\rangle= & \left(\epsilon_{0}-\epsilon_{1}\right)\left[\left\langle 1 \mid \partial_{k}^{2} 0\right\rangle-2\left\langle 1 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle\right] \\
& \quad+2\left(\partial_{k} \epsilon_{0}-\partial_{k} \epsilon_{1}\right)\left\langle 1 \mid \partial_{k} 0\right\rangle \tag{C27}
\end{align*}
$$

4. A New Sum Rule

Now that we have seen the dual nature - spatial and optical - of the first two GICs, it is perhaps not too surprising that the third cumulant can give a non-linear sum rule. The third cumulant measures the skewness of the polarization distribution which, in one dimension, says if the left or right "shoulder" of the distribution is arger.
On the optical side, we find that the second cumulant is related to the second-harmonic response of the system. Given that the first cumulant determines the polarization and the second cumulant gives a linear sum rule, it is perhaps not too surprising that the third cumulant can give a non-linear sum rule. More precisely, we show that for a generic two-band model (see equation (5) of the
,

Substituting these into the integral in the spectral
${ }^{63}$ weight yields

$$
\begin{align*}
& \frac{1}{\left(\epsilon_{1}-\epsilon_{0}\right)^{2}} \operatorname{Im}\left[\langle 0| \partial_{k} H|1\rangle\langle 0| \partial_{k}^{2} H|0\rangle\right] \\
& =\operatorname{Im}\left\{\left\langle 0 \mid \partial_{k} 1\right\rangle\left[-\left\langle 1 \mid \partial_{k}^{2} 0\right\rangle+2\left\langle 1 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle\right]\right\} \tag{C28}\\
& \quad \quad-\frac{\partial_{k} \epsilon_{0}-\partial_{k} \epsilon_{1}}{\epsilon_{0}-\epsilon_{1}} \operatorname{Im}\left[\left\langle 0 \mid \partial_{k} 1\right\rangle\left\langle 1 \mid \partial_{k} 0\right\rangle\right]
\end{align*}
$$

${ }_{964}$ We can drop the last term since $\left\langle 0 \mid \partial_{k} 1\right\rangle\left\langle 1 \mid \partial_{k} 0\right\rangle$ is real. 965 Applying the resolution of the identity, the first term is

$$
\begin{align*}
\left\langle 0 \mid \partial_{k} 1\right\rangle\left\langle 1 \mid \partial_{k}^{2} 0\right\rangle & =-\left\langle\partial_{k} 0 \mid \partial_{k}^{2} 0\right\rangle+\left\langle\partial_{k} 0 \mid 0\right\rangle\left\langle 0 \mid \partial_{k}^{2} 0\right\rangle \\
& =-\partial_{k}\left(\left\langle 0 \mid \partial_{k}^{2} 0\right\rangle\right)+\left\langle 0 \mid \partial_{k}^{3} 0\right\rangle-\left\langle 0 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k}^{2} 0\right\rangle \\
& =\partial_{k} c_{2}+i c_{3}-i c_{1} c_{2} \tag{C29}
\end{align*}
$$

966 while the second term becomes

$$
\begin{aligned}
& \left\langle 0 \mid \partial_{k} 1\right\rangle\left\langle 1 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle \\
& =-\left\langle\partial_{k} 0 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle+\left\langle\partial_{k} 0 \mid 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle \\
& =-\partial_{k}\left(\left\langle 0 \mid \partial_{k} 0\right\rangle\right)\left\langle 0 \mid \partial_{k} 0\right\rangle+\left\langle 0 \mid \partial_{k}^{2} 0\right\rangle\left\langle 0 \mid \partial_{k} 0\right\rangle-c_{1}^{3} \\
& =+\frac{1}{2} \partial_{k}\left(c_{1}^{2}\right)+i c_{1} c_{2}-i c_{1}^{3} .
\end{aligned}
$$

The total derivatives vanish after integration, and we obtain equation (C19).

This sum rule leads to intriguing conclusions. For twoband models, non-linear optical responses can be understood as a facet of the spatial distribution of polarization. This provides a clear physical picture that may be more intuitive than the normal expressions for SHG, which involve k-space sums over virtual transitions. Moreover, the sum rule can predict the shift current - and hence the SHG response - of a material as a ground state property.

5. Upper bounds in the Rice-Mele model and beyond

In light of this relation between the SHG and C_{3}, it is worth revisiting the above fact, equation (B23), that there is a maximum SHG in Rice-Mele models. While this maximum is a good benchmark as to how much second-harmonic can be produced by a system, it is not an absolute bound. By designing a Hamiltonian with a large C_{3}, we will see this bound may be exceeded.

For concreteness, consider a generalization of the RiceMele model with a next-nearest neighbor hopping $H=$

$$
H_{\mathrm{RM}}+H_{\mathrm{NNN}} \text { where }
$$

$$
\begin{align*}
H_{\mathrm{RM}}= & \sum_{n} \Delta(-1)^{n} c_{n}^{\dagger} c_{n} \tag{C30}\\
& +\left(\frac{t}{2}+(-1)^{n} \frac{\delta}{2}\right) c_{n}^{\dagger} c_{n+1}+\text { h.c. } \\
H_{\mathrm{NNN}}=\sum_{n} & \left(\frac{t^{\prime}}{2}+\frac{\delta^{\prime}}{2}\right) c_{A n}^{\dagger} c_{A, n+1} \tag{C31}\\
& +\left(\frac{t^{\prime}}{2}-\frac{\delta^{\prime}}{2}\right) c_{B n}^{\dagger} c_{B, n+1}+\text { h.c. }
\end{align*}
$$

${ }_{988}$ In k-space this becomes

$$
\begin{equation*}
H=\sum_{k} \boldsymbol{c}_{k}^{\dagger}\left[h_{\mathrm{RM}}+h_{\mathrm{NNN}}\right] \boldsymbol{c}_{k} \tag{C32}
\end{equation*}
$$

where

$$
\begin{align*}
h_{\mathrm{RM}}(\boldsymbol{k}) & =t \cos \left(\frac{k c}{2}\right) \sigma_{x}+\delta \sin \left(\frac{k c}{2}\right) \sigma_{y}+\Delta \sigma_{z} \tag{C33}\\
h_{\mathrm{NNN}}(\boldsymbol{k}) & =t^{\prime} \cos (k c) \mathrm{Id}_{2}+\delta^{\prime} \cos (k a) \sigma_{z} . \tag{C34}
\end{align*}
$$

989 990 991 for giant shift current or second harmonic generation.

FIG. 9. (Left) Reconstructed polarization distributions in the extended Rice-Mele model via the maximum entropy method 30. (Right) The gauge-invariant cumulants and spectral weight in the next-nearest neighbor extension of the Rice-Mele model. The maximum in the normal Rice-Mele model, equation $\overline{\mathrm{B} 23)}$, is the black line, and the spectral weight as a function of γ is computed via equation C22 All parameters are given in the text.
[1] Curie, P. Sur la symétrie dans les phénomènes 1037 physiques, symétrie d'un champ électrique et d'un champ 1038 magnétique. J. Phys. Theor. Appl. 3, 393-415 (1894). ${ }_{103}$
[2] Xiao, D., Chang, M.-C. \& Niu, Q. Berry phase effects 1040 on electronic properties. Rev. Mod. Phys. 82, 1959-2007 1041 (2010).
[3] Murakami, S. Phase transition between the quantum spin 1043 Hall and insulator phases in 3D: emergence of a topolog- 1044 ical gapless phase. New J. Phys. 9, 356 (2007).
[4] Wan, X., Turner, A. M., Vishwanath, A. \& Savrasov, 1046 S. Y. Topological semimetal and Fermi-arc surface states 1047 in the electronic structure of pyrochlore iridates. Physical 1048 Review B 83, 205101 (2011).
[5] Lv, B. Q. et al. Experimental discovery of Weyl 1050 semimetal TaAs. Physical Review X 5, 031013 (2015). ${ }^{1051}$
[6] Yang, L. et al. Weyl semimetal phase in the non- 1052 centrosymmetric compound TaAs. Nature physics 11, 1053 728 (2015).

1054
[7] Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal 1055 and topological Fermi arcs. Science 349, 613-617 (2015). ${ }^{1056}$
[8] Zhong, S., Moore, J. E. \& Souza, I. Gyrotropic magnetic 1057 effect and the magnetic moment on the Fermi surface. 1058 Physical Review Letters 116, 077201 (2016).

1059
[9] Ma, J. \& Pesin, D. A. Chiral magnetic effect and natural 1060 optical activity in metals with or without Weyl points. 1061 Physical Review B 92, 235205 (2015).

1062
[10] Liang, T. et al. Ultrahigh mobility and giant magnetore- 1063 sistance in the dirac semimetal $\mathrm{Cd}_{3} \mathrm{As}_{2}$. Nature Materials 1064 14, 280-284 (2014).

1065
[11] Xiong, J. et al. Evidence for the chiral anomaly in the 1066 Dirac semimetal Na ${ }_{3}$ Bi. Science 350, 413-416 (2015). 1067
[12] Gooth, J. et al. Experimental signatures of the mixed 1068 axial-gravitational anomaly in the Weyl semimetal NbP. 1069 Nature 547, 324 (2017).
[13] Belinicher, V. \& Sturman, B. The photogalvanic effect 1071 in media lacking a center of symmetry. Usp. Fiz. Nauk 1072

130, 415 (1980).
[14] Belinicher, V., Ivchenko, E. \& Sturman, B. Kinetic theory of the displacement photovoltaic effect in piezoelectrics. Zh. Eksp. Teor. Fiz 83, 649-661 (1982).
[15] Golub, L., Ivchenko, E. L. \& Spivak, B. Photocurrent in gyrotropic weyl semimetals. JETP Letters 105, 782-785 (2017).
[16] von Baltz, R. \& Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 55905596 (1981).
[17] Sipe, J. \& Shkrebtii, A. Second-order optical response in semiconductors. Physical Review B 61, 5337 (2000).
[18] F. de Juan, T. M., AG Grushin \& Moore, J. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
[19] Chan, C.-K., Lindner, N. H., Refael, G. \& Lee, P. A. Photocurrents in Weyl semimetals. Physical Review B 95, 041104 (2017).
[20] Yang, X., Burch, K. \& Ran, Y. Divergent bulk photovoltaic effect in Weyl semimetals. arXiv preprint arXiv:1712.09363 (2017).
[21] Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nature Physics 13, 842 (2017)
[22] Osterhoudt, G. B. et al. Colossal photovoltaic effect driven by the singular Berry curvature in a Weyl semimetal. arXiv preprint arXiv:1712.04951 (2017).
[23] Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nature Physics 13, 350 (2017).
[24] Penetration depth calculated using refractive index, as measured by ellipsometry, obtained in private communication from Bing Xu, Institute of Phyiscs, Beijing.
[25] Weng, H., Fang, C., Fang, Z., Bernevig, B. A. \& Dai, X. Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides. Physical Review X 5, 011029
(2015).

26] Li, Z. et al. Weyl semimetal TaAs: Crystal growth, mor- 110 phology, and thermodynamics. Crystal Growth EB Design 1109 16, 1172-1175 (2016).
[27] See appendices for additional details.
[28] Bergfeld, S. \& Daum, W. Second-harmonic generation in 1112 GaAs: Experiment versus theoretical predictions of $\chi_{x y z}^{(2)}$. ${ }_{1113}$ Physical Review Letters 90, 036801 (2003).
[29] Morimoto, T. \& Nagaosa, N. Topological nature of 1115 nonlinear optical effects in solids. Science Advances 2, 1116 e1501524 (2016).
[30] Yahyavi, M. \& Hetényi, B. Reconstruction of the po- 1118 larization distribution of the Rice-Mele model. Physical 1119 Review A 95, 062104 (2017).
[31] Souza, I., Wilkens, T. \& Martin, R. M. Polarization and ${ }^{1121}$ localization in insulators: Generating function approach. ${ }^{1122}$ Physical Review B 62, 1666 (2000).
[32] Resta, R. \& Vanderbilt, D. Theory of polarization: a 1124 modern approach. In Physics of Ferroelectrics, 31-68 1125 (Springer, 2007).
33] Zhang, Y. et al. Photogalvanic effect in weyl semimetals ${ }^{1127}$ from first principles. Phys. Rev. B 97, 241118 (2018).
[34] Rice, M. J. \& Mele, E. J. Elementary excitations of a 1129 linearly conjugated diatomic polymer. Physical Review ${ }^{1130}$ Letters 49, 1455-1459 (1982).
35] Zak, J. Berry's phase for energy bands in solids. Physical ${ }^{1132}$ Review Letters 62, 2747 (1989).

1132 1133
36] King-Smith, R. \& Vanderbilt, D. Theory of polarization ${ }^{1134}$ of crystalline solids. Physical Review B 47, 1651 (1993). ${ }^{1135}$
[37] Resta, R. Macroscopic polarization in crystalline di- ${ }^{1136}$ electrics: the geometric phase approach. Reviews of mod- 1137 ern physics 66, 899 (1994).
38] Ortiz, G. \& Martin, R. M. Macroscopic polarization as a geometric quantum phase: Many-body formulation.

Physical Review B 49, 14202-14210 (1994).
[39] Rangel, T. et al. Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides. Physical Review Letters 119, 067402 (2017).
[40] Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Physical Review B 93, 121110 (2016).
[41] Tan, L. Z. \& Rappe, A. M. Upper limit on nonlinear optical processes: shift current and second harmonic generation in extended systems. arXiv preprint arXiv:1708.05433 (2017).
[42] Sipe, J. E. \& Shkrebtii, A. I. Second-order optical response in semiconductors. Physical Review B 61, 53375352 (2000).
[43] Fregoso, B. M., Morimoto, T. \& Moore, J. E. Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Physical Review B 96, 075421 (2017).
[44] Quesnel, B. \& Mora, P. Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Physical Review E 58, 3719 (1998).
[45] Lab2 add on to LabVIEW® software (1999). URL http://www.lab2.de
[46] Bloembergen, N. \& Pershan, P. Light waves at the boundary of nonlinear media. Physical Review 128, 606 (1962).
[47] The dielectric constant was measured using ellipsometry of TaAs by Bing Xu at Université de Fribourg, and obtained in private communication.
[48] Kohn, W. Theory of the insulating state. Physical Review 133, A171 (1964).
[49] Resta, R. Quantum-mechanical position operator in extended systems. Physical Review Letters 80, 1800 (1998).

[^0]: * jworenstein@lbl.gov
 \dagger dtorchin@temple.edu

