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Ultrafast pump-probe spectroscopy with high temporal and spectral resolutions provides a new
insight into ultrafast nonequilibrium phenomena. We propose that transient interference between
pump and probe pulses is realized in pump-probe spectroscopy of band and Mott insulators, which
can be observed only after recent developments of ultrafast spectroscopic techniques. A continuum
structure in excitation spectrum of band insulators is found to act as a medium for storing the
spectral information of pump pulse, and spectrum detected by probe pulse is interfered with the
medium, generating the transient interference in energy domain. We also demonstrate the transient
interference in the presence of electron correlations in one-dimensional half-filled Hubbard model.
Furthermore, bosons coupled to electrons additively contribute to the interference. Our finding will
provide an interpretation of probe-energy dependent oscillations recently observed in pump-probe
spectrum for a two-dimensional Mott insulator.

PACS numbers: 42.50.Md, 42.50.Dv, 71.10.Fd, 78.47.J-

I. INTRODUCTION

Ultrafast pump-probe spectroscopy is a good tool to
investigate nonequilibrium properties of a given system,
since a pump pulse triggers ultrafast processes, and a
subsequent probe pulse monitors the pump-induced dy-
namical processes [1–4]. Especially, by using femtosecond
pulses, nonequilibrium dynamics of electrons can be de-
tected, since the timescale of motion of electrons is of the
order of femtosecond. However, increasing resolution of
optical measurement in both time- and energy-domain is
difficult and limited by the uncertainty principle.

Recently, ultrafast spectroscopic techniques have been
advanced by using a transform-limited pulse, i.e. a pulse
that has the minimum possible duration for a given spec-
tral bandwidth, and have opened a new door to make
both temporal and spectral resolutions as high as pos-
sible [2]. These techniques can disclose new ultrafast
nonequilibrium phenomena. In fact, by applying these
techniques, interference in energy domain has been ob-
served in atomic systems and nanometric tips [5–9]. This
interference is applied to control atomic storage medium
for recording information of optical pulses [10–14]. How-
ever, as far as we know, there has been no such a report
on transient interference of pump-probe spectroscopy of
band and Mott insulators both experimentally and the-
oretically.

In this paper, we investigate ultrafast pump-probe
spectroscopy of band and Mott insulators, and propose
transient interference between temporary well-separated
pulses in electron systems as in the case of atomic sys-
tems. We formulate such transient interference in pump-
probe spectroscopy of a two-band model. We find that
the existence of a continuum structure in excitation spec-
trum is important for generating the transient interfer-
ence, since the continuum structure acts as a medium for
storing the spectral information of pump pulse and for

creating interference between temporary well-separated
pump and probe photons. The information persists due
to a memory effect, i.e. a relaxation process of electron
systems. As a result, the time-domain pump-probe spec-
trum depends on both probe energy ω and the central
frequency of the pump and probe pulses Ω, and thus os-
cillates with a frequency

ω0 = ω − Ω. (1)

In order to demonstrate the transient interference in the
presence of electron correlation, we perform numerical
calculations of pump-probe spectrum in a one-dimensinal
(1D) half-filled Hubbard model. Moreover, we find that
bosons coupled to electrons in the two-band model make
additional contribution to the interference. Based on
the result, we speculate that the transient interference
will be observed in Mott insulators strongly correlated
to magnons. For the observation of the proposed tran-
sient interference, high resolution of measurements of
both time and energy is required in ultrafast pump-probe
spectroscopy. Recently, oscillations of electronic states
above the charge-transfer gap in a two-dimensional (2D)
Mott insulator Nd2CuO4 have been observed on the re-
flectivity changes detected by pump-probe measurement
with ultrashort pulses [15]. The time and energy resolu-
tion of the measurement is as high as 10fs and 0.01eV,
respectively. By extracting the oscillatory components
from the pump-probe spectrum, the oscillation compo-
nent with the frequency indicated by Eq. (1) has been
found [15]. We propose that the transient interference
will be one of possible origins of the observed oscillations.
This paper is organized as follows. We introduce a two-

band model, which is a minimal model to describe the
interference effect by two photon pulses through an elec-
tron system, and show pump-probe absorption spectrum
in Sec. II. In Sec. III, we calculate the time-dependent op-
tical conductivity at half filling just after pumping. The
effect of bosons coupled to electrons on the pump-probe
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spectrum is discussed in Sec. IV. Finally, a summary is
given in Sec. V.

II. TWO-BAND MODEL

We firstly introduce a two-band model, which is a min-
imal model to describe the interference effect by two
photon pulses through an electron system, and analyt-
ically calculate pump-probe absorption spectrum. With
assuming dipole transitions, the Hamiltonian of the two-
band model under the time-dependent electric field reads

H =
∑

k

εkc
†
ckcck +

∑

k

̺kc
†
vkcvk

−
∑

k

(

dcvE(t)c
†
ckcvk + d∗cvE(t)c

†
vkcck

)

,

where cc(v)k is an annihilation operetor for fermions in
conduction (valence) band with momentum k. The ener-

gies of the conduction and valence band are εk = ε+ ~
2k2

2mc

and ̺k = ̺+ ~
2k2

2mv
, where ε and ̺ are the minimum and

maximum of the conduction and valence band, respec-
tively, and mc and mv are the effective mass of electrons
in the conduction and valence bands, respectively. We
introduce the interband dipole matrix element dcv and
external electric field E(t). Hereafter, we set ~ = 1.
With taking the long-wave length limit of electric field,

optical Bloch equation is written as [16]

(

∂

∂t
+ i{εk − ̺k − iγ}

)

p0vc(k, t) = dcvE(t){1− 2fc(k)}

(2)

and

(

∂

∂t
+ Γ

)

fc(k, t) = −2Im
[

dcvE(t)p
0∗
vc(k, t)

]

, (3)

where fc(k) = 〈c†ckcck〉 and p0vc(k) = 〈c†vkcck〉 with
〈· · · 〉 representing the expectation value. We intro-
duce phenomenological damping rate Γ for fc, and
dephasing rate γ for p0vc. We consider an electric

field E(t) = 1
2

(

Ẽ(t)e−iΩt + Ẽ∗(t)eiΩt
)

, where Ẽ(t) =

2
{

Ẽp(t)eikp·r + Ẽt(t)eikt·r
}

, and electric field and wave

vector of pump (probe) pulse are Ẽp and kp (Ẽt and
kt), respectively. Introducing an expansion parameter λ

through E(t) → λE(t), we obtain p0vc = λp
0(1)
vc +λ2p

0(2)
vc +

λ3p
0(3)
vc + · · · , fc = λf

(1)
c + λ2f

(2)
c + λ3f

(3)
c + · · · . The

shape of probe pulse is represented by the delta function,
Ẽt(t) = Ẽtδ(t− τ) (τ > 0), where τ is delay time between
the pump and probe pulses. The pump-induced absorp-
tion change is given by α = −Im [d∗cvχ(k, ω)] . Taking

Ẽp(t) = Ẽpe
−σ|t| and with the rotating-wave approxima-

tion, the probe susceptibility is given by (see Appendix

A)

χ(k, ω) ≃
p
0(3)
vc (k, ω)

Et(ω)

=
8dcv |dcv| 2

∣

∣

∣
Ẽp

∣

∣

∣

2e−(σ−γ)τeiτ(−Ω+εk−̺k)Γσ

(iγ + ω − εk + ̺k) (iΓ + iσ + ω − Ω)v+k u
+
k u

−
k

+ · · · ,

(4)

where u±
k

= iγ ± iσ + Ω − εk + ̺k and v+
k

= iγ + iΓ −
iσ + Ω − εk + ̺k. In the limit γ → 0, the pole of the
energy denominator ω = εk − ̺k in the third term of
χ(k, ω) gives rise to an oscillatory behavior of ei(ω−Ω)τ

with decay e−(σ−γ)τ . This is the oscillation component
indicated by Eq. (1). Since the time scale where the oscil-
lation persists is on the order of γ−1, real-time ultrafast
dynamics should be observed with high accuracy [17].
In order to maintain the oscillation in the two-band

model, we have to select a proper set of parameters that
lead to the coherence and memory effect in energy do-
main. First of all, we examine the coherence in energy
domain. When σ ≫ 1/τ , i.e. the pulse duration is much
shorter than the time delay τ , we obtain ∆t ∼ 0, where
∆t is the uncertainty in time domain. Simultaneously,
the energy uncertainty ∆E ∼ ∞, leading to low en-
ergy resolution. As a result, the interference in energy
domain is invisible. This corresponds to the fact that
interference pattern vanishes in Young’s double-slit ex-
periment if the path of light is measured [18, 19]. In
fact, if the electric field of the pump pulse is represented

by the delta function, p
0(3)
vc (k, ω) completely cancel out

Et(ω), which means that χ(k, ω) does not have interfer-
ence term ei(ω−Ω)τ (see Appendix A). In contrast, when
σ . 1/τ , the coherence in energy domain is obtained,
which leads to the interference in energy space.
Second, we examine the memory effect. When σ ≪ γ,

i.e. the pulse duration is longer than the dephasing time,
∆t ∼ ∞ and ∆E ∼ 0 are simultaneously obtained. This
leads to the relaxation that holds true as long as electrons
have well-defined energies, and their energy changes are
slow with the time scale of 1/∆ǫ, where ∆ǫ is the char-
acteristic energy exchange in a scattering event [20–24].
When σ & γ, the relaxation involving electrons with ill-
defined energies starts to contribute to the memory effect.
Therefore, if σ and 1/τ are carefully controlled so as to
realize 1/τ & σ & γ, both coherence in energy domain
and memory effect are relevant, and the interference in
energy domain is maintained for the time γ−1. Usually,
γ of a given system cannot be changed. However, if we
make use of the quantum Zeno effect [25–28], we might be
able to control γ, which can help to observe our finding.

III. HUBBARD MODEL

Pump-probe spectroscopy has been performed in
strongly correlated systems to investigate exotic phe-
nomena [4, 15, 29–39]. Even in correlated electron sys-
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tems, there is a continuum structure in excitation spec-
trum. This indicates that the interference effects similar
to those in the two-band model may be realized as will be
demonstrated by using a 1D half-filled Hubbard model,
which is given by

H = −th
∑

i,σ

(

c†i,σci+1,σ +H.c.
)

+ U
∑

i

ni,↑ni,↓, (5)

where c†iσ is the creation operator of an electron with spin

σ at site i, ni,σ = c†i,σci,σ, ni =
∑

σ ni,σ, and th, U are
the nearest-neighbor hopping, the on-site Coulomb inter-
action, respectively. Taking th to be the unit of energy
(th = 1), we use U = 10.
We investigate the probe-energy dependence of the op-

tical conductivity of a Hubbard open chain with L = 10,
where L is the number of sites. We assume that both
the pulses have the same shape of the vector potential

given by A(t) = A0e
−(t−t0)

2/(2t2d) cos[Ω(t − t0)]. We set
A0 = 0.1, t0 = 3.0, td = 0.5, and Ω = Eg = 7.1 for
pump pulse and A0 = 0.001, t0 = τ + 3.0, td = 0.02,
and Ω = Eg = 7.1 for probe pulse without being oth-
erwise specified, where Eg is the energy of the Mott
gap. An external spatially homogeneous electric field ap-
plied along the chain in the Hamiltonian can be incorpo-
rated via the Peierls substitution in the hopping terms

as c†i,σci+1,σ → eiA(t)c†i,σci+1,σ. Using the method dis-

cussed in Ref [40, 41], we obtain optical conductivity in

the nonequilibrium system, σ(ω, τ) =
jprobe(ω,τ)

i(ω+iη)LAprobe(ω) ,

where jprobe(ω, τ) is the Fourier transform of the current
induced by probe pulse, Aprobe(ω) is the Fourier trans-
form of the vector potential of probe pulse (see Appendix
B for details).
To trace the temporal evolution of the system, we

employ the time-dependent Lanczos method to evaluate

|ψ(t)〉. |ψ(t + δt)〉 ≃
∑M

l=1 e
−iǫlδt|φl〉〈φl|ψ(t)〉, where ǫl

and |φl〉 are eigenvalues and eigenvectors of the tridiag-
onal matrix generated in the Lanczos iteration, respec-
tively, M is the dimension of the Lanczos basis, and δt is
the minimum time step. We set M = 50 and δt = 0.02.
Figure 1 shows the real part of time-dependent optical

conductivity Reσ(ω, τ) of the Hubbard model. Photoin-
duced decreases of spectral weights at absorption peaks
above the Mott gap are small, since the system is weakly
excited. Pump photon excites carriers into an optically
allowed odd-parity state. Probe pulse couples in part to
the the odd-parity state, resulting in an excitation from
the optically allowed state to an optically forbidden even-
parity state. In 1D Mott insulators with open boundary
condition, the optically forbidden state is located slightly
above the optically allowed state [42]. Low-energy in-
gap excitation comes from the excitation from the op-
tically allowed to forbidden state [40]. Inside the Mott
gap, we find photoinduced low-energy spectral weights at
ω ≃ 1.2, 2.2, and 3.3. These energies correspond to the
energy differences between the optically allowed popu-
lated state at ω = 7.1 and the optically forbidden states.

FIG. 1. Reσ(ω, τ ) in the 1D half-filled Hubbard chain with
L = 10 and U = 10, before pumping (τ < 0) and after pump-
ing (τ = 10, 20, 30, and 40). Since the system is weakly
excited, the broken line for τ < 0 is almost overlaped with
solid lines above ω = 7.

Figures 2 (a)-(e) show the τ dependence of Reσ(ω, τ)
above the Mott gap with probe energy ω = 7.10, 7.92,
8.98, 10.08, and 11.18, respectively, whose energies agree
with the peak energies of the absorption spectrum in
Fig. 1. We find that the frequencies of the oscillations
depend on ω. The larger ω is, the larger the frequency
is, which is consistent with our argument in the two-band
model discussed above.
In order to further examine the probe-energy depen-

dence, we show the power spectra of Reσ(ω, τ) with re-
spect to τ in Figs. 2 (f)-(j) for ω = 7.1, 7.92, 8.98, 10.08,
and 11.18, respectively. We discuss two possible contri-
butions to the power spectra. First one is the contri-
bution from the Rabi oscillation, whose frequencies are
related to the low-energy in-gap states at ω =1.2, 2.2,
and 3.3. In fact, we find the Rabi-oscillation contribu-
tions to the spectral weights at ω0 =1.2, 2.2, and 3.3
in Figs. 2 (f)-(j). Since our system is of finite size, en-
ergy levels are discretized. Therefore, there are oscilla-
tions with resonant frequencies between the levels. In the
thermodynamic limit, the number of the levels is infinite,
and thus we expect that the contributions from a huge
number of such resonances with various frequencies can-
cel out, giving rise to an inifinite number of infinitesimal
weights in the power spectra. Thus, we consider that
the Rabi-oscillation contribution to the power spectra is
only visible in finite-size systems and negligible in the
thermodynamic limit.
Second one is the contribution from the interference

effect, which gives rise to the ω dependence of the pump-
probe spectra as discussed in the two-band model. The
oscillations with the frequencies ω − Ω appear at ω0 =
7.92−7.10 = 0.82, 8.98−7.10 = 1.88, 10.08−7.10 = 2.98,
and 11.18 − 7.10 = 4.08. These energies correspond to
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FIG. 2. Reσ(ω, τ ) in the 1D half-filled Hubbard chain with
L = 10 and U = 10 for (a) ω = 7.1, (b) ω = 7.92, (c) ω = 8.98,
(d) ω = 10.08, and (e) ω = 11.18. The power spectra of
Reσ(ω, τ ) for (f) ω = 7.1, (g) ω = 7.92, (h) ω = 8.98, (i)
ω = 10.08, and (j) ω = 11.18.

the energy difference between the levels at ω = Ω = 7.1
and the excited states above the Mott gap, all of which
belong to the same electronic states with odd parity. We
consider that this origin makes dominant contribution to
the power spectra in the thermodynamic limit. In order
to induce the transient interference, we should use the
pump pulse whose spectrum covers some energy levels.
Then we can store the information of pump pulse in elec-
tronic states with wide range of energies above the Mott
gap.
According to the two possible contributions to the

power spectra, in Fig. 2 (g), for example, we find peak
structures at ω0 = 0.82, 1.2, and 2.2. The peak structures
at ω0 = 1.2 and 2.2 come from the Rabi oscillation of the
two odd- and even-parity states. On the other hand, the
origin of the structure at ω0 = 0.82 is the interference
because ω0 = 0.82 corresponds to one of the energy dif-
ferences between odd-odd states mentioned above. Sim-
ilarly, Figures. 2 (h)-(j) are understood in the same way
(see Appendix B for details).

IV. ELECTRON-BOSON COUPLING IN THE

TWO-BAND MODEL

Finally, we discuss the effect of bosons coupled to
electrons on the probe-energy dependent oscillation.
Nonequilibrium electron dynamics coupled to boson
driven by laser has been extensively studied. Further-
more, since non-Markovian relaxation is important in
electron systems coupled to bosonic environment, open

quantum systems with non-Markovian properties have
been studied for long time [43–51]. The additional Hamil-
tonian due to boson degrees of freedom is

Hph =
∑

q

ωqa
†
qaq +

∑

k,q

gq(a
†
−q + aq)(c

†
ck+qcck + c†vk+qcvq),

(6)

where aq is an annihilation operator for bosons with mo-
mentum q, ωq is boson frequency, and gq is an electron-
boson coupling constant.
We examine the two-band model with electron-boson

coupling under the application of exponential pump
pulse. Total polarization is given by pvc(k, t) =
p0vc(k, t) + pbvc(k, t), where p

0
vc(k, t) is from one-particle

contribution as discussed above, and pbvc(k, t) is from the
electron-boson coupling. Solving the kinetic equation
with Hph (see Appendix A), the probe susceptibility is
given by

χb(k, ω) ≃
p
b(3)
vc (k, ω)

Et(ω)
=
∑

q

g2qNq · 4iσdcv |dcv|
2
∣

∣

∣
Ẽp

∣

∣

∣

2

·

[

e−τ(σ−γ)eiτ(−Ω+εk−̺k) (−iγ − 2iΓ− ω + εk − ̺k)

(iγ + ω − εk + ̺k) 2 (iγ + ω − εk+q + ̺k + ωq) v
+
k

·
(2iγ + 2ω − εk − εk+q + ̺k + ̺k−q + 2ωq)

(iΓ + iσ + ω − Ω) (iγ + ω − εk + ̺k−q + ωq)u
+
k u

−
k

]

+ · · · , (7)

where Nq = 1
eωq/kBT−1

. In the limit γ → 0, the pole of

the energy denominator ω = εk−̺k gives rise to an oscil-
latory behavior of ei(ω−Ω)τ with decay e−(σ−γ)τ , which is
the same behavior as the third term in Eq. (4). Therefore,
the information of pump and probe pulses is transmitted
with the help of boson-assisted electron scattering, which
gives one of possible origins of the transient interference.
In Mott insulators, magnons are strongly coupled to

photo-excited electrons in 2D Mott insulators, in con-
trast to the 1D Mott insulator where spin and charge
degrees of freedom are separated. Therefore, the inter-
ference proposed in this work will be easily realized in the
2D Mott insulators. We thus speculate that the oscilla-
tions observed by the pump-probe spectroscopy of the
2D Mott insulator Nd2CuO4 [15] come from the interfer-
ence effect. In order to confirm this speculation, we need
to investigate theoretically the pump-probe spectrum of
2D half-filled Hubbard model, but it remains as a future
work.

V. SUMMARY

In summary, we suggested the transient interference in
energy domain between temporary well-separated light
pulses using electronic states of band and Mott insulators
as a medium, which manifests as the oscillation of the
pump-probe spectrum whose frequency is indicated by
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Eq. (1). This interference can be observed only after re-
cent developments of ultrafast spectroscopic techniques.
The transient interference reflects the universal property
of interference between two photon pulses mediated by
electron systems, which does not depend on the details
of the electron systems. Therefore, the interference is
also realized in the presence of electron correlation, since
there is the continuum structure. We examine this by
culculating pump-probe spectrum in the 1D half-filled
Hubbard model. To verify our prediction, we suggest an
experiment for Nd2CuO4 changing pump-pulse duration
and delay. Since our theory predicts the transient os-
cillation even in the 1D Mott insulators, we propose a
pump-probe experiment in Sr2CuO3. Furthermore, we
found that bosons coupled to electrons in the two-band
model make the additional contribution to the transient
interference. Based on the result, both magnons coupled
to electrons and the continuum structure in electronic
excitation spectrum would be possible origins of the os-
cillation observed in Nd2CuO4.
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Appendix A: Pump-probe absorption spectrum of

the two-band model

We provide the solution of the optical Bloch equation
Eq. (2)-(3) and derive the pump-probe absorption spec-
trum. With assuming dipole transitions, the Hamiltonian
Eq. (5) of the two-band model under the time-dependent

electric field reads

H =
∑

k

εkc
†
ckcck +

∑

k

̺kc
†
vkcvk

−
∑

k

(

dcvE(t)c
†
ckcvk + d∗cvE(t)c

†
vkcck

)

, (A1)

where cc(v)k is an annihilation operetor for fermions in
conduction (valence) band with momentum k. The en-
ergies of the conduction and valence band are εk =

ε + ~
2k2

2mc
, ̺k = ̺ + ~

2k2

2mv
, where ε and ̺ are the mini-

mum and maximum of the conduction and valence band,
respectively, andmc andmv are the effective mass of elec-
trons in the conduction and valence band, respectively.
We introduce the interband dipole matrix element dcv
and external electric field E(t). Hereafter, we set ~ = 1.
With taking the long-wave length limit of electric field,
optical Bloch equation Eq. (2)-(3) is written as

(

∂

∂t
+ i{εk − ̺k − iγ}

)

p0vc(k, t) = dcvE(t){1− 2fc(k)}

(A2)

and
(

∂

∂t
+ Γ

)

fc(k, t) = −2Im
[

dcvE(t)p
0∗
vc(k, t)

]

, (A3)

where fc(k) = 〈c†ckcck〉 and p0vc(k) = 〈c†vkcck〉, where
〈· · · 〉 represents the expectation value. We intro-
duce phenomenological damping rate Γ for fc, and
dephasing rate γ for p0vc. We consider an electric

field E(t) = 1
2

(

Ẽ(t)e−iΩt + Ẽ∗(t)eiΩt
)

, where Ẽ(t) =

2
{

Ẽp(t)eikp·r + Ẽt(t)eikt·r
}

, and electric field and wave

vector of pump (probe) pulse are Ẽp and kp (Ẽt and
kt). Introducing an expansion parameter λ through

E(t) → λE(t), we obtain p0vc = λp
0(1)
vc + λ2p

0(2)
vc +

λ3p
0(3)
vc + · · · , fc = λf

(1)
c + λ2f

(2)
c + λ3f

(3)
c + · · · . The

shape of probe pulse is represented by the delta function,
Ẽt(t) = Ẽtδ(t− τ) (τ > 0), where τ is delay time between
the pump and probe pulses. With the rotating-wave ap-

proximation, p̃
0(3)
vc (k, t) = p̃

0(3)
vc,A(k, t)+ p̃

0(3)
vc,B(k, t) is given

by

p̃
0(3)
vc,A(k, t) =− i2dcv|dcv|

2eikt·r

∫ t

−∞

dt′e−i{εk−̺k−Ω−iγ}(t−t′)Ẽp(t
′)e−Γ(t′−τ)Ẽtθ(t

′ − τ)

·

∫ τ

−∞

dt′′′ei{εk−̺k−Ω−iγ}(τ−t′′′)Ẽ∗
p (t

′′′)

− i2dcv|dcv|
2eikt·r

∫ t

−∞

dt′e−i{εk−̺k−Ω−iγ}(t−t′)Ẽp(t
′)

∫ t′

−∞

dt′′e−Γ(t′−t′′)Ẽ∗
p (t

′′)

· Ẽtθ(t
′′ − τ)e−i{εk−̺k−Ω−iγ}(t′′−τ) (A4)
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and

p̃
0(3)
vc,B(k, t) =− i2dcv|dcv|

2eikt·re−i{εk−̺k−Ω−iγ}(t−τ)Ẽtθ(t− τ)

∫ τ

−∞

dt′′Ẽp(t
′′)e−Γ(τ−t′′)

·

∫ t′′

−∞

dt′′′ei{εk−̺k−Ω−iγ}(t′′−t′′′)Ẽ∗
p (t

′′′)

− i2dcv|dcv|
2eikt·re−i{εk−̺k−Ω−iγ}(t−τ)Ẽtθ(t− τ)

∫ τ

−∞

dt′′Ẽ∗
p (t

′′)e−Γ(τ−t′′)

·

∫ t′′

−∞

dt′′′Ẽp(t
′′)e−i{εk−̺k−Ω−iγ}(t′′−t′′′), (A5)

where we are interested in contributions with a phase
factor eikt·r, i.e. in the direction of the probe beam. We
include only terms which are linear in Ẽt, and ignore all
terms that are higher than second order in Ẽp. We use

the delta function Ẽt(t) = Ẽtδ(t− τ) to represent a probe
pulse.

Taking Ẽp(t) = Ẽpδ(t), from Eq. (A4)-(A5), we obtain

p̃0(3)vc (k, t) = p̃
0(3)
vc,B(k, t)

=− 2idcvθ(τ)Ẽt |dcv|
2
∣

∣

∣
Ẽp

∣

∣

∣

2θ(t− τ)e−Γτ+ikt·r+(−γ−i∆k)(t−τ),

(A6)

where ∆k = εk − ̺k −Ω. The Fourier transformation of

p
0(3)
vc (k, t) is given by

p0(3)vc (k, ω) =

∫ ∞

−∞

dteiωtp0(3)vc (k, t)

=
2dcvθ(τ)Ẽt

∣

∣

∣
dcvẼp

∣

∣

∣

2ei(kt·r+ τ(iΓ+ω−Ω))

iγ − εk + ̺k + ω
. (A7)

The probe susceptibility reads

χ(k, ω) ≃
p
0(3)
vc (k, ω)

Et(ω)
=

2dcvθ(τ)
∣

∣

∣
dcvẼp

∣

∣

∣

2e−Γτ

iγ − εk + ̺k + ω
, (A8)

where Et(ω) =
∫∞

−∞ dtEt(t)eiωt ≃ Ẽtei(ω−Ω)τeikt·r. Since

the oscillatory term ei(ω−Ω)τ of p
0(3)
vc (k, ω) cancels out

that of the probe electric field Et(ω), χ(k, ω) does not
have terms depending on ei(ω−Ω)τ .
However, if we consider a pump pulse written by

Ẽp(t) = Ẽpe−σ|t|, we obtain

p̃0(3)vc (k, t)

=2idcvẼt |dcv|
2
∣

∣

∣
Ẽp

∣

∣

∣

2θ(t− τ)eikt·r

[

ie−(γ+i∆k)(t−τ)
(

− e−2σt−e−2στ

2σ + e−2στ−et(γ−Γ+i∆k−σ)−τ(γ−Γ+i∆k+σ)

γ−Γ+i∆k−σ

)

−iγ + iΓ+ ∆k

−

(

σ
(

−1 + 2eτ(γ+i∆k+σ)
)

+ γ + i∆k

)

eτ(Γ−σ)−t(γ+i∆k)
(

et(γ−Γ+i∆k−σ) − eτ(γ−Γ+i∆k−σ)
)

(γ + i∆k − σ)(γ + i∆k + σ)(γ − Γ + i∆k − σ)

+

(

−
eτ(Γ−2σ) − 1

(Γ− 2σ)(γ + i∆k + σ)
−

2σ
(

−1 + eτ(γ+Γ+i∆k−σ)
)

(γ + i∆k − σ)(γ + i∆k + σ)(γ + Γ+ i∆k − σ)
−

1

(Γ + 2σ)(γ + i∆k − σ)

)

· e−Γτ−(γ+i∆k)(t−τ)

+

(

−
eτ(Γ−2σ) − 1

(Γ− 2σ)(−γ − i∆k + σ)
−

2σeτ(−(γ−Γ+i∆k+σ))
(

−1 + eτ(γ−Γ+i∆k+σ)
)

(γ + i∆k − σ)(γ + i∆k + σ)(γ − Γ + i∆k + σ)
+

1

(Γ + 2σ)(γ + i∆k + σ)

)

· e−Γτ−(γ+i∆k)(t−τ)

]

. (A9)
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The probe susceptibility is given by

χ(k, ω) ≃
p
0(3)
vc (k, ω)

Et(ω)

=
idcv |dcv| 2

∣

∣

∣
Ẽp

∣

∣

∣

2

u+ku
−
k

[

4e−(γ+σ)τeiτ(Ω−εk+̺k)σ

(iγ + ω − εk + ̺k) v
−
k

−
4e−(σ−γ)τeiτ(−Ω+εk−̺k)σ

(iΓ + iσ + ω − Ω)v+k
−

8ie−(σ−γ)τeiτ(−Ω+εk−̺k)Γσ

(iγ + ω − εk + ̺k) (iΓ + iσ + ω − Ω)v+k

+ e−Γτ (· · · ) + e−2στ (· · · )

]

, (A10)

where u±k = iγ ± iσ + Ω− εk + ̺k, v
±
k = iγ ± iΓ∓ iσ +

Ω − εk + ̺k, and (· · · ) represents an abbreviation of τ
independent part of the corresponding term. The third
term is shown in Eq. (4).
Next, we consider the contribution from electrons cou-

pled to bosons to the interference. The additional Hamil-
tonian Eq. (6) due to boson degrees of freedom is

Hph =
∑

q

ωqa
†
qaq +

∑

k,q

gq(a
†
−q + aq)(c

†
ck+qcck + c†vk+qcvq),

where aq is an annihilation operator for bosons with mo-
mentum q, ωq is boson frequency, and gq is an electron-
boson coupling constant. Total polarization is given
by pvc(k, t) = p0vc(k, t) + pbvc(k, t), where p0vc(k, t) is
from one-particle contribution as discussed above, and
pbvc(k, t) is from the electron-boson coupling.
If carriers are created by optical pulses, the wave func-

tion is a superposition of states in the conduction and
valence bands. As long as this phase coherence is main-
tained, i.e., at times shorter than the dephasing time, the
carriers are not in definite-energy eigenstates, which re-
quires the non-Markovian description of relaxation. To
obtain the quantum kinetic equation with non-Markovian
relaxation, we use the Keldysh nonequilibrium Green’s
function that is two-time generalization of the density
matrix. Two characteristic timescales of the scatter-
ing time and the duration of the interaction process de-
termine the dynamics of carriers. Optical Bloch equa-
tion with electron-boson coupling is given by using the
nonequilibrium Green’s function and reads

(

∂

∂t
+ i{εk − ̺k − iγ}

)

pvc(k, t)

=dcvE(r, t){1− 2fc(k)}

+ (−i)
∑

q

[

g2qNq{P
+
vc(k,k+ q, t)− P+

vc(k − q,k, t)}
]

+ (−i)
∑

q

[Nq ↔ Nq + 1, ωq ↔ −ωq], (A11)

(

∂

∂t
+ i{εk+q − ̺k − ωq − iγ}

)

P+
vc(k,k+ q, t)

=i{pvc(k + q, t)− pvc(k, t)}, (A12)

and

(

∂

∂t
+ Γ

)

fc(k, t) =− 2Im [dcvE(t)p
∗
vc(k, t)] , (A13)

where P+
vc(k,k + q, t) is boson-assisted excitonic transi-

tions, γ accounts for all dephasing processes other than
electron-boson scattering, and Nq = 1

eωq/kBT−1
is a ther-

mal magnon distribution [20, 52]. Solving the equation
of motion, we obtain

pbvc(k, t)

=

∫ t

−∞

dt′e−i{εk−̺k−iγ}(t−t′)·

· (−i)

[

∑

q

[

g2qNq{P
+
vc(k,k+ q, t′)− P+

vc(k− q,k, t′)}
]

+
∑

q

[Nq ↔ Nq + 1, ωq ↔ −ωq]

]

, (A14)

where the last term means the replacement of Nq

with Nq + 1 and ωq with −ωq on the previous terms.

P
+(3)
vc (k,k+ q, t) and p

b(3)
vc (k, t) are written by

P+(3)
vc (k,k+ q, t) =

∫ t

−∞

due−i(t−u)(εk+q−iγ−ωq−̺k)

· i[p(3)vc (k + q, u)− p(3)vc (k, u)]

≃

∫ t

−∞

due−i(t−u)(εk+q−iγ−ωq−̺k)

· i[p0(3)vc (k + q, u)− p0(3)vc (k, u)]

(A15)

and

pb(3)vc (k, t) =(−i)
∑

q

g2qNq

∫ t

−∞

due−i(εk−̺k−iγ)(t−u)

·
{

P+(3)
vc (k,k+ q, u)− P+(3)

vc (k− q,k, u)
}

+ [Nq ↔ Nq + 1, ωq ↔ −ωq],

(A16)
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respectively. If Ẽp(t) = Ẽpδ(t) is used, we obtain

χb(k, ω) ≃
p
b(3)
vc (k, ω)

Et(ω)

=
∑

q

g2qNq

2dcvθ(τ) |dcv| 2
∣

∣

∣
Ẽp

∣

∣

∣

2e−Γτ

(iγ − εk + ̺k + ω) 2

·

[

εk − εk−q + ̺k−q − ̺k
(iγ − εk−q + ̺k−q + ω) (iγ + ωq − εk + ̺k−q + ω)

−
−εk + εk+q − ̺k+q + ̺k

(iγ − εk+q + ̺k+q + ω) (iγ + ωq − εk+q + ̺k + ω)

]

+ [Nq ↔ Nq + 1, ωq ↔ −ωq]. (A17)

When the pump pulse is represented by the delta func-
tion, we cannot obtain the oscillating term ei(ω−Ω)τ , even
if we take into account the boson-assisted transition.

If pump pulse is written by Ep(t) = Epe−σ|t|, we obtain

χb(k, ω) ≃
p
b(3)
vc (k, ω)

Et(ω)

=
∑

q

g2qNq · 4iσdcv |dcv|
2
∣

∣

∣
Ẽp

∣

∣

∣

2

·

[

e−τ(σ−γ)eiτ(−Ω+εk−̺k) (−iγ − 2iΓ− ω + εk − ̺k) (2iγ + 2ω − εk − εk+q + ̺k + ̺k−q + 2ωq)

(iΓ + iσ + ω − Ω) (iγ + ω − εk + ̺k) 2 (iγ + ω − εk+q + ̺k + ωq) (iγ + ω − εk + ̺k−q + ωq) v
+
k u

+
ku

−
k

+
e−(σ−γ)τeiτ(−Ω+εk+q−̺k+q) (iγ + 2iΓ+ ω − εk+q + ̺k+q)

(iΓ + iσ + ω − Ω) (iγ + ω − εk + ̺k) (iγ + ω − εk+q + ̺k+q) (iγ + ω − εk+q + ̺k + ωq) v
+
k+qu

+
k+qu

−
k+q

+
e−τ(σ−γ)eiτ(−Ω+εk−q−̺k−q) (iγ + 2iΓ+ ω − εk−q + ̺k−q)

(iΓ + iσ + ω − Ω) (iγ + ω − εk + ̺k) (iγ + ω − εk−q + ̺k−q) (iγ + ω − εk + ̺k−q + ωq) v
+
k−qu

+
k−qu

−
k−q

+
e−(γ+σ)τeiτ(Ω−εk+̺k) (2iγ + 2ω − εk − εk+q + ̺k + ̺k−q + 2ωq)

(−iγ − ω + εk − ̺k) 2 (−iγ − ω + εk − ̺k−q − ωq) (−iγ − ω + εk+q − ̺k − ωq) v
−
k u

+
k u

−
k

−
e−(γ+σ)τeiτ(Ω−εk+q+̺k+q)

(−iγ − ω + εk − ̺k) (−iγ − ω + εk+q − ̺k+q) (−iγ − ω + εk+q − ̺k − ωq) v
−
k+qu

+
k+qu

−
k+q

+
e−(γ+σ)τeiτ(Ω−εk−q+̺k−q)

(−iγ − ω + εk − ̺k) (−iγ − ω + εk−q − ̺k−q) (−iγ − ω + εk − ̺k−q − ωq) v
−
k−qu

+
k−qu

−
k−q

]

+ [Nq ↔ Nq + 1, ωq ↔ −ωq] + (· · · ). (A18)

The first term is shown in Eq. (7).

Appendix B: Time-dependent optical conductivity

in nonequilibrium state

Using the method discussed in Ref [40, 41], we obtain
optical conductivities in nonequilibrium system. In or-
der to identify the response of the system with respect
to later probe pulses, a subtraction is necessary, i.e., two
successive steps are involved in order to calculate the
optical conductivity in nonequilibrium. First, a time-
evolution process that describes the nonequilibrium de-

velopment of the system in the absence of a probe pulse is
evaluated, which gives rise to jpump(t). Secondly, in the
presence of an additional probe pulse, we get jtotal(t, τ).
The subtraction of jpump(t) from jtotal(t, τ) produces the
required jprobe(t, τ), i.e., the variation of the current ex-
pectations due to the presence of the probe pulse. Then,
the optical conductivity in nonequilibrium is proposed to
be

σ(ω, τ) =
jprobe(ω, τ)

i(ω + iη)LAprobe(ω)
, (B1)

where Aprobe(ω) is the Fourier transform of the vector
potential of probe pulses, and L is the number of sites.



9

We find photoinduced spectral wights at ω ≃ 1.2, 2.2,
and 3.3 inside the Mott gap as shown in Fig. 1. Low-
energy in-gap excitation comes from the excitation from
the optically allowed to forbidden state [40]. These en-
ergies correspond to the energy differences between the
optically allowed populated state with the odd parity at
ω = 7.1 to the optically forbidden states with the even
parity.
Figure 2 (h)-(j) can be understood as discussed in

Sec. III. In Fig. 2 (h), we find peak structures at ω0 = 1.2
and 1.88. The frequency ω0 = 1.2 corresponds to the en-
ergy of photoinduced low-energy state, which comes from
the Rabi oscillation of the odd- and even-parity states.
The origin of the structure at ω0 = 1.88 comes from
the interference effect that gives rise to the energy dif-
ference between the two states with the odd parity, i.e.
ω − Ω = 8.98 − 7.10 = 1.88. In Fig. 2 (i), we find peak
structures at ω0 = 1.2, 2.2, and 2.98. The frequencies
ω0 = 1.2 and 2.2 correspond to the energy of photoin-
duced low-energy states. The origin of the structure at
ω0 = 2.98 comes from the interference effect. In Fig. 2 (j),
we find peak structures at ω0 = 2.2, 3.3, and 4.08. The
frequencies ω0 = 2.2 and 3.3 correspond to the energy of
photoinduced low-energy states. The origin of the struc-
ture at ω0 = 4.08 is comes the interference effect.
If we take Ω = 7.92, which is larger than the Mott gap

7.10, we also find the peak structures that come from
the interference effect. We find the oscillations with the

frequencies |ω − Ω| appear at ω0 = |7.10 − 7.92| = 0.82,
8.98−7.92 = 1.06, 10.08−7.92 = 2.16, and 11.18−7.92 =
3.26. Therefore, the oscillation due to the transient inter-
ference appears even when ω−Ω < 0. This property may
give a useful information for experiments on the transient
interference in pump-probe spectroscopy of the Mott in-
sulators [53].

In order to obtain the contribution from the interfer-
ence, three conditions are needed. First, we should not
impose a step function on the vector potential, but the
Gaussian function to give the electric field of the probe
pulse. Although the the same optical conductivity is ob-
tained in equilibrium by using the two kinds of vector
potentials of the probe pulse, it is not true in nonequilib-
rium [41]. If we impose the step function on the vector
potential of the probe pulse, we cannot obtain the spec-
tral weights originated from the interference. An oscillat-
ing probe field with a central frequency will be needed to
interfere with a pump pulse. Second, in order to generate
the interference, the frequency of a pump and probe pulse
should be (nearly) the same. Third, the spectral width
of the pump pulse should not be too small. The cooper-
ation of electronic states in band structure is important
for persisting the information of the pump pulse. To ex-
cite electronic states with wide range of energy above the
Mott gap, we have to use the pump pulse whose spectrum
covers some energy levels.
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