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We investigate the nature of doped Mott insulators using exact diagonalization and density matrix
renormalization group methods. Persistent spin currents are revealed in the ground state, which are
concomitant with a nonzero total momentum or angular momentum associated with the doped hole.
The latter determines a nontrivial ground state degeneracy. By further making superpositions of the
degenerate ground states with zero or unidirectional spin currents, we show that different patterns
of spatial charge and spin modulations will emerge. Such anomaly persists for the odd numbers
of holes, but the spin current, ground state degeneracy, and charge/spin modulations completely
disappear for even numbers of holes, with the two-hole ground state exhibiting a d-wave symmetry.
An understanding of the spin current due to a many-body Berry-like phase and its influence on the
momentum distribution of the doped holes will be discussed.

PACS numbers: 71.27.+a, 71.10.Fd

I. INTRODUCTION

The low-energy physics of the interacting fermions is
generally described as a Luttinger liquid (LL)12 in one
dimension (1D), characterized by gapless charge, neu-
tral density wave and current excitations34. In gen-
eral, the LL theory breaks down in higher dimensions
due to the absence of forbidden regions in the spectrum
to protect the current excitations, with the exception
for some fractional quantum Hall systems56 in two di-
mensions (2D) where the gapless edges are protected by
the gapped bulk. Another class of strongly interact-
ing fermion systems is the doped Mott insulators, rele-
vant to high-temperature superconducting cuprates788,
for which Anderson7910 was the first to suggest that
doped holes may induce scattering singularities leading to
LL-like behaviors in 2D. Its microscopic mechanism was
attributed9 to an unrenormalizable Fermi-surface phase
shift generated by the doped holes, which was later iden-
tified with a many-body Berry-like phase in the t-J model
known as the phase string111213. The latter is responsible
for the LL behaviors in the 1D t-J model as confirmed
both analytically and numerically1214. Then a natural
question is if such an effect can lead to a current-carrying
ground state1516 in the 2D doped Mott antiferromagnet
to give rise to non-Fermi liquid (NFL) features.

In this paper, we reveal unconventional properties of
the doped Mott antiferromagnets based on exact di-
agonalization (ED) and density matrix renormalization
group (DMRG) simulations. For the odd numbers of
doped holes, we identify the symmetry-protected degen-
eracy with nontrivial total momentum K0 6= 0 or angu-
lar momentum Lz 6= 0 for the ground states, and more
importantly, it is concomitant with permanent spin cur-
rents, as illustrated in Fig. 1 by taking one-hole ground
state as an example. Such spin current pattern is ro-
bustly present in different sample sizes and parameter
regimes, adapting to different geometries [e.g., under the
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(a) K0 = (−π/2,−π/2) (b) Lz = −1

FIG. 1. Neutral spin currents are revealed in the degener-
ate ground states of the one-hole-doped t-J model on square
lattices: (a) on a torus (PBC) with cx and cy denoting two
winding paths at momentum K0 = (−π/2,−π/2) (cf. Ta-
ble I); (b) the spin current pattern under the OBC (angular
momentum Lz = −1). Here J/t = 0.3 with fixed Sz = 1/2.

periodic boundary condition (PBC) in Fig. 1(a) and un-
der open boundary condition (OBC) in Fig. 1(b)]. It
indicates a nontrivial many-body Berry-like phase in-
duced by the doped holes. In particular, by making
superpositions of the degenerate ground states with di-
minished or unidirectional spin currents, we show that
different patterns of the spatial charge and spin modu-
lations emerge. In contrast, the degeneracy and its as-
sociated spin currents disappear simultaneously for the
even numbers of holes, say, in the two-hole ground state,
which exhibits a d-wave symmetry. Such even-odd effect
persists over a few hole cases and may have important
implications for finite doping, which is potentially rele-
vant to the superconductivity and pseudogap physics in
high-Tc cuprates7817.

We shall study the simplest model of a doped Mott
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TABLE I. Momenta and spin currents of degenerate one-hole
ground states on a 4× 4 torus determined by ED.

J/t (K0
x,K

0
y) Ixs ≡

∑
cx
Jsij Iys ≡

∑
cy
Jsij

0.3

(0, π) 0.0000 0.0000
(π, 0) 0.0000 0.0000
(π/2, π/2) −0.0991 −0.0991
(π/2,−π/2) −0.0991 +0.0991
(−π/2,−π/2) +0.0991 +0.0991
(−π/2, π/2) +0.0991 −0.0991

3.0

(π/2, 0) −0.0359 0.0000
(−π/2, 0) +0.0359 0.0000
(0, π/2) 0.0000 −0.0359
(0,−π/2) 0.0000 +0.0359

10 (0, 0) 0.0000 0.0000

insulator, i.e., the t-J model, which reads

Ht = −t
∑
〈ij〉,σ

(c†iσcjσ + h.c.),

HJ = J
∑
〈ij〉

(
Si · Sj −

1

4
ninj

)
.

(1)

Here, c†iσ is the electron creation operator at site i, Si
the spin operator, and ni the electron number operator,
and the summation is over all the nearest-neighbor (NN)
sites 〈ij〉. The Hilbert space is always constrained by
the no-double-occupancy condition, i.e., ni ≤ 1. We use
both ED18 and DMRG4546 to study the ground states of
Eq. (1) on a 2D lattice of size N = Nx ×Ny.

II. ONE HOLE CASE

A. Ground state degeneracy and hidden spin
currents

We begin with the one-hole case, whose basic proper-
ties have been previously intensively investigated21222324

by ED. The ground state has a total spin S = 1/2 and
nonzero momentum (or angular momentum) depending
on the ratio J/t for a fixed spin ẑ-component Sz = ±1/2.
For example, for N = 4× 4 and N = 12× 4 systems, ED
and DMRG calculations show that the ground states have
finite total momenta K0 = (±π/2,±π/2) at t/J > 1 with
four fold degeneracy25. TABLE I shows the details for
the N = 4 × 4 lattice under the PBC. In contrast, for
a bipartite lattice under the OBC with π/2 rotational
symmetry, a double degeneracy can be generally identi-
fied as characterized by angular momentum Lz = ±126,
with the sample size persisting from a 2× 2 plaquette27

up to 8× 8 (see below).
Here the degenerate ground states associated with

K0 6= 0 or Lz 6= 0 imply that the doped hole acquires
a non-dissipative charge current flowing through a neu-
tral spin background. One may further check the neutral

(a) K0 = −π/2 (b) Lz = −1

FIG. 2. The neutral spin current patterns of Jsij with a hole
projected onto a lattice site at J/t = 0.3. (a) For the 1D
ground states of a N = 12 loop; (b) For the 2D ground states
of N = 4× 4 lattice under the OBC. The dashed closed path
circulating around the hole indicates a finite net spin current
loop.

spin current in the spin background, defined by

Jsij ≡ −i
1

2
〈ψ|
(
S+
i S
−
j − S−i S+

j

)
|ψ〉 (2)

on a given NN link ij with the ground state |ψ〉 labeled
by quantum numbers S and Sz. Indeed Js per link is
found nonzero as illustrated in Fig. 1 for both PBC [(a)]
and OBC [(b) with the arrow and thickness of each link
denoting the current direction and amplitude]. The non-
trivial K0 at J/t = 0.3 and J/t = 3.0 are always asso-

ciated with non-zero spin currents, I
x(y)
s ≡ ∑cx(cy)

Jsij
(cf. TABLE I) along the closed path cx or cy defined in
Fig. 1(a). At J/t = 0.3 there are actually two more de-
generate states at K0 = (π, 0) and (0, π) with vanishing

I
x(y)
s , which may be due to an additional special symme-

try for the 4 × 4 lattice but not generic22. At J/t = 10,
the nontrivial ground state degeneracy (for each fixed
Sz = ±1/2) and the spin current are both absent, while
the total momentum reduces to trivial K0 = (0, 0).

Note that Js in Eq. (2) only satisfies the continuity
equation for the conserved Sz at half-filling. Upon dop-
ing, to satisfy the full continuity equation, one needs to
also include a different contribution to the spin current
at the links involving the hole(s) determined by the hop-
ping term of the t-J model, which is also associated with
the charge current of the doped hole (cf. the Supple-
mentary Material for details). Nonetheless, Js in Eq.
(2) measures the neutral spin current created in the spin
background by the hopping term in Eq. (1). To see that
such neutral spin current is separated from the hole, we
may take the one-dimensional t-J chain as an example, in
which the one-hole ground state has a double degeneracy
at momenta K0 = ±π/2 (with the lattice size N = 12
and J/t = 0.3). By projecting the hole onto a given
lattice site, the neutral spin current pattern is shown in
Fig. 2 (a) at K0 = −π/2. Figure 2 (b) further shows the
neutral spin current pattern with a hole projected onto
a specific site in an N = 4× 4 lattice under the OBC [cf.
Fig. 1(b)].
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FIG. 3. (a) Spin current Ixs for the single hole ground state
of N = 4 × 4 under PBC. The vertical dashed line marks
the jump of the total momentum from K0 = (+π/2,+π/2)
to K0 = (+π/2, 0). Inset: the spin current eventually disap-
pears in the non-degenerate ground state with K0 = 0 at a
larger J/t > 7; (b) The total spin currents summed over the
outermost bonds of the 4 × 4 and 6 × 6 lattices under OBC,
respectively, with the nonzero spin current regimes coinciding
with Lz = ±1. The vertical arrows mark the critical points
for the 8× 8 lattice (see text).

The amplitude of Ixs is non-universal and smoothly
changes with J/t as illustrated in Fig. 3(a) for PBC,
while the total momentum K0 jumps from (+π/2,+π/2)
to (+π/2, 0) around J/t ' 2. Actually the spin current
Ixs and the ground state degeneracy simultaneously dis-
appear at J/t ' 7.0 as indicated in the inset of Fig. 3
where K0 jumps from (+π/2, 0) to (0, 0). Here one can
clearly see that the novel ground state degeneracy and
nonzero spin currents are concomitant. We also present
larger system results as shown in Fig. 3(b) for OBC. The
finite spin current regime corresponds to Lz = ±1 with
the critical transition points identified at Jc1/t ' 0.28
and Jc2/t ' 1.3 for 4×4 and Jc1/t ' 0.08 and Jc2/t ' 1.1
for 6×6, respectively. The critical points of Jc1/t ' 0.02
and Jc2/t ' 1.1 − 1.2 for 8 × 8 are also determined by
directly looking for the appearance/disappearance of the
novel ground state degeneracy and nonzero spin currents.
Clearly, the spin current phase is robust for a wide range
of parameter J/t for large systems. The current patterns
for 6 × 6 and 8 × 8 under the OBC identified by the
DMRG calculation at J/t = 1/3 can be found in Fig. 5
and Supplementary Material, respectively.

B. Charge/spin modulations

One may further construct a zero or unidirectional
spin current state by proper superpositions of the cur-
rent carrying states specified by the total momenta K0 =
(±π/2,±π/2) discussed above. As illustrated by Fig.
4(a) for the case of N = 4 × 4, by an equal weight su-
perposition of all four states, the new state exhibits both
charge and spin modulations on top of a uniform back-
ground. Furthermore, a stripe-like charge/spin spatial
distribution can be constructed in Fig. 4(b) as a super-
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FIG. 4. Charge and spin density modulations (〈nhi 〉 and 〈Szi 〉,
respectively) emerge in the degenerate ground states with (a)
a net zero spin-current state; (b) a “stripe” state with zero
net spin current only along the perpendicular direction. (c)
Charge density wave obtained by DMRG. Here J/t = 0.3 with
N = 4× 4 in (a) and (b) and for N = 12× 4 in (c) under the
PBC.

position of two degenerate ground states with vanishing
spin currents perpendicular to the stripe direction (while
the quantized momentum remains along the stripe direc-
tion). Furthermore, an N = 12 × 4 system calculated
by DMRG shows the same four-fold degeneracy states at
the same K0, whose real wave function is a zero-current
state with the similar charge (spin) modulations as illus-
trated in Fig. 4(c). Here the charge/spin modulations
or nematicity as the “incipient” translational symmetry
breaking50 may be viewed as many-body quantum inter-
ference states, which are “dual” to the degenerate spin-
current-carrying ground states.

III. A FEW HOLE CASES

Now let us examine the case when more holes are in-
jected into the Mott insulator. We have seen that there is
a ground state degeneracy associated with nonzero spin
currents in the one-hole case. Surprisingly, the whole
ground-state degeneracy and neutral spin currents disap-
pear simultaneously in the two-hole ground state. In par-
ticular, the total angular momentum becomes Lz = ±2
mod 426 at J/t = 0.3, which is consistent with the d-wave
symmetry of two hole pairing state (i.e., the wavefunction
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spin current

(a) one hole

charge current spin current

(b) three holes

charge current

FIG. 5. Spin currents are present in the one-hole and three-hole ground states which are doubly degenerate (for a fixed
Sz = 1/2) under the OBC with the angular momentum Lz = ±1 mod 4. But the spin current is absent in the two-hole
ground state, which is non-degenerate with Lz = 2 mod 4 and S = 0 consistent with a d-wave symmetry. Here N = 6× 6 and
J/t = 0.3 with the data obtained by DMRG.

changes sign under a π/2 rotation). Note that previously
a strong binding between the two holes has been indeed
shown in the two- and four-leg ladders with N = Nx × 2
and N = Nx × 4 by DMRG for the same ratio of J/t29.

However, once three holes are doped, the novel degen-
eracy and spin currents reemerge again in the ground
states. In Fig. 5, both the spin and charge currents in
the N = 6 × 6 system are shown for (a) the one-hole
case and (b) three-hole case as obtained by DMRG un-
der the OBC. We find that charge currents show different
microscopic patterns with a staggered current loop pat-
tern in the background474849, and their amplitude dis-
tributions are correlated with the ones for the spin cur-
rents. We always find the disappearance of the degen-
eracy and spin currents for the even-numbers of holes,
while the irreducible double degeneracy (with a given
Sz 6= 0) reemerges again when the number of doped hole
is odd, where the nontrivial spin current persists up to an
intermediate hole density for different system sizes and
geometries as checked by DMRG. For example, for an
N = 6×6, we find the same degeneracy with nonzero spin
current pattern still present for the hole number equal to
5 (i.e., corresponding to the hole doping concentration
5/36 ∼ 14%).

IV. LONG-RANGE ENTANGLEMENT DUE TO
A MANY-BODY BERRY-LIKE PHASE

The nonzero spin current is a demonstration of a
Berry-like phase hidden in the background, which is non-
locally entangled with a doped hole as clearly illustrated
by, e.g., Fig. 2 (b). In the following, we provide a the-
oretical understanding of its microscopic origin. It has
been previously predicted that in the t-J model a doped
hole will generically pick up a Berry-like phase τc ≡
(−1)N

↓
h(c) after traversing the quantum spin background

via a closed path c, which is known as the phase string

effect11121333. Here N↓,↑h (c) counts the total number of

exchanges between the hole and ↓ (↑) spins in the back-

ground with τc = e±i
π
2 [N↑

h(c)+N
↓
h(c)]e∓i

π
2 [N↑

h(c)−N
↓
h(c)]. It

is distinguished34 from the so-called Sz-string8,21,35–37

as the transverse component of the defect created by
hole hopping. We note that the first factor in τc will
lead to K0 = (±π/2,±π/2) 6= 0 while the second one
will be responsible for generating the spin current as
the residual fluctuations once the hopping t becomes
dominant locally. Indeed, by turning off the phase
string τc with replacing the hopping term Ht by Hσ·t =

−t∑〈ij〉σ σ(c†iσcjσ + h.c.) in the so-called σ·t-J model34,

all the above novel features disappear and we find unique
ground state as confirmed by both ED and DMRG cal-
culations. With τc = 1 and K0 = (0, 0) or (π, π), the
ground state reduces to a trivial “quasiparticle” state
without spin currents, and correspondingly it becomes
non-degenerate and uniform at a given Sz = ±1/2.

V. SUMMARY AND DISCUSSION

In this work, we have firmly established an impor-
tant effect of the doped Mott insulator by ED and
DMRG, which has been overlooked in the previous stud-
ies. Namely, a single hole or odd number of holes ex-
hibits a composite structure by generating independent
spin currents in the background. The latter should
carry away a partial momentum or angular momen-
tum. In the one-hole ground state, for example, the
total momentum K0 = (±π/2,±π/2) has been pre-
viously well established815,21,24,38–41 in the t-J model
and experimentally4243. But the corresponding single-
electron momentum distribution shows a much broad-
ened feature (cf. Fig. S4 and the detailed discussion
in the Supplementary Material). In particular, in con-
trast to a point-like quasiparticle without an internal
degree of freedom, here the chirality of the spin cur-
rent relative to the hole determines the sign of the to-
tal momentum/angular momentum and thus leads to a
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novel ground state degeneracy. The doped hole is no
longer a Landau’s quasiparticle carrying the total mo-
mentum/angular momentum satisfying the one-to-one
correspondence principle. On the other hand, the de-
generate ground states with the charge and spin mod-
ulations can be reconstructed from the current-carrying
states, with a period of doubled lattice constant in the
one-hole case [cf. Fig. 4(a)], which is consistent with
the observation in the neighborhood of a trapped charge
state by a defect in an undoped cuprate44. Furthermore,
the novel degeneracy, spin currents, and the charge/spin
modulations all disappear in the case of even-number of
holes, indicating that the spin currents must play an im-
portant role to facilitate pairing. Finally, if one makes
an extrapolation to a finite hole density in the thermody-
namic limit, the even-odd effect of doped holes could have
a profound implication. If these holes are indeed paired
up in the ground state to form a d-wave superconducting
state, then a novel “pseudogap” phase may be conjec-
tured at finite-temperature by the presence of a sufficient

amount of unpaired single holes, where the finite spin and
charge current loops as well as charge/spin modulations
or nematicity are expected to coexist. In particular, the
charge modulation period would be changed, depending
on a Fermi surface (pockets or arcs) emergent at finite
doping as evolving from the four points at K0 in the
one-hole case. These are open questions to be explored
in future studies.
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Appendix A: Supplementary materials

In the appendix we shall define the neutral spin current, backflow spin current, and charge current, respectively,
and address the continuity conditions of the currents. The DMRG results of spin and charge currents for a 8 × 8
system doped by hole will be also shown. Finally, the violation of Landau’s one-to-one correspondence conjecture will
be discussed based on the momentum distribution function.

1. Spin and charge currents

Based on the t-J model in Eq. (1), there are two globally conserved quantities, namely the hole number Nh ≡∑
i(1 − ni) = N −∑iσ c

†
iσciσ and the total magnetization Sztot =

∑
i S

z
i as [H,Nh] = 0 and [H,Sztot] = 0 in the

restricted Hilbert space of ni ≤ 1. In the Heisenberg picture one has

d[1− ni(τ)]

dτ
= i[H, 1− ni] = −i(−t)

∑
〈jk〉,σ

[
c†jσckσ + h.c.,

∑
η

c†iηciη

]
≡

∑
j=NN(i)

Jhij , (A1)

in which the hole current is identified by

Jhij = −it
∑
σ

(c†iσcjσ − h.c.) . (A2)

Similarly, for the local operator Szi

dSzi (τ)

dτ
= i[Ht, S

z
i ] + i[HJ , S

z
i ]

= i(−t)
∑
jk,σ

[
c†jσckσ + h.c.,

1

2

∑
η

ηc†iηciη

]
+ iJ

∑
jk

[
1

2
(S+
j S
−
k + h.c.),

1

2

∑
η

ηc†iηciη

]
≡

∑
j=NN(i)

(Jbij + Jsij),

(A3)

where the backflow current Jbij associated with the hole hopping and the neutral spin current Jsij in the spin background
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(a) Jh (b) Js
(c) Jb (d) Js

tot = Js + Jb

FIG. 6. Currents of the one-hole ground state with Lz = −1 on a 4× 4 lattice under the OBC with J/t = 0.3.

are respectively defined as follows:

(A4a)

Jbij = i
t

2

∑
σ

σ(c†iσcjσ − h.c.), (A4b)

Jsij = −i
J

2

(
S+
i S
−
j − h.c.

)
. (A4c)

In the main text, for simplicity, in calculating the neutral spin current Jsij we have set J = 1 in the definition of Jsij
in Eq. (2). Note that in order to have conserved currents, one has to include both Js and Jb to restore the continuity
condition. As illustrated in Fig. 6, we compute Jh, Js, Jb, and Jstot ≡ Js + Jb in the Lz = −1 state of the t-J model
with J/t = 0.3 and N = 4× 4 under the OBC. We have checked that the total spin currents in Fig. 6(d) does exactly
satisfy the continuity condition.

2. Neutral spin and charge currents at N = 8× 8 by DMRG

In the DMRG calculations, it is usually difficult to directly select a translational invariant state with a given
momentum quantum number due to the algorithm using local basis states4546. In our calculation, we first calculate
real wavefunctions which speed up the DMRG process. However, we can target different ground states and make
superpositions of these states to form momentum or angular momentum eigenstates. For an open system, we first
obtain the lowest two energy eigenstates, which are always degenerating with each other for the one hole doped case
with a suitable ratio of J/t. The complex superpositions of these two ground states ((|Ψ01〉 ± i|Ψ02〉)/

√
2) will make

up two angular momentum eigenstates with Lz = ±1, respectively. We then can measure the spin and charge currents
from one of these states, whose patterns are shown in FIG. 7 for a lattice size N = 8×8 for the t-J model at J/t = 0.3.
We see that the spin and charge currents in the ground state remain robust from 4 × 4 to 8 × 8, as well as 12 × 4,
which are tied up with the nontrivial exact ground state degeneracy at a fixed Sz. It is interesting to note that there
is generally a staggered loop pattern in the background of the charge current shown in FIG. 7(b), which is consistent
with that discussed in two-leg ladder systems474849. Its details will be further discussed elsewhere.

3. Momentum distribution: the breakdown of the one-to-one correspondence principle

To further examine the physical implications of the presence of the neutral spin currents in the spin background,
we study the change of the momentum distribution of the electrons upon doping:

δn(k) ≡ ne0 − ne(k) = 1−
∑
σ

c†kσckσ, (A5)

where ne0 = 1 denotes the electron momentum distribution at half-filling (the Mott antiferromagnet). So δn(k)
measures the change of the electron momentum distribution upon one hole doping with

∑
k δn(k) = 1.

Let us consider, as an example, an N = 12 × 4 lattice with one doped hole under the PBC, which can be shown
to have four-fold degenerate ground states at four total momenta K0 = (±π/2,±π/2) by our DMRG calculation. A
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(a) spin current (b) charge current

FIG. 7. Spin and charge currents for the one-hole-doped t-J model on a 8 × 8 lattice under the OBC with J/t = 0.3. There
are double degenerate ground states associated with Lz = ±1.
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0
π/2

π
3π/2

2π

k y

0

π/2

π
3π/2

2π

0.0

0.1

δnk

FIG. 8. The change of the electron momentum distribution, δn(k), when one-hole is injected into the Mott insulator, is obtained
by DMRG with lattice size N = 12× 4 under the PBC with J/t = 0.3. Note that the corresponding ground state shows charge
modulation as given in Fig. 3 (c).

real-wave-function ground state determined by DMRG exhibits the charge modulation as shown in Fig. 4, which is a
superposition of the degenerate ground states of given K0’s. Correspondingly we examine the momentum distribution
δn(k) of such a ground state in the following.

As shown by Fig. 8, δn(k) exhibits two major peaks located at (π/2, π/2) and (3π/2, 3π/2). The latter is equivalent
to (−π/2,−π/2) in the first Brillouin zone. However, δn(k) clearly shows a continuum background, indicating that
the individual electrons gain a broad range of momenta centered around the total K0 upon one hole doping. Figure
9 further illustrates the momentum distribution along the kx-axis for given ky’s. Both Figs. 8 and 9 directly indicate
that the total momentum is no longer solely carried by a single charge carrier or “quasiparticle”. In other words,
Landau’s one-to-one correspondence principle, which is the basis for a Fermi liquid, is violated here.

The persistent spin currents in the spin background provide a microscopic mechanism for such a breakdown of
the one-to-one correspondence. Indeed, the total momentum is associated with the translational symmetry of the
whole many-body system, which includes both the doped hole and the background spins. On the other hand, the
concomitant spin currents will carry away partial momentum and the momentum transfer between the two degrees
of freedom is generally present. In other words, the hole is moving in a quantum spin background which is not
translational invariant as far as the doped charge is concerned. As a matter of fact, it has been shown in Fig. 3
that the strength of the spin currents is non-universal and smoothly changes with the coupling ratio J/t. As the
consequence, it implies that the adiabatic continuity should no longer be valid here even though K0 is still well
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FIG. 9. δn(k) vs. kx at fixed ky’s for the same ground state as in Fig. 8. The vertical dashed lines mark the positions of the
total momenta at (π/2, π/2) and (3π/2, 3π/2), by whose ground states the present degenerate state is superposed of.

defined. A in-depth analysis of breakdown of the one-to-one correspondence for the two-leg ladder Mott insulators
doped by a hole has been recently given in Ref. 50.
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