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The issue on the effect of interactions in topological states concerns not only interacting topological phases
but also novel symmetry-breaking phases and phase transitions. Here we study the interaction effect on Majo-
rana zero modes (MZMs) bound to a square vortex lattice in two-dimensional (2D) topological superconductors.
Under the neutrality condition, where single-body hybridization between MZMs is prohibited by an emergent
symmetry, a minimal square-lattice model for MZMs can be faithfully mapped to a quantum spin model, which
has no sign problem in the world-line quantum Monte Carlo simulation. Guided by an insight from a further du-
ality mapping, we demonstrate that the interaction induces a Majorana stripe state, a gapped state spontaneously
breaking lattice translational and rotational symmetries, as opposed to the previously conjectured topological
quantum criticality. Away from neutrality, a mean-field theory suggests a quantum critical point induced by
hybridization.

Topological states are currently the focus of intensive re-
search1–3. In particular, bulk-boundary correspondence is a
central guiding principle, which predicts low-energy modes
at the interface between topologically distinct states. It also
applies to topological defects (such as dislocations and su-
perconducting vortices) in topological matter, because they
can be regarded as generalized interfaces bordering on nor-
mal states4–11. Of particular interest are Majorana zero
modes (MZMs) at vortices in 2D topological superconduc-
tors. Besides exploring the potential of MZMs for quantum
computation12–21, the idea of designing lattices of Majorana
fermions out of MZMs is fascinating in its own right, because
the interaction between MZMs may lead to novel phases and
critical phenomena22–30.

In this Rapid Communication, we study a square lattice of
interacting MZMs, which may emerge at vortices in 2D topo-
logical superfluid and superconductor31–36, as predicted for
the A phase of 3He and Sr2RuO4

37–39. For definiteness, we
consider a surface of a 3D strong topological insulator sub-
ject to superconducting proximity effect, as proposed by Fu
and Kane15. The predicted surface state resembles a spin-
less px ± ipy superconductor; see Refs. 40 and 41 for recent
experimental progress. When an Abrikosov vortex lattice is
induced by a magnetic field, MZMs are expected to emerge
at vortices5, leading to a lattice of Majorana fermions at low
energies. Here we assume additional conditions to stabilize a
square vortex lattice such as strong fourfold lattice anisotropy,
which is less common than a triangular lattice but possible
(e.g., LuNi2B2C42). We demonstrate that a faithful spin repre-
sentation of a minimal interacting Hamiltonian for Majorana
fermions can be derived in the square lattice under the neu-
trality condition, which furthermore allows for employing a
quantum Monte Carlo (QMC) method43 to investigate thermo-
dynamic properties of very large lattices unbiasedly. We find
a novel Majorana stripe phase and present a duality transfor-
mation elucidating the nature of this phase, which supersedes
the previously proposed topological quantum criticality25. We
then extend our analysis away from neutrality by a mean-field
(MF) theory by including the nearest-neighbor hybridization,
where we find a quantum critical point induced by Majorana

hybridization, beyond which Majorana fermions have gapless
dispersion.

At the non-interacting level, the system is described in the
long-wavelength limit by the Fu-Kane Hamiltonian15 Ĥ FK =
1
2

∫
d2r Ψ̂

†
rH FK(r)Ψ̂r with Ψ̂r = (ψ̂

↑r, ψ̂↓r, ψ̂
†

↓r,−ψ̂
†

↑r)T being

the Nambu spinor of the electronic operators ψ̂(†)
αr (α =↑, ↓)

and

H FK(r) = τz(−ivFσ · ∇ − µF
)

+ Re ∆(r)τx + Im ∆(r)τy, (1)

where σ (τ) is the Pauli matrix in the spin (Nambu) basis,
µF is the chemical potential, ∆(r) is the proximity-induced
pair potential, and vF is velocity of the surface Dirac mode
when ∆ = 0. The distribution and structure of vortices are en-
coded in ∆(r). The neutrality condition corresponds to µF = 0,
which has a significant consequence on the emergent symme-
try of the effective Hamiltonian25,26. When satisfied, an artifi-
cial time-reversal symmetry Θeff = σxτxK (K is the complex
conjugation) with Θ2

eff
= 1 emerges in addition to the particle-

hole symmetry Ξ = σyτyK inherent to the Bogoliubov-de
Gennes formalism. The consequence is that the vortex-bound
MZM takes the form, γ̂ = γ̂† =

∫
d2r

(
urψ̂↓,r + u∗rψ̂

†

↓,r
)
, i.e.,

with the spin antiparallel to the magnetic field26. Because
Θ̂eff γ̂ Θ̂−1

eff
= γ̂ and Θ̂eff is antiunitary, single-body hybridiza-

tion iγ̂rγ̂r′ is prohibited between any pair of MZMs at r and
r′. For an interacting many-body system, this means that the
neutrality condition corresponds to the strong-coupling limit
for the Majorana modes.

Assuming the simplest, quartic local interaction of the vor-
tex Majorana modes on the square lattice, we consider the fol-
lowing Hamiltonian Ĥ = Ĥg

25,28 with

Ĥg = g
∑
�

γ̂�1
γ̂�2

γ̂�3
γ̂�4

, (2)

where γ̂r is the Majorana fermion operator at site r satisfying
γ̂†r = γ̂r and {γ̂r, γ̂r′ } = 2δr,r′ and the summation runs over
elementary plaquettes; �1–�4 are four corners of a plaquette,
�2 = �1 − b, �3 = �1 + a, and �4 = �3 − b, with a and b the
primitive lattice vectors [Fig. 1(a)].
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As the hybridization term allowed for µF , 044, we con-
sider the following nearest-neighbor hybridization, discussed
in, e.g., Refs. 25 and 34,

Ĥt = it
∑

r

[
γ̂rγ̂r−b + (−1)ry γ̂rγ̂r+a

]
, (3)

which has a uniform π flux per plaquette because of the under-
lying vortices. Equation (3) preserves the full symmetry of the
square lattice (e.g., the translation in the b direction is accom-
panied by a gauge transformation). By continuity, we expect
|t| � |g| for small µF. We assume g, t > 0 unless otherwise
mentioned.

We start from Ĥ = Ĥg (2). Assuming a periodic (open)
boundary condition in the a (b) direction, we map it to a spin
model by using a 2D Jordan-Wigner (JW) transformation. We
define a complex fermion ĉrσ = 1

2 (γ̂rσ,1 + iγ̂rσ,2) by introduc-
ing an artificial (but arbitrary) pairing convention [Fig. 1(b)],
where rσ is the position of a pair combining γ̂rσ,1 and γ̂rσ,2.
Assuming the site-ordering (“column-major”) index nCM(rσ)
in Fig. 1(b), the transformation is ĉ†rσ ĉrσ = 1

2
(
1+σ̂z

rσ
)

and ĉ†rσ =
1
2
(∏

nCM(r′σ)<nCM(rσ) σ̂
z
r′σ

)(
σ̂x

rσ + iσ̂y
rσ
)
, where σ̂α (α = x, y, z) are

Pauli matrices. We find

γ̂rσ,2γ̂rσ,1γ̂rσ+a,2γ̂rσ+a,1 = −σ̂z
r1
σ̂z

r1+a,

γ̂r′σ,1γ̂rσ,2γ̂r′σ+a,1γ̂rσ+a,2 = −σ̂x
rσσ̂

x
r′σσ̂

x
rσ+aσ̂

x
r′σ+a, (4)

with r′σ = rσ + 2b, where the number of pairs involved in the
interaction is two and four, respectively [Fig. 1(c)]. The string
factor does not appear in either case. We obtain

Ĥg,σ = −J
∑
rσ

σ̂z
rσσ̂

z
rσ+a − P

∑
�σ

 ∏
rσ∈�σ

σ̂x
rσ

 , (5)

with J = P = g, which combines the Ising coupling J on
the horizontal bonds and a transverse four-spin term P asso-
ciated with plaquettes (�σ) of σ spins [Fig. 1(b)]. In this rep-
resentation (5), we can apply the world-line QMC method43

to study the thermodynamic properties of MZMs without a
negative sign problem. Specifically, we use the directed-loop
algorithm45,46 in the σx basis. To reduce finite-size effects, we
use a trick of fictitious MZMs to simulate the lattice of Majo-
rana fermions comprising an even number of plaquettes in the
b direction47. We investigate the spin lattices of L × L up to
L = 60, corresponding to L × (2L − 1) MZMs, significantly
larger than the previous exact diagonalization (ED) study up
to 4 × 15 MZMs25.

Figure 2(a) shows the specific heat C. In addition to the
broad peak around temperature T ≈ g, it exhibits a size-
dependent sharp anomaly at T/g ≈ 0.25, indicating a finite-
temperature transition. This observation points to a symmetry
breaking phase at low T , which contradicts with the previ-
ous ED study, where by introducing a two-site modulation in
g [equivalent to making J , P in Eq. (5)], it was suggested
that the system becomes gapless when the original transla-
tional and rotational symmetries are recovered (i.e., J = P)25.
To clarify the nature of the low-T state, we first note that the
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FIG. 1. MZMs and the JW transformation. (a) Square lattice of
MZM, where shaded plaquettes represent the interaction g and di-
rected links from site r to site r′ represent the hybridization term
itγ̂rγ̂r′ . (b) JW transformation of Ĥg with the column-major site
ordering nCM. Ellipses show pairing of MZMs with crosses repre-
senting σ spins. (c) A plaquette term involving two (four) pairs is
transformed to the Ising (four-spin) coupling, where r′σ = rσ + 2b.
(d) Lattice of σ spins.

string operator Ôspin
h (y) =

∏
rx
σ
σ̂x

rσ=(rx
σ,y) is a conserved quan-

tity for any horizontal (‖ a) chain, which flips σz eigenvalues
of all spins at ry

σ = y. As known as a generalized Elitzur’s
theorem48, the corresponding gauge-like 1D symmetries re-
duce the effective dimensionality of the order parameter field
σz from 2D to 1D. Hence, the conservation of Ôspin

h (y) pro-
hibits any kind of long-range order of σz at T > 0; this 1D
physics may explain the broad peak of C at high T , but not
the transition itself.

To elucidate the nature of the low-T phase and the transi-
tion, we show that Ĥg,σ (hence, Ĥg) is dual to decoupled two
copies of a square-lattice quantum compass model47. This
model was investigated in depth in various contexts49–60, and
the corresponding knowledge is very useful for understanding
the nature of the low-T phase. Explicitly, we first define “τ
spins” at the midpoint of every horizontal link. With the “row-
major” site ordering nRM(rσ) in Fig. 3(a), the first transforma-
tion is τ̂z

rτ = σ̂z
rσσ̂

z
rσ+a, τ̂x

rτ =
∏

nRM(r′σ)≤nRM(rσ) σ̂
x
r′σ

with rτ =

rσ + a
2 , by which the J and P terms become an effective mag-

netic field and a four-spin interaction for τ spins, respectively.
We find that the new four-spin interaction does not mix τ spins
in even and odd columns, e.g., σ̂x

rσσ̂
x
rσ+aσ̂

x
rσ+2bσ̂

x
rσ+a+2b =

τ̂x
rτ−aτ̂

x
rτ+aτ̂

x
rτ−a+2bτ̂

x
rτ+a+2b [Fig. 3(d)]. Consequently, the dual

Hamiltonian is composed of decoupled even and odd compo-
nents as Ĥg,τ = Ĥe

g,τ + Ĥo
g,τ with

Ĥ e(o)
g,τ =

∑
rτ ∈ even (odd) columns

(
−Jτ̂z

rτ − Pτ̂x
rτ τ̂

x
rτ+2aτ̂

x
rτ+2bτ̂

x
rτ+2a+2b

)
. (6)

To complete the mapping, we introduce “µ spins” at the mid-
point of each vertical link (rτ, rτ + 2b) for τ spins, such
that µ̂x

rµ = τ̂x
rτ τ̂

x
rτ+2b, µ̂z

rµ =
∏

ñCM(r′τ)≤ñCM(rτ) τ̂
z
r′τ

with rµ =
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FIG. 2. QMC results in the spin representation (5) with J = P = g in the L × L lattice with the fictitious MZM trick47. (a) Specific heat
C = (1/L2)∂〈Ĥg,σ〉/∂T , (b) the order parameter 〈|D̂σ|〉 of the Majorana stripe state, and (c) the Binder parameter. The inset in (b) illustrates the
local order parameter D̂σ(rσ) (8) and its relation with a pair of Majorana plaquettes.
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FIG. 3. Two-step duality transformation, introducing (a) τ spins and
(b) µ spins. (c) The J term is transformed to the interaction µ̂z

rµ µ̂
z
rµ+2b.

(d) The P term (highlighted filled rectangle) is transformed first into a
four-spin coupling for τ spins (round rectangle) and then to µ̂x

rµ µ̂
x
rµ+2a.

(e) Resulting decoupled copies of the quantum compass model for µ
spins (shifted vertically for clarity).

rτ + b, where ñCM(rτ) is the column-major ordering for τ
spins [Fig. 3(b)]. This preserves the decoupling of Ĥ e

g,τ and
Ĥ o

g,τ, transforming each into the quantum compass model on
a square lattice with an enlarged unit cell [Figs. 3(c)–3(e)],

Ĥ e(o)
g,µ =

∑
rµ ∈ even (odd) column

(
−Pµ̂x

rµ µ̂
x
rµ+2a − Jµ̂z

rµ µ̂
z
rµ+2b

)
. (7)

The total Hamiltonian is Ĥg,µ = Ĥe
g,µ + Ĥo

g,µ.
The most crucial input from the duality transformation is

that the compass model with J = P = g is known to undergo
a “nematic” transition in the Ising universality class at a finite
temperature50,53,54. Below the critical temperature T = Tc,
the Z2 spin-lattice reflection symmetry [x ↔ z (a ↔ b) in

the spin (real) space] is spontaneously broken, while any spin-
spin correlation function such as 〈µ̂x

rµ µ̂
x
r′µ
〉 and 〈µ̂z

rµ µ̂
z
r′µ
〉 remains

short-ranged. This Z2 symmetry breaking can be detected by
a directional order parameter D̂µ(rµ) = µ̂x

rµ µ̂
x
rµ+2a− µ̂

z
rµ µ̂

z
rµ+2b

49.
Back to the language of Majorana fermions, the even-odd
decomposition (Ĥg,µ = Ĥe

g,µ + Ĥo
g,µ) corresponds to the ge-

ometrical checkerboard decomposition of Ĥg (2). Defining
ĤA

g and ĤB
g as composed of quartic interactions in one sub-

lattice (A) of the checkerboard decomposition and its comple-
ment (B), respectively [Fig. 4(a)], we find Ĥg = ĤA

g + ĤB
g and

[ĤA
g , Ĥ

B
g ] = 0. Here, ĤA

g corresponds to Ĥe
g,µ or Ĥo

g,µ and ĤB
g

does to the other. In fact, each Ising-like bond interaction in
Ĥ e(o)

g,µ (7) corresponds to a plaquette term that it graphically
overlaps in the lattice, as illustrated in Fig. 4(a). Hence, the
nematic order quantified by D̂µ corresponds to a spontaneous
energy density modulation associated with the plaquette in-
teraction g. As shown in Fig. 4(b), the even-odd decoupling
implies that the energy-density wave order emerges in the two
sublattices A and B independently (Z2 × Z2 symmetry break-
ing), resulting in fourfold degenerate ground states modulo
the aforementioned 1D symmetries.

We confirm this Majorana stripe order by evaluating the or-
der parameter by QMC. Figure 2(b) shows 〈|D̂σ|〉 with D̂σ =

N−1 ∑′
rσ D̂σ(rσ), where the summation runs over either even

or odd columns, N is a proper normalization47, and

D̂σ(rσ) = σ̂z
rσ+aσ̂

z
rσ+2a − σ̂

x
rσ+2bσ̂

x
rσσ̂

x
rσ+a+2bσ̂

x
rσ+a (8)

is the order parameter in the σ-spin representation. We find
that the temperature dependence of 〈|D|〉 is consistent with the
transition into the Majorana stripe phase (the nonmonotonic
T -dependence for small L is suggested to be a finite-size ef-
fect due to the open boundary condition in the b direction).
Figure 2(c) shows the Binder parameter U4,D = 〈D̂4

σ〉/〈D̂
2
σ〉

2,
which exhibits crossing for different L, providing another
confirmation of the transition. The crossing takes place at
Tc/g ≈ 0.25(1), in agreement with the location of the diver-
gent peak of C.

Finally, we consider the effect of the nearest-neighbor hy-
bridization Ĥt (3) on the Majorana stripe phase. The finite-
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FIG. 4. Majorana stripe order. (a) Correspondence between the
checkerboard decomposition of Ĥg (2) and the even and odd compo-
nents of the compass model. (b) Fourfold degenerate ordered state
and the relation with the nematic order in the compass model.

temperature Ising transition implies a first-order transition
line in the extended T -∆g phase diagram [Fig. 5(a)], where
nonzero ∆g ≡ P− J explicitly breaks the translational symme-
try [Fig. 1(c)]. Since the QMC method has the sign problem
when applied to Ĥ = Ĥg + Ĥt, we employ the MF approx-
imation in the Majorana representation to examine the dis-
continuous transition at T = 0. Figure 5(b) shows the order
parameter D = 〈D̂σ〉 as a function of ∆g/g for t/g = 0.2, 0.8.
For t/g = 0.2, D remains finite as ∆g → 0, and exhibits a
jump upon changing the sign of ∆g, indicating that the dis-
continuous transition persists even in the presence of weak
hybridization. This in turn implies that the finite-T transi-
tion remains stable for small t, although the induced coupling
between the A and B subsystems may alter the universality
class61. As t increases, the discontinuity at ∆g = 0, ∆D, is
reduced and vanishes for t > tc ≈ 0.65g [Fig. 5(d)]. As shown
in Fig. 5(c), the MF band structure of Majorana fermions in
the limit ∆g → 0 in the stripe phase (t < tc) is gapped with
the energy gap εgap = g∆D47. This band structure is topologi-
cally trivial47. With increasing t, the gap reduces and vanishes
for t ≥ tc, giving rise to a critical state with gapless Majorana
fermions. Assuming that the critical temperature Tc ≈ εgap,
our result suggests Tc → 0 as t → tc. Our calculation thus
points to the existence of a quantum critical point character-
ized by gapless Majorana fermion excitations for t ≥ tc. We
note that the effect of including second-neighbor hybridiza-
tion, which produces a gap in the excitation spectrum, was
recently discussed28.

In summary, the square-lattice Majorana Hamiltonian Ĥt +

g / g�

D

(d)

(b)

t / g

D�

tc

T
D>0

D<0

g�
� �X M

(a)

(c)

t/g = 0.2 t/g = 0.8

t/g = 0.2

t/g = 0.8
-0.9

-0.6

-0.3

 0

 0.3

 0.6

 0.9

-1 -0.5  0  0.5  1

 

 

 0  0.2  0.4  0.6  0.8  1
0

0.4

0.8

1.2

1.6

2.0    

-2

-1

0

1

2
  

"gap = g�D

"k /g

FIG. 5. MF results for Ĥt + Ĥg. (a) Schematic phase diagram in
the T -∆g plane showing a first-order transition line ending at finite-T
critical point. (b) Stripe order parameter D as a function of ∆g for
t/g = 0.2, 0.8. (c) Majorana MF band structure for varying t. (d)
Energy gap εgap(t) for ∆g = 0, which is related to the jump ∆D of the
stripe order parameter at ∆g = 0 as εgap = g∆D47.

Ĥg, which may have an experimental realization in the hybrid
of a 3D strong topological insulator and a superconductor,
induces a stripe order that spontaneously breaks the transla-
tional and rotational symmetries in the strong-coupling regime
g � t, as opposed to the previously conjectured topological
quantum critical behavior25. Our large-scale QMC simulation
as well as the duality mapping (via the JW transformation)
provide a solid confirmation of this phenomenon. We note
that Affleck et al. also investigated the same model recently
from the weak-coupling side, suggesting that the quantum
phase transition t = tc belongs to a supersymmetric univer-
sality class28. Our unbiased approach coming from the strong
coupling is complementary to their weak-coupling analysis.
In fact, t , 0 lifts the 1D gauge-like symmetries, reducing
the Majorana stripe state to the dimerized state found by Af-
fleck et al. using a MF treatment similar to ours. We hope that
our work will trigger an experimental effort in the search for
intriguing phase transitions in the system of interacting Majo-
rana modes, which may be synthesized on the surface of a 3D
topological insulator as proposed recently25,26.
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