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Electrons confined in Si quantum dots possess orbital, spin, and valley degrees of freedom (d.o.f.).
We perform Landau-Zener-Stückelberg-Majorana (LZSM) interferometry on a Si double quantum
dot that is strongly coupled to a microwave cavity to probe the valley d.o.f. The resulting LZSM
interference pattern is asymmetric as a function of level detuning and persists for drive periods
that are much longer than typical charge decoherence times. By correlating the LZSM interference
pattern with charge noise measurements, we show that valley-orbit hybridization provides some
protection from the deleterious effects of charge noise. Our work opens the possibility of harnessing
the valley d.o.f. to engineer charge-noise-insensitive qubits in Si.

Environmental fluctuations are pervasive in biological
and condensed matter systems [1, 2]. Electrical fluctua-
tions, commonly referred to as charge noise, typically fall
off with frequency f with a spectrum that is close to 1/f ,
and can induce uncontrolled evolution of quantum sys-
tems [3]. These fluctuations are often the leading source
of decoherence for solid-state qubits. For example, early
superconducting qubits were highly sensitive to charge
noise [4, 5]. Even semiconductor spin qubits are sensi-
tive to electrical noise, which limits the fidelity of single
spin rotations in isotopically enriched 28Si [6] and two-
spin gate operations based on exchange coupling [7, 8]. It
is therefore of critical importance to reduce charge noise
or find ways to mitigate its impact on qubit coherence.

Developing electrically protected qubits has been a re-
curring theme in solid-state quantum computation, both
for superconducting and semiconductor qubits. Super-
conducting qubits have improved performance when op-
erated at “sweet spots” where the qubit transition energy
is first-order insensitive to the level detuning [9]. Opti-
mization of the ratio of the Josephson energy EJ to the
charging energy EC has led to the development of trans-
mon qubits that are highly insensitive to charge noise
[10]. To date, approaches to mitigating the detrimental
impact of charge noise on semiconductor qubits include
dynamic decoupling [8], operation at sweet spots [11–
13], and hybrid qubits [14], where higher lying states in
the qubit energy level spectrum lead to flat bands with
an energy separation that is largely insensitive to charge
fluctuations.

Here we demonstrate a Si DQD that utilizes valley-
orbit mixing to achieve a transition energy with reduced
sensitivity to charge noise over a wide range of parameter
space. The bulk conduction band of Si has six equiva-
lent valleys. Strain in Si/SiGe heterostructures partially
lifts the six-fold valley degeneracy by raising the energy
of the four in-plane valleys [15]. The electric field at the
quantum well interface hybridizes the two low-lying ±z-
valleys, yielding a valley splitting in the range of 10–300
µeV [16–18]. In Si double quantum dots (DQDs), hy-
bridization of orbital and valley degrees of freedom leads
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FIG. 1. (a) Optical image of the superconducting cavity. (b)
Tilted-angle false-color scanning electron microscope image
of the DQD. (c) Experiment schematic: The DQD is probed
by a cavity photon with energy hf and interferometry is per-
formed by periodically driving the detuning parameter ε(t).
(d) Cavity transmission amplitude A/A0 as a function of VP1

and VP2 near the (1, 0) ↔ (0, 1) interdot transition. (e) Left
panel: A/A0 as a function of ε and f . Right panel: A/A0 as
a function of f at ε = 0. The lever-arm conversion between
gate voltage and energy is α = ∆ε/∆VP1 = 72 µeV/mV [26].

to valley-orbit couplings that exceed 10 µeV [17, 18]. In
previous work, we have shown that sensitive spectroscopy
of the hybrid valley-orbit states is possible using disper-
sive shifts in the cavity transmission [17]. In this Let-
ter, we use a combination of Landau-Zener-Stückelberg-
Majorana (LZSM) interferometry [19–25], charge noise
spectroscopy and dispersive readout to investigate the
coherence of the valley-orbit states. We find that the
valley-orbit states have increased protection from charge
noise compared to pure orbital states due to a transition
frequency that only weakly depends on the DQD detun-
ing.
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FIG. 2. (a) LZSM interference pattern obtained by measuring A/A0 as a function of ε0 and eVac. Inset: Theoretical predictions
plotted using the same color-scale and axes range as the experimental data. (b) DQD energy level diagram calculated with
EL = 37.5 µeV, ER = 38.3 µeV, t = 25.4 µeV and t′ = 11.8 µeV. The gray dashed lines show the energy levels with t = t′ = 0.
(c) Transition frequency between the two lowest energy states, EVO/h, as a function of ε. The cavity frequency fc is denoted
with a black dashed line. The qubit-cavity detuning EVO/h − fc � gVO/2π and has a minimum of 55 MHz at ε = 0. The
red curve represents the detuning trajectory when eVac ≈ EL,R, which is confined to the parabolic parts of EVO(ε)/h (shaded
in red). The green curve represents the detuning trajectory when eVac � EL,R, where the detuning trajectory samples flat
parts of EVO(ε)/h as well (shaded in green). For comparison, the gray dashed line shows the transition frequency of a two-level
charge qubit ECQ/h =

√
ε2 + 4t2c/h with tc = 16.2 µeV.

The device used in this experiment consists of a
Si/SiGe DQD electric-dipole-coupled to a microwave cav-
ity having a center frequency fc = 7.796 GHz and pho-
ton decay rate κ/2π = 3.3 MHz [Figs. 1(a)–1(b)] [17, 27].
The experiments are performed with zero external mag-
netic field such that the spin states are degenerate. The
Hamiltonian governing the DQD charge states and valley
d.o.f., assuming valley-preserving tunneling, is [28, 29]:

H0 =


ε/2 + EL 0 t t′

0 ε/2 −t′ t
t −t′ −ε/2 + ER 0
t′ t 0 −ε/2

 . (1)

The Hamiltonian is written in a basis spanned by the left
dot ground (excited) state |L〉 (|L′〉) and the right dot
ground (excited) state |R〉 (|R′〉). Here EL (ER) is the
valley splitting of the left (right) dot, t (t′) is the intra-
valley (inter-valley) tunnel coupling and ε is the DQD
level detuning [Fig. 1(c)]. Intra-valley tunnel coupling
is equivalent to the interdot tunnel coupling tc in single
valley materials [11].

Values of EL, ER, t and t′ are measured through the
dispersive interaction between the DQD and cavity pho-
tons [17]. We first identify the (1, 0) ↔ (0, 1) interdot
charge transition by measuring the normalized cavity
transmission amplitude A/A0 as a function of the left
(P1) and right (P2) plunger gate voltages VP1 and VP2

[Fig. 1(d)] [27]. Here (N1, N2) denotes a charge state
with N1 (N2) electrons in the left (right) dot. Vacuum
Rabi splitting with a frequency 2gVO/2π = 16.0 MHz
[Fig. 1(e), left panel] is observed in the cavity transmis-
sion spectrum at the ε = 0 sweet spot [11, 27, 30]. A
charge decoherence rate γ0/2π = 4.1 MHz is extracted
using microwave spectroscopy [26], indicating the de-
vice is in the strong-coupling regime gVO > [γ0, κ] [27].
By fitting A(f)/A0 at ε = 0 [Fig. 1(e), right panel]
and the results of microwave spectroscopy [26] to cavity
input-output theory [28], we obtain EL = 37.5 ± 2 µeV,
ER = 38.3± 2 µeV, t = 24.3± 1 µeV, and t′ = 11.2± 0.5
µeV. The comparable magnitudes of t, t′, EL and ER

have an important implication: the DQD energy levels
are strongly influenced by hybridization of the valley and
orbital d.o.f.

The valley-orbit nature of DQD charge states is more
clearly visualized through LZSM interferometry [19–25].
LZSM interferometry is performed by periodically driv-
ing the detuning parameter ε, which in the time-domain
sweeps the system through avoided crossings in the en-
ergy level diagram. The Stückelberg phase accumulated
between avoided crossing traversals leads to a quantum
interference pattern – a “fingerprint” that sensitively de-
pends on the system’s Hamiltonian [19–22, 31].

We probe the energy level structure of the Si DQD in
the time-domain by varying ε sinusoidally in time such
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that ε(t) = ε0+eVac cos (2πfgt), where fg denotes the fre-
quency of the drive and t in this expression denotes time.
We set VB2 = 410 mV for these measurements (resulting
in t = 25.4±1 µeV and t′ = 11.8±0.5 µeV), such that the
device is in the dispersive regime with EVO/h− fc ≥ 55
MHz � gVO/2π [17, 27]. With these values of t and t′

the cavity-induced Purcell decay rate is estimated to be
ΓP/2π < 0.1 MHz� γ0/2π such that charge decoherence
is dominated by internal noise in the device, not cou-
pling to the cavity mode [32]. In the dispersive regime,
a change in the DQD charge state population leads to
dispersive shift in the cavity transmission A/A0 [33, 34].

The LZSM interference pattern for this device is shown
in Fig. 2(a), where we plot the steady-state cavity trans-
mission amplitude A/A0 as a function of ε0 and eVac with
fg = 50 MHz. As eVac is increased from zero, we observe
>20 interference fringes in a V-shaped region bounded by
eVac ≈ |ε0|. Within each interference fringe, a series of
minima with A/A0 < 1 are observed, indicating changes
in the time-averaged population of the DQD charge states
due to the evolution of the Stückelberg phase [23–25]. No
interference fringes are observed outside of the V-shaped
region, as here the detuning parameter is no longer swept
through the avoided crossings near ε = 0 [Fig. 2(b)].

The overall LZSM interference pattern observed in our
device significantly deviates from previous work on su-
perconducting and semiconductor qubits, where the in-
terference fringes have an arc-like shape that are sym-
metric with respect to ε = 0 [23–25]. Instead, the inter-
ference fringes have the symmetric arc-like structure for
eVac < 60 µeV, but become increasingly more asymmet-
ric at larger eVac and resemble a harp. In addition, the
concavity of the interference fringes changes from con-
cave down to concave up around eVac ≈ 75 µeV. Finally,
we observe clear quantum interference fringes with fg =
50 MHz, which is roughly 200 times slower than GaAs
charge qubit driving frequencies [24].

The LZSM interference pattern may be qualitatively
understood by considering the DQD energy level dia-
gram [Fig. 2(b)]. For |ε| � EL,R, the DQD eigenstates
are the unhybridized charge states |L〉, |L′〉, |R〉, |R′〉.
For smaller values of ε, the charge and valley d.o.f. hy-
bridize through the tunnel couplings t and t′ to form
valley-orbit states. The quantum transition between the
two lowest-lying energy states has a frequency EVO/h,
which is plotted in Fig. 2(c). For |ε| ≤ EL,R, EVO/h
has a quadratic dispersion relation as found in conven-
tional two-level charge qubits [24, 25]. In contrast, for
|ε| � EL,R, EVO approaches EL (for ε < 0) or ER (for
ε > 0). Driving the DQD with eVac ≤ EL,R therefore
results in the arc-like interference patterns often associ-
ated with driven two-level systems [31]. However, once
eVac � EL,R the energy difference between the ground
state and first excited state is primarily set by single-dot
valley splittings that are different for both dots, leading
to an asymmetric interference pattern and a change in

the concavity of the interference fringes.
To quantitatively compare the data to theory, we em-

ploy input-output theory, which provides the cavity re-
sponse A/A0 as a function of the DQD susceptibility χ
[33]. If the DQD is driven, a proper time-average of χ is
required and can be derived within Floquet theory [35].
At the low drive frequency fg used in this experiment, the
Floquet states are approximated by adiabatic solutions
of the Schrödinger equation [26]. Theoretical predictions
for A/A0 are shown in the inset of Fig. 2(a). The excel-
lent agreement between experiment and theory confirms
the energy level structure of the DQD charge states. An
alternative interpretation of the LZSM interference pat-
tern based on dressed states is given in [26].

The data in Fig. 2(a) also yield information on the
quantum coherence of the two lowest valley-orbit states
away from ε = 0. For constructive interference of
the Stückelberg phase, consecutive passages through the
avoided crossing must occur within the coherence time
of the system. As such, LZSM interferences are ob-
servable only if the time-averaged decoherence rate γ̄ =
1
T

∫ T
0
γ [ε(t)] dt satisfies γ̄ <∼ fg where T = 1/fg is the

period of the drive and t here denotes time [25, 31]. For
typical semiconductor charge qubits, charge dephasing
rates γφ are several GHz at ε 6= 0 and LZSM interferom-
etry must be performed at high drive frequencies fg ≥ 2.5
GHz to see an interference pattern [24, 25]. In contrast,
we observe a clear quantum interference pattern with
fg = 50 MHz, which indicates long-lived charge coher-
ence even when far detuned from ε = 0.

A primary factor contributing to the long coherence
times of the valley-orbit states is evident from the rel-
atively flat dispersion relation EVO(ε). Based on the
DQD parameters, |dEVO/dε| has a maximum value of
0.08 at ε = 30 µeV and asymptotes to zero at large |ε|. In
contrast, the dispersion relation of a conventional charge
qubit ECQ(ε) yields |dECQ/dε| ≈ 1 at finite ε [Fig. 2(c)].
Here and in Fig. 4(b), we have assumed tc = 16.2 µeV
for the charge qubit such its minimum energy splitting is
the same as the valley-orbit qubit. Based on the energy-
level structure, charge-noise-induced fluctuations in ε will
lead to markedly smaller fluctuations in the energy split-
ting between the valley-orbit states and lower decoher-
ence rates [5, 8, 11, 25].

To evaluate whether |dEVO/dε| is sufficient to support
the observed level of charge coherence, we explicitly mea-
sure the detuning noise [36]. The out-of-phase compo-
nent of the cavity output field, Q, is first recorded as a
time-series at ε = −8 µeV where Q is strongly dependent
on ε with a sensitivity |dQ/dε| = C [inset to Fig. 3(a)].
The data, shown as a histogram in Fig. 3(a), have a Gaus-
sian profile with standard deviation δSens. To separate
the noise in Q due to fluctuations in ε from background
noise in the measurement setup, we also sample Q at
ε = −60 µeV, where dQ/dε ≈ 0. These data [Fig. 3(a)]
have a standard deviation δRef. The standard deviation
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FIG. 3. (a) Histograms showing the out-of-phase component
of the cavity output field, Q, sampled at a frequency of 250
kHz over 1 sec. at ε = −8 µeV (cyan) and ε = −60 µeV
(red). Black lines are fits to Gaussian functions. Inset shows
Q(ε) and the colored dots represent the locations where the
histograms are taken. eVac = 0 for these measurements. (b)
Power spectral density of the noise in ε, Sε(f), with a fit to
Sε(f) ≈ S0[(1 Hz)/f ]β . Sε(f) is too small to be resolved
beyond f = 1 kHz using this method.

of the detuning fluctuations is then δε = 1
C

√
δ2Sens − δ2Ref

= 0.87 µeV. Factoring in the slope of the dispersion re-
lation, this detuning fluctuation corresponds to a maxi-
mum fluctuation in EVO/h = |dEVO/dε|max × 0.87 µeV
≈ 17 MHz. Our simple analysis shows that the magni-
tude of the charge noise, combined with the DQD energy
level structure, is sufficient to explain the observation of
a LZSM interference pattern at such low drive frequen-
cies. Looking forward, it may be helpful to more precisely
model the effects of charge noise using simulated lever-
arms and the charge noise insensitivity parameter [12].

Discrete Fourier transforms of the time-series allow the
power spectral density of the detuning noise Sε(f) to
be determined [Fig. 3(b)]. At low frequencies the power
spectrum scales as Sε(f) ≈ S0[(1 Hz)/f ]β with S0 = 0.11
µeV2/Hz and β ≈ 1.4. Using this noise spectrum we cal-
culate a maximum dephasing rate γφ/2π ≈ 6 MHz at
|ε| = 30 µeV, which is indeed below the drive frequency
fg = 50 MHz. Converting to units of electron charge, we
find Sc = (e/Ec)

2Sε = 3.8× 10−9 e2/Hz at a f = 1 Hz,
where Ec ≈ 5.4 meV is the charging energy [26].

The valley-orbit states may serve as the basis states of
a highly controllable and coherent hybrid qubit. First,
the orbital nature of the hybrid qubit allows fast ma-
nipulation using microwaves, as evidenced by its strong-
coupling to a single photon in the cavity [Fig. 1(e)].
Second, unlike conventional two-level charge qubits, the
valley-orbit qubit may be operated away from ε = 0 with-
out significant loss of coherence due to its relatively flat
energy bands and small charge noise sensitivity [37].

As a demonstration, we measure A(ε0, eVac)/A0 with
fg = 100 MHz [Fig. 4(a)]. Here we observe clearly re-
solved interference minima that show little decay in in-
tensity as the drive amplitude eVac increases, further
confirming that the decoherence rate of the valley-states
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FIG. 4. (a) A/A0 as a function of ε0 and eVac, with fg = 100
MHz. (b) Theoretically predicted LZSM interference patterns
obtained from a 4-level valley-orbit model (left) and a stan-
dard two-level charge qubit model (right). The color-scale is
the same as in panel (a). (c) A/A0 as a function of eVac,
taken along the dashed lines in panels (a) and (b). The ex-
perimental data and calculation based on valley-orbit states
are plotted along the bottom x-axis, whereas the calculation
based on a charge qubit is plotted along the top x-axis.

does not increase appreciably at large DQD detunings.
To compare with theoretical expectations, we calculate
A(ε0, eVac)/A0 using experimental parameters [see the
left panel of Fig. 4(b)] and find excellent agreement with
the data. In comparison, the interference patterns cal-
culated for a conventional charge qubit [right panel of
Fig. 4(b)] decay rapidly as eVac increases due to fast de-
coherence at large DQD detunings. These simulations
are more directly compared by plotting A/A0 along a
line connecting the center of a resonance minimum within
each fringe [Fig. 4(c)].

In conclusion, we observe LZSM interference patterns
in a cavity-coupled Si DQD when the DQD detuning is
driven at frequencies as low as 50 MHz. Analysis of the
interference patterns reveals that the basis states for the
Si DQD are hybridized valley-orbit states rather than
pure orbital states. Compared to conventional charge
qubits, and other recently developed hybrid qubits that
all rely on operation at sweet spots to maintain coher-
ence [11, 14, 18], devices utilizing valley-orbit states have
a small sensitivity to charge noise even at arbitrary de-
tunings, owing to a flat energy level structure. Deter-
ministic control of valley splittings, perhaps made pos-
sible through further material research efforts, has the
potential of turning the valley d.o.f. in Si into a power-
ful resource for reducing the charge noise sensitivities of
silicon qubits.
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