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We analyze a disordered central spin model, where a central spin interacts equally with each spin in
a periodic one dimensional random-field Heisenberg chain. If the Heisenberg chain is initially in the
many-body localized (MBL) phase, we find that the coupling to the central spin suffices to delocalize
the chain for a substantial range of coupling strengths. We calculate the phase diagram of the
model and identify the phase boundary between the MBL and ergodic phase. Within the localized
phase, the central spin significantly enhances the rate of the logarithmic entanglement growth and its
saturation value. We attribute the increase in entanglement entropy to a non-extensive enhancement
of magnetization fluctuations induced by the central spin. Finally, we demonstrate that correlation
functions of the central spin can be utilized to distinguish between MBL and ergodic phases of the
1D chain. Hence, we propose the use of a central spin as a possible experimental probe to identify
the MBL phase.

Introduction.—Many-body localization (MBL) is the
interacting analog of Anderson localization [1, 2]. As lo-
calized systems are perfect insulators, they violate the
eigenstate thermalization hypothesis (ETH) [3, 4]. This
violation implies that expectation values of physical ob-
servables with respect to eigenstates may not be de-
scribed by thermodynamic ensembles anymore. Hence,
the characteristic repulsion between energy levels of typ-
ical thermalizing systems [5] is absent in the MBL phase.
The absence of level repulsion and the intrinsic memory
about the initial state in the MBL phase may be under-
stood via an emergence of local integrals of motion [6, 7].
ETH can also be violated in systems that do not expe-
rience MBL, such as integrable systems [8]. However, in
contrast to integrable systems, the MBL phase is stable
to weak but finite local perturbations (see [9] for a re-
cent review). Moreover, the signatures of MBL can be
observed in presence of weak coupling to heat baths [10]
and particle loss [11]. However, the robustness of MBL
exposed to long-range interactions is still an open ques-
tion. While it has been proposed that MBL exists in
systems with interactions that decay with distance as a
power law [12, 13], in a recent work it is argued that MBL
could be present in systems with non-decaying interac-
tions [14].

In this paper, we study the behavior of the MBL transi-
tion in the presence of a central spin that equally couples
to all other spins in the model [15]. Our model therefore
obtains a very particular type of long-range interaction,
in which each spin is effectively coupled to all other spins
via the central spin. These models are experimentally
relevant for spin qubits based on electrons captured in
quantum dots [16]. In such systems, a qubit plays the
role of the central spin that experiences decoherence due
to the environmental bath spins [17–20]. The central spin
interacts with the bath of nuclear spins via hyperfine in-

teraction [21, 22] which was experimentally investigated
in different host materials [23]. Similarly, nitrogen va-
cancies in diamond represent central spins whose main
source of decoherence are electron spins of surrounding
nitrogen impurities [24, 25].

The main result of this work is that a central spin
can be employed in order to detect localization of its en-
vironment. To this end, we first study the impact of
the central spin on the well-known MBL transition of
the Heisenberg chain [26, 27]. We find an analytic ex-
pression for the critical disorder at which the transition
from MBL to the ergodic phase appears. The central
spin establishes a non-local coupling that enhances the
rate of the logarithmic growth of the half-chain entan-
glement entropy and its saturation value. We observe
that this enhancement has the same form as the non-
extensive increase in magnetization fluctuations that we
find, which suggests a relation between these two effects.
The latter effect was analytically analyzed in a fermionic
non-interacting central site model (NCSM) [28]. Finally,
we propose a novel detection scheme for MBL based on
the autocorrelation function of the central spin. Unlike
previous detection schemes [29–32], the central spin is
capable of distinguishing between ergodic and localized
environments at short times. This feature stems from the
large frequency dependency of its autocorrelation func-
tion which is qualitatively different in both environmental
phases.
Model.—We extend the random field Heisenberg chain

showing a MBL transition [26, 27] by coupling all sites
to the central spin:

H = J

K∑
i=1

~Ii · ~Ii+1 +

K∑
i=1

BiI
z
i +

A

K

K∑
i=1

~S · ~Ii, (1)

where ~S = 1
2 (σx, σy, σz)

T is the central spin that equally

couples to the K spins ~I of the Heisenberg chain with
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Figure 1. Phase diagram of the central spin model. The crit-
ical disorder strength Wc(A) = s(A) ·WHeis

c (solid line), at
which the eigenvalues in the center of the band transition from
a Poisson distribution towards the GOE ensemble, grows with
coupling strength A to the central spin. The stripes represent
the uncertainty of the parameter a∞, which arises from the
extrapolation extrapolation of a(K) to the thermodynamic
limit, see right inset. We find a∞ = 3.55±0.25, where the un-
certainty arises by comparing power-law or exponential fitting
functions. Each value a(K) is obtained by a scaling analysis
as illustrated in the left inset, where the disorder strength is
rescaled by s(A) for all simulated values of A.

periodic boundary conditions. The random fields Bi are
uniformly distributed Bi ∈ [−W,W ], where W sets the
disorder strength, and we set J = 1 in the following.

For J = 0, our model becomes similar to a previously
studied system [33], where the l-bit [6, 7] representation
of MBL was employed to study the influence of a central
spin on its MBL environment. The authors of Ref. [33]
demonstrated that the l-bits remain localized when their
coupling strength to the central spin is rescaled with the
inverse system size. Hence, in Eq. (1) we choose the cou-
pling of the central spin to the physical spin degree of
freedoms to be A/K. Such scaling ensures that the spec-
tral bandwidth of the coupling term is independent of
system size. Then, the spatially non-local coupling term
to the central spin can be considered as being local in
energy space. Moreover, a coupling rescaled in this way
is experimentally relevant in certain quantum dot mod-
els [16, 22], for which we propose below a concrete way
to detect MBL. While the relaxation features of similar
central spin models have previously been studied [34, 35],
we focus on the MBL signatures of central spin models
in this paper.

Phase diagram of the central spin model.—An efficient
way to distinguish ergodic and localized phases is to ex-
ploit their different eigenvalue statistics. While eigenval-
ues repel each other in the ergodic phase, leading to a
Gaussian Orthogonal Ensemble (GOE) of levels, eigen-
values are simply Poisson-distributed (POI) in localized
phases. Both phases lead then to different distributions
of gaps gi = Ei+1−Ei of adjacent energies. A commonly

used indicator of level statistics is the ratio of adjacent en-
ergy gaps, rA(W ) = 〈min(gi, gi+1)/max(gi, gi+1)〉i [36],
which takes values between ≈ 0.53 (GOE) and 0.38
(POI). The average runs over disorder ensembles and
eigenvalues in the center of the spectrum. Since the band-
width of the terms responsible for coupling to the central
spin is limited, their effect on the levels Ei of the Heisen-
berg chain crucially depends on the position in the spec-
trum. We focus on levels in the center of the band, where
the density of states is largest and one expects the onset
of delocalization.

In the absence of the central spin, the model is known
to show a MBL transition at Wc(A = 0) = WHeis

c ≈
3.7 [26, 27]. Upon increasing A we find that rA(W ) is well
approximated by rA(W ) = r0(W/s(A)), where r0(W ) is
the value of the indicator r for the pure random field
Heisenberg chain. The rescaling function

s(A) =
√

1 + (A/a)2, (2)

depends on a single parameter a that changes with
system size but does not depend on the disorder
strength [37]. We predict this functional form of the
rescaling function the basis of the limits found in pre-
vious works: For small values of A, Eq. (2) recovers the
result of the random field Heisenberg chain with a second
order correction. This behavior is very similar to the case
of the NCSM [28]. On the other hand, for A� 1 we ob-
tain Wc(A) ∼ A, consistent with predictions of Ref. [33].

The quality of the rescaling collapse is shown in the
left inset of Fig. 1, where the results for many different
coupling constants A are mapped onto the known result
of the random field Heisenberg chain. The asymptotic
value of the free parameter asK →∞ is determined to be
a = 3.55± 0.25. The finite size scaling analysis is shown
in the right inset of Fig. 1. Finally, Fig. 1 illustrates the
resulting critical disorder strength

Wc(A) = WHeis
c s(A), (3)

which separates the localized from the ergodic phase. We
want to emphasize that, for a given disorder strength
W > WHeis

c , the central spin needs to couple sufficiently
strong in order to delocalize eigenstates in the center of
the band. This result is a clear many-body effect, be-
cause, for the NCSM, we have found an energy window
of size ∼ A2/K consisting of repelling eigenvalues at any
A > 0 [28].
Logarithmic growth of entanglement entropy.— The

logarithmic growth of entanglement entropy is employed
as a signature of the interacting localized phase with lo-
cal Hamiltonians [38, 39]. At the same time, the non-
local NCSM also displays logarithmic growth of entan-
glement entropy despite the absence of interactions [28].
Therefore, it is instructive to study the dynamics of
entanglement entropy in the interacting central spin
model. Starting with the Néel state |ψ(t = 0)〉 =
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| ↑↓↑ . . .〉, we compute the reduced density matrix
ρA = trB [|ψ(t)〉〈ψ(t)|], where we trace out K/2 contigu-
ous spins. As the entanglement entropy is SA = SB =
−tr [ρA ln ρA], the result is independent of which bipar-
tition contains the central spin. For coupling strength
A = 0, we recover the case of a periodic Heisenberg chain.
Here, SHeis

A (t) ∼ ξs∞ ln t grows logarithmically in time,
where ξ is the localization length of the model in the
absence of interactions and s∞ the contribution to the
saturation value of SA(t) per spin [40]. Figure 2 shows
that non-zero coupling to the central spin increases the
rate of the entanglement growth as:

SA ∼ ξs∞
(
1 + kA2

)
ln t, (4)

where k is a constant that is independent of W and
A. Note that the slope of the logarithmic entanglement
growth may be completely dominated by the central spin
(left inset of Fig. 2). Equation (4) can be rewritten as
SA = ξ̃s̃∞ ln t, where ξ̃ and s̃∞ are the effective corre-
lation length and the saturation entropy density in the
presence of the central spin.

The enhancement of the logarithmic entanglement
growth originates from an increase in both ξ̃ and s̃∞ com-
pared to ξ and s∞, as we discuss in the supplementary
material [37]. The functional form of the enhancement
coincides with the enhancement of fluctuations of mag-
netization F between the considered bipartitions. More
specifically, for F =

〈
JzA

2
〉
− 〈JzA〉

2
with the total spin

JzA =
∑
i∈A I

i
z inside a bipartition A for eigenstates in

the center of the spectrum, we find the same dependency:
F ∼ kA2/W 2 (see right inset of Fig. 2). We empha-
size that F is not extensive in the localized phase [37],
such that the total amount of magnetization ‘transmit-
ted’ through the central spin remains constant if the sys-
tem size is increased. This critical behavior is necessary
for simultaneously maintaining both a constant magneti-
zation exchange and localization at K →∞. It is a result
of the rescaling A/K of the coupling term in Eq. (1). No-
tably, we have found the same scaling for the logarithmic
transport in the NCSM using second order perturbation
theory in A. [41] While the similar functional dependence
suggests that fluctuations of magnetization are respon-
sible for the enhanced growth of entanglement entropy,
analytical understanding of the increase in ξ̃ and s̃∞ re-
mains an interesting open question.

We conclude that, at sufficient disorder strength, the
central spin model is many-body localized in terms of
thermodynamical and quantum statistical perspectives.
Information, witnessed by entanglement entropy, spreads
at most logarithmic in time. Eigenvalues are Poisson-
distributed and the corresponding eigenvectors have an
area-law entanglement entropy [37]. The system fails to
self-thermalize and preserves information about the ini-
tial state.

Detecting MBL with the central spin.– After we have
demonstrated that there exist systems in which the in-

Figure 2. Growth of entanglement entropy SA(t) of the Néel
state for different coupling constants to the central spin. In
the localized phase, we find that the slope of the logarith-
mic entanglement growth increases quadratically with A (see
upper left inset), which motivates Eq. (4). For the fit param-
eter k we find k ≈ 0.093(5). The bottom right inset shows
the fluctuation F (see text) of eigenstates inside the localized
phase. We find a non-extensive behavior of F ∼ kA2/W 2,
which, as ξ ∼ 1/W 2, traces the enhancement of SA(t) back
to magnetization exchange between bipartitions. The data is
generated for W = 16 using 14 spins.

sertion of a central spin does not destroy the MBL phase,
we explain how the central spin can be used as an ideal
(non-demolition) detector of MBL. In particular, we as-
sume that the measurable quantity is a spin component
of the central spin, e.g. Sz(t) = 〈ψ(t)|Sz|ψ(t)〉. We in-
vestigate its autocorrelation function

C(t) =

∫ ∞
−∞

dτ Sz(t+ τ)Sz(τ) (5)

=
∑
nm

∣∣ρEnm∣∣2 ∣∣(SEz )nm
∣∣2 ei(En−Em)t,

where SEz and ρE are the observable and the initial den-
sity matrix in the energy space of eigenstates with ener-
gies En, cf. [37]. The Fourier transform of Eq. (5) yields

f2(ω) =
1

2π

∫ ∞
−∞

e−iωtC(t) (6)

=
∑
nm

∣∣ρEnm∣∣2 ∣∣(SEz )nm
∣∣2 δ[ω − (En − Em)].

Note that f2(ω) is frequently studied in the context of
the ETH [42] and is thus a natural candiate for help-
ing to identify localization [43]. Evidently, ρEz and SEz
can only contribute to f2(ω) if there exists two energies
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Figure 3. Fourier spectrum of the autocorrelation function.
At small frequencies ω � A, the central spin can detect the
ETH phase (red) by a linear decay of f2(ω), which origi-

nates from level repulsion. In the MBL phase, f2(ω) shows a
significant power-law decay over many orders of magnitude.
The exponent −4 is independent of system size, disorder, and
coupling strength. The two peaks at ω ∼ 10−1 and ω ∼ 1
correspond to the local interactions A and A/K, which are
revealed in the dynamics of the central spin. Data is generated
for 10 (thin lines) and 12 (thick lines) spins at A = 1. The col-
ored areas are guides for the eye and indicate the power-law
behaviors.

with ω = Ei − Ej exists. The energies Ei and Ej are
not limited to be adjacent energy levels, but yet, the be-
havior of f2(ω) for ω � 〈δi〉 is dominated by the statis-
tics of level spacings δi = Ei+1 − Ei. In particular, in
the ergodic phase, where eigenvalues repel each other,
the probability to find a small level spacing behaves as
p(ω)dω = (π/2)ωe−πω

2/4dω ∝ ωdω. Therefore, in
contrast to the localized phase, we expect that f2(ω) is
linearly suppressed in the ergodic phase. The dynamics
of the central spin is hence influenced by the level statis-
tics of the surrounding spins. We illustrate this feature
in Fig. 3, where we present the disorder average of the
smoothed discrete function

f2(ωi) =
1

∆(ωi)

∫ ωi+∆(ωi)

ωi

dω f2(ω). (7)

We indeed find f2(ω) ∼ ω in the extended phase at small
frequencies ω � A/K.

Above we have demonstrated that the presence or ab-
sence of level repulsion manifests in a qualitatively dif-
ferent behavior of f2(ω) at frequencies of the order of
the level spacing, hence allowing to distinguish between
MBL and ergodic phases. In addition, we also observe
a qualitatively different behavior of the autocorrelation
function at larger frequencies. In the MBL phase, we find
clear peaks of f2(ω) at ω = 1 and ω = A/K, correspond-
ing to the coupling strength between neighbored spins
of the Heisenberg chain and their coupling strength to
the central site, respectively. In that case, the dynamics
of the central spin is strongly affected by local interac-

tions, in contrast to the extended phase where we do not
see any pronounced features. It should be noted that
most weight of f2(ω) is concentrated in the vicinity of
ω = A/K in the localized phase (this is masked by the
logarithmic scale in Fig. 3).

The last and most significant feature is the power-law
decay of f2(ω) in the localized phase for ω > A/K, which
ranges (even in our rather small system of 14 spins) over
7 orders of magnitude. A power-law dependence of a
related quantity to f2(ω) has recently been studied in
terms of localization in Ref. [44]. We find that the expo-
nent of the power-law is independent of system size (see
Fig. 3), disorder strength, and also independent of the
coupling strength to the central spin [37]. Further, for
different distributions of random numbers, such as nor-
mal and lognormal distributions, we have observed the
same exponent p = −4, which therefore seems to be a
generic exponent of this model and a novel indicator of
MBL.

From the experimental side, one possible realization
of our model is afforded by nitrogen vacancy (NV) cen-
ters in diamond [45, 46]. We envision working with high
nitrogen density Type Ib samples, where the dominant
defects are spin-1/2 P1 centers (nitrogen impurities). In
this case, the NV center then plays the role of an opti-
cally addressable central spin while the P1 centers play
the role of the bath spins. By working at a magnetic field
near B ∼ 510 G, the NV and the P1 defects become res-
onant and dipolar couplings mediate strong interactions
between them [47]. We note that in this setup, disor-
der occurs also in the strength of these dipolar interac-
tions, which scale as 1/r3. Finally, one should be able to
directly measure the central NV’s frequency dependent
spin-spin autocorrelation function. This can be done via
spin-echo like pulse sequences in the range ω ∼ 10−1 J to
102 J [46].

Conclusion.—We have studied dynamical and statisti-
cal properties of a central spin variant of the Heisenberg
model. Using an equal coupling strength A/K to all
spins, where K is the length of the Heisenberg chain, the
system shows, depending on the disorder strength, either
a MBL or ergodic phase. We have identified an analyt-
ical function Wc(A) for the critical disorder strength at
which the phase transition occurs. In the localized phase,
W > Wc(A), we have observed an enhanced logarithmic
spreading of entanglement entropy, which induced by a
non-extensive exchange of magnetization. We have pro-
posed to employ the central spin as a detector to dis-
tinguish between MBL and ergodic phase by means of
autocorrelation functions.
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Traverso Ziani for insightful discussions and Gregory
Meyer for introducing us to his powerful python interface
“dynamite”. Financial support has been provided by the
Deutsche Forschungsgemeinschaft (DFG) via Grant No.



5

TR950/8-1, SFB 1170 ToCoTronics and the ENB Grad-
uate School on Topological Insulators. FP acknowledges
the support of the DFG Research Unit FOR 1807 through
grants no. PO 1370/2- 1, TRR80, the Nanosystems Ini-
tiative Munich (NIM) by the German Excellence Initia-
tive, and the European Research Council (ERC) under
the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement no. 771537). NYY
acknowledges support from the NSF (PHY-1654740), the
ARO STIR program and a Google research award.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. 321,

1126 (2006).
[3] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[4] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[5] E. P. Wigner, Ann. Math. 62, 548 (1955).
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Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and
E. a. Demler, Phys. Rev. Lett. 113, 1 (2014).

[30] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Phys.
Rev. B 91, 1 (2015).

[31] D. Roy, R. Singh, and R. Moessner, Phys. Rev. B -
Condens. Matter Mater. Phys. 92, 1 (2015).

[32] M. Serbyn and D. A. Abanin, Phys. Rev. B 96, 1 (2017).
[33] P. Ponte, C. R. Laumann, D. A. Huse, and A. Chandran,

Philos. Trans. R. Soc. A 375, 20160428 (2017).
[34] D. Hetterich, M. Fuchs, and B. Trauzettel, Phys. Rev.

B 92, 155314 (2015).
[35] P. Reimann, Nat. Commun. 7, 10821 (2016).
[36] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[37] See the supporting online material for more details, which

includes Refs. [7, 28, 33, 40, 42, 44].
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