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A formalism is developed for the rigorous study of solvable fractional quantum Hall parent Hamil-
tonians with Landau level mixing. The idea of organization through “generalized Pauli principles” is
expanded to allow for root level entanglement, giving rise to “entangled Pauli principles”. Through
the latter, aspects of the effective field theory description become ingrained in exact microscopic
solutions for a great wealth of phases for which no similar single Landau level description is known.
We discuss in detail braiding statistic, edge theory, and rigorous zero-mode counting for the Jain-221
state as derived from a microscopic Hamiltonian. The relevant root-level entanglement is found to
feature an AKLT-type MPS structure associated with an emergent SU(2)-symmetry.

Introduction. The fractional quantum Hall (FQH)
regime exhibits an astonishing wealth of interacting topo-
logical phases. A rich theoretical framework describing
such phases has historically nucleated around a construc-
tion principle for holomorphic lowest Landau level (LL)
wavefunctions [1] and fruitful generalizations to the non-
holomorphic, multi-LL situation, with optional subse-
quent lowest-LL projection [2]. This variational princi-
ple has proven invaluable in driving the development of
field-theoretic descriptions of both the bulk and the edge
physics and their intimate relation [3, 4]. One may take
the point of view that a complete many-body theory of
any correlated phase of matter requires, in addition to
the aforementioned ingredients, a microscopic Hamilto-
nian granting analytic access to its low energy sector,
reproducing key aspects of the field-theoretic description
of such a phase. Such “parent Hamiltonians” do exist for
many [5-9] FQH-liquids but lack for even more. Notably,
to our knowledge, they are absent for most Jain states,
which are regarded fundamental both theoretically and
experimentally.

In this Letter, we argue that the lack of microscopic
Hamiltonians stabilizing representative variational wave-
functions for FQH-phases stems from complexities associ-
ated with non-holomorphic variational states. These in-
clude unprojected Jain states [2] and more general “par-
ton” constructions [10, 11]. In these cases, lowest-LL pro-
jection leads to sufficiently intractable wavefunctions to
preclude the construction of parent Hamiltonians. More-
over, the unprojected, multi-LL variational states still
lack many “analytic clustering” properties that were in-
strumental in the construction of parent Hamiltonians
for many lowest-LL states [5-7]. For these reasons, even
in those cases where parent Hamiltonians have been
proposed for multi-LL states, rigorous analytic results
are usually lacking. This is particularly true for zero-
mode counting, from which the case for incompressibil-
ity at special filling factors is usually made. We will

develop principles to study the zero-mode properties of
frustration free multiple-LL parent Hamiltonians on the
same footing as for similar single-LL Hamiltonians. Our
second-quantized framework de-emphasizes analytic clus-
tering properties [12], which are arguably less useful in
the multi-LL situation, as we will demonstrate. This lack
of emphasis on analytic properties, in favor of a “guiding-
center based” description, was recently advocated for var-
ious reasons [13-19]. Our approach connects with the
topical investigation of frustration free lattice Hamiltoni-
ans and their matrix-product ground states (MPS), with
the important additional feature that it extends to non-
local lattice Hamiltonians and, in principle, MPS of infi-
nite bond dimension [20-22].

The heart of our framework consists in further elabo-
ration on the concept of a “generalized Pauli principle”
(GPP), various guises of which play an important role
in discussing the structure of single-LL wavefunctions
[23-32]. Our extension not only provides a foundation
based on Hamiltonian principles but also generalizes to
multiple LLs. The latter will naturally lead to what we
coin “entangled Pauli principles” (EPPs), which, in ad-
dition to the now familiar rules for GPPs, permit MPS-
like entanglement at “root level” encoding the quantum
fluid’s “DNA”. We argue this generalization to be key
in yielding microscopic Hamiltonian descriptions to pos-
sibly all FQH-phases. We demonstrate our approach in
detail for the parent Hamiltonian of the Jain-221-state
[33]. By rigorously establishing the zero-mode structure
of this Hamiltonian, we make direct contact both with
bulk topological and edge conformal properties. As a
byproduct, this affords a case where simple two-body in-
teractions stabilize a non-Abelian FQH-state, in contrast
to better known higher-body, single-LL cases [34, 35].

Parent Hamiltonian. Consider the n-LL projected



“Trugman-Kivelson” interaction for fermions,
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where z; = x; + iy; is the coordinate of the ith parti-
cle, and Zz; its complex conjugate. For general projection
P,, onto the subspace spanned by the lowest n LLs, this
interaction is positive (semi-)definite. If the n-LLs are
energetically quenched [36], as is in multi-layer graphene
[33, 37, 38], the ground states of the resulting Hamil-
tonian can be characterized as zero-energy modes (zero-
modes). For any n, the wavefunctions of such zero-modes
will have at least second order zeros as pairs of particles
coalesce into the same point. For both n=1 and n=2,
this is equivalent to the polynomial wavefunction being
divisible by the Laughlin-Jastrow factor [],_;(z; — 2;)*.
This was realized early on for n=1 [5, 6] and leads to
the stabilization of the 1/3-Laughlin-state and its quasi-
hole excitations. The n=2 case was extensively discussed
recently [39]. For n > 3, zero-modes can only be charac-
terized as polynomials belonging to the ideal generated
by (z;—z;)? and (z;—z;)? for some fixed i # j, in addition
to being anti-symmetric. This makes the characterization
of all possible zero-modes considerably more challenging.
For the case n=3, we will establish that the space of all
zero-modes is linearly generated by all wavefunctions of

the form
v=]I¢
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where D; and Dy are the polynomial (in {z;, z;}) parts
of two Slater determinants each comprised of lowest and
first excited LL states, and we omit obligatory Gaus-
sian factors. It is easy to see that states of the form
(2) are zero-modes of the n=3-Hamiltonian. The “Jain-
2217 state, where D1 = Ds is the Slater-determinant of
smallest possible angular momentum in the first two LLs
for given particle number N, was conjectured to be the
densest zero-mode [33]. We will show that the set of all
possible wavefunctions of the form (2) is overcomplete
and establish rules for the selection of a complete set of
zero-modes as an EPP on dominance patterns.

Entangled Pauli Principle. Our starting point is a
second-quantized form of Eq. (1) for n=3, in disk geom-
etry, which we present in the general [12] form

8
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The T]()‘) annihilate a pair of particles of angu-
lar momentum 2.J, with J = 0, %, 1,..., 'T()‘)

Zm,ml,mg nﬁ,m,ml7mzcm1,foCm2,J+x and EQ- (3) may be
viewed as a weighted (by E)) sum over eight two-particle
projection operators at each J. Note that = is (half-
odd)-integer if J is (half-odd)-integer, and ¢, ; destroys

a fermion in the mth LL, m=0,1,2, at angular momen-
tum (“site”) j > —m. The n-symbols and the positive
Ey can be efficiently derived for general n [40], and are
given for n=3 in [41]. Consider the Slater-determinant
decomposition of any N-particle zero-mode
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General arguments [12, 39] imply that there are “non-
expandable” Slater-determinants |S) in such an expan-
sion that are pivotal in the analysis of any zero-mode
of Eq. (3): These are those states |S) in Eq. (4) with
non-zero Cg that cannot be obtained from a [S’) with
non-zero Cg; through an inward-squeezing [23] process:
|S) # CinhhCin2,j2cm’2,j2+wcm’l,j1—ac |S7), where j1 < jo,
x > 0. We define the state obtained from the zero-mode
(4) by keeping only the non-expandable part as the “root
state” [troot) Of [10). The root state is closely related to
the thin torus limit [26, 27, 29, 30, 42], and is gener-
ally subject to simple rules usually known as GPPs in
the single-LL context. We will show that the zero-mode
condition leads to a generalization thereof in the present
case, which we call EPP.

We begin by demonstrating that a state |S) in [¢root)
may not have a double occupancy at any given j. Other-
wise, [Yroot) = D) s o<mlmzcin1 Cmasj |S) + |rest), with
[rest) being orthogonal to each of the leading terms, and
|S) an N — 2 particle Slater-determinant with no j-mode
occupied. The zero-mode condition amounts to [12, 39]

to
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terms must already give zero, otherwise the =0 terms
would by definition not appear in |t),00t). One thus ob-
tains the eight conditions
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Since there are only three independent numbers
Omyms = —Qmg.m,, and the x=0 n-symbols are suf-
ficiently [41] linearly independent, one finds that all
Qm, m, vanish. One can similarly rule out triple occupan-
cies in |toot). Likewise, one may evaluate possibilities
for nearest-neighbor occupancies in [tyo0t). Applying the
same method to the similar expression (J half-odd inte-
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there are eight constraints on the nine constants 8,,,m,,
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There is a unique solution to these equations which thus
determines any nearest-neighbor pair in |teet) to be
in a certain entangled state. In evaluating constraints
at root level for pairs further separated, we must also
take into account inward squeezed configurations of the



pair. Writing [¢) = Zml_’mz vmlmzcj,ll)J_chz)J+1 |S) +
Qynyms cjnl_’(]cIn%J |S) + |rest), where the first term is non-
expandable, we obtain eight conditions in the twelve con-
stants Vi, ma» Cmy,ms = —Omy,m, - After eliminating the
latter, these result in five conditions on the Y, m,:

Z Ql},m1,m27m1,m2 =0 (M =1.. 5) , (7)
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with Q a function of the n’s at =0,1/2. The con-
straints derived so far require any two particles in a root
state to be entangled when in configurations ...11...
or ...101..., where 0 denotes an empty site, 1 denotes
a single occupancy (in any LL), and consecutive entries
denote states with consecutive j. We now ask what these
constraints imply for clusters of more than two particles.

Emergent SU(2)-symmetry. Let us apply to |troot)
a non-unitary (but invertible) single-particle transforma-
tion V such that cjn)j = V’ldjn_l)jf/ = vmﬂszdzz)j, where
s, = 0,£1 is interpreted as the SU(2)-label of a spin-1
particle, as detailed in [41]. In the new basis, Eq. (6)
requires any nearest-neighbor 11-pair in 1% [tro0t) to form
a singlet. Clearly, then, it cannot be entangled with any
other particle. This is consistent with Eqgs. (6), (7) only
if any such pair is separated by at least two zeros from
any other particle in [100t). Moreover, Eq. (7) takes on a
form implying that any 101-configuration is orthogonal to
the spin-2-sector. The satisfiability of this condition for
N-particles separated by individual empty sites is tan-
tamount to the problem of finding ground states of an
open AKLT-chain [43]. To label such a structure, we use
the notation ...1,,0101...0101,, ... where oy, r = £
denote the boundary spin-1/2 degrees of freedom of an
AKLT ground state. Aside from the aforementioned en-
tangled 11- and 101-blocks, a root state may have singly
occupied sites surrounded by at least two empty sites on
either side. Such sites may be in any of the three LLs,
or in any “spin state” after the V—map. We denote such
configurations by ...0015,00.... All of these observa-
tions imply that a complete set of (rotated) root states
is afforded by product states of entangled units of the
11- and 15,0...01,, (AKLT)-type, and of 1 -units, all
separated by at least two empty sites. We refer to the
resulting patterns as “dominance patterns” compatible
with an EPP.

The SU(2)-structure discussed here is not limited to
the root level, but emerges in the full zero-mode sec-
tor of the Hamiltonian [44]. Indeed, we identified global
SU(2)-generators S,, v = x,y, z that leave the zero-mode
sub-space invariant [41]. Consequently, zero-modes can
be organized into irreps of this SU(2)-symmetry, as sug-
gested by the root structure and associated dominance
patterns.

Braiding statistics. Recently, multi-LL wavefunc-
tions have been discussed on the torus [45]. If the domi-
nance patterns established here are understood as “thin

Patterns Degeneracy
100...110011001,, 0001, 3x3
100...11001100015, 015 4

100...110014, 01015, 0015, 4x3
100...11001,, 01,0011 4
100...15, 01010101014, 4

TABLE I. Survey of all dominance patterns with angular mo-
mentum AL=3 above the ground state for odd particle num-
ber. The total number including “spin degeneracy” allowed
by AKLT-entanglement or due to isolated occupied sites is
33, in agreement with Table II. The corresponding densest
state (AL = 0) has the pattern 100110011 ...110011, where
the boundary condition at the left end is explained in [41].

torus (TT) patterns”, there exists a well-defined “coher-
ent state” method to associate braiding statistics to the
excitations of the underlying state [46-51]. In this re-
gard, we first observe that if we discard the subscripts
or, and s; in the dominance patterns satisfying the
EPP, the resulting reduced patterns of 1s and 0Os sat-
isfy the GPP associated with TT/dominance patterns of
the v=1/2 Moore-Read (MR) Pfaffian state: There are
no more than two 1s in any four adjacent sites. In par-
ticular, the densest such patterns, ...11001100... and
...10101010.. ., signify the six-fold torus degeneracy of
the MR-state in the usual way [30]. We assume that
the EPP remains meaningful on the torus and governs
TT-limits of zero-modes of Eq. (1), and that the usual
assumptions about adiabatic continuity [26] into the TT-
limit hold. Then, in the presence of periodic boundary
conditions, the discussion of ground state degeneracy car-
ries over from the MR-case, and the torus degeneracy of
the n=3 Hamiltonian will be six. However, any charge-
1/4 quasi-hole excitation, represented by the familiar do-
main walls between 1010 and 1100-patterns, will carry
an additional spin-1/2 described by a o-label. So long as
we fix the state of this spin (say, 1) for all quasi-holes,
the coherent state method will make the same predictions
for the statistics as in the MR case [47, 50]. That is, one
finds that each quasi-hole carries a Majorana-fermion,
and braiding two such quasi-holes is described by an op-
erator 0;; = exp(ih, — (—1)"F~:7y;), where v is the
Majorana operator of the kth quasi-hole, and 6, is a
phase only determined up to one of eight possible val-
ues by the coherent state method, as reported earlier for
the v=1 bosonic MR-state [47, 50]. Elsewhere we will
show that, for the fermions, the method yields 0., = “7*,
m = 0...7. This is consistent with § = 7 [52] for the
v=1/2 MR-state, but it seems possible that the 221-state
discussed here realizes a different allowed phase which,
presumably, can be determined from the CFT proposed
in [11, 53, 54]. The SU(2)-symmetry discussed above
can, however, be used to argue that this phase does not
depend on the spin-state of the quasi-holes, and the full
braid operator is given simply by 6;;X;;, where X;; ex-
changes the spin of the ith and jth quasi-holes.
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TABLE II. Number of modes for a given number of “quanta”
relative to the ground state. Quanta refers to angular momen-
tum in the case of microscopic zero-modes, and energy in the
effective edge theory (8). The counting agrees for at least up
to four quanta, and for AL=3, is shown in detail in Table I in
terms of patterns. The chemical potential in (8) is chosen to
give equality between total ground state angular momentum
and total edge energy for any AL < N.

Zero-mode counting and edge physics. General
principles [12, 39, 41] imply that at any angular momen-
tum L, the number of possible dominance patterns sets
an upper-bound on the number of linearly independent
zero-modes. This bound was derived as a necessary con-
dition on root states (the EPP). As such it applies to a
large class of Hamiltonians of the form Eq. (1), and can
be generalized to Hamiltonians with different number of
terms, internal degrees of freedom, or multi-body inter-
actions. That there are, however, indeed as many zero-
modes as admitted by the EPP depends strongly on the
details of the Hamiltonian. To establish this for the n=3
Hamiltonian (1), we must show that to each dominance
pattern allowed by the EPP, there is a zero-mode with
the corresponding root state. We show in [41] that in-
deed, for every dominance pattern one can construct one
such zero-mode from the states (2). This then necessarily
yields a complete set of zero-modes. It is easy to show
that the (odd N) Jain-221 state has |10t} corresponding
to the densest possible (minimum angular momentum)
pattern consistent with the EPP: 10011001100110011 ...
(the leading orbital may not be entangled[41]). This es-
tablishes that the Jain-221 state is the densest possible
zero-mode, since there are no allowed dominance patterns
at higher filling factor, or smaller L at given N. Note that
the topological shift on the sphere, which further distin-
guishes candidate v=1/2 states and in principle relates
to Hall viscosity [55, 56], is likewise efficiently encoded
in this pattern. The existence of a densest filling factor
(here: 1/2) permitting zero-modes usually hints at in-
compressibility. This is particularly so if the edge theory
encoded in the zero-mode counting is a unitary rational
conformal field theory (CFT). Using patterns, we have
full control over zero-mode counting. Let N'(AL) be the
number of zero-modes of Eq. (1) at angular momentum
AL relative to the ground state, where AL < N. One
may ask [57, 58] if N(AL) agrees with the number of
states having AL energy quanta in some CFT. In the
presence of suitable chemical potential terms, one may
find [39] complete agreement, for AL < N, between the
degeneracies of some CFT Hamiltonian and of the to-
tal angular momentum operator L within the zero-mode
sector of a special Hamiltonian, for any fixed particle

number N (N being identified with a suitable conserved
quantity of the CFT). For AL <4, we verified such agree-
ment between the mode counting determined by the our
EPP and the mode counting in a 14+1d edge theory of
the form [11, 53]

H= Y H(®)+H(7)~2No. ()
i=0,1

Here, ®; are free chiral bosons of compactification radii
% and 1, respectively, v is a Majorana field in the anti-
periodic sector, all modes are co-propagating, N; is the
winding number of ®;, and the parity of the number of
occupied Majorana modes must be opposite to Ny + Nj.
Except for the chemical potential term, Eq. (8) is the
U(1) x SU(2)2-edge-CFT first ascribed to the Jain-221
state in Refs. [11, 53, 54], notably different from other
non-Abelian candidate states at half-filling, such as the
Pfaffian[3] or anti-Pfaffian[59, 60]. Table IT describes the
above mode-counting agreement when Ny is identified
with the particle number N. Detailed counting for the
number of zero-modes at AL=3 in terms of patterns is
shown in Table I.

Conclusion. Our framework enables controlled access
to numerous quasi-exactly solvable quantum-many-body
Hamiltonians with LL mixing. We argued that the abil-
ity to deal with LL mixing is essential to establish mi-
croscopic models for a more comprehensive set of phases
in the FQH-regime. To give an important and concrete
example, a substantial number of results were obtained
with special focus on the n=3 LL projected Trugman-
Kivelson Hamiltonian: i) Generalized Pauli principles of
lowest-LL model wavefunctions become “entangled” in
the presence of LL degrees of freedom. ii) This establishes
a link between a large class of FQH-states, in particular
“parton-like” states, and MPS of finite bond dimension.
The latter are in turn linked to 1D symmetry protected
topological phases, in our example, the Haldane phase
[61, 62]. iii) EPPs can be used for efficient and, as we
show, rigorous zero-mode counting. In particular, they
establish densest zero-modes, which typically remains the
only direct analytic evidence for the incompressible char-
acter of certain model FQH-states, here, the Jain-221
state. iv) Through direct zero-mode counting, we con-
firmed a “zero-mode paradigm” for Eq. (1), i.e., the edge
theory of Eq. (1) (n=3) is a U(1) x SU(2)2-CFT. v) We
identified an emergent SU(2)-symmetry under which the
zero-mode spaces of Eq. (1) and many of its generaliza-
tions remain invariant. vi) We demonstrated how micro-
scopically derived EPP-dominance patterns encode bulk
topological properties, notably braiding statistics, which
are of Ising/Majorana-type for the Jain-221 state.

The above establishes the emergence of non-Abelian
topological phases based on a solvable two-body inter-
action, which has potentially interesting implications for
tri-layer graphene. Our findings straightforwardly gen-



eralize to bosons, where Eq. (1) becomes a pure con-
tact interaction. It was demonstrated [63], at least
for n=1, that such contact interactions in an optical
lattice with engineered band-structure lead to exactly
the same zero-modes found in the continuum. Our re-
sults thus imply that a controlled route to non-Abelian
phases, using only realistic two-body contact interac-
tions, is feasible. Interestingly, many of these findings
generalize to n=4, where a new parton state emerges
[40] supporting Fibonacci-type anyons that facilitate uni-
versal fault-tolerant quantum computation [64]. Fur-
thermore, the emergent SU(2)-symmetry discussed here
proves paramount to the construction of parent two-body
Hamiltonians to all (unprojected) Jain states at filling
factors v = p/(2pq + 1), where only the case v=2/5 has
so far been discussed [36, 39]. We leave these extensions
for future work.
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