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Abstract

We report spin-split Landau levels of quasi-two-dimensional Dirac fermions in a layered antifer-

romagnet EuMnBi2, as revealed by interlayer resistivity measurements in a tilted magnetic field

up to ∼35 T. The amplitude of Shubnikov-de Haas (SdH) oscillation in interlayer resistivity is

strongly modulated by changing the tilt angle of the field, i.e., the Zeeman-to-cyclotron energy ra-

tio. The effective g factor estimated from the tilt angle, where the SdH oscillation exhibits a phase

inversion, differs by approximately 50% between two antiferromagnetic phases. This observation

signifies a marked impact of the magnetic order of Eu sublattice on the Dirac-like band structure.

The origin may be sought in strong exchange coupling with the local Eu moments, as verified by

the first-principles calculation.
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Dirac fermions in solids have attracted extensive attention for their unusual quantum

transport phenomena[1], typified by a half-integer quantum Hall effect in graphene[2, 3].

As a bulk analogue of graphene, so-called Dirac and Weyl semimetals hosting linear energy

dispersion are recently of particular interest[4]. One of the greatest advantages of their bulk

form is the interplay of relativistic quasiparticles with magnetism, which potentially leads to

novel (spin)electronic applications[5, 6]. Recently, a few candidates of Dirac or Weyl magnets

were reported, as exemplified by Mn3Sn[7, 8], GdPtBi[9, 10], and pyrochlore iridates[11,

12]. Some of these materials were found to exhibit peculiar magneto-transport phenomena,

such as large anomalous Hall effects[7–9] and chiral anomalies[10, 13], consistent with the

theoretically-predicted Weyl semimetal states. For exploring their potential applications,

the roles of magnetic order on the topological electronic and transport properties need to

be experimentally elucidated, which remains a work in progress[13].

AMnX2 (A: alkaline-earth and rare-earth ions, X : Bi and Sb)[14–26] is also promising

as a fertile ground for magnetic Dirac materials, since the crystal structure consists of

an alternate stack of a two-dimensional (2D) Dirac fermion conduction layer (X− square

net)[27, 28] and a magnetic insulating layer (A2+-Mn2+-X3−) [see Fig. 1(a)]. Among them,

EuMnBi2 is a rare compound that exhibits quantum transport of Dirac fermions coupled with

the field-tunable magnetic order. In this compound, the interlayer coupling between each

Dirac fermion (Bi) layer is dramatically suppressed by the flop of the antiferromagnetically-

ordered Eu moments [Fig. 1(a)]. The enhanced two dimensionality leads to the giant

magnetoresistance effects[20, 21] and the quantum oscillation phenomena[21] that strongly

depend on the magnetic order of the Eu sublattice. However, in spite of such a marked

impact of magnetism on the transport properties, it remains elusive how and to what extent

the Dirac-like band dispersion is affected.

To reveal the coupling between the band structure and magnetic order, the Landau

level quantization in a magnetic field can be a powerful probe, since it exhibits the energy

splitting due to Zeeman and exchange coupling as well as electron-electron interaction. As

demonstrated in the conventional 2D electron gas in semiconductor heterostructures[29]

and semimagnetic quantum wells[30], the detailed analyses on the splitting provide lots of

information on the band parameters and magnetism of the system, which have been recently

performed for graphene[31, 32] and several Dirac semimetals[33–35]. Also for EuMnBi2,

clear Landau level splitting was observed in the SdH oscillation in resistivity[21], the origin
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FIG. 1: (Color online) (a) Schematic illustration of the crystal and magnetic structure at 0 T for

EuMnBi2 [21, 36]. (b) Geometry of the interlayer transport measurement in a tilted magnetic field

in the a-c plane, where θ is an angle between the field and the c axis. (c) Field profile of ρzz

at 1.4 K for selected values of θ. For clarity, the curves are shifted vertically by 20 mΩcm. For

θ < 64◦, the closed triangle denotes Hf while the open triangle denotes Hc. The positions of Hf

and Hc are determined as the fields where ρzz shows a jump and drop in the field-increasing run,

respectively. For details, see supplementary Fig. S1. The magnetic order of the Eu sublattice for

each antiferromagnetic phase is shown schematically in the inset.

of which has not been clarified so far. In this Letter, we clarify that the Landau level splitting

in EuMnBi2 is primarily of spin origin, on the basis of the systematic measurements of the

SdH oscillations in tilted magnetic fields. The field-angle dependence of SdH oscillations

have revealed the effective g factors for the Dirac fermions, which strongly depends on the

antiferromagnetic (AFM) order of the Eu sublattice. As a plausible explanation, we discuss

the exchange coupling between Dirac fermions and local Eu moments by considering the

results of the first-principles calculations.

For investigating the fine structures of Landau levels, we have here adopted the measure-
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ments of interlayer resistivity ρzz. This is because the high-resistive ρzz has a much better

S/N ratio than that achieved in the in-plane resistivity ρxx. A rotation of magnetic field is

also important in the present study. In 2D systems, the ratio of the cyclotron energy Ec to

the Zeeman energy EZ can be tuned by changing the tilt angle of the field from the normal

to the 2D plane (θ); Ec is proportional to H⊥ = H cos θ [the field component perpendicular

to the 2D plane, see Fig. 1(b)], while EZ is proportional to H (the total field). The combi-

nation of these techniques allow us to elucidate the mechanism of the Landau level splitting

and hence the microscopic nature of the Dirac fermions in EuMnBi2, as described below.

Figure 1(c) shows the field dependence of interlayer resistivity ρzz for EuMnBi2 up to

35 T at selected tilt angles of the field. We first review the transport features for the field

parallel to the c axis (at θ = 1◦). With increasing the field, ρzz exhibits a steep jump at the

spin-flop transition of the Eu sublattice (Hf ∼ 5.3 T), followed by large SdH oscillations. In

the forced ferromagnetic (FM) phase above Hc∼22 T, however, the value of ρzz significantly

decreases, indicating that ρzz is specifically enhanced in the spin-flop AFM phase. There,

the Dirac fermions in the Bi layer are strongly confined in two dimension, resulting in the

signature of multilayer half-integer quantum Hall effect in the in-plane conductions[21].

Similar enhancement in ρzz in the spin-flop AFM phase was observed at θ up to ∼65◦,

which is gradually reduced with increasing θ. Concomitantly, the spin-flop transition at Hf

is less sharp at high θ, which is still discernible up to θ=64◦ as denoted by closed triangles

in Fig. 1(c) (for the determination of Hf , see supplementary Fig. S1). The manner of the

SdH oscillation is also strongly dependent on θ, whereas the values of Hf and Hc are almost

independent of θ. Note here that, in addition to the SdH oscillation, a hysteretic resistivity

anomaly is discernible around 20 T at θ=1◦, which immediately disappears when θ increases

up to 18◦. At present, the origin of this highly-θ-sensitive anomaly remains unclear, the

study of which is beyond the scope of this paper. In the following, we shall focus on the θ

dependence of the SdH oscillations in ρzz.

We first show in Fig. 2(a) the features of the Landau levels in the spin-flop AFM phase

(Hf < H < Hc) by presenting the θ dependence of interlayer conductivity σzz = 1/ρzz[37].

The horizontal axis of Fig. 2(a) denotes H0
F/H⊥, the normalized filling factor for a 2D

system[21, 42], where H0
F (=19.3 T) is the SdH frequency for the field parallel to the c axis

(Fig. S3)[38]. At θ=1◦, σzz shows the minima at H0
F/H⊥ ≃ 1.5, 2.5, 3.5, which coincides

with the oscillations in σxx and ρxx[21]. Since the deep minima in σzz and σxx indicate the
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FIG. 2: (Color online) (a) σzz versus H0
F/H⊥ at θ=1◦-65◦ in the spin-flop AFM phase (Hf < H <

Hc), where H
0
F denotes the SdH frequency for the field parallel to the c axis. The curves at θ ≥ 18◦

are shifted upward for clarity. At the bottom of the panel, the second field derivative d2ρzz/dH
2

at θ=1◦ is shown. Vertical dotted lines are guides to the eye showing the positions of the maxima

and minima of the SdH oscillation, where N denotes the Landau index. Inset: Schematic of the

density of states for spin-split Landau levels for a 2D massless Dirac fermion as a function of energy

E for H0
F/H⊥ = 2, where EF is set negative corresponding to the hole carrier system. The value of

EZ/Ec can be tuned by tilting the field, where EZ= g∗µBB is the Zeeman energy, Ec≡ e~B⊥/mc

the effective cyclotron energy, and mc the cyclotron mass mc=EF/v
2
F
. EZ/Ec=0.2 (left) and 0.5

(right). For details of the calculation, see the main text and supplementary Fig. S4. (b) Color

plot of σzz as functions of H0
F/H⊥ and θ. θinv indicated by the triangle corresponds to θ where the

phase of the SdH oscillation is inverted and EZ/Ec is nearly 0.5.
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quantum Hall states[39–41], the corresponding H0
F/H⊥ should be given by H0

F/H⊥ =N +

1/2−γ, where N is the Landau index and γ is the phase factor expressed as γ=1/2−φB/2π

with φB the Berry’s phase[43]. The σzz minima occurring at half-integer multiples ofH0
F/H⊥

thus lead to γ∼0, i.e., the nontrivial π Berry’s phase in EuMnBi2. In multilayer quantum

Hall systems, it was reported that a chiral surface state contributes partly to the interlayer

transport in the quantum Hall states (i.e., σzz minima)[39–41], which does not affect the

frequency or phase of the SdH oscillation discussed below. When θ increases, the frequency

of the SdH oscillation increases in proportion to 1/ cos θ [Fig. S3(c)][38], indicating highly 2D

nature of the Fermi surface. This results in the almost θ-independent oscillation period when

plotted as a function of H0
F/H⊥, as highlighted by the vertical dotted lines up to θ ∼ 50◦ in

Fig. 2(a). For θ≥ 55◦, however, the frequency gradually deviates from the 1/ cos θ scaling

presumably due to a weak warping of the Fermi surface caused by the non-zero interlayer

coupling.

The most salient feature of the SdH oscillation is that the amplitude significantly varies

with θ. With increasing θ up to 35◦-40◦, the amplitude progressively decreases to nearly

zero. Above θ=40◦, the amplitude again increases but with an inverted phase. The observed

θ dependence of the SdH amplitude is well explained by considering the spin splitting of

the Landau levels due to EZ as follows[44–46]. When EZ/Ec is smaller than unity [e.g.,

EZ/Ec=0.2 in the inset (left) to Fig. 2(a)], the Landau level exhibits a weak spin splitting,

which is barely discernible at θ∼ 1◦ when plotted in the form of d2ρzz/dH
2 [Fig. 2(a)][21]

. With increasing EZ/Ec by tilting the field, the magnitude of the spin splitting increases,

resulting in the reduction in amplitude of the SdH oscillation. Around θ=40◦, the amplitude

reaches the minimum, which corresponds to EZ/Ec=0.5 [the inset (right) to Fig. 2(a)]. A

further increase in EZ/Ec leads to crossing of the neighboring Landau levels with opposite

spins, which results in the enhanced SdH oscillation with an inverted phase, as observed at

θ>50◦. Note here, since the energy spacing of Landau levels for a 2D Dirac fermion is not

uniform (i.e., Ec is dependent on N), we need to effectively define Ec≡e~B⊥/mc by using a

semiclassical expression of the cyclotron mass mc=EF/v
2
F with vF and EF being the Fermi

velocity and Fermi energy, respectively[2, 3]. In this scheme, the Landau level crossing in

the SdH oscillation occurs when EZ/Ec=1 irrespective of N , as in the case for a normal 2D

electron gas [for details, see Fig. S4(b)][38].

To highlight the θ dependence of the SdH oscillations, we present a contour plot of
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σzz as functions of H0
F/H⊥ and θ in Fig. 2(b). It is clear that the phase of the SdH

oscillation is inverted around θinv ∼ 40◦, accompanied by the minimum amplitude. As

shown in supplementary Fig. S4(c)[38], this plot is nicely reproduced by calculating the

density of states of spin-split Landau levels, where EZ/Ec=0.5 corresponds to θ= θinv[47].

Noting that EZ/Ec = g∗mc/2m0 cos θ, this relation gives cos θinv = g∗mc/m0, where g∗ is

the effective g factor and m0 is the bare electron mass. By substituting the experimental

value (θinv =40◦±5◦), we obtain g∗mc/m0=0.77(6). The value of mc/m0 is independently

estimated to be 0.122(2) from the temperature dependence of the SdH oscillations at θ=0◦

based on the standard Lifshitz-Kosevich formula (Fig. S8)[38], which results in g∗=6.6(6).

The obtained g∗ is much larger than 2, reflecting strong spin-orbit coupling inherent to

Bi atom. Additionally, it is presumable that the exchange interaction with the local Eu

moments plays a significant role, since net magnetization is non-zero in the spin-flop AFM

phase, as discussed later.

Next, we shall show the Landau level splitting in the AFM phase (H < Hf ), where

the amplitude of SdH oscillation is largely reduced as compared with the spin-flop AFM

phase. Nonetheless, the oscillation is discernible above ∼1.3 T, as shown in Fig. 3(b) where

d2ρzz/dH
2 is plotted for clarity. The weakly beating amplitude presumably signifies the

superposition of maximum and minimum cyclotron orbits arising from a slightly warped

cylindrical Fermi surface. To summarize the θ dependence of SdH oscillation, we show in

Fig.3(a) the color contour plots of d2ρzz/dH
2 and σzz for the AFM and spin-flop AFM

phases, respectively, as functions of H0
F/H⊥ and θ. The SdH oscillation in the AFM phase

has several common features with that in the spin-flop AFM phase; the period of the SdH

oscillation is nearly independent of θ when plotted versus 1/H⊥, reflecting a quasi-2D Fermi

surface. In addition, the spin splitting of the Landau levels makes the oscillation amplitude

dependent on θ, leading to the phase inversion at θinv (a horizontal line). However, the

value of θinv is substantially different in the two phases; θinv∼18◦ for the AFM phase while

θinv∼40◦ for the spin-flop AFM phase. This results in g∗mc/m0 = cos θinv = 0.95(1) for the

AFM phase (θinv=18◦ ± 2◦), which is approximately 25% larger than that for the spin-flop

AFM phase.

In Table I, we compare the band parameters estimated from the SdH oscillation for each

AFM phase. The cross section of quasi-2D Fermi surface SF deduced from the SdH frequency

(H0
F ) is almost the same for both AFM phases, whereas the values of mc and g∗ significantly
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FIG. 3: (Color online) (a) Color plot of d2ρzz/dH
2 as functions of H0

F/H⊥ and θ in the AFM

phase (for H<Hf ). To compare the θ dependence, the σzz data in the spin-flop AFM phase (for

H >Hf ) are plotted together. The position of Hf at each θ is denoted by a closed circle, which

is determined as the field where ρzz shows a steep increase (see supplementary Fig. S1). The

horizontal line denotes θinv for each phase. (b) Profile of d2ρzz/dH
2 versus H0

F/H⊥ for θ = 0◦

(H<Hf ).

depend on the AFM order. Since the AFM phase hosts larger g∗mc/m0 and smaller mc/m0

than the spin-flop AFM phase, the resultant g∗ value for the former phase is approximately

50% larger than that for the latter phase. These facts indicate that the Dirac-like band for

EuMnBi2 is largely modulated by the AFM order of Eu sublattice.

First-principles calculations indeed reproduce such a marked dependence of the band
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TABLE I: Experimentally determined band parameters for the AFM and spin-flop AFM phases.

For the estimation of SF and mc, see supplementary Figs. S3 and S6−S10.

SF (nm−2) g∗mc/m0 mc/m0 g∗

AFM 0.186 0.95(1) 0.097(2) 9.8(4)

spin-flop 0.191 0.77(1) 0.122(2) 6.6(4)

(a) (b) (c) (d)

Eu
Bi

FIG. 4: (Color online) Calculated Dirac-like band structures along the Γ-M line for various magnetic

states in EuMnBi2. (a) AFM, (b, c) spin-flop AFM, and (d) forced FM states. In (b), the Eu

moment is along the a axis, while in (c) it is inclined at an angle of ∼47◦ to the c axis on the ac

plane. The spin polarization 〈sz〉 of each band is represented by red (up) and blue (down) colors.

Schematic illustration of the Eu moments adjacent to the Bi layer is also shown. The Fermi energy

EF estimated from the experimental SdH oscillation is denoted by the shaded area in (a). For

details, see supplementary Fig. S12

structure on the magnetic state, as shown in Fig. 4, where the Dirac-like bands near EF

are displayed[48]. Note that two sets of bands arise from the unit cell doubling along the

c axis to represent the AFM order of Eu moments, which is adopted to the forced FM

state in common[38]. In addition to a small change upon the spin flop of the Eu moments
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[Figs. 4(a) and (b)], the splitting of red-colored (spin up) and blue-colored (spin down) bands

progressively evolves, as the net magnetization (i.e., the canting of the Eu moment) increases

in the spin-flop AFM phase [Figs. 4(b)−(d)]. Since the present calculation does not take EZ

into consideration, this large spin splitting originates from the exchange coupling of the Dirac

fermion with the local Eu moments (Eex), which can be expressed as Eex=J〈S〉=JχH/gJ ,

where J is the exchange integral, 〈S〉 is the component of Eu2+ spin along the field, gJ(= 2)

is the Landé g factor for Eu2+, and χ is the magnetic susceptibility. In the AFM phase,

since the field is parallel to the easy axis of Eu spins, χ is a small parallel susceptibility

and hence Eex is negligible. On the other hand, in the spin-flop AFM phase, where the Eu

spin axis changes to be transverse to the field, χ corresponds to a much larger transverse

susceptibility[49]. In the latter phase, the Landau level splitting is caused by Eex as well

as EZ, which renormalizes the g∗ value. From the energy splitting shown in Fig. 4(d), we

obtain Eex=50−80 meV[50] for 〈S〉=7/2 (i.e., J=14−23 meV), which is comparable to (or

even larger than) EZ∼13 meV at H=Hc∼22 T for g∗∼10. Thus, the exchange coupling

should appreciably contribute to the observed apparent change in g∗ upon the AFM phase.

The reduction of g∗ in the spin-flop AFM phase implies that the sign of J is opposite to

that of pristine g∗, although a more quantitative estimation of these parameters is a future

subject.

In conclusion, we observed spin-split Landau levels of quasi-two-dimensional Dirac

fermions in a bulk antiferromagnet EuMnBi2, which markedly depend on the field-tunable

magnetic order of Eu moments. In addition to Zeeman splitting relevant to the large g

factor, the Dirac-like band exhibits substantial exchange splitting due to the coupling with

the local Eu moments. Such an interplay of the spin-orbit and exchange interactions in the

present compound yields novel correlated Dirac fermion states in a solid, offering a promising

approach to emerging topological spintronics.

The authors thank T. Osada, A. Tsukazaki and Y. Fuseya for helpful discussions. This

work was partly supported by PRESTO, JST (Nos. JPMJPR16R2 and JPMJPR1412),

Grant-in-Aid for Young Scientists A (No. 16H06015), Grant-in-Aid for Scientific Research

A (No. 17H01195), and the Asahi Glass Foundation.

∗ Corresponding author: sakai@phys.sci.osaka-u.ac.jp

10



[1] O. Vafek, A. Vishwanath, Annu. Rev. Condens. Matter Phys. 5, 83 (2014).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.

V. Dubonos, A. A. Firsov, Nature 438, 197 (2005).

[3] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005).

[4] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
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