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One promising avenue to study one-dimensional (1D) topological phases is to realize them in synthetic ma-
terials such as cold atomic gases. Intriguingly, it is possible to realize Majorana boundary modes in a 1D
number-conserving system consisting of two fermionic chains coupled only by pair-hopping processes [1]. It
is commonly believed that significant interchain single-particle tunneling necessarily destroys these Majorana
modes, as it spoils the Z2 fermion-parity symmetry that protects them. In this Letter, we present a new mecha-
nism to overcome this obstacle, by piercing a (synthetic) magnetic π-flux through each plaquette of the Fermi
ladder. Using bosonization, we show that in this case there exists an exact leg-interchange symmetry that is
robust to interchain hopping, and acts as fermion parity at long wavelengths. We utilize density matrix renor-
malization group and exact diagonalization to verify that the resulting model exhibits Majorana boundary modes
up to large single-particle tunnelings, comparable to the intrachain hopping strength. Our work highlights the
unusual impacts of different topologically trivial band structures on these interaction-driven topological phases,
and identifies a distinct route to stabilizing Majorana boundary modes in 1D fermionic ladders.

PACS numbers: 67.85.−d, 71.10.Pm, 03.67.Lx, 74.90.+n

The classification of topological phases in one dimension
[2–4] revealed an intriguing array of possible new states of
matter, with a variety of types of protected gapless bound-
ary modes. Of these, one class that has generated consider-
able excitement recently is the one-dimensional (1D) topolog-
ical superconductors first described by Ref. [5]. These have
protected boundary Majorana zero modes, which harbor non-
Abelian statistics [6–8] and hence are promising candidates
for topological quantum computing [9, 10].

In practice, to obtain long-range superconducting (SC) or-
der in 1D systems requires inducing superconductivity via
coupling to a 3D bulk superconductor [11–21]; experimen-
tal progress in this direction has been made in several distinct
solid-state systems [22–26]. Interestingly, however, it is also
possible to host topological boundary modes in truly 1D plat-
forms, in spite of the fact that these systems do not support
long-range SC order, and are in fact gapless [1, 27–35]. This
opens up the possibility of studying 1D fermionic topological
phases in synthetic materials such as cold atomic gases [36–
43], offering an attractive architecture with increased tunabil-
ity.

One concrete model in this category was proposed by
Ref. [1], who showed numerically that even starting from a
lattice Hamiltonian with a topologically trivial band structure,
a regime bearing the hallmarks of Majorana boundary modes
can be accessed in an atomic two-leg ladder by introducing an
interleg pair-hopping interaction. These boundary modes are
protected by the conserved fermion parity of one of the wires,
and are therefore robust provided that the single-particle in-
terleg tunneling (t⊥), which breaks this symmetry explicitly,
is sufficiently small. A number of proposals [1, 32–34] for
suppressing t⊥ such that this regime may be experimentally
realized ensued.

In this paper we propose a distinct route to overcome this

obstacle: We begin with a different band structure, in which
each plaquette of the ladder has a flux of π. We show that
with pair hopping this model also has an interacting topologi-
cal regime hosting Majorana boundary modes—which in this
case are protected by a unitary symmetry preserved even in
the presence of finite t⊥. We bolster our theory with numeri-
cal evidence of Majorana boundary modes over a wide range
of t⊥. Our findings thus furnish an appealing mechanism to
engineer topological boundary modes in a particle-conserving
and strongly interacting system without the need to suppress
t⊥.

Fermionic flux ladder model.—Motivated by these consid-
erations, we study an interacting two-leg ladder model of spin-
less fermions in a perpendicular magnetic field described by
the following number-conserving Hamiltonian,

H = HK +HW , (1)

HK =−
L−2∑
n=0

[(t‖e
iφ2 c†n,0cn+1,0+t‖e

−iφ2 c†n,1cn+1,1)+H.c.]

−
L−1∑
n=0

(t⊥c
†
n,0cn,1+H.c.), (2)

HW = +

L−2∑
n=0

(Wc†n,0c
†
n+1,0cn,1cn+1,1+H.c.), (3)

where c(†)n,` is the fermionic annihilation (creation) operator at
rung n on the leg ` = 0, 1. The intraleg and interleg single-
particle tunneling strengths are t‖ and t⊥, respectively, and
W (which we take to be negative throughout this work) is
the pair-hopping strength. This band structure was studied by
Ref. [44] in a two-leg ladder of spinful fermions. Two essen-
tial ingredients of the above model are the synthetic Peierls
phase φ∈ [0, π] per plaquette, and the interchain pair-hopping
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interaction HW . Previous works have demonstrated the ex-
istence of Majorana boundary modes in this Hamiltonian at
φ=0 and t⊥=0 based on a preserved fermion-number parity
P` := (−1)N` , where N` is the particle-number operator of a
single leg ` [1, 32–34]. Here we will show that when φ= π,
these boundary modes persist up to t⊥ of order t‖. Note that
without pair hopping, the bare bandHK in (2) is topologically
trivial, so that the model (1) requires interactions to realize the
topological regime. This is necessarily the case for isolated
1D systems, where the total fermion number is conserved—in
contrast to models based on e.g., Kitaev or spin-orbit-coupled
(SOC) wires [45–47], where the Majorana modes may origi-
nate from nontrivial Bogoliubov–de Gennes band structures.

Indeed, the π-flux ladder model can be viewed as general-
izing the SC proximitrized SOC nanowire model [15, 16] to
a number-conserving setting. Specifically, the flux gives rise
to the leg-momentum locking, similar to the spin-momentum
locking in SOC systems. The interchain t⊥ plays the role of
a Zeeman field that opens gaps at band crossings. Finally,
the quadratic p-wave pairing terms are replaced by the four-
fermion pair-hopping terms to ensure number conservation.
Notice that the flux-equals-π band structure corresponds to
a spin-orbit interaction of infinite strength. This ensures that
umklapp scattering is present at any filling in the π-flux model
[44]—a significant advantage relative to an actual spin-orbit
coupling, since in number-conserving systems these umklapp
terms are essential to enabling the topological regime. Indeed
as our 1D system is not exactly at half-filling, the particle-hole
and chiral operations [48] are not symmetries of the wave-
function, such that the topologically nontrivial state requires
interactions.

Symmetry analysis.—Through our system contains decou-
pled gapless sector, its topological boundary modes might be
understood using the symmetry classification of 1D gapped
fermionic phases [3]. We therefore begin with a discussion of
the underlying symmetries. Below we argue that the Majorana
boundary modes are protected by a unitary Z2 leg-interchange
symmetry Ls which takes cn,0 → (−1)n+1cn,1, cn,1 →
(−1)n+1cn,0, where n indexes the site along the chain [49].
This is a symmetry only for φ=π; we will see that its action is
equivalent to that of an emergent fermion-parity operator via
bosonization. Additionally, for any flux φ, there is an antiu-
nitary time-reversal symmetry that combines complex conju-
gation with interchanging the two legs of the ladder, obeying
T2 = +1. Finally, there also exists an overall U(1) fermion-
number conservation. In our case its chief significance is that,
unlike the situation considered by Ref. [3], only at exactly
half-filling is a microscopic particle-hole symmetry possible.
If t⊥=0, the model has an additional exact Z2 symmetry, cor-
responding to the fermion parity of a single leg of the ladder,
given by P`. It is this symmetry that protects the topological
boundary modes observed by Ref. [1] at zero flux.

Bosonization and renormalization group analysis.—To un-
derstand the special role of the Z2 symmetry Ls, we bosonize
the model (1). For φ = π, the kinetic Hamiltonian HK has
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FIG. 1: Linearization of the lower band (blue solid line) at φ =
π. The obtained four chiral-fermion branches can be separated into
valley-I (light magenta) and valley-II (light orange) that generalize
the original chain degrees of freedom. Specifically, we depict the
two types of umklapp processes that obey Eq. (4).

band energies Ehgr/lwr =±
√
t2⊥+4t2‖ sin2(ka), with band gap

2t⊥. Here we consider a system at less than half-filling, with
the interaction scale W small relative to the bandwidth, such
that we can project out the unoccupied band and focus only on
the processes inside the lower band when treating HW . Here
the Fermi energy intersects the lower band at four separate
Fermi points, as shown in Fig. 1.

Linearizing about these four Fermi points results in two
right-moving (R) and two left-moving (L) fermion operators,
which we distinguish using a valley index (I or II). Bosoniz-
ing these in the usual way, we have ψκ,ν ∼ eiϕκ,ν , with
κ = R (L) and ν = I (II). We define the nonchiral bosonic
fields: θc = 1√

2
(θI +θII), θs = 1√

2
(θI−θII), φc = 1√

2
(φI +

φII), φs = 1√
2
(φI−φII), where θν = 1√

2
(ϕR,ν−ϕL,ν), φν =

1√
2
(ϕR,ν+ϕL,ν), such that ϕκ,ν = 1

2 [(φc+κθc)+ν(φs+κθs)].
After including appropriate Klein factors, the only nontriv-
ial commutators among these nonchiral bosonic fields are
[θc(x), φc(x

′)]=−2iπΘ(x′−x), [θs(x), φs(x
′)]=2iπΘ(x−

x′), [θs(x), φc(x
′)]=−2iπ, where Θ(x) is the Heaviside step

function. The corresponding density and current operators
are: ρc=(1/π)∂xθc, ρs=(1/π)∂xθs, Jc=(1/π)∂xφc, Js=
(1/π)∂xφs.

Bosonizing the interaction term HW produces multiple
four-fermion terms, of which only slowly-varying terms con-
tribute in the continuum limit. When φ = π, in addition to
the usual momentum-conserving processes, this allows for
intervalley umklapp scattering, since the Fermi points obey
kL,I =−kR,II, kR,I =−kL,II, kL,II+kR,II =π/a, such that

kL,II + kR,II − kL,I − kR,I =
2π

a
. (4)

Eq. (4) is valid independent of the chemical potential within
the lower band, but it will not hold if φ 6= π [44].

The resulting bosonized form ofH decouples into a gapless
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charge sector and a gapped spin sector: H'Hc+Hs, with

Hc =

∫
x

1

2π
{ucKc (∂xφc(x))

2
+
uc
Kc

(∂xθc(x))
2}, (5)

Hs =

∫
x

1

2π
{usKs (∂xφs(x))

2
+
us
Ks

(∂xθs(x))
2}

+
2gum

(2πa)2

∫
x

cos (2φs(x))− 2gbs
(2πa)2

∫
x

cos (2θs(x))

− 2gmx
(2πa)2

∫
x

cos (2θs(x)) · cos (2φs(x)) , (6)

where
∫
x
≡
∫
dx and the associated coupling constants are

given by gum = −aWπ2 cos2(kR,IIa)(sin4 ξ
2 + cos4 ξ2 ), gbs =

−aW2π2 sin2(kR,IIa) sin2ξ, and gmx = −aW2π2 (sin4 ξ
2 + cos4 ξ2 ).

Here the wavefunction in the lower band at kR,II, has the
form (cos ξ2 , sin ξ2 ) in the leg (i.e., 0, 1) basis [50]. Note
that the gum-term favors Cooper pairing while the compet-
ing gbs-term favors a valley density-wave-type order. More-
over, owing to density-density interactions, the velocities and
Luttinger parameters are renormalized. Particularly, for the
spin channel: us =

√
(u+g)2−4g2 cos2(2kR,IIa), Ks =√

u+g+2g cos(2kR,IIa)
u+g−2g cos(2kR,IIa) , where u = 1

2vF ≡
1
2
dElwr
dk

∣∣
k=kR,II

> 0

and g= aW
2(2π)3 sin2ξ.

As the charge sector is gapless, we will concentrate
on the spin sector, which is responsible for the topo-
logical Majorana boundary modes. To determine which
of the sine-Gordon terms in Hs dominates, we use
the one-loop renormalization group (RG) flow equations:
dKs(l)/dl = y2um(l)/2 − y2bs(l)K

2
s (l)/2, dyum(l)/dl =

(2−2K−1s (l))yum(l), dybs(l)/dl = (2−2Ks(l))ybs(l), and
dymx(l)/dl = (2−2Ks(l)−2K−1s (l))ymx(l), where yum =
gum
2uπ , ybs = gbs

2uπ , and ymx = gmx
2uπ are dimensionless cou-

pling constants. The gmx-channel, involving both θs and φs,
is power-counting irrelevant for any value of Ks and can be
neglected. Accordingly, the gap-opening competition is be-
tween gum and gbs. If we take W to be negative, then for
3π/(4a) > kR,II > π/(2a) we have Ks > 1 and gum is the
only relevant coupling. In this regime the long-wavelength ef-
fective Hamiltonian is therefore expected to be Hs ∼Hs-G =∫ L

2

−L2
dx
2π{usKs(∂xφs(x))

2
+us
Ks

(∂xθs(x))
2
+gum
πa2 cos(2φs(x))}.

Note that for W < 0, gum > 0 and the coefficient of the
cos(2φs) term is positive, contrary to the usual sine-Gordon
model. As explained below, this sign flip, which arises from
the particular umklapp processes that occur in the band struc-
ture for φ = π, is crucial to ensuring that the staggered leg-
interchange symmetry Ls acts like a fermion-parity operator.
Indeed, for W > 0 and 3π/(4a) > kR,II > π/(2a) it is the
negative coupling gbs that is most relevant; this phase shows
no numerical signatures of topological boundary modes, as
discussed in [50].

We note that for flux φ 6= π, the umklapp scattering
leading to Hs-G is no longer an effective zero (lattice)-
momentum transfer process, and cos(2φs(x)) is replaced by
cos(2φs(x)−δ ·x), where δ parameterizes the deviation of

the flux from π. In this case we expect a commensurate-
incommensurate transition which destroys the topological

boundary modes at small but finite δc ∼ 1
a (yum)

1

2−2K
−1
s

[51, 52]. This is consistent with numerical analysis [50],
which suggests a transition for |φ − π| ' 0.05π into a phase
in which θs is locked.

Z2 symmetry and Majorana operators.—Following
Ref. [21] we can further derive the bosonized Majorana-
boundary-mode operators by specifying the vacuum Hamil-
tonian density Hvac(x) = − 2M∞

πa sin(θs(x))cos(θc(x)),
which amounts to sending the fermion mass outside the
system to +∞ on both legs of the ladder [53]. This
fixes θs(x ∈ (−∞,−L2 )) = ±π2 + 2n̂

(1)
θs
π and θs(x ∈

(L2 ,∞)) = ±π2 +2n̂
(2)
θs
π. In the gapped bulk of the ladder,

φs(x∈ (−L2 ,
L
2 ))=−π2 +n̂φsπ, where n̂(1,2)θs

, n̂φs are integer
operators. The two domain-wall Majorana operators are then:

γL ' eiπ(n̂
(1)
θs

+n̂φs ), γR ' eiπ(n̂
(2)
θs

+n̂φs ). These satisfy the
Majorana relations γ†L/R = γL/R, γ

2
L/R = 1, {γL, γR} = 0,

and define an emergent fermion parity Pv = iγLγR.
This acts on the spin fields within the gapped system via
PvφsP

−1
v = φs−π, PvθsP

−1
v = θs. In particular, when gum

dominates the RG flow, Pv maps between the system’s two
classical ground states; when gbs dominates the flow, it acts
trivially on the two classical ground states.

Strictly speaking the operator Pv does not correspond to
any microscopic symmetry for |t⊥| > 0. (For t⊥ = 0, it
can be interpreted as the fermion parity of one of the lad-
der’s two legs.) However, at φ = π its action is equivalent
to that of the microscopic Z2 symmetry Ls, which acts on the
bosonized field via Lsφs(x)L−1s =−φs(x) (mod 2π). Specif-
ically, since gum is positive, both Pv and Ls map between the
two classical minima |±π/2〉 of the sine-Gordon potential,
where φs(x) |±π/2〉= (±π/2 mod 2π) |±π/2〉. Thus within
the ground-state manifold, the action of Pv is equivalent to that
of the exact symmetry of Ls. Indeed, in a finite-size system,
due to the proliferation of instanton processes [30, 54], the
ground states of Hs-G are split into |±〉= 1√

2
(|π/2〉±|−π/2〉)

whose energy difference is exponentially small in the system’s
size. The lowest two eigenstates therefore obey Pv |±〉 =
± |±〉 , Ls |±〉 = ± |±〉, and can be labeled by their eigen-
values under the microscopic symmetry Ls.

Comparing φ= π with φ= 0.—As noted above, the topo-
logical state found in Ref. [1] at φ = 0, t⊥ = 0 is protected
by the symmetry P` corresponding to the conserved fermion
parity of one of the ladder’s legs. For t⊥ = 0, the operator
Pv constructed from the Majorana boundary modes is exactly
equal to P`, and therefore corresponds to an exact symme-
try that protects the resulting topological boundary modes. In
comparison, at φ = π we have found that Pv’s action on the
classical ground states is identical to that of the leg-exchange
symmetry Ls, which is not violated by finite t⊥. Hence it
is the particular action of Ls at this point which gives the
topological boundary modes their enhanced stability. This
result highlights the fact that different choices of topologi-
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cally trivial band structures can have profound implications
for interaction-driven topological phases.

In addition to these symmetry considerations, introducing
t⊥ at φ = 0 has a significantly different impact on the band
structure and umklapp processes than doing so at φ = π,
making the latter state more stable to this perturbation. For
φ = t⊥ = 0, the two chains’ bands are identical. This over-
lap favors the momentum-conserving scattering processes that
lead to the topological phase. However, increasing t⊥ at φ=0
separates the two bands and creates a Fermi-velocity mis-
match, which disfavors these processes, ultimately causing the
spin gap to close at a small but finite value of t⊥ [1]. By con-
trast, when φ = π, the two valleys where the chains’ bands
cross the Fermi surface are maximally separated by a wave
vector π/a, and remain symmetric with a finite t⊥. In this
case the Fermi-velocity mismatch is absent, and the spin gap
persists up to large values of t⊥. Thus the different nontopo-
logical band structures play a key role in making the topo-
logical Majorana modes robust (fragile) against t⊥ at φ = π
(φ = 0), consistent with the fact that t⊥ breaks P` but pre-
serves Ls.
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FIG. 2: Numerical signatures of the topological phase. (a) and (b):
Scaling of energy gaps as functions of L from DMRG. (a) shows
that the energy difference between the first two lowest-lying eigen-
states of (1) decays exponentially withL. The protected ground-state
manifold is separated from the rest of the spectrum by a gap that de-
creases inversely with L, as shown in (b). Here W =−1.7t‖, t⊥=
0.5t‖, φ=π, N/L=1/3. (c)–(g): Transition out of the topological
phase at large t⊥ for fixed W =−1.7t‖, φ= π, L= 48, N = 16.
(c)–(e) demonstrate the edge mode via the nonlocal correlations
[1, 33, 34] in single-particle Green functions. At t⊥ = 3.0t‖, the
edge mode disappears indicating the transition to a trivial state. This
is in accordance with (f) and (g) which show the corresponding evo-
lutions of entanglement spectra and local fermion densities as the
transition is approached.

Numerical verification.—Simulations based on density ma-
trix renormalization group (DMRG) [55] and exact diagonal-
ization (ED) [56] have been performed to solve the lattice
model (1) at φ = π and t⊥ = 0.5t‖. The numerical out-
comes provide strong evidence supporting our theoretical pre-
dictions. Fig. 2(a) demonstrates that in the low-population re-
gion (N/L=1/3), when pair hopping is strong (W =−1.7t‖),
the energy gap between the ground state and the 1st excited
state closes exponentially as the ladder’s size L increases. As
anticipated, these two nearly degenerate eigenstates are dis-
tinguished by their eigenvalues of Ls: The ground (1st ex-
cited) state has eigenvalue +1 (−1). In contrast, the result-
ing ground-state manifold is further separated from the rest of
the spectrum by a gap which only decreases inversely with L
(Fig. 2(b)). This power-law gap closing is resulting from the
decoupled gapless charge sector. Moreover, the topological
Majorana boundary modes can be characterized via the non-
local correlations [1, 33, 34] in the single-particle Green func-
tions Gmn := 〈c†m,0cn,0〉 = 〈c†m,1cn,1〉. These are apparent
for a range of t⊥ values in the topological regime (Figs. 2(c)–
(d)). The presence of the edge states also gives rise to a two-
fold degeneracy in the entanglement spectrum (ES) [2, 57] on
the central bond (Fig. 2(f)). These DMRG results have been
confirmed by ED for small system sizes.

As discussed in [50], adding a small Ls-symmetry-breaking
perturbation to (1) causes the ES degeneracy to lift, and the en-
ergy gapE1−E0 to deviate from the exponentially small split-
ting observed in Fig. 2(a). Further, the topological properties
appear stable to adding a Rashba-like term, which preserves
Ls but breaks the antiunitary symmetry T. This supports our
claim that the topological boundary modes are protected by
the unitary Ls symmetry at φ=π and t⊥ 6=0.

For sufficiently large t⊥, a phase transition out of the topo-
logical regime is observed. Fig. 2(e) shows a value t⊥ >
t⊥,c ≈ 2.5t‖, for which the nonlocal correlations in Gmn
are absent. Further, as shown by Fig. 2(f), the ES degen-
eracy apparent for t⊥ < t⊥,c is lifted and the lowest level
is clearly nondegenerate at t⊥ = 3.0t‖. Our numerics sug-
gest that the transition is toward a state with density-wave or-
der at large t⊥: For t⊥ > t⊥,c, the fermion-density profile
ρn := 〈c†n,0cn,0〉= 〈c

†
n,1cn,1〉 in Fig. 2(g) evolves from a uni-

form distribution toward an oscillatory pattern. Additionally,
for t⊥ ≥ 3.0t‖, the two lowest-energy eigenstates split and
both have Ls eigenvalues of +1 [50]. All the above obser-
vations suggest that once t⊥ > t⊥,c, the Majorana boundary
modes disappear.

Experimental feasibility.—In cold-atom laboratories,
strong synthetic magnetic fields can be simulated in optical
lattices by synthetic-dimensions and optical-atomic-clocks
techniques [58–67]. This makes it possible to generate a
significant flux per plaquette. For example, in quasi-1D
fermionic ladders and Hall ribbons, the flux φ can reach
1.31π per plaquette, and chiral edge states have been detected
[63–66]. Ref. [1] also describes an atomic scheme for
creating the pair-hopping interaction. These developments
make the prospect of realizing flux-stabilized Majorana zero
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modes a possibility in the near future.

To summarize, we have shown that by threading π-flux
through each plaquette, interaction-driven Majorana bound
states in fermionic ladders may be stabilized in the presence
of single-particle interleg tunneling. En route we have estab-
lished a connection between a microscopic Z2 leg-exchange
symmetry present only at this flux value and the action of
an emergent fermion-parity operator in the long-wavelength
bosonized theory. We have also highlighted the advantages of
the π-flux state in fostering umklapp processes which generate
the spin gap enabling this topological regime. Our theory has
been substantiated by extensive DMRG and ED calculations.
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