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In the majority of optomechanical experiments, the interaction between light and mechanical
motion is mediated by radiation pressure, which arises from momentum transfer of reflecting pho-
tons. This is an inherently weak interaction, and optically generated carriers in semiconductors
have been predicted to be the mediator of different and potentially much stronger forces. Here we
demonstrate optomechanical forces induced by electron-hole pairs in coupled quantum wells embed-
ded into a free-free nanomembrane. We identify contributions from the deformation-potential and
piezoelectric coupling and observe optically driven motion about three orders of magnitude larger
than expected from radiation pressure. The amplitude and phase of the driven oscillations are con-
trolled by an applied electric field, which tunes the carrier lifetime to match the mechanical period.
Our work opens perspectives for not only enhancing the optomechanical interaction in a range of
experiments, but also for interfacing mechanical objects with complex macroscopic quantum objects,
such as excitonic condensates.

I. INTRODUCTION

Electromagnetic fields exert a force, generally known as
radiation pressure, capable of displacing mechanical ob-
jects. A paradigmatic example is the reflection of a laser
beam from a movable mirror arranged to form an opti-
cal cavity. This so-called cavity optomechanics approach
has led to remarkable experimental demonstrations of
quantum-limited sensing as well as quantum-state engi-
neering and conversion in massive mechanical objects [1–
8]. Since the radiation pressure force per photon is inher-
ently weak, a lot of interest is directed towards enhancing
the optomechanical interaction by improving the proper-
ties of optical and mechanical resonators, most impor-
tantly the corresponding quality factors [9–13]. Alter-
natively, other mechanisms than radiation pressure cou-
pling, such as photo-thermal, electrostrictive, and piezo-
electric coupling [14–20], have been studied using me-
chanical resonators made of various materials, includ-
ing direct-bandgap semiconductors. These systems are
promising, since they provide, even without the use of
high-quality resonators, strong optomechanical interac-
tions mediated by electronic degrees of freedom. More-
over, the systems draw on well-established methods for
controlling electrical and optical properties of semicon-
ductors, as well as the high-precision epitaxial growth of
heterostructures.

In our previous work [14] we demonstrated that the
non-radiative decay of optically generated carriers in gal-
lium arsenide (GaAs), and the subsequent heat genera-
tion, provide photo-thermal forces stronger than radia-
tion pressure. It was also suggested that electron-hole
pairs (EHPs) could induce even larger electro-mechanical
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interactions based on the deformation-potential [21, 22],
which have been studied in the context of cavity op-
tomechanics for mechanical resonators in the GHz-regime
[23, 24]. In the case of nanomembranes with lower fre-
quencies (MHz-regime) a method to extend the carrier
lifetime to match the period of oscillations needs to be
devised. In this work we present a device where such
a method is implemented by embedding coupled quan-
tum wells (CQWs) in a nanomembrane and control-
ling the lifetime of EHPs up to 750 ns via a bias volt-
age [25, 26]. Using amplitude-modulated above-bandgap
laser light at a peak optical power of 1 µW, mechanical
oscillations can be driven without the use of an opti-
cal cavity to an amplitude of 1.314(2) nm, which is or-
ders of magnitude larger than expected from radiation
pressure. We demonstrate control over the amplitude
and phase of the driven motion using an electric field
across the CQWs. We identify two mechanisms that
contribute to the carrier-induced force, namely the piezo-
electric effect and the deformation-potential and distin-
guish them in our experiments by varying the orienta-
tion of the membranes to the crystallographic axes. Our
findings pave the way towards optomechanical coupling
based on the deformation-potential in semiconductors
[27, 28] for which the retardation mechanism necessary
to realize dynamical backaction cooling and amplification
[29], is readily given by the delayed force. Combining
optomechanics with the rich physics of quantum dots,
quantum wells, and two-dimensional electron gases [30–
33], may considerably advance the development of opto-
electromechanical hybrid systems.
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FIG. 1. Free-free nanomembranes with embedded CQWs. (a) False-color SEM image of the 562 nm-thick free-free membrane
(blue) and (b) zoom-in in which the vertical position of the CQWs is indicated (red). (c) Simulated mode shape and (d)
spatially scanned measurement of the membrane displacement w to identify the symmetric bending mode at a frequency of
Ωm/2π = 1.643 MHz. (e) Ringdown fitting for the symmetric bending mode at a temperature of T = 57.4 K results in a
maximum quality factor of Q = 2.8× 104. (f) Q as a function of T . Statistical errors from 10 fittings are < 2.5 % and not
shown. At T = 12 K and 56 K (dashed lines) the linear expansion coefficient of GaAs vanishes.

II. NANOMEMBRANE WITH EMBEDDED
COUPLED QUANTUM WELLS

For our experiments we fabricate free-free nanomem-
branes in which a rectangular plate (40 µm× 12.73 µm×
562 nm) is suspended by four thin beams [34]. Figure 1a
shows a scanning electron micrograph (SEM) of the de-
vice. It features top and bottom GaAs layers that are p-
and n-doped, respectively, and serve as electrical contacts
for the bias voltage Vb. InGaAs/GaAs/InGaAs 9/5/9 nm
CQWs, whose band diagram is detailed in Ref. [26], are
embedded between two AlGaAs barriers and placed off-
center, i.e. 140 nm above the bottom layer (Fig. 1b).
This geometry leads to a bending mechanical force un-
der hydrostatic stress at the CQWs, enabling an efficient
coupling between carriers and a symmetric bending mode
(illustrated in Fig. 1c) via the deformation-potential.

The sample is placed inside a liquid-helium flow cryo-
stat at a vacuum pressure of 1× 10−6 mbar. In order to
detect membrane displacements we use a Michelson in-
terferometer described in detail in Ref. [35]. It operates
at a laser wavelength of λ = 1064 nm, which is energeti-

cally well below any interband optical transitions in the
CQWs, and has therefore no influence on electronic de-
grees of freedom. In the probe arm of the interferometer
we focus the light with an optical power of 800 µW to
a spot radius of ∼ 1 µm and position the beam using a
motorized xy-translation stage. While driving the mem-
brane motion with a piezoelectric actuator, we measure
the root mean square (RMS) amplitude A and phase Φ
with a lock-in amplifier at different positions on the mem-
brane and thereby identify a symmetric bending mode at
a frequency of Ωm/2π = 1.643 MHz with minimum dis-
placement at the suspension points (Fig. 1c and 1d).

The measured quality factor Q of the mode shows a
temperature dependence with maxima around 12 K and
56 K (Fig. 1f), where the coefficient of linear expan-
sion for GaAs and other III-V compounds used in the
heterostructure is minimal [36–38]. This finding reveals
thermoelastic damping as a dominant damping mecha-
nism [39, 40]. We determine the quality factor via an
exponential fit to the decay of the driven membrane mo-
tion (ringdown fitting) and find a maximum value of
Q = 2.8× 104 at a temperature of T = 57.4 K (Fig. 1e).
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FIG. 2. Long-lived charge carriers in the CQWs. (a) Level scheme of the three lowest-energy EHP states and transitions.
(b) Lifetime of indirect EHPs as a function of bias voltage as calculated (solid line) and extracted via exponential fits from
time-resolved photoluminescence measurements (blue circles). (c) Imaged luminescence (inset) and cross-section along the
horizontal dashed line for bias voltages of 0 V (blue) and −2 V (red), as well as double Gaussian fits (solid lines). (d) Spot radii
extracted from double-Gaussian fits versus bias voltage, where the blue and purple circles refer to the two different widths.
Statistical errors from the fits in (b) and (d) are < 1 % and not shown.

III. LONG-LIVED CHARGE CARRIER
DYNAMICS

The central idea behind our device is to use long-lived
indirect EHPs in the CQWs as frequency-matched me-
diators of optomechanical forces. To model this, we de-
scribe carrier dynamics in the CQWs under illumination
with above-bandgap laser light (wavelength λ < 890 nm)
as a three-level scheme [32] illustrated in Fig. 2a. We
formulate rate equations for the area densities of car-
riers in the two lowest-energy states nI, nD, each de-
pendent on time and the position (x, y) on the mem-
brane. The radiative decay rates are denote ΓI and ΓD,
where the indices I and D refer to indirect and direct
EHP states, respectively. γph is a fast decay mediated
by phonons. The EHPs are generated from (and decay
into) the ground-state reservoir |0〉. Since the overlap
of the carrier wave functions in the indirect state |I〉
is small, absorption via transition |0〉 → |I〉 is negligi-
ble. Therefore, carriers are only optically pumped into
the direct state |D〉 with a generation rate per unit area
G = αI/h̄ωL, where α = 0.0214 [26] is the absorption
probability, I the intensity distribution of the incident
laser beam and ωL = 2πc/λ. Assuming γph � ΓD,Ω we
find the rate equations transformed into frequency do-
main to be ñD ≈ 0,

ñI ≈
G

ΓI + iΩ
, (1)

where ñD, ñI are the Fourier transforms of nD and nI,
respectively. We see that all EHPs are in state |I〉 and

delayed with respect to a sinusoidal optical pump I(t) =
I0 (sin (Ωt) + 1), where Ω is the modulation frequency
and I0 the amplitude. The condition ΓI ≤ Ω results in
a large phase shift of arg (ñI) ≤ −π/4 which is a crucial
ingredient for the dynamical backaction effects of interest
here, and an increased carrier density |ñI| resulting in a
sizable mechanical force.

The lifetime Γ−1
I of indirect EHPs in the CQWs

is tunable over two orders of magnitude by means of
the bias voltage Vb. This feature is modeled using
Fermi’s golden rule, in which the carrier wave functions
in the CQWs and their overlap are found by solving
the one-dimensional single-particle Schrödinger equation
numerically [26]. Using no free parameters the model
agrees well with time-resolved photoluminescence mea-
surements (see Appendix B) at the indirect transition
wavelength, as shown in Fig. 2b. The lifetime matches
the mechanical period of 1/Ωm ≈ 100 ns at Vb ≈ −0.5 V
and increases up to a maximum value of Γ−1

I ≈ 750 ns
for Vb = −2 V.

With the long lifetimes achieved here, it is important
to consider that EHPs in CQWs diffuse over significant
distances [41]. We quantify the carrier density distribu-
tion and diffusion by illuminating the center of the mem-
brane with 785 nm laser light, focused to a spot radius
of ∼ 0.75 µm, and simultaneously imaging the photolu-
minescence from the CQWs onto a camera for different
Vb. Directly reflected light from the sample is rejected by
means of a dichroic mirror placed in front of the camera.
The inset in Fig. 2c shows the result of a measurement at
Vb = 0 V. We find most of the photoluminescence around
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FIG. 3. Simulation of forces mediated by piezoelectricity and the deformation-potential. (a), (c) Amplitude and (b), (d) phase
of the acceleration aeh(Ωm), modulated at the mechanical frequency of the symmetric bending mode Ωm versus lifetime Γ−1

I

due to piezoelectricity (blue) and deformation-potential coupling (red), as well as the sum of the two (black). Dashed lines
indicate where ΓI = Ωm. The left column (a), (b) and the right column (c), (d) are the cases of the membrane oriented with
respect to crystallographic directions [1̄10] and [010], respectively. This is schematically shown above with topviews of the
membrane pointing along the two crystal axes. The gaussian excitation spot with radius rs = 1 µm used in the simulation is
shown as a red shaded area in the center.

the excitation spot in the center of the membrane. The
edges light up due to scattering of emitted photons. As
shown in Fig. 2c, the cross-section of the image exhibits
a central peak, which is best fit by a double-Gaussian
function. The 1/e2-width (spot radius rs) of one Gaus-
sian curve is constant as a function of bias voltage and
similar to the incident beam radius, while the other in-
creases up to rs = 16.7 µm at Vb = −2 V (Fig. 2d). We
attribute the two contributions to radiative recombina-
tion of direct and indirect EHPs, respectively.

Using the largest measured spot radii with Vb ≤ −1 V
and the corresponding lifetimes Γ−1

I we estimate the dif-
fusion constant D = r2

s ΓI/2 = 2.0(3) cm2 s−1, which is
comparable to the numbers reported in similar CQW
structures [41]. Eq. (1) can now be extended to include
the diffusion of carriers as follows:

D∇2ñI = (ΓI + iΩ)ñI −G. (2)

We numerically solve Eq. (2) to find the carrier density
ñI across the membrane as a result of an excitation beam
in the center with gaussian intensity distribution. The
beam is modulated at the mechanical frequency Ωm and
has an amplitude of the optical power P0 = πI0r

2
s /2 =

0.5 µW. This is done for different lifetimes Γ−1
I and serves

as a starting point for the force simulations presented
below.

IV. DEFORMATION-POTENTIAL AND
PIEZOELECTRIC FORCES

There are three different forces arising from the pres-
ence of EHPs in the CQWs. First, the opposing charges
in the indirect state result in a large electric field, giving
rise to a shear stress described by the piezoelectric stress
tensor. Second, the excitation of carriers into the con-
duction band increases the crystal lattice constant yield-
ing a hydrostatic stress, which results in a displacement
of the membrane due to the off-centered position of the
CQWs. In GaAs, the hydrostatic stress is quantified by
the deformation-potential Edp = −B(dEg/dp) ≈ −8 eV
[22], where B is the bulk modulus, p the pressure and
Eg the band gap. Third, the non-radiative relaxation of
carriers induces temperature gradients in the membrane.
This causes strain, known as photothermal or bolometric
strain. In our experiments, this effect can be neglected
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since we operate at T = 12 K, where the coefficient of
thermal expansion for the III-V compounds used in the
heterostructure is minimal.

Based on the calculated carrier distribution
ñI(x, y,Ωm), we simulate the modulated accelera-
tion aeh(Ωm) = Feh(Ωm)/meff for piezoelectric and
deformation-potential coupling using finite-element
analysis. Here, Feh(Ω) is the corresponding force and
meff the effective mass of the symmetric bending mode
(see Appendix C). In Figure 3c we show the amplitude
and phase of aeh(Ωm) as a function of lifetime and
discern two membrane orientations with respect to
crystallographic axes denoted by Miller indices. If the
long edges of the rectangular membrane are parallel
to [1̄10] the piezoelectric force dominates, while when
rotated by 45◦ to align with [010] the membrane is driven
predominantly by the deformation-potential coupling.
This is a direct consequence of the anisotropic character
of the piezoelectric stress tensor of GaAs [42]. Opposite
signs of the total forces, revealed by the phase difference
of π, for the two different membrane orientations are
expected, which we can experimentally verify. Overall,
the lifetime dependence of the forces complies with the
one of ñI discussed earlier, which exhibits a phase shift
and large amplitude for ΓI ≤ Ωm.

V. CONTROLLING LARGE OPTICALLY
DRIVEN MEMBRANE MOTION

To experimentally demonstrate control over the
carrier-mediated forces and tunability via the bias volt-
age Vb, we perform optically driven response measure-
ments. To this end, light from a laser diode at a wave-
length of λ = 880 nm and an incident optical power of
2P0 = 1 µW is amplitude-modulated by means of an
acousto-optic modulator, resulting in a square wave mod-
ulation P (t) = P0 (sgn (sin (Ωt)) + 1). Afterwards, the
light is focused onto the center of a membrane, where we
simultaneously detect the mechanical displacement w(Ω)
using the Michelson interferometer at 1064 nm and ex-
tract the RMS amplitude and phase with a lock-in am-
plifier. For different values of Vb, the modulation fre-
quency Ω of the optical drive is swept in a narrow window
around the mechanical eigenfrequency Ωm to determine
the peak RMS amplitude A0 = |w(Ωm)|/

√
2 and phase

Φ0 = arg (w(Ωm)) (see Fig. 4a and 4b). In addition,
we perform 10 ringdown measurements and find that the
quality factor Q fluctuates within 10 % of its mean value
as a function of Vb. To compensate for this, we normal-
ize A0 with respect to Q. Figure 4c and 4d show the
results of our measurements, confirming that the mem-
brane response to the optical drive is significantly altered
by Vb.

To compare the response data with our model, we
assume that the displacement w is mainly driven by
the sum of the two modulated optomechanical forces
Feh(Ωm) considered in Fig. 3. With this, the following

equation of motion applies:

w(Ωm) = χm(Ωm)ηFeh(Ωm), (3)

where χm = −iQ/meffΩ2
m is the mechanical susceptibil-

ity at resonance. We introduce a complex fit parameter
η in order to scale the overall magnitude of the force and
to include a phase offset. In Fig. 4c and 4d we plot
the normalized RMS amplitude A0/Q and the phase Φ0,
respectively, using the simulated acceleration presented
in Fig. 3 and the theoretical curve of the lifetime Γ−1

I
in Fig. 2b. Note that η is determined by fitting only
to the [010]-data, for which we expect the force due to
deformation-potential coupling to be dominant. This re-
sults in |η| = 0.39(7) and arg(η)/π = −0.55(2). The
same value for η is then used for the model curve of the
membrane aligned along direction [1̄10], in which case the
piezoelectric force prevails. This method is crucial in or-
der to distinguish the strength and sign of the two forces,
which constitutes an important aspect of our work.

The response measurements and our model follow the
same overall behavior: for Vb > −0.5 V and relatively
short lifetimes of the EHPs we get low amplitudes A0

corresponding to a small number of indirect EHPs. For
Vb ≈ −0.5 V, the decay rate ΓI nearly matches the me-
chanical frequency of Ωm ≈ 2π × 1.52 MHz, resulting in
an increased number of carriers and therefore a large A0.
Most importantly, the phase Φ0 drops abruptly, evidenc-
ing a significant delay of the membrane motion with re-
spect to the optical drive. When Vb < −0.5 V, the phase
decreases further while the amplitude is nearly constant.
With regard to the membrane orientations investigated
here, we see that the maximum displacement of the mem-
brane aligned along [1̄10] is approximately four times
larger than the one for the membrane rotated by 45◦. We
also observe another important feature: the difference in
phase between the two orientations is approximately π,
revealing an opposite sign of the carrier-mediated force
as expected from our simulation (see Fig. 3).

To explain discrepancies between data and theory, we
first consider the screening of carriers [43] as a possi-
ble source of systematic error. We estimate the steady-
state number of carriers n̄I = αP̄/h̄ωLΓIπr

2
s , where

P̄ = P0 = 0.5 µW is the average power of the modu-
lated incident light and rs the spot radius shown in Fig.
2d. A maximal density of n̄I ≈ 4× 109 cm−2 is found
for Vb = −2 V and Γ−1

I = 750 ns, resulting in a carrier-
induced electric field of qn̄I/ε0εr = 56 kV m−1, where
εr ≈ 13 is the relative permittivity of GaAs and q the
elementary charge. This electric field is nearly two or-
ders of magnitude smaller than the one created by the
applied bias voltage of Vb = −2 V. Therefore, we con-
clude that carrier-induced screening is negligible.

We suspect that a more complex description of the
EHP states than our simplistic three-level scheme is nec-
essary to understand the disagreement in the above-
mentioned voltage interval. This may include higher or-
der EHP states [32] and dark states [44, 45], as well as
non-radiative recombination. Furthermore, we note that
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surface recombination of carriers at the membrane edges
is not included in our model and may significantly influ-
ence the carrier dynamics. Outliers at around Vb = 1 V
are likely due to diode forward current, introducing ad-
ditional charges in the CQWs.

As indicated in Fig. 4c, the carrier-mediated forces
studied here are significantly stronger than radiation
pressure. The latter is estimated for the incident opti-
cal power of amplitude P0 = 0.5 µW used in the exper-
iment and results in an RMS displacement of Arad =√

2rP0Q/meffΩ2
mc ≈ 1.32 pm (or Arad/Q ≈ 0.051 fm),

where r = 0.66 is the membrane reflectivity at a wave-
length of 880 nm and meff = 340 pg. In comparison,
the maximum value measured at Vb = −1.2 V is A0 =
1.314(2) nm (or A0/Q = 61.6(3) fm), which is three or-
ders of magnitude larger. The membrane’s geometry
and heterostructure can be optimized for even larger
carrier-mediated displacement, for example by reducing
the membrane thickness and adjusting the position of
the CQWs. With regard to the cavity optomechanics
approach, it should be noted that the carrier-mediated
forces presented here rely on absorption of light. This
prohibits the use of high-finesse optical cavities, which
typically enhance the forces in radiation pressure based
optomechanical systems and thereby enable large disper-
sive coupling.

VI. CONCLUSION

We have examined the effects of indirect EHPs in
CQWs on the mechanical motion of a free-free nanomem-
brane via the deformation-potential and piezoelectric
forces. Despite discrepancies between our model and
data, our theoretical description reproduce important
features of the optically driven response measurements,
revealing in particular that both strength and delay of
the carrier-mediated forces are tuned via the lifetime of
the EHPs, which in turn is controlled by a bias voltage
across the CQWs. We hope that our work will stimulate
research into novel regimes and interactions in quantum
optomechanics involving, for example, polaritons [46–49]
or active cavities of semiconductor lasers [50, 51]. In com-
bination with an optical cavity (see Appendix E), the
device presented in this work may implement dynamical
backaction based on the deformation-potential in semi-
conductors.
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Appendix A: Device fabrication

The membranes are grown by molecular beam epitaxy
on a [001] GaAs wafer, separated from the substrate by
a 2 µm thick Al0.75Ga0.25As sacrificial layer. The elec-
trical gates to the p-i-n diode are fabricated first. An
access via to the n-doped GaAs layer is defined by ultra-
violet lithography and subsequently etched in a reactive
ion etching (RIE) plasma (BCl3/Ar 1:2). This step also
defines a mesa with an area of 2 × 1 mm2 that isolates
the p-layer from the rest of the chip. A precise (±10 nm)
end-point detection based on laser interferometry allows
stopping the etch process a few tens of nanometers above
the n-layer to achieve optimal and reproducible ohmic
contacts. Square pads (180 × 180 µm2) are patterned
in a negative photo-resist on the exposed n-layer. The
metal sequence Ni/Ge/Au/Ni/Au (5/40/60/27/100 nm)
is deposited by electron gun evaporation and lifted-
off in acetone. The contacts are further annealed in
a rapid thermal annealer at 420 ◦C. A similar proce-
dure is performed to deposit p-type contacts on the sur-
face of the membrane. Here, a Au/Zn/Au/Ti sequence
(20/50/150/7 nm) is deposited by thermal evaporation.
The last Ti layer is evaporated to increase the photo-
resist adhesion in subsequent steps. The contacts are also
annealed for 1 minute at 420 ◦C. To protect the contacts
from photo-corrosion (due to the presence of doped lay-
ers) and galvanic erosion at the metal-semiconductor in-
terfaces, several protection rings made of a 500 nm-thick
photoresist (AZ1505) are fabricated around the pads and
hard-baked to make them adhere to the chip perma-
nently.

The membranes are fabricated with a soft-mask

FIG. 5. Fabricated device. Photograph of two samples
mounted on a copper pad with electrical contacts to a PCB.
Each sample contains 140 free-free nanomembranes.

method whose details have been given in a previous work
[52]. A 550 nm-thick electron-beam resist (ZEP520A) is
spin-coated on the entire sample and various free-free
membrane designs are patterned by electron-beam lithog-
raphy aligned to the mesa and parallel or 45 degrees ro-
tated from the GaAs cleavage planes. The membranes
are finally etched by inductively coupled plasma RIE
(BCl3/Cl2/Ar 3:4:10) and undercut by hydrofluoric acid.
A final cleaning step in hydrogen peroxide is performed
to remove photoresist residues. This step etches away a
small amount of AlGaAs in the membrane, delineating
the layout structure as shown in Fig. 1b. The sam-
ples are processed in a CO2 critical point drier to avoid
collapsing of the membranes on the substrate due to cap-
illary forces. After processing, the sample is mounted on
a copper pad and wire-bonded to a printed circuit board
(see Fig. 5).

Appendix B: Photoluminescence measurements

Photoluminescence (PL) measurements are performed
with a sample placed inside a cryostat at a temperature
of T = 12 K. A microscope objective focuses laser light
from a picosecond-pulsed diode laser at a wavelength of
785 nm to a spot radius of ∼ 0.75 µm at the center of a
membrane. The PL from the CQWs is collected by the
same objective and transmits through a longpass dichroic
mirror with a cutoff wavelength of 875 nm. Afterwards,
the light is focused onto a CMOS camera, creating an
image of the membrane which we use to determine the
carrier density distribution.

Alternatively, the light can be sent to a spectrome-
ter with a resolution of 50 pm, where we filter out pho-
tons from radiative recombination via the indirect transi-
tion. An avalanche photodiode is used to perform time-
resolved measurements of the filtered photons. As ex-
emplified in Fig. 6, the photon counts quickly build up
after the pulse as generated carriers decay into the in-
direct state |I〉 via acoustic phonons. Then, the counts
slowly decrease. To extract the lifetime of the indirect
transition Γ−1

I for different bias voltages Vb, we fit ex-
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FIG. 6. Time-resolved PL measurements. Normalized
photon counts at the indirect transition wavelength as a func-
tion of time after picosecond-pulsed excitation at 785 nm. At
bias voltages of −2 V (blue circles) and −1 V (red squares)
we extract lifetimes Γ−1

I of 749.5(4) ns and 256.6(1) ns, re-
spectively, where the statistical errors are taken from the in-
dividual fits. The black solid lines are exponential fits while
the dotted lines indicate the start times of the fits.

ponential functions to the tail of the curves and thereby
minimize contributions from the buildup.

Appendix C: Simulations

To extract the magnitude and sign of the relevant
carrier-induced forces involved in the experiment, a fi-
nite element simulation of the mechanical properties of
free-free membranes has been carried out. The geome-
try used for the simulations comprises one quarter of the
membrane and a 5 µm undercut ring. The structure is
fixed on the outer ring and symmetric boundary condi-
tions are used to identify the modes of interest. Addi-
tionally, the membrane mesh is deformed according to
the profile measured by white light confocal microscopy
(see Fig. 8) to take into account the effect of buckling.
Both GaAs and AlGaAs material properties (elastic and
piezoelectric matrices) are anisotropic according to the
Zincblende structure. These quantities are summarized
in Table I.

The deformation-potential force is included as an in-
ternal hydrostatic stress σdp acting on the layers of the
CQWs only:

σdp
ij = δij ñI(Ωm)

(
Edp

e Ψe(z)− Edp
h Ψh(z)

)
, (C1)

where i = 1, 2, 3 are the principal directions of GaAs and

Edp
e = −5.3 eV and Edp

h = 2.7 eV are the deformation-
potential energies in the conduction and valence band,
respectively [53]. ñI(Ωm) is the complex carrier density
distribution of indirect electron-hole pairs (EHPs) modu-
lated at the mechanical frequency Ωm/2π ≈ 1.6 MHz and
calculated numerically using Eq. (2). Here, we assume a
carrier generation rate

G =
α

h̄ωL
e
− x2+y2

2r2s I0(sin (Ωmt) + 1), (C2)

where the amplitude of the modulated power P0 =
πI0r

2
s /4 = 0.5 µW and the beam spot radius rs = 1 µm.

The electron and hole profiles Ψe,h(z) along the z-axis
are approximated by two gaussians peaked on the loca-
tion of the CQWs, reflecting the combined electron-hole
wavefunction of the indirect carriers:

Ψe,h(z) =
1

2
√

2πrw

e
− (z−ze,h)2

2r2w , (C3)

where ze,h are the positions of the quantum wells, and
rw = 2 nm is the well confinement radius.

Piezoelectric forces are modelled assuming the modu-
lated distribution of surface charges:

σ = ±ñI(Ωm)q. (C4)

The sign depends on whether holes or electrons are con-
sidered and q is the elementary charge. More specifically
holes are located at the position of the lower quantum
well, whereas electrons are on the upper quantum well as
expected from the eigenvalue solution of the Schrödinger
equation.

Our model allows us to predict the mechanical response
of each mode (and its sign) as a function of the type of
force, the membrane orientation, and the spot radius.
The modes are calculated solving an eigenvalue problem.
A modal reduction technique is used to calculate mass,
stiffness matrices and force vectors of the free-free mode.
The reduced ordinary differential equation for the dis-
placement w of a mode is given by

ẅ +
Ωm

2Q
ẇ + Ω2w =

Feh

meff
. (C5)

Here, Ωm is the mechanical frequency of the mode, Q the
quality factor, Feh the input vector (or effective force),
and meff the mode effective mass. To calculate the ef-
fective masses we normalize the eigenmode’s total dis-
placement φ(r) such that its range is between -1 and 1

Material Component Value

GaAs D11 = D22 = D33 121.56 GPa
D12 = D13 = D23 54.54 GPa
D44 = D55 = D66 6.5 GPa
e14 = e15 = e16 −0.16 Cm−2

ρ 5307 kg m−3

Al0.4Ga0.6As D11 = D22 = D33 119.36 GPa
D12 = D13 = D23 55.08 GPa
D44 = D55 = D66 5.9 GPa
e14 = e15 = e16 −0.186 Cm−2

ρ 4696 kg m−3

TABLE I. Structural parameters used in the simula-
tion at a temperature of T = 10 K. The indices from 1 to
3 refer to the crystal orientation whereas from 4 to 6 to shear
effects around the corresponding crystal orientations. Dij is
the elastic coefficient, eij the stress-charge piezoelectric coef-
ficient, and ρ the density.
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(dimensionless). This also ensures that the displacement
w has the unit of meter. The effective mass is given by

meff =

∫
dV ρ(r) |φ(r)|2 , (C6)

where the integral is taken over the entire computational
domain. For the membrane discussed in this article and
the free-free eigenmode we find meff = 340 pg.

The quality factor Q in Eq. (C5) is introduced phe-
nomenologically as a loss factor in the material (1/Q∗ =
2.4× 10−5) according to Cole et al. [34]. The clamp-
ing losses have been neglected since the free-free design
ensures a very limited phonon tunneling into the bulk.
From the experiments (see Fig. 1c) we conclude that,
when thermoelastic damping is absent, Q is in fact on
the order of Q∗.

The figure of merit for the force is given by the over-
lap integral between the input stress and the free-free
mode. This quantity is summarized by the complex ef-
fective acceleration impressed on the mechanical mode
aeh(Ωm) = Feh(Ωm)/meff, where the real and complex
parts reveal the in-phase and out-of-phase drive, respec-
tively. We can compare these values for the case of a
piezoelectric force and deformation-potential for differ-
ent orientations. This is done in the model by rotating
the reference frame of the geometry compared to the ma-
terial. The results are shown in Fig. 3.

Appendix D: Identification of membrane orientation

The inset of Fig. 7 shows a simulation of a drum mode,
where the entire free-free membrane displaces vertically.
The frequency of this mode is ∼ 900 kHz and depends on
the length of the four thin beams, by which the central
plate is suspended. When a bias voltage Vb is applied,
shear stress described by the piezoelectric stress tensor
causes a length change of the beams, resulting in a fre-
quency shift. We simulate the effect and find that a mem-
brane oriented along the crystallographic axis [1̄10] expe-
riences a linear shift with negative slope as a function of
Vb, while for a membrane oriented along the orthogonal
direction [110] the slope is positive. When aligned with
the direction [010] or [100], a much smaller frequency
shift occurs. As shown for three different cases in Fig.
7, the behavior is observed experimentally and used to
determine the membrane orientation. Notice that for all
membranes we choose the frequency shift to be zero at
Vb = 1.52 V, where the bias voltage cancels out the built-
in field and no piezoelectric effect is expected.

Appendix E: Integrated optical cavity

Our membranes are suspended above an integrated
planar distributed Bragg reflector (DBR), which is op-
timized for the wavelength range of the indirect EHP
transition (900 nm to 950 nm). At λ = 880 nm the DBR’s
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FIG. 7. Identification of membrane orientation. Rela-
tive frequency shift of drum mode due to piezoelectric effect
as a function of bias voltage Vb for three different membranes.
Due to the slope of the linear shift, we identify the membrane
orientations along [1̄10] (blue circles), [010] (purple triangles),
and [110] (red squares). A simulation of the mode shape is
shown as an inset.

reflectivity is estimated via the transfer matrix method
to be 76 %. DBR and membrane constitute a low finesse
optical microcavity, which we characterize by topography
and reflection measurements. Figure 8a shows the height
profile measured with a white light confocal microscope
across the long side of a membrane (x-axis). As can be
seen from this example, our membranes buckle and de-
form symmetrically in accordance with stress release of
the heterostructure after underetching. From a parabolic
fit to the deformed membrane measured here we deter-
mine the position-dependent cavity length L(x) and, by
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FIG. 8. Characterization of integrated cavity. (a) Mea-
sured topography (blue dots) along the x-axis showing buck-
ling and symmetric membrane deformation. A parabolic fit
(dashed line), from which the membrane thickness of 562 nm
is subtracted, yields the cavity length L(x) (solid black line).
(b) Reflection from the membrane as a function of L at a
wavelength of 880 nm as measured (red squares) and fitted
with a Lorentzian (solid black line). From the fit we estimate
a finesse of F = 2.48(9).
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calculating its second derivative at x = 0, the radius of
curvature in the center to be 577.8(19) µm.

Next, we map the reflection along a centered line on the
membrane using a focused laser beam at a wavelength of
880 nm. For each data point, the position x is translated
into a cavity length via L(x). The result, shown in Fig.
8b, features an optical resonance at L ≈ 3.1 µm. From
a Lorentzian fit to the data we extract a full width half
maximum of 177.0(65) nm. Assuming a distance between
two resonances λ/2 = 440 nm, we further estimate an

optical finesse of F = 2.48(9).
The integrated cavity could be used to realize moderate

optomechanical cooling and amplification of the mem-
brane motion via carrier-induced forces. For instance,
red and blue detuning from the cavity resonance could
be controlled via the cavity length, while maintaining
the above-bandgap laser light at 880 nm as used in our
work. Indeed, we have observed amplification and self-
oscillations showing a dependence on the bias voltage Vb.
A detailed study of these observations is needed.
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“Spin flip of excitons in gaas quantum wells,” Phys. Rev.
B 55, 13789–13794 (1997).

[46] O. Kyriienko, T. C. H. Liew, and I. A. Shelykh, “Op-
tomechanics with cavity polaritons: Dissipative coupling
and unconventional bistability,” Phys. Rev. Lett. 112,
076402 (2014).

[47] G. Rozas, A. E. Bruchhausen, A. Fainstein, B. Jusserand,
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