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Recent observations of robust zero bias quantized conductance plateaus of height 2e2/h in quan-
tum dot-semiconductor-superconductor nanowire heterostructures have been interpreted as clear
evidence for the presence of non-Abelian topologically protected Majorana zero modes (MZMs),
since other sources of low energy conductance are believed to be unable to produce such quantized
plateaus. Based on extensive numerical calculations, we show that, in fact, quantized conductance
plateaus of height 2e2/h can also arise as a result of partially separated Andreev bound states (ps-
ABSs), in which the component Majorana bound states are somewhat shifted in space without
being topological MZMs. As ps-ABSs can form rather generically in the topologically trivial phase,
even in the absence of disorder, our results conclusively establish that the observation of quantized
conductance plateaus of height 2e2/h does not represent sufficient evidence for the existence of
topologically protected MZMs localized at the opposite ends of a wire.

INTRODUCTION

Semiconductor nanowires with proximity induced su-
perconductivity and strong Rashba spin-orbit coupling,
which are predicted theoretically [1–7] to support a pair
of mid-gap non-Abelian Majorana zero modes (MZMs) at
the opposite ends of a wire [8–12], have become the lead-
ing candidate for the realization of topological quantum
computation (TQC) [9, 10] due to the tremendous exper-
imental progress realized in the past few years [13–24].
The most recent important development of far reaching
consequence to TQC has been the observation of quan-
tized zero-bias conductance plateaus in local charge tun-
neling experiments [24], with the theoretically predicted
height (2e2/h) required by topological MZMs [25–28].
While previous theoretical work on proximitized semi-
conducting nanowires has shown the formation of zero
bias conductance peaks (ZBCPs) even in the absence of
MZMs due to disorder [29–34], non uniform system pa-
rameters [35–44], weak antilocalization [45], and coupling
to a quantum dot [46, 47], these peaks of non-Majorana
origin do not result in a 2e2/h–quantized conductance
plateau whose height remains constant against variations
of the control parameters (e.g., Zeeman field, tunnel bar-
rier height). Note that a quantized conductance plateau
does not simply mean the presence of a robust zero-bias
conductance peak (of arbitrary height) that sticks at zero
energy as a function of the magnetic field, or the realiza-
tion of a quantized zero-bias peak of height 2e2/h at some
specific values of the control parameters, but rather the
persistence of a zero-bias peak with a constant quantized
height of 2e2/h over a finite range of control parameters
such as the magnetic field and the tunnel coupling. This
type of feature was so far believed to be associated with
the presence of (topological) Majorana zero-modes. Con-
sequently, in the recent experiments [24] the quantized
peaks of height 2e2/h and the persistence of the plateaus

against the variation of the control parameters have been
used as a key evidence for the presence of topologically-
protected MZMs localized at the opposite ends of the ex-
perimental system. Here, we demonstrate that the quan-
tized conductance plateaus can also have non-Majorana
origins, emerging in the topologically-trivial regime.

In this paper we perform detailed numerical cal-
culations of the experimental system [24], which is
a quantum dot-semiconductor-superconductor (QD-SM-
SC) nanowire heterostructure, and show that quantized
conductance plateaus of height 2e2/h, which are robust
over a large range of Zeeman field and tunnel barrier
potential, are also possible due to the presence of low
energy Andreev bound states (ABSs) whose component
Majorana bound states (MBSs) are somewhat shifted in
space: the so-called partially separated ABSs (ps-ABS)
introduced in Ref. [48]. The ps-ABSs, on the other hand,
are topologically trivial, and cannot be used in TQC be-
cause the separation of the component MBSs, which are
localized on the same side of the wire, cannot be con-
trolled externally [48]. Essentially, when coupling locally
to a ps-ABS one couples strongly to only one of the con-
stituent MBSs (see Fig. 1(i)), while the other remains
“invisible”. We thus arrive at the important result, rele-
vant to the remarkable set of recent experiments [24] and
all other tunneling conductance measurements preceding
it [13–15, 17–23], that the observation of quantized con-
ductance plateaus in local charge tunneling experiments,
even if of the theoretically predicted height 2e2/h, can-
not be taken as the clinching evidence for the presence
of non-Abelian MZMs, distinguished from other “non-
Majorana” sources such as robust low energy ABSs as
claimed in the experiments [24].

We interpret the results of this study within a frame-
work based on two observations: i) MZMs and ps-ABSs
can be described theoretically using the same modeling
of the hybrid structure. However, in the low Zeeman
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field regime the ps-ABSs are significantly more common,
because the parameter region corresponding to inhomo-
geneous systems that support ps-ABSs is much larger
than the parameter region associated with nearly homo-
geneous systems that host MZMs. ii) The goal of this
study is not to identify the nature of the low-energy states
responsible for the signatures observed experimentally
(much less to demonstrate that these states are ps-ABSs).
Given the fundamental uncertainty regarding key param-
eters of the hybrid systems used in experiments, such
as, e.g., work function differences and couplings across
the SM-SC interface, any attempt to solve these prob-
lems purely theoretically would be futile. The answer
has to come from experiment. Here, we only show that
the signature produced by a ps-ABS in a local tunneling
measurement is indistinguishable from the corresponding
signature of a MZM, even if we test the robustness of this
signature by varying the control parameters.

SM-SC HETEROSTRUCTURE COUPLED TO A
QUANTUM DOT

We consider a semiconductor (SM) nanowire with
strong spin orbit coupling, proximity coupled to a super-
conductor (SC) in the presence of an applied magnetic
field. A portion of the SM wire is not covered by the SC,
which may be thought of as a quantum dot [46–48], see
Fig. 1(a). The Bogoliubov-de Gennes (BdG) Hamilto-
nian for such a one-dimensional QD-SM-SC heterostruc-
ture can be written as,

H̃ =

(
−1

2
∂2
x̃ − i∂x̃σy − µ̃+ V (x̃)

)
τz + Γσx + ∆ (x̃) τx

(1)
with x̃ = m∗αx and H̃ = (H/m∗α2). Here σi and τj
are the Pauli matrices operating in spin and particle-
hole spaces, respectively, Γ is the Zeeman field and µ is
the chemical potential. Parameters used were, an effec-
tive mass m? ≈ 0.03m0 (m0 being the electron mass),
and a Rashba coefficient of α = 400 meV·Å, consistent
with the experiments. All calculations were done at a
temperature T ≈ 20 mK unless otherwise noted. Here
V (x̃) = Vbarier + Vdot, in which Vbarrier represents the
potential which arises due to tunnel coupling between the
normal lead and the SM wire, and Vdot which is due to
the tunnel gates shown in Fig. 1(b). The potential Vdot
used throughout this manuscript is of the form

Vdot =
V

2

(
1− tanh

(
x̃− x0

σV

))
(2)

in which V is the height of the gate potential Vdot within
the QD, x0 is the length of the QD, and σV is the length
scale over which V varies. The barrier potential Vbarrier
is taken as a sharp potential of height Z and width xt as
shown in Fig. 1(b). The induced superconducting pair

potential is

∆ (x̃) =
∆

2

(
1 + tanh

(
x̃− x0 + δx

σ∆

))
(3)

where ∆ is the height of the pairing potential, δx is a
parameter that controls the extension of the pairing po-
tential in the QD region due to proximity effect, and σ∆

is the length scale over which ∆ varies. In Fig. 1 we take
V = 5.5∆, σV = σ∆ = 25nm, x0 = 0.5µm, Z = 16∆,
xt = 0.02µm, ∆ = 0.25meV , and δx = 4σ∆.

The low-energy spectrum is obtained by numerically
diagonalizing the BdG Hamiltonian corresponding to the
nanowire. The robustness of the ZBCP is shown for dif-
ferent values of the barrier and dot potentials in Fig. 2.
Values for the differential conductance G were found by
discretizing the Hamiltonian in Eq. 1 as follows,

Ĥ =
∑
i

{ψ†i [(2t− µ+ V (i)) τz + Γσx + ∆ (i) τx]ψi

+
[
ψ†i+a (−tτz + iασyτx)ψi + h.c.

]
}

(4)

written in the Nambu basis with ψi =
(
c↑i, c↓i, c

†
↑i, c

†
↓i

)
in

which i represents the lattice site and t = 38∆ is the hop-
ping matrix element used throughout the calculations.
The zero temperature differential conductance

G0(V ) =
e2

h
(N −Ree +Rhe), (5)

was found using the S matrix method [49]. Here N is
the number of electron channels in the lead, Ree is the
total probability of normal reflection and Reh is the total
probability of Andreev reflection for an electron in the
lead. Finite temperature is represented by broadening
the zero temperature conductance through a convolution
with the derivative of the Fermi-function in the usual
manner, G (V, T ) = −

∫
dεG0 (ε) f ′T (ε− V ).

To analyze the low-energy ABSs, we represent the
BdG eigenstates φ±ε (i) of Eq. 4 as a pair of overlap-
ping MBSs, χA (i) = 1√

2
[φε (i) + φ−ε (i)] and χB (i) =

i√
2

[φε (i)− φ−ε (i)]. Using this formalism, a standard

ABS is defined as a superposition of constituent MBSs
that are sitting directly on top of one another (Fig. 1(h)),
a ps-ABS as a superposition of constituent MBSs that
are separated on the order of the Majorana decay length
ζ (Fig. 1(i)), while topological MZMs correspond to
constituent MBSs separated by the length of the wire
(Fig. 1(j)). From the wave function profiles, it is straight-
forward to see that if a ps-ABS is present in the quantum
dot region, as in Fig. 1(i), a tunnel probe placed on the
left hand side of the wire will predominantly couple to
a single MBS (purple), making it indistinguishable from
a MZM, as in Fig. 1(j). Note that in a finite wire the
bulk gap does not completely close and thus a ps-ABS
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FIG. 1. (a) Proximitized nanowire junction in which a portion of the semiconductor wire (SM) is not covered by the supercon-
ductor (SC), represented by a quantum dot (QD). (b) Quantum dot potential V (x) = Vbarrier +Vdot as described by Eq. 2 may
form within the QD due to a combination of tunnel coupling to the metallic lead (Vbarrier) as well as application of the tunnel
gate potentials (Vdot). Parameters used here were, barrier potential height Z = 16∆ and width xt = 0.02µm, a quantum dot
of width x0 ∼ 0.5µm with a potential height V ∼ 5.5∆ which varies over a length scale of σV ∼ 27.5nm. Induced pairing ∆(x)
described by Eq. 3 is present within the proximitized region of the wire. Here we used ∆ind ∼ 0.25meV which varies over a
length scale of σ∆ ∼ 27.5nm. Robustness of the zero bias peaks to different values of the barrier and dot potentials is shown
in Fig. 2. (c)-(d) Vertical line cuts from the differential conductance spectra shown in (g) showing a ZBCP quantized to 2e2/h
due to the presence of a ps-ABS (blue, Zeeman field Γ < Γc with Γc the critical field) and a MZM (red, Γ > Γc). Temperature
dependence of ZBCP from 20 mK to 440 mK in steps of 20 mK shows gradual decrease of the peak height. (e) Full width at
half maximum (FWHM) as a function of temperature T for ps-ABS (blue) and MZM (red) of curves taken from (c)-(d). (f)
Low-energy spectra as a function of Zeeman field for a nanowire with the potential profile pictured in (b). The Zeeman field
Γ > Γc region is marked by the red zero energy mode (MZM), while the blue zero mode marks the region supporting ps-ABSs.
(g) Differential conductance spectra as a function of Zeeman field corresponding to energy spectra in (f). (h)-(j) Profiles of
lowest energy mode wave functions: (h) A standard ABS consisting of a pair of overlapping MBSs, (i) a ps-ABS consisting of
two overlapping MBSs whose separation is on the order of the Majorana decay length ζ, and (j) a pair of non-Abelian MZMs
localized at opposite ends of the wire. (k) Zero bias line cuts from conductance spectra showing 2e2/h-quantized conductance
plateaus against variation of the Zeeman field for two representative values of the chemical potential due to the presence of a
ps-ABS (blue) and MZM (red).

can be continuously connected to a pair of non-Abelian
MZMs. By contrast, in an infinite (or long) wire, in which
the bulk gap closes signaling a TQPT, the ps-ABS and
MZMs are separated by a quantum phase transition and
only the pair of MZMs for Γ > Γc are topologically non-
trivial. Moreover, ps-ABSs cannot be used in TQC, be-
cause the separation between the component MBSs in a
ps-ABS can not be controlled independently.

RESULTS

In Fig. 1(f) we show the low energy spectrum of the
QD-SM-SC structure as a function of the applied Zee-
man field. A pair of robust zero modes emerge in this
plot (blue) well before the bulk band gap has a min-
imum signaling the TQPT. We associate these modes
with ps-ABSs, while the zero energy modes beyond the
bulk gap closing (red) are topological MZMs. The corre-
sponding plot of the differential conductance as a func-
tion of Zeeman field (Fig. 1(g)) shows a robust ZBCP in
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FIG. 2. (Color online) (a)-(c) Differential conductance as a function of barrier height Z and bias potential associated with a
standard ABS (Γ = .25Γc) (a), a ps-ABS (Γ = .75Γc) (b), and a pair of MZMs (Γ = 1.05Γc) (c).(d-f) Zero bias line cuts for (a-c)
showing the MZMs and ps-ABSs forming nearly identical profiles which plateau at 2e2/h for a wide range of barrier heights.
The standard ABS peak height (d) may take any value between 0 and 4e2/h and quickly goes to 0 with increased barrier height.
(g-h) Vertical line cuts from (b) and (c) showing ZBCPs quantized at 2e2/h over a large range of barrier potential heights Z
for both ps-ABS and MZM. (i-j) Low energy spectra as a function of quantum dot potential height V associated with potential
profile in Fig. 1(b) for ps-ABS (blue, Γ < Γc) and MZM (red, Γ > Γc). Here and in the following plots Vc = 2µ is taken as the
reference dot potential, while the dot potential V is varied between .25Vc = 2∆ and Vc = 2µ = 8∆. (k-l) Plots of differential
conductance as a function of dot potential height V and bias potential for values consistent with energy-spectra shown in
(i-j). (m)-(p) Horizontal zero bias line cuts with (m) corresponding to (k-l) and (n-p) corresponding to identical systems with
decreased QD lengths x0, given in plots. The formation of a 2e2/h-quantized plateau can be seen for both ps-ABSs (blue) and
MZMs (red) as a function of quantum dot potential, and persists for a wide range of QD lengths x0. As the length of the QD
x0 is decreased, the overlap between the constituent MBSs increases, as a result the zero bias conductance plateau associated
with the ps-ABS (blue) becomes less robust to changes in the dot potential V .

the topologically trivial regime indistinguishable from the
ZBCP in the topological regime. Furthermore, Figs. 1(c-
e) show an exponential dependence of the ZBCP height
and width on the temperature for both MZMs and ps-
ABSs. These robust ZBCPs form 2e2/h-quantized con-
ductance plateaus both in the topologically trivial and
non-trivial regimes (Fig. 1(k)), similar to those observed
in the experiments [24].

Next, in Fig. 2(a-f), we plot the differential conduc-
tance as a function of bias potential and barrier potential
(Z). These results show that while the ZBCP height due
to a standard ABS may take any value (0 − 4e2/h) and

quickly drops to zero upon increasing the barrier poten-
tial (Fig. 2(d)), the behavior of the ZBCPs induced by ps-
ABSs and MZMs is nearly the same. Indeed, upon vary-
ing the barrier height, both the ps-ABS and the MZM
induce (practically indistinguishable) quantized zero bias
conductance plateaus of height 2e2/h (Fig. 2(e-f)). The
low energy spectrum as a function of the quantum dot
potential V corresponding to the potential profile shown
in Fig. 1(b) is shown in Fig. 2(i) for a ps-ABS (blue,
Γ < Γc) and in Fig. 2(j) for a MZM (red, Γ > Γc). The
corresponding dependence of the differential conductance
shown in panels (k) and (l), respectively, has similar
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(a)

(b)

(c)

FIG. 3. (Color online)(a)Low-energy spectra as a function of
chemical potential. The red line signifies the topological re-
gion supporting MZMs, the blue line shows a non-topological
region supporting ps-ABSs which stick to zero energy for
a wide range of chemical potential. (b) Zero bias line cut
taken from (c) showing a robust 2e2/h quantized conductance
plateau forming in the topologically trivial regime due to the
presence of a ps-ABS. (c) Differential conductance spectrum
as a function of chemical potential for parameter values con-
sistent with Fig. 1.

(practically indistinguishable) features. Finally, the ps-
ABS and the MZM have nearly identical 2e2/h-quantized
conductance peaks that are robust against variations of
the dot potential, as shown in Fig. 2(m). The depen-
dence of the low energy spectrum on the chemical poten-
tial, which experimentally can be controlled by changing
the super-gate potential, is shown in Fig. 3(a). A robust
zero energy mode emerges in the trivial regime (blue)
due to a ps-ABS, well before the topologically non-trivial
regime (red). This results in a robust 2e2/h-quantized
conductance plateau as function of the chemical poten-
tial (Fig. 3(b,c)). As in Ref. [24], the quantized ZBCP
exhibits some oscillatory behavior due to peak splitting,
with the ZBCP returning to the 2e2/h-quantized value
but never exceeding it. Finally, SM-SC nanowires re-
quire a magnetic field oriented along the wire in order
to support topological MZMs [1–7]. Re-orientating the
magnetic field toward the direction of the spin-orbit field
should rapidly destroy the MZM-induced ZBCP [21].
The dependence of the differential conductance on the
direction of the magnetic field is shown in Fig. 4 for both
a trivial ps-ABS (a) and a MZM (b). In both cases the

(a)

(b)

FIG. 4. (Color online) Differential conductance as a function
of the in plane angle of the Zeeman field for the ps-ABS (a)
and the MZM (b) shown in Fig. 1(i)-(j). A ZBCP appears for
a small angle in which the Zeeman field is almost aligned with
the wire. As the angle between the wire and the direction of
the Zeeman field is increased the ZBCP is destroyed in both
cases due to splitting.

ZBCP is only present for small values of the angle φ,
for which the magnetic field is almost aligned with the
direction of the wire.

SUMMARY AND CONCLUSION

In summary, based on extensive numerical calcula-
tions, we show that, quantized zero bias conductance
peaks, who’s height remains constant at 2e2/h as a
function of varying system parameters such as Zeeman
field, tunnel barrier height, dot potential, etc. (the so
called quantized conductance plateaus) [24], can arise as
a result of partially separated Andreev bound states, in
which the component Majorana bound states are some-
what shifted in space without being topological MZMs.
As partially separated Andreev bound states can form
generically in the topologically trivial phase, as illus-
trated in this paper with a step like potential in the quan-
tum dot region which can be induced by tunnel gates, we
conclude that the recent experimental observations show-
ing quantized conductance plateaus of height 2e2/h as a
function of various control parameters cannot represent
definitive evidence for the presence of MZMs. We empha-
size that a more “realistic” modeling of the experimental
system (which would face major challenges, considering
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our limited knowledge of key microscopic parameters that
characterize the hybrid systems studied experimentally)
is not expected to modify this conclusion. Essentially,
when coupling locally to the end of the quantum dot,
which may harbor a ps-ABS, one couples much stronger
to one of the constituent MBSs than to the other because
of the partial separation between the pair of MBSs. Thus,
the other constituent MBS basically remains “invisible”
to the tunneling lead. For instance, in Fig 1(i) the tun-
nel lead, which couples from the left end, should couple
much more strongly to only one of the MBSs (shown in
blue), while coupling to the other MBS (shown in yel-
low) is strongly suppressed because of partial decoupling
of the MBSs. Thus, the local coupling to a ps-ABS is
effectively equivalent to the local coupling to a MZM.

In a recent preprint [50] it has been argued (based
on a smooth confinement potential scenario similar to
that proposed in Ref. [35]) that quantized conductance
plateaus can also arise in the trivial regime due to differ-
ences in the spin polarization of the constituent MBSs,
even if the MBSs are fully overlapping. By contrast, in
this paper we find that for a step-like potential in the
quantum dot region, the stability of the quantized con-
ductance plateaus is essentially controlled by the sepa-
ration between the constituent MBSs of a ps-ABS, as
shown in Fig. 2(p). The details of the relationship be-
tween the ps-ABSs found in this paper and the quasi-
Majoranas emerging in the presence of a smooth confine-
ment potential as described in Refs. [50,35], including the
effects of spin polarizations and the spatial separation of
the component MBSs on the stability of the conductance
plateaus, will be addressed in a forthcoming publication.
Based on the results of this paper, we conclude that the
local charge tunneling measurement, which was, so far,
the primary type of probe used in experiments, has ex-
hausted its potential to reveal useful information regard-
ing the distinction of MZMs from low energy ABSs (ps-
ABSs in particular), both of which can appear in SM-SC
hybrid structures. The next stage must involve non-local
probes, such as, for example, the two-terminal charge
tunneling measurement [48, 51].

ACKNOWLEDGMENTS

C.M., C.Z., and S.T. acknowledge support from ARO
Grant No. W911NF-16-1-0182. T.D.S. was supported by
NSF Grant No. DMR-1414683.

[1] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. Lett. 104, 040502 (2010).

[2] S. Tewari, J. D. Sau, and S. D. Sarma, Annals of Physics
325, 219 (2010).

[3] J. Alicea, Phys. Rev. B 81, 125318 (2010).

[4] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu,
and S. Das Sarma, Phys. Rev. B 82, 214509 (2010).

[5] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

[6] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

[7] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys.
Rev. B 84, 144522 (2011).

[8] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[9] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[11] C. Beenakker, Annual Review of Condensed Matter
Physics 4, 113 (2013).

[12] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137
(2015).

[13] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[14] M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and
H. Xu, Nano letters 12, 6414 (2012).

[15] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nature Physics 8, 887 (2012).

[16] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature
Physics 8, 795 (2012).

[17] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen,
M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus,
Phys. Rev. B 87, 241401 (2013).

[18] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni,
K. Jung, and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[19] S. M. Albrecht, A. Higginbotham, M. Madsen, F. Kuem-
meth, T. S. Jespersen, J. Nyg̊ard, P. Krogstrup, and
C. Marcus, Nature 531, 206 (2016).
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