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The understanding of weak measurements and interaction-free measurements has greatly ex-
panded the conceptual and experimental toolbox to explore the quantum world. Here we demon-
strate single-shot variable-strength weak measurements of the electron and the nuclear spin states
of a single 31P donor in silicon. We first show how the partial collapse of the nuclear spin due
to measurement can be used to coherently rotate the spin to a desired pure state. We explicitly
demonstrate that phase coherence is preserved with high fidelity throughout multiple sequential
single-shot weak measurements, and that the partial state collapse can be reversed. Second, we
use the relation between measurement strength and perturbation of the nuclear state as a physical
meter to extract the tunnel rates between the 31P donor and a nearby electron reservoir from data
conditioned on observing no tunneling events. Our experiments open avenues to measurement-based
state preparation, steering and feedback protocols for spin systems in the solid state, and highlight
the fundamental connection between information gain and state modification in quantum mechanics.

I. INTRODUCTION

The quantum measurement postulate, as found in
quantum mechanics textbooks, implicitly describes pro-
jective (von Neumann) measurements, where a measure-
ment apparatus is coupled to a quantum system and,
upon performing the measurement, returns a unique
value ak for some observable Â of the quantum system. If
the system was initially in the state |ψ〉, the act of mea-
surement leaves it in the state |φk〉, the eigenstate of the

observable Â with eigenvalue ak. The non-deterministic
and non-unitary process through which the act of mea-
surement transforms the initial state |ψ〉 into the final
state |φk〉 is known as ”wavefunction collapse”, and has
been the subject of a century of debate and controversy.

However, as was already appreciated by von
Neumann1, the projective measurement is only a lim-
iting case. One can also have a detector which is only
partially correlated with some observable of the quan-
tum system, and therefore returns only partial informa-
tion on the system state. Accordingly, the wavefunc-
tion is not fully projected onto an eigenstate, but is only
weakly disturbed by the measurement process. The im-
plications and applications of such “weak measurements”
and corresponding partial collapse of the quantum state
have gained considerable attention, especially in the con-
text of quantum information processing. Recent experi-
ments on superconducting qubits have demonstrated par-
tial wavefunction collapse2, measurement reversal3, sta-
bilized Rabi oscillations using quantum feedback4, direct
observation of quantum trajectories5,6, reduction of deco-

herence via “uncollapsing”7, and observation of the back-
action steering from a variable strength measurement8,9.
Weak measurements have also been demonstrated with
NV centers in diamond10.

Here we describe how to apply the principles of weak
quantum measurements to the electron and nuclear spin
states of an individual 31P donor atom in silicon. In the
context of quantum measurement, the 31P atom provides
access to many key features, related e.g. to negative-
result measurements11 and quantum steering12,13. In
particular, we show that weak single-shot measurements
via the electron spin can be used to phase-coherently con-
trol the state of the 31P nuclear spin, and that it is possi-
ble to preserve phase coherence with high fidelity through
multiple sequential measurement and control steps. This
highlights the potential for measurement based control in
this highly coherent coupled qubit system, and opens av-
enues to measurement-based state preparation, Einstein-
Podolsky-Rosen (EPR) steering and feedback protocols.
We also show how the tunneling rate of the electron to a
nearby electron reservoir can be extracted from a dataset
conditioned on having no tunneling events, in a spirit
similar to the Elitzur-Vaidman bomb-testing protocol14.

II. EXPERIMENT

A. Device

Figure 1(a) shows a scanning electron microscope im-
age of our device, which is fabricated on an isotopically
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enriched 28Si substrate15, and where the 31P atom is in-
troduced via ion implantation16. This system contains
two natural qubits (the electron spin, with S = 1/2 and
basis states |↑〉 , |↓〉, and the 31P nucleus, with spin I =
1/2 and basis states |⇑〉 , |⇓〉) that exhibit extremely long
coherence times17–19, high quantum gate fidelities20,21

and can be efficiently entangled with each other22,23.
The quantum state of the 31P system is accessible

through the measurement of the z-projection of the elec-
tron spin, where z is the axis along which a strong ex-
ternal magnetic field B0 (≈ 1.5 T in the present experi-
ment) is applied. The donor is placed in close proximity
(≈ 20 − 30 nm24,25) to a cold (T ≈ 100 mK) electron
reservoir. Under suitable biasing conditions, the donor-
bound electron can tunnel into the cold reservoir if and
only if it is in the excited |↑〉 state. The positively charged
donor left behind after this tunneling event shifts the
bias point of a nearby single-electron transistor (SET)
and switches it to a high conductance state. The SET
current then flows until another electron tunnels into
the donor from the reservoir, initialising it again to the
ground state. Conversely, a |↓〉 electron cannot escape
the donor, leaving the SET in a near-zero conductance
state. This spin-dependent tunneling process26–28 thus
gives rise to a single-shot measurement, with fidelity in
excess of 90%28. This mechanism provides a near-ideal
negative-result measurement for the |↓〉 state, which is
identified by the absence of a signal in the SET current.
Importantly, the electron spin is always initialised |↓〉 af-
ter the readout.

The 31P nuclear spin couples to the electron through
the hyperfine interaction AI ·S, with A ≈ 97 MHz in this
specific device19. As a consequence, the system can have
two possible electron spin resonance (ESR) frequencies,
νe1,2 = γeB0 ∓ A/2 [Fig. 1(b)], where γe ≈ 28 GHz/T
is the electron gyromagnetic ratio. Nuclear readout
[Fig. 1(d)]29 proceeds by initializing the |↓〉 state and
applying a microwave π-pulse at e.g. νe2, where subse-
quently measuring the electron |↑〉 state indicates that
the nuclear spin state was |⇑〉. Since γeB0 � A, the hy-
perfine interaction can be approximated with AIzSz. As
this commutes with Iz, the readout of the z-projection of
the nuclear spin is of quantum nondemolition type30, and
can be repeated to achieve a readout fidelity approach-
ing 99.9%29, well beyond that of a single-shot electron
readout. For the (strong) nuclear spin readouts in this
paper we perform 25 electron π-pulse and readout cycles
for each nuclear spin readout.

B. Experimental protocol

The use of an electron π-pulse for the nuclear readout
is just the limiting case, where one gains maximum in-
formation about the nuclear spin state. Here, we explore
the more general case where the electron rotation angle
is θ 6= π, which causes the subsequent electron readout
to provide only partial information on the nuclear state.
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FIG. 1. (a) Scanning electron micrograph of a device iden-
tical to the one used in the experiment. A broadband mi-
crowave antenna is used to provide both nuclear and electron
spin resonance pulses, and a single-electron transistor (SET)
detects electron tunneling events in real time. (b) Energy
diagram of the electron-nuclear spin system, with labels for
the transition frequencies relevant to the present experiments.
(c) Pulse sequence for nuclear spin initilization and variable-
strength measurement. The solid line represents the combined
effect of the voltage of the electrostatic gates (VDG) adjusting
the chemical potential of the donor electron with respect to
the SET island, schematically shown on the left. Blue or red
boxes represent ESR pulses at νe1 or νe2, yellow boxes NMR
pulses at νn. The semi-transparent boxes are only needed for
tomography (σx and σy components). They are, from left
to right: two refocusing pulses (around the y-axis) and one
phase-modulated pulse to define the tomography axis. Tim-
ing and pulse lengths are not to scale. Single weak measure-
ments (first column in Fig. 2) require only the first θ-pulse
and electron readout. (d) Pulse sequence used for nuclear
spin readout. An electron readout step initializes the electron
spin |↓〉. An electron spin π-pulse is applied at frequency νe2,
which flips the electron spin only if the nuclear spin is |⇑〉.
The nuclear state is assigned |⇑〉 if a majority of |↑〉 electrons
is detected after 25 repetitions.

This realizes a novel tunable weak measurement, with
strength controlled by the electron rotation angle θ. We
show below that, as a result of a weak nuclear measure-
ment conditioned on measuring electron |↓〉, the nuclear
state can be coherently rotated to an arbitrary pure state.
This could be extended to provide an interesting imple-
mentation of EPR steering12,13 with spins in the solid
state (see Section V C for more details on EPR steering).

Let us assume that the nuclear spin is initially in
the state |ψn0〉 = (|⇓〉 + |⇑〉)/

√
2, while the elec-

tron spin is initialized in its ground state |↓〉. We
then apply a microwave pulse at frequency νe2 to
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produce a rotation by an angle θ of the electron
spin, conditioned on the nuclear spin being in the |⇑〉
state. The full electron-nuclear state becomes |Ψen〉 =

[|⇓↓〉+ cos(θ/2) |⇑↓〉 − sin(θ/2) |⇑↑〉] /
√

2. A readout of
the electron spin state will produce |↑〉 with probabil-
ity P↑ = sin2(θ/2)/2 and leave the nuclear spin state
|⇑〉. More interestingly, with probability P↓ = [1 +
cos2(θ/2)]/2 the electron readout will produce |↓〉 and
leave the nuclear spin in a coherent superposition state
|ψn〉 = [|⇑〉 + cos(θ/2) |⇓〉]/

√
1 + cos2(θ/2), which has

therefore been coherently rotated from the original state
|ψn0〉 to the pure state |ψn〉 using only ESR pulses and
electron spin measurements. The rotation is probabilistic
in the sense that it can fail (if the outcome of the electron
readout is |↑〉), but in case of a success (heralded by the
|↓〉 electron readout) the end state is fully deterministic.

A more complete description of the process is obtained
through a density matrix formalism (for more details, see
Section V A). The initial nuclear spin state is

ρ0 = |ψn0〉 〈ψn0| =
1

2

[
1 1
1 1

]
. (1)

After the θ rotation of the electron spin (initially |↓〉)
conditioned on the |⇑〉 nuclear state, and a |↓〉 electron
readout, the nuclear spin is left in the state

ρ(θ) =
1

1 + cos2(θ/2)

[
cos2(θ/2) cos(θ/2)
cos(θ/2) 1

]
, (2)

which notably is a pure state for all values of θ. This
readily generalizes to multiple electron rotation and mea-
surement steps. For example, after two sequential appli-
cations of the sequence, the nuclear spin state is (condi-
tional on reading |↓〉 at both steps)

ρ(θ1, θ2) =
1

1 + cos2(θ1/2) cos2(θ2/2)
(3)

×
[
cos2(θ1/2) cos2(θ2/2) cos(θ1/2) cos(θ2/2)
cos(θ1/2) cos(θ2/2) 1

]
,

assuming phase coherence is preserved at the intermedi-
ate electron readout step.

An interesting scenario appears if the second electron
rotation is applied at νe1 instead of νe2, so that the ro-
tation is conditioned on the nuclear |⇓〉 state. Calling φ
the rotation angle of the microwave pulse at νe1, the final
state becomes

ρ(θ, φ) =
1

cos2(φ/2) + cos2(θ/2)
(4)

×
[

cos2(θ/2) cos(θ/2) cos(φ/2)
cos(θ/2) cos(φ/2) cos2(φ/2)

]
.

If we set φ = θ, the final state is ρ(θ, θ) = ρ0. This is
known as “measurement reversal”3,31: the second weak
measurement of the nuclear spin erases the effect of the
first one.

The nuclear spin rotation by variable-strength mea-
surement is a probabilitistic process, conditional on mea-
suring the electron in the |↓〉 state. The success probabil-
ity for a single weak measurement step starting from the
state in Eq. 1 is P1 = [1+cos(θ/2)]/2. However, since this
probability depends on the nuclear spin population at the
start of the measurement, the success probability of two
sequential weak measurements is not simply this value
squared. Rather, the success probability for n sequential
weak measurements in our case is Pn = [1+cos(θ/2)2n]/2
if all measurements are performed with electron spin ro-
tation θ on the same electron spin resonance frequency.

For the measurement reversal (two weak nuclear mea-
surements, each using a different ESR frequency) the suc-
cess probability reads Prev = cos2(θ/2) which is notably
zero for θ = π, as should be expected (one cannot reverse
a projective measurement).

III. RESULTS

A. Rotating the nuclear spin state with variable
strength measurements

Figure 2 shows experimental data obtained with full
quantum state tomography, i.e. measurement of all three
nuclear spin components σz = (ρ1,1 − ρ2,2), σx = (ρ1,2 +
ρ2,1), and σy = i(ρ1,2 − ρ2,1).

The left column of Fig. 2 is the result of a single nu-
clear rotation step, consisting of an ESR pulse at νe2 ro-
tating the electron spin state around the x-axis by angle
θ, followed by single-shot electron readout, and posts-
election on the |↓〉 outcome. Then the nuclear spin is
read out with the procedure depicted in Fig. 1(d). The
solid lines, in excellent agreement with the data shown in
circles, show the expected nuclear state, on the basis of
the density matrix description presented above, without
any free fitting parameters. The squares and dashed line
show the measured and expected success probability of
the protocol.

The middle column in Fig. 2 illustrates the application
of two sequential rotation steps, conducted for simplicity
with the same ESR rotation angle θ on νe2 at both steps.
The fact that the data (especially the σx-component) fol-
lows the theoretical predictions indicates that the nu-
clear state remains coherent throughout the sequence,
which contains two weak nuclear measurements. In other
words, the partial collapse of the nuclear state after the
first weak measurement is a phase-coherent, predictable
process, although the evolution is non-unitary. A min-
imum requirement for observing this effect is that the
dephasing time of the nuclear spin qubit has to be longer
than the electron readout time. The 31P nuclear spin
qubit in 28Si already has an intrinsically long dephas-
ing time (T ∗2n ≈ 0.5 ms19 with the donor in the neutral
charge state), but here we further extend it by apply-
ing two NMR refocusing pulses during the 3 ms electron
readout step [see Fig. 1(c)]. We also frequency-modulate



4

h<
zi

-1

-0.5

0

0.5

1

0

0.5

1

h<
xi

-1

-0.5

0

0.5

1

0

0.5

1

3 (:)
0 1 2

h<
yi

-1

-0.5

0

0.5

1

3 (:)
0 1 2

3 (:)
0 1 2

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0

0.5

1

θ θ φθ θ

S
uc

ce
ss

 p
ro

ba
bi

lit
y

S
uc

ce
ss

 p
ro

ba
bi

lit
y

FIG. 2. Quantum control of a nuclear spin with electron spin
resonance pulses, observed through quantum state tomogra-
phy of σz (1st row), σx (2nd row) and σy (3rd row) as a func-
tion of the electron spin rotation angle θ on the ESR frequency
νe2. On the columns, from left to right: one weak measure-
ment, two weak measurements (each with rotation angle θ),
and measurement reversal (rotation by θ on νe2 and then by
φ on νe1, here φ = θ). Circles and solid line show the ex-
perimental data and theory prediction, respectively, for the
expectation value (left axis). Squares and dashed line show
the experimental data and theory prediction for the success
probability of the protocol. All lines are without any fitting
parameters, except the solid lines for σx have been scaled by
a constant to match the measured asymptotic values. These
are not exactly unity presumably due to dephasing caused
rotation errors in the tomography pulse. Each data point
corresponds to 200 unconditional repetitions.

the NMR source to track the resonance frequency of the
nuclear spin qubit during the electron readout phase,
since the change in the donor electrostatic potential un-
der readout conditions causes a Stark shift of the reso-
nance frequency25.

A unique feature of our experiment is the high fidelity
with which the state prepared by weak measurement
overlaps with the target state (as expressed in Eqs. (2)
and (3)). With both single and double rotation steps,
we measured state fidelities F ≈ 97 %, averaged over all
rotation angles. We did not observe any significant de-
pendence of the fidelity on the rotation angle (a plot of
F(θ) is shown in Fig. 4). These observations suggest that
the state fidelity is mainly limited by rotation errors in
the tomography pulse.

On the right column of Fig. 2 we present the so-called
measurement reversal3,31, which requires a rotation by θ
on νe2 and rotation by φ = θ on νe1. As predicted, we
recover the original state each time (again, conditional
on obtaining |↓〉 at each electron readout step). Note
that when θ = π, the nuclear measurement becomes fully
projective and the probability of a successful reversal be-

comes zero. The data points around θ = π are thus only
statistical fluctuations.

B. Using the nuclear spin rotation as a meter for
the measurement strength

We now explore the possibility of performing a weak
electron spin measurement, and the effects that such
a measurement has on the nuclear spin. The spin-
dependent tunneling mechanism that provides a discrimi-
nation between the |↑〉 and |↓〉 states yields a fully projec-
tive measurement only in the limit Γ↑,outtm →∞, where
tm is the measurement time and Γ↑,out is the tunnel-out
rate for a |↑〉 electron, defined such that the probability
for a |↑〉 electron to have tunnelled out of the donor af-
ter time tm is P↑,out(tm) = 1 − exp(−Γ↑,outtm). For a
finite value of Γ↑,outtm, the absence of a tunnel-out event
constitutes only a weak |↓〉 measurement.

The effect on the nuclear spin of a weak electron mea-
surement can be captured quantitatively in the density
matrix formalism, by modifying Eq. 2 to include the
probability 1 − P↑,out(tm) that an |↑〉 does not tunnel
out within the measurement time:

ρ(θ, tm) =
1

1 + cos2(θ/2) + (1− P↑,out(tm)) sin2(θ/2)
(5)

×
[
cos2(θ/2) + (1− P↑,out(tm)) sin2(θ/2) cos(θ/2)

cos(θ/2) 1

]
.

Hence, the expectation value of σz as a function of mea-
surement time, conditioned on measuring |↓〉 (no tunnel-
ing) is

〈σz(tm)〉 =
cos2(θ/2) + exp(−Γ↑,outtm) sin2(θ/2)− 1

cos2(θ/2) + exp(−Γ↑,outtm) sin2(θ/2) + 1
, (6)

which for θ = π reduces to a particularly simple form

〈σz(tm)〉 =
exp(−Γ↑,outtm)− 1

exp(−Γ↑,outtm) + 1
. (7)

Solving for Γ↑,out as a function of 〈σz(tm)〉 we find

1

Γ↑,out
= − tm

ln
(

1+〈σz(tm)〉
1−〈σz(tm)〉

) . (8)

Figure 3 shows an experiment where we prepare the
nucleus in |ψn0〉 = (|⇓〉 + |⇑〉)/

√
2, the electron in |↓〉

and then apply an electron π-pulse at νe1, thus leaving
the electron-nuclear system in the Bell state23 |Φ+〉 =

(|↓⇓〉+|↑⇑〉)/
√

2. We then bring the electron towards the
readout position for a time tm = 1.5 ms and, conditional
on having no tunneling events, we subsequently measure
the nuclear polarization 〈σz〉. The experiment is repeated
at different values of VDG, which controls the donor elec-
trochemical potential µD relative to the Fermi level of
the electron reservoir28, and thereby tunes the donor-
reservoir tunnel rate Γ↑,out. For VDG & 0.2 V the |↑〉 state
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goes below the Fermi level, causing Γ↑,out ≈ Γ↓,out ≈ 0,
i.e., the measurement strength vanishes: the absence of a
tunneling event does not imply a |↓〉 state. Accordingly,
we find 〈σz〉 ≈ 0 in that limit, i.e. the nuclear polariza-
tion has not been perturbed from the initial value. For
VDG < 0.2 V, 1/Γ↑,out becomes shorter and 〈σz〉 veers
towards negative values, which indicates that the elec-
tron |↓〉 measurement is becoming stronger, thus turning
the initial |Φ+〉 Bell state towards |↓⇓〉. Using Eq. 8 we
can extract the numerical value of 1/Γ↑,out, and com-
pare it [Fig. 3(b)] to the tunnel time extracted directly
from tunneling probabilities. The two methods agree al-
most perfectly, confirming the validity of our approach.
The non-monotonic behavior of Γ↑,out(VDG) is related
to modulations in the density of states of the electron
reservoir32. We note that the bandwidth (50 kHz) of
the amplifier chain that measures the instantaneous SET
current – which depends on the charge state of the donor
– is much higher than any of the measured tunnel rates.
Therefore, tunnel events that are too fast to be detected
are very rare, and do not constitute a significant source
of errors.

Unlike the weak nuclear measurement described ear-
lier, this process using weak electron measurement does
not preserve the purity of the nuclear spin state. Also,
the use of a maximally entangled |Φ+〉 Bell state as
the starting point of the sequence is inconsequential
for this particular experiment – the same result would
be obtained starting from an incoherent mixture of
|↓⇓〉 and |↑⇑〉, though the perfect correlation between
the two spins is obviously required. Nonetheless, the
process provides a curious example of interaction-free
measurement14 in the solid state.

IV. DISCUSSION

In conclusion, we have shown the application of sev-
eral concepts and tools of weak single-shot measure-
ments to a model solid-state spin system. We have
demonstrated high-fidelity, coherent control of the nu-
clear spin using only ESR pulses and electron spin read-
out, and we have shown how to measure tunnel rates
from data sets without tunneling events. In particu-
lar, the high fidelity of the measurement-based control,
even after multiple sequential steps, sets 31P spins apart
from other qubit systems where single-shot weak mea-
surements have been demonstrated. In the future, these
techniques can be applied to a variety of interesting prob-
lems, such as the study of qubit dynamics under driving
and weak measurement33, past quantum states of a mon-
itored system34 and the interplay between measurement
and chaotic dynamics35,36.
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FIG. 3. Extracting electron tunnel rates from a dataset con-
ditioned on having no-tunneling events. (a) Average nuclear
polarization 〈σz〉 after a tm = 1.5 ms electron readout window
as a function of donor electrochemical potential, controlled by
VDG. (b) Electron |↑〉 tunnel-out time 1/Γ↑,out extracted from
the “tunnelless” data in (a) using Eq. 8 (circles), and mea-
sured directly from tunneling events (crosses). Data is taken
by stepping VDG from low to high value and then in reverse.

V. APPENDICES

A. Density matrix calculations

Below we refer to the the Pauli operators as σi where
i = e, n refers to either electron or nuclear spin, respec-
tively. We write down the conditional nuclear spin states
as they would be after the weak measurement sequence
(as presented in Fig. 1d) without regard to how the nu-
clear spin readout is done in the practice. One could
imagine that this approach might fail for the measure-
ments in Fig. 3, where we use only a short electron read-
out time and hence the electron state is not initialised to
a known state before the strong nuclear spin readout se-
quence. However, since the full strong nuclear spin read-
out sequence consists of 25 [electron initialisation - ESR
pulse - electron readout] cycles, the state of the electron
spin at the end of the weak measurement sequence will
not significantly affect the final nuclear spin assignment
(only the first cycle of the 25 might give incorrect result).

Given an arbitrary initial state of the nuclear spin de-
scribed by a density matrix ρ, the effect of the weak nu-
clear measurement can be described by the conditional
rotation matrix

U(θ) = |⇓〉 〈⇓| ⊗ I + |⇑〉 〈⇑| ⊗R(θ), (9)

R(θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, (10)

where θ is the rotation angle of the electron spin.
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To give a concrete example, we start from the state
Φ = 1/

√
2(|⇑〉+ |⇓〉)⊗|↓〉, i.e., in density matrix form (in

the basis |⇑↑〉 |⇑↓〉 |⇓↑〉 |⇓↓〉)

ρ0 =
1

2

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 . (11)

After the initialization step and the conditional elec-
tron spin rotation of angle θ, the state of the system is

ρθ = U(θ)ρ0U
†(θ) (12)

=
1

2


sin2(θ/2) − cos(θ/2) sin(θ/2) 0 − sin(θ/2)

− cos(θ/2) sin(θ/2) cos2(θ/2) 0 cos(θ/2)
0 0 0 0

− sin(θ/2) cos(θ/2) 0 1


which is an entangled electron-nuclear state for all θ 6=
0, 2π (according to the PPT criterion).

If we then just simply trace out the electron (no con-
ditioning), we obtain the nuclear spin state as

ρun = Tr2(ρθ) (13)

=
1

2

[
sin2(θ/2) + cos2(θ/2) cos(θ/2)

cos(θ/2) 1

]
=

1

2

[
1 cos(θ/2)

cos(θ/2) 1

]
,

showing that the expectation value of σnz remains con-
stant independently of θ, but the off-diagonal elements
decay as a function of the measurement strength. In the
limiting case of θ = π, we are left with a classical mixture
of up and down nuclear spin states.

More interestingly, tracing out the electron condition-
ally on measuring |↓〉 we obtain

ρcn = Tr2 [ρθ (I⊗ |↓〉 〈↓|)] (14)

=
1

1 + cos2(θ/2)

[
cos2(θ/2) cos(θ/2)
cos(θ/2) 1

]
,

which is the state in Eq. 2. The second measurement is
then simply done by repeating the process starting from
the state:

ρ
(2)
θ = U(θ) (ρcn ⊗ |↓〉 〈↓|)U†(θ) (15)

and tracing out similarly. For the measurement rever-
sal we adopt the same procedure but using the rotation
matrix for the other electron spin resonance frequency,
which reads U(θ) = |⇓〉 〈⇓| ⊗R(θ) + |⇑〉 〈⇑| ⊗ I. The ex-
pectation values for all the nuclear spin components are
shown with the data in Fig. 2.

Finally, if we also add a finite electron tunnel-out prob-
ability to process described above, we obtain:

ρcn = Tr2 {ρθ [I⊗ (|↓〉 〈↓|+ exp(−Γt) |↑〉 〈↑|)]} (16)

=
1

1 + cos2(θ/2) + exp(−Γt) sin2(θ/2)

×
[
cos2(θ/2) + exp(−Γt) sin2(θ/2) cos(θ/2)

cos(θ/2) 1

]
.

F

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2

F

0.88

0.9

0.92

0.94

0.96

0.98

1

θ (π) 

(a)

(b)

FIG. 4. Final state fidelity as compared to the ideal state, as
a function of the rotation angle for one (a) or two (b) condi-
tional weak measurements. The average of all points in (a)
is 0.969(20) and in (b) 0.972(24). (The value in parenthe-
sis indicates the standard deviation of the datapoints.) The
crosses show points where we have forced the state normal-
ization

√
〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1, see text.

Note that, unlike all the previous states, this one is not
pure unless exp(−Γt) sin2(θ/2) = 0.

B. Fidelity of nuclear control by weak
measurement

Fig. 4 shows the fidelity of the nuclear state experi-
mentally prepared using variable-strength mesurements,
compared to the theoretical target state, for both the
one-measurement (a) and two-measurement (b) case. We
define the state fidelity as F = Tr

(√√
ρiρm

√
ρi
)
. The

measured density matrix is extracted from the measured
expectation values of the spin components 〈σx,y,z〉 as

ρm =
1

2

[
1 + 〈σz〉 〈σx〉 − i〈σy〉
〈σx〉+ i〈σy〉 1− 〈σz〉

]
. (17)

The ideal state ρi has been defined above and in Eqs. (2)
and (3).

Due to the high control and readout fidelity in our sys-
tem, the measured fidelities are very close to unity. At
this level, the finite number of repetitions per point cre-
ates statistical fluctuations of a magnitude comparable
with the true errors in the state control. As a conse-
quence, we find a few data points where the measured
value for

√
〈σx〉2 + 〈σy〉2 + 〈σz〉2 is actually above unity,
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<σ
i>

FIG. 5. EPR-steering. Theoretical expectation values for the
nuclear spin component obtained by starting from the Bell
state, performing an unconditional rotation of the electron
spin with angle θ and then a conditional measurement of the
electron. As the unconditional rotation changes the electron
measurement basis, one finds a perfect correlation between
measuring electron | ↓〉 and nuclear spin Z-component at θ =
0, π. At θ = π/2, there is perfect correlation with the σn

x

component.

meaning that the measured state appears to lie outside
the Bloch sphere. This, in turn, can artificially inflate
the extracted state fidelity, which relies upon the normal-
isation of the density matrices, to the extent that some
points produce a non-physical fidelity above one. Since
this effect would obviously skew the average value of the
measurement fidelity by introducing unphysical values,
we have chosen to forcibly normalize those states so that√
〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1. The normalisation factor is

applied equally to all three spin components. The points
where this normalization was applied are marked with
crosses in Fig. 4.

C. Notes on EPR steering

The use of the word “steering” in the context of quan-
tum systems is somewhat ambigous in the existing lit-
erature. The experiments in this paper demonstrate co-
herent control of a qubit state by measuring another,
correlated, qubit state. This is in many contexts called
steering and this usage of the word indeed makes intu-
itive sense; one is steering the nuclear spin (qubit) by
weakly measuring it via the electron (ancilla).

However, it is also common that the word steering - in
the quantum context - exclusively refers to what is more
exactly known as Einstein-Podolsky-Rosen (EPR) steer-
ing. In the operational definition of Wiseman et al.12,
EPR steering consists of a “game” where Alice must con-
vince Bob that she has shared with him an entangled
state. To do so, she wants to show Bob that she has the
ability to control his quantum state by choosing which
measurement to perform at her end. This, in turn, can
be formalized in experimentally testable EPR steering
inequalities.

A demonstration of EPR steering could be conducted
on the 31P electron-nuclear system, where “Alice” is the
electron spin and “Bob” is the nuclear spin, by following
three steps:

(i) Initialize the electron-nuclear system in a maxi-
mally entangled Bell state, for example |Φ+〉 = (|↓⇓〉 +

|↑⇑〉)/
√

2, as described in Section III B.
(ii) Define different measurement axes for the electron

spin. This requires an unconditional electron spin rota-
tion, which could be obtained by simultaneously applying
ESR pulses of rotation angle θ on both νe1 and νe2, be-
fore a projective electron spin measurement. This is the
key difference between EPR steering and the experiments
shown in Section III A, where all electron spin rotations
were conditional on the nuclear spin state (the simulta-
neous excitation of νe1 and νe2 was not feasible in our
experimental setup.)

(iii) Conditioned on measuring electron spin |↓〉, per-
form nuclear state tomography.

Figure 5 shows the expected nuclear spin components
as a function of θ. At θ = 0 the electron spin measure-
ment is along the z-axis and therefore the subsequent
measurement of σnz could be predicted with unity accu-
racy, whereas the measurement of σnx is completely un-
determined. At θ = π/2 the electron spin measurement
is along the x-axis, and now the reverse is true. This
simple simulation captures the essence of EPR steering.
The state of Bob’s particle tracks exactly the choice of
measurement basis made by Alice.

We note that the violation of Bell’s inequality has al-
ready been demonstrated with the electron-nuclear sys-
tem studied here23, and it is known that the require-
ments for EPR-steering are less strict than those for the
violation of Bell’s inequality. Therefore, using an exper-
imental setup capable of producing two simulataneous
microwave pulses at frequencies νe1 and νe2, it should
be possible to demonstrate EPR steering using the 31P
system described in the present work.
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