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1Departamento de F́ısica Teórica, Universidade do Estado do Rio de Janeiro,

Rua São Francisco Xavier 524, 20550-013 Rio de Janeiro, Brazil
2Department of Physics and Institute for Condensed Matter Theory,

University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801-3080, U.S.A.

Novel controlled non-perturbative techniques are a must in the study of strongly correlated sys-
tems, especially near quantum criticality. One of these techniques, bosonization, has been exten-
sively used to understand one-dimensional, as well as higher dimensional electronic systems at finite
density. In this paper, we generalize the theory of two-dimensional bosonization of Fermi liquids,
in the presence of a homogeneous weak magnetic field perpendicular to the plane. Here, we extend
the formalism of bosonization to treat free spinless fermions at finite density in a uniform magnetic
field. We show that particle-hole fluctuations of a Fermi surface satisfy a covariant Schwinger al-

gebra, allowing to express a fermionic theory with forward scattering interactions as a quadratic
bosonic theory representing the quantum fluctuations of the Fermi surface. By means of a coherent-
state path integral formalism we compute the fermion propagator as well as particle-hole bosonic
correlations functions. We analyze the presence of de Haas-van Alphen oscillations and show how
the quantum oscillations of the orbital magnetization, the Lifshitz-Kosevich theory, are obtained
by means of the bosonized theory. We also study the effects of forward scattering interactions. In
particular, we obtain oscillatory corrections to the Landau zero sound collective mode.

I. INTRODUCTION

Consistent advances in our understanding of strongly
correlated fermionic systems depend on the development
of controlled non-perturbative computation techniques.
Important questions, such as the fate of interacting sys-
tems of fermions at finite density in a quantum critical
regime,1,2 are still waiting to be answered. This is par-
ticularly pressing given the “non-Fermi-liquid” behaviors
seen in many systems, notably in high temperature su-
perconductors in their “strange metal” regime, and many
others systems, such as Sr3Ru2O7, and heavy-fermion
materials near quantum critical points.

At the theoretical level, bosonization has played an im-
portant role in developing accurate low-energy theories in
one and quasi-dimensional systems.3–8 The applicability
of its higher dimensional generalization of this approach
to describe the quantum critical behaviour of fermionic
systems at finite density (i.e. with a Fermi surface) is still
under study. Recent significant progress has been made
in the development of bosonization dualities for theories
of relativistic fermions in 2+1 dimensions.9–11

The first step in the development of higher dimensional
bosonization for Fermi fluids was made by Luther in the
eighties.12 Intense activity in the 1990s in this area lead
to the description of the Fermi liquid fixed point.13–19

The essential idea is that most relevant fermionic prop-
erties at low energies can be described by the dynamics of
particle-hole excitations near the Fermi surface. In this
sense, the Fermi surface can be considered as a quan-
tum mechanical extended object, a membrane in mo-
mentum space, with its own quantum dynamics. Renor-
malization group methods for fermionic systems at fi-
nite density20 found that two-body forward scattering
interactions, parametrized by Landau parameters, are
marginally irrelevant at the Fermi liquid fixed point, con-

sistent with the description provided by the Landau the-
ory of Fermi liquids.21

Higher dimensional bosonization turned out to be a
powerful tool to study metallic systems away form the
Fermi liquid regime. Different phase transitions, for in-
stance driven by Pomeranchuk instabilities, were stud-
ied using this approach,22 in particular the isotropic-
nematic quantum phase transition.23 It was shown that
the nematic quantum critical point and as the nematic
phase itself are dominated by an overdamped low energy
mode, a Goldstone mode with dynamical critical expo-
nent z = 3.24 In these regimes, although the correlators
of the order parameter scale both in frequency and mo-
mentum (with a certain dynamic critical exponent z), the
fermionic correlators scale only in their frequency depen-
dence, i.e. exhibit a form of “local quantum criticality.”25

A powerful experimental tool used to study the prop-
erties of Fermi systems, and particularly their Fermi sur-
face, are quantum oscillation experiments, in particular
the de Haas-van Alphen effect (dHvA). In this case, the
system is placed in a strong enough magnetic field that
overcomes temperature effects, however weak enough to
be far away from the Landau level quantization regime.
In these conditions, thermodynamic observables such as
the magnetization and susceptibility, and the heat ca-
pacity, exhibit oscillations as the magnetic field is varied.
The Lifshitz-Kosevich (LK) theory,26,27 a semiclassical
theory of free fermions in a magnetic field, relates the os-
cillations with geometric properties of the Fermi surface.
This procedure has been used for a long time to study
normal metals which are well described by the Landau
theory of the Fermi liquid.

However, more recently, quantum oscillations have
been observed in strongly correlated materials. The
Lifshitz-Kosevich theory is nowadays widely used to
determine Fermi surface properties in strongly corre-
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lated systems,28–34, even near a quantum critical point35.
However, the validity of the LK theory is questionable in
such extreme regimes where Fermi liquid theory is known
to fail. Thus, understanding quantum oscillations in a
strong coupling regime and, particularly, near a quan-
tum critical point is an important and open problem.36–38

Generally, a magnetic field opens a gap in the fermionic
spectrum and is a relevant perturbation that moves the
system away form the critical point. How the system
scales when the magnetic field approach zero at a Pomer-
anchuk instability39 is a key question to understand the
more general problem of quantum oscillations.

The main purpose of this paper is to extend the
bosonization procedure in the presence of a weak homo-
geneous magnetic field. Here we will focus on the case
of two-dimensional systems. The extension to higher di-
mensions is straightforward. In this paper, we develop
a bosonization approach to a two dimensional spinless
fermionic system, in the presence of a magnetic field
B perpendicular to the plane. Previous attempts to
bosonize a two-dimensional Fermi gas in a weak magnetic
field were done in the Landau level basis40, i. e. , by first
projecting the fermionic fields into Landau levels. This
technique was successfully applied to solve some prob-
lems in which static localized interactions produce tran-
sitions between, almost non-interacting, Landau levels.41

Here, we follow a different approach, keeping the formal-
ism as close as possible to the conventional bosonization
of Fermi liquids. With this tool, we expect to be able
to compute correlations in the dHvA regime in strongly
coupled fermionic systems.

As usual in bosonization, we consider a high density
regime in which the Fermi surface can be taken to be
locally flat. Assuming that the low energy physics is
driven by small fluctuations of the shape of the Fermi
surface,13 we project the Hamiltonian into a narrow shell
of states, divided into patches, around the Fermi surface.
The patches are small enough to allow the linearization
of the dispersion relation, but big enough to contain a
large number of Landau levels.

In this regime, it is possible to define local Fermi sur-
face fluctuations in terms of densities particle-hole excita-
tions and show that the corresponding operators satisfy
a covariant Schwinger algebra. This algebra is at the
root of the bosonization approach, see Eq. (3.15) be-
low. Within this scheme, the fermion operator is defined
as an exponential of a coherent superposition of bosonic
fields, and show that this construction is consistent with
the basic symmetries of the low energy theory. Impor-
tantly, the fermion operator in each patch depends on a
superposition of bosonic excitations all around the Fermi
surface.

We also present an extension of the coherent-state path
integral formalism13 to describe a system in the presence
of a magnetic field, suitable for the computation of corre-
lation functions. The semiclassical approximation of this
theory leads to an equation of motion that is a particular
case of the Landau-Silin21 equation in the Fermi liquid

theory. Using these methods we computed the bosonic
correlation functions necessary to characterize the linear
response of the system. This theory allowed us to study
the emergence of the dHvA oscillations from a bosonized
approach. We also discuss the effects of forward scatter-
ing interactions within this formalism. In particular we
compute the collective mode spectrum, finding damped
oscillatory corrections to Landau zero sound. This is a
manifestation of quantum oscillations in a Fermi liquid
non-equilibrium property.
The paper is organized as follows: in Section II we com-

pute an asymptotic form of the two-dimensional propaga-
tor of a Fermi gas in the regime of weak magnetic fields.
In §III we present the main results of the bosonization
approach. Then, we study symmetries of the low energy
Hamiltonian in Section IV. In Section V we construct
the fermionic operators and compute the fermion propa-
gator by using the bosonized theory. In §VI we present a
path integral representation of Fermi surface fluctuations
and compute bosonic correlation functions. In Section
VII we show how the dHvA oscillations can be computed
from the bosonized action. In §VIII we discuss forward
scattering interactions, showing an explicit calculation of
collective modes and their dependence on the magnetic
field. Finally we discuss our results in Section IX . Details
of the calculations are presented in several appendices.

II. FERMI GAS IN A WEAK HOMOGENEOUS
MAGNETIC FIELD

In this section we present a convenient representation
of the asymptotic fermion propagator of a Fermi gas at
high density in a weak magnetic field. The Fermi gas
in a magnetic field is a very well known system. The
effect of the magnetic field is, essentially, to discretize
the fermionic spectrum into highly degenerated equally
spaced Landau Levels. The gaps and the degeneracy
grow with the strength of the magnetic field. Then, for
sufficiently high magnetic field, a finite density of elec-
trons will occupy just the first Landau level. In the pres-
ence of interactions, this regime leads to the integer and
fractional quantum Hall fluids. In this work, we are inter-
ested, instead, in the regime of low magnetic fields, where
there is a huge number of filled Landau levels in a small
energy interval around the Fermi energy. The motiva-
tion is two-fold. We will first use conventional methods
to derive an explicit expression for the fermion propaga-
tor computed directly, in order to compare it with the
results obtained by multidimensional bosonization. On
the other hand, the expression for the occupation num-
ber, obtained from the propagator, will be later used to
derive the bosonic algebra in the bosonization procedure.
The exact propagator of a Fermi gas is well known and
was obtained by several methods, see e.g. Refs. [42–
44]. In this paper we present an asymptotic form of the
fermion propagator, especially useful in the weak mag-
netic field regime we will be interested in.
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We begin by considering a two-dimensional degener-
ated gas of spinless fermions in a perpendicular homoge-
neous magnetic field. The Hamiltonian is,

H =

∫

d2x
1

2m
|(∇ + ieA(x))ψ(x)|2 , (2.1)

where ψ†(x) and ψ(x) are fermionic creation and anni-
hilation operators at position x, satisfying,

{

ψ†(x), ψ(x′)
}

= iδ2(x− x′) . (2.2)

m is the effective electron mass, e is the electron electric
charge and the homogeneous magnetic field is given by
∇ × A = Bẑ. In two dimensions, the magnetic field B
is a pseudo-scalar.
The fermion propagator is defined as

iGF (x,y, t, t
′) = 〈FS|T ψ(x, t)ψ†(y, t′)|FS〉. , (2.3)

where T means time ordered product, and the filled
Fermi sea ground state |FS〉 is built by the applications of
the fermion creation operators c†n,k on the vacuum state,
filling up the single particle states up to the Fermi energy
ǫF :

|FS〉 =
∏

n,k

c†n,k|0 > .

Here, {n, k} are the quantum numbers of the filled Lan-
dau levels. The energy eigenvalues are En,k = h̄ωc(n +
1/2) with the cyclotron frequency ωc = eB/m, in units
in which h̄ = 1. At zero magnetic field, the ground
state |FS〉 is a completely filled circular Fermi surface
of radius kF , and chemical potential µ = ǫF = k2F /2m.
At zero or very low temperatures, the dynamics is gov-
erned by the states laying in the small momentum shell
kF − λ/2 < |k| < kF + λ/2. Equivalently, the energy
shell can be written as ǫF − ∆ǫ < E < ǫF + ∆ǫ. Since
λ≪ kF , the single-particle energy dispersion can be lin-
earized around kF , and ∆ǫ = vFλ/2, where vF is the
Fermi velocity. From now on, we use units in which c = 1,
e = 1, h̄ = 1.
The number of filled Landau levels contained in the

momentum shell below the Fermi surface is NL =
∆ǫ/ωc = λℓ2BkF /2, where we have introduced the mag-
netic length ℓ2B = 1/B = vF /(kFωc). Even in the limit
λ≪ kF , we choose the magnetic field in such a way that
there is still a macroscopic number of filled Landau lev-
els, NL ≫ 1, in the energy shell. This condition can be
stated as ωc ≪ λvF , or equivalently, ℓ

2
B ≫ 1/(λkF ).

In Appendix A we compute the fermion propagator in
this regime, and obtain the explicit expression

iGF (x,y, r0) =
ikF
2π

e−iǫF r0eiθB
∫ 2π

0

dϕ
+∞
∑

ℓ=−∞

Gℓ,ϕ(r, r0) ,

(2.4)
where r = |x − y| is the spacial separation, and r0 =
tx − ty is the time difference. This propagator depends

on the choice of gauge. This dependence is contained
in the phase θB. For instance, in the Landau gauge,
A1 = −Bx2, A2 = 0, where we have chosen a cartesian
coordinates system x = (x1, x2), y = (y1, y2)), the phase
θB is

θB(x,y) =
1

2ℓ2B
(x1 − y1)(x2 + y2) . (2.5)

Instead, in the the symmetric gauge A1 = −Bx2/2, A2 =
Bx1/2, the phase is

θB(x,y) =
1

2ℓ2B
(x1y2 − y1x2) . (2.6)

The rest of the expression for the propagator is gauge-
invariant.
In Eq. (2.4) we used the following notation

Gℓ,ϕ(r, r0) =
eikF r cosϕ

r cosϕ− vF r0 + 2πℓℓ2BkF + iα sgn(r0)
.

(2.7)
where ϕ denotes the direction normal to the Fermi sur-
face, i.e. cosϕ = r · kF /rkF , and ℓ is an integer. Eqs.
(2.4) and (2.7) are the main results of this section.
In order to check the B → 0 limit, it is convenient

to sum over ℓ in order to have a closed form for the
propagator. We obtain,

iGF (x,y, r0) =
ikF
2π

e−iǫF r0eiθB
∫

dϕ eikF r cosϕ

× 1

2ℓ2BkF
cot
( 1

2ℓ2BkF
(r cosϕ− vF r0 + iα sgn(r0))

)

.

(2.8)

Expanding the cotangent in powers of 1/ℓBkF we obtain,

iGF (x,y, r0) =
ikF
2π

e−iǫF r0eiθB

×
∫

dϕ eikF r cosϕ

{

1

r cosϕ− vF r0 + iα sgn(r0)

− 1

12ℓ4Bk
2
F

(r cosϕ− vF r0)

}

, (2.9)

where the first term is the asymptotic Fermi liquid prop-
agator, first computed by Luther,12 and the second term
is the leading order correction in the small magnetic field
expansion.
Returning to Eq.(2.7), and after Fourier transforming

its expression, we find the asymptotic propagator in mo-
mentum and frequency space,

G̃ϕ(q, ω) =
1

ω − vF · q + ivFλ sgn(ω)

×
∞
∑

ℓ=0

e−2πℓNL cos

(

2πℓ
vF · q
ωc

)

. (2.10)

Thus, the propagator oscillates as a function the energy
of the particle-hole pair vF · q with period ωc/ℓ, damped
by the number of filled of Landau levelNL. In the limit of
ωc → 0, NL → ∞ and only ℓ = 0 contributes, recovering
the well known Fermi gas result.
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A. Occupation number

We will now discuss the structure of the occupation
number to check the consistency of the asymptotic prop-
agator given by Eq. (2.4). It will needed below to de-
velop the bosonization technique. The occupation num-
ber, n(k), is given by the equal-time expression

n(k) =

∫

d2x iGF (x, 0, 0)e
ik·x . (2.11)

Replacing Eq. (2.4) into Eq. (2.11), we write

n(k) =

∫ 2π

0

dϕ

2π
nϕ(k) , (2.12)

with

nϕ(k) = ikF

+∞
∑

ℓ=−∞

∫

d2x eiθB(x) Gℓ,ϕ(x, 0) e
−ik·x .

(2.13)
To compute the integrals we define a local coordinate sys-
tem for fixed direction ϕ. Since kF = kF (cosϕ, sinϕ), we
define a local frame of two orthonormal vectors n̂ϕ and

t̂ϕ, respectively defining the local normal and tangential
directions to the Fermi surface. In this basis, position
and momentum are decomposed as x = xnn̂ϕ + xtt̂ϕ,

and k = knn̂ϕ + ktt̂ϕ. Thus, in the local frame, Eq.
(2.13) reads,

nϕ(k) = ikF exp
(

− i

2ℓ2B

∂2

∂kt∂kn

)

Sϕ(kn, kt) (2.14)

where we defined

Sϕ(kn, kt) =

+∞
∑

ℓ=−∞

∫ 2/λ

−2/λ

dxn

∫ 2/Λ

−2/Λ

dxt Gℓ,ϕ(xn, 0) e
−iknxn−iktxt

(2.15)

with Λ = 2πkF /N is a momentum cut-off in the tangen-
tial direction to the Fermi surface, with N ≫ 1 a large
integer. Here, we have chosen the phase θB in the Landau
gauge, Eq. (2.5).
These integrals can be easily done in the limit λ → 0

and Λ → 0. However, this limit should be taken carefully.
Remembering that the number of filled Landau levels is
NL = λℓ2BkF /2, we need to take λ → 0 and ℓB → ∞
keeping NL ≫ 1. Only in this way we recover the Fermi
liquid behaviour as B → 0. The result is,

nϕ(kn, kt) = kF δ(kt)Θ(kF − kn)

+∞
∑

n=−∞

δn,ℓ2
B
kF (kn−kF )

−ikF sin

{

1

ℓ2B

∂2

∂kt∂kn

}

δ(kt)Θ(kF − kn) .

(2.16)

This equation will be important when computing the al-
gebra of Fermi surface fluctuations in the bosonization
approach. Firstly, we observe that nϕ(kn, kt) is given by
very localized distributions. This is a consequence of the
thermodynamic limit. Any technical difficulty that could
eventually emerge for this reason, can be easily overcome
by smoothing the distributions, keeping the cut-offs λ
and Λ small, but finite. An important observation is
that nϕ is gauge dependent. In particular, the second
term in Eq. (2.16) comes form the phase θB in the Lan-
dau gauge. Then, it should give no contribution in the
computation of any observable.
By replacing Eq. (2.16) into Eq. (2.12) we can com-

pute the full occupation number of the fermions. As
stated, the second line of Eq. (2.16) gives no con-
tribution upon integration over ϕ. When written in
terms of the angle ϕ, the first line reads, nϕ(k, ϕ) =
kF δ(k sinϕ)Θ(kF −k cosϕ)∑n δn,ℓ2BkF (k cosϕ−kF ). Upon
integration over ϕ we find,

n(k) = Θ(−q)
+∞
∑

n=−∞

δn,ℓ2
B
kF q +O(

q

kF
) , (2.17)

where q = k − kF with k = |k|. The Kronecker deltas
simply indicate the location of the Landau levels,

q = − n

ℓ2BkF
= −n

2

(

ωc

ǫF

)

kF , (2.18)

which are equally separated in intervals ∆q = 1/ℓ2BkF .
The sum over n is actually limited by the cut-off λ to
the range −NL ≤ n ≤ NL. The Heaviside function just
locates the position of the Fermi surface. We depict this
function in Fig. (1).

FIG. 1: Schematic representation of the fermionic
occupation number in a weak magnetic field. The level
spacing is 1/ℓ2BkF , while the number of filled levels near

the Fermi surface is NL = λℓ2BkF /2, where λ is a
momentum cut-off. In the limit of ℓB → ∞ keeping λ
fixed, the set of Landau level is dense and we have the

usual Fermi gas expression n(k) = Θ(kF − k).

In the limit ℓB → ∞, the filled Landau levels, for q <
λ/2, diverges and become a dense set of points, such that
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the following limit holds

lim
ℓB→∞

+∞
∑

n=−∞

δn,ℓ2
B
kF (kF−k) = lim

ℓB→∞

+∞
∑

ℓ=−∞

ei2πℓℓ
2
BkF q = 1 ,

(2.19)
where the last limit is taken in the sense of a distribu-
tion, i. e. , for huge values of ℓB, terms with ℓ 6= 0 are
strongly oscillating, giving no contribution when applied
to smooth test functions. In this regime, the only relevant
term is ℓ = 0, obtaining the well known occupation num-
ber of a Fermi gas at zero temperature, n(k) = Θ(kF−k).
An additional consistency check of the asymptotic

propagator deduced in this section is the computation
of the density of states

N(ω) = − sgn(ω − ǫF )
1

π
ImGF (x,x, ω) . (2.20)

Using Eq. (2.4), we obtain (see Appendix B),

N(ω − ǫF ) = N(0)
∑

n

δn,(ω−ǫF )/ωc
, (2.21)

where N(0) = kF /vF is the density of states at the Fermi
surface of a two-dimensional Fermi gas.

III. BOSONIZATION

To proceed with bosonization, we follow closely the
approach outlined in Refs. [13–15, and 22]. The main
idea is to project the fermion operator into a restricted
Hilbert space, built by restricting the momentum space
to a small shell around a Fermi surface. We expect that
this restriction correctly capture the low energy and long
distance physics at high density, even in the presence
of a small magnetic field, provided there is a very large
number of Landau levels inside the shell.
For simplicity, we illustrate de procedure by consid-

ering a circular Fermi surface with Fermi momentum
|kF | = kF , which we coarse-grain by introducing N
patches, each of width Λ and height λ, as shown in Fig.2.
The precise shape of each patch is not important. At
the end of the calculations, the limit Λ → 0, N → ∞
should be taken, with the constraint that, in the contin-
uum limit, they add up to the size of the Fermi surface,
i.e. NΛ = 2πkF . Each patch is labeled by an integer
S = 1, . . . , N or, equivalently, by an angle ϕS = SΛ/kF ,
indicating the angular position of the patch on the Fermi
surface with respect to some arbitrary chosen axes (see
Fig. 2). Quite generally, we have that any set of func-
tions fS , label by N integer numbers, S = 1, . . . , N , are
equivalent, in the continuum limit, to periodic functions
f(ϕS + 2π) = f(ϕS), in such a way that

Λ

kF

∑

S

fS →
∫ 2π

0

dϕSf(ϕS)

kF
Λ

(fS+1 − fS) →
df(ϕS)

dϕS
. (3.1)

FIG. 2: Segmentation of a circular Fermi surface of
radius kF in patches of width Λ and height λ. Two

patches label by the angles ϕS and ϕT , separated by an
angle θ, are displayed. The shaded area represents a set

of filled Landau levels inside the patch.

We introduce fermionic field operators ψS(x), ψ
†
S(x)

on each patch, S, defined as,

ψS(x) =
1

L
e−ikS ·x

∑

k

ΩS(k) ck e
ik·x (3.2)

ψ†
S(x) =

1

L
e+ikS ·x

∑

k

ΩS(k) c†k e
−ik·x . (3.3)

Here, the operators c†k (ck) create (destroy) a fermion
with definite momentum k (for the moment, we are ig-
noring the spin degree of freedom). Here, kS is the Fermi
momentum kF , at the center of the patch S, and ΩS(k)
is a compact support distribution that takes the values:
one, for k inside the patch S, and zero otherwise. We
work in a large but finite volume, of linear size L, and
area L2, in such a way that k form a dense set of dis-
crete values. Eventually, we may take the thermody-
namic limit L → ∞, for which

∑

k → L2
∫

d2k. We are
using the normalization factors in the Fourier transforms,
Eqs. (3.2) and (3.3), in such a way to have the follow-

ing bare field scaling dimensions: [ck] = [c†k] = 1 and

[ψS(x)] = [ψ†
S(x)] = L−1.

The usual fermionic anticommutation relations
{

c†k, ck′

}

= δk,k′ (3.4)

imply, for the corse-grained fermions,
{

ψ†
S(x), ψT (x

′)
}

= δS,T δ
2(x− x′) . (3.5)
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The complete Fermi field can be reconstructed by sum-
ming over the entire Fermi surface,

ψ(x) =

N
∑

S=1

e−ikS·xψS(x) . (3.6)

The patch fermions ψS(x) belong to a mixed coordinate-
momentum representation, where x is a configurational
space variable and S, or equivalently, ϕS is a momen-
tum variable. Eq. (3.6), is the generalization of the well
known one dimensional expression, ψ(x) = eikF xψR(x)+
e−ikF xψL(x), that relates the microscopic field operator
to the slowly varying right and left moving fields. Clearly,
ψS(x) generalizes the concept of left, ψL, and right, ψR,
moving fermions. To be consistent with quantum me-
chanics, i.e. with the Heisenberg uncertainty principle,
the fields ψS(x) are slowly varying functions on a length
scale ∼ k−1

F (the mean distance between fermions in real
space).
The low-energy effective Hamiltonian can be obtained

by projecting the free fermion Hamiltonian of Eq. (2.1)
to the restricted Hilbert space spanned by states in the
small shell around the Fermi surface. We find,

HF = ivF
∑

S

∫

d2x ψ†
S(x) (n̂S ·D)ψS(x) , (3.7)

where vF is the Fermi velocity, n̂S is a constant unit
vector normal to the Fermi surface, pointing outward
in the patch S, and we have represented the covari-
ant derivative acting on the projected space spanned by
ψS(x) ≡ ψ(kS ,x), as

Di = ∇i + ikS,i −
1

ℓ2B
ǫij

∂

∂kS,j
. (3.8)

Here, the covariant derivative has two parts. The first
term acts on the slowly varying position variable x, while
the second part is in the momentum representation and
acts on the Fermi surface. We will show that, since both
parts commute with each other, this scale separation has
important consequences on the symmetries of the system.
Eq. (3.8) was obtained by fixing the symmetric gauge

Ai =
B
2 ǫijxj . The term proportional to ikS contributes

to the energy of the ground state (ǫF = vF kF ) and can
be ignored, since it cancels out upon normal ordering the
Hamiltonian with respect to the filled Fermi sea. We de-
cided to keep it in the definition of the covariant deriva-
tive, since it is important to study symmetries of the low
energy Hamiltonian, as we will see in the next section.
To obtain the effective low energy Hamiltonian of

Eq. (3.7), we linearized the dispersion relation in each
patch, considering that the momentum excitations have
|k − kF | < λ < Λ ≪ kF . We have also ignored terms
of the order 1/(ℓBkF )

2 ≪ 1. In other words, we have
neglected sub-leading terms in ωc/vFkF ≪ 1, meaning
that the energy difference between Landau levels is much
smaller than the Fermi energy. The Hamiltonian HF is
the generalization of the usual low-energy Hamiltonian

considered in bosonization of Fermi liquids.13–17,19,22 In
the presence of a weak magnetic field the chiral fermionic
components are coupled with the derivative term propor-
tional to 1/(ℓ2BkF ).
Particle-hole excitations are created by acting with

the operator n̂k(q) = c†
k+q/2ck−q/2 on the reference

state |FS〉. Deformations of the Fermi surface can be
parametrized by a normal ordered particle-hole operator,
smeared at each patch. We define

δnS(q) =
∑

k

ΩS(k − q/2)ΩS(k + q/2) (3.9)

×
{

c†
k+q/2ck−q/2 − 〈FS|c†

k+q/2ck−q/2|FS〉
}

.

As before, ΩS(k) is a distribution with support inside
the patch S. By definition, in the ground state, with an
undistorted Fermi surface, 〈FS|δnS |FS〉 = 0, since the
operator is normal ordered with respect to this state.
The dynamics of the Fermi surface is governed by the

Heisenberg equation

∂δnS(x)

∂t
= i [HF , δnS(x)] . (3.10)

Using the fermionic anticommutator algebra, Eq. (3.4),
we find that this equation of motion has the form of a
collisionless Boltzmann type equation

∂δnS(x)

∂t
+ vS ·∇δnS(x)− ωc

∂δnS(x)

∂ϕS
= 0 . (3.11)

While the second term rules the excitations normal to
the Fermi surface, the last term, coming form the Lorentz
force, induces an evolution of the patch variable around
the Fermi surface. This equation is a particular case
of the Landau-Silin21 equation obtained by means of
a phenomenological treatment of a Fermi liquid in an
electromagnetic field. A similar quantum Boltzmann
equation was deduced previously in the context of the
quantum Hall effect at filling factor ν ∼ 1/2, by ap-
plying non-equilibrium Green function techniques to a
fermion model coupled to a Chern-Simons field.45 More
recently, a related magneto transport equation with simi-
lar structure was deduced in a context of disorder strange
metals.46

The question is whether we can get this equation of
motion from a pure Bosonic approach. To answer it,
we firstly compute the commutation relations of δnS(x).
Using Eq. (3.9) and (3.4) we find,

[δnS(q), δnT (−q′)] = (3.12)

δq,q′

∑

k

ΩS(k − q/2)ΩT (k + q′/2) (nϕS
(q)− nϕT

(−q′))

where nϕS
(q) and nϕT

(−q) are the occupation numbers
at the patches S and T respectively, computed in the pre-
vious section (Eq. (2.16)). Expanding these quantities
for small values of q, we find,

[δnS(q), δnT (−q′)] =

(

L2Λ

2π

)

D̃S(q)δS,T δq,q′ (3.13)
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where D̃S(q) is given by

D̃S(q) = n̂S · q − i

ℓ2BkF

∂

∂ϕS
(3.14)

Fourier transforming Eq. (3.13), we have the commuta-
tion relation in real space,

[δnS(x), δnT (y)] = −
(

Λ

2π

)

iDS

[

δ2(x− y)δS,T
]

,

(3.15)
where

DS = n̂S ·∇+
1

ℓ2BkF

∂

∂ϕS
. (3.16)

This equation is the key of the bosonization procedure,
and, for this reason, it is important to comment on its
meaning and its range of applicability.
In Eq.(3.16) DS is essentially the normal component

of the covariant derivative at each patch S. At zero
magnetic field, the expression DS = n̂S · ∇ reduces to
the usual Schwinger term analogous to the one found
in one-dimensional bosonization (where S = R,L) and
in bosonization of Fermi liquids.13,16,18 The effect of the
magnetic field is to produce a new term tangent to the
Fermi surface. In this way, in the presence of a magnetic
field, the commutation relations are no longer diagonal in
the patch basis, and hence mix states on different patches
of the Fermi surface. The algebra of Eq. (3.15) can be
regarded as a covariant Schwinger algebra. Essentially
the same commutation relations have been recently pro-
posed, computed by means of semiclassical arguments, in
the (quite different) context of fractional Hall states.47

As usual in the treatment of multidimensional
bosonization, in order to close the algebra we have dis-
carded terms proportional to the ratio λ/Λ ≪ 1. Then,
the limit of a large number of patches N should be taken
satisfying λ < Λ ≪ kF . While this is well stablished in
the bosonization of a Fermi liquid, special care should
be taken in the presence of a magnetic field. Indeed,
we need to guarantee that, even in the limit of very
small λ, there should be a huge number of Landau levels
NL = λℓ2BkF /2 ≫ 1 inside the momentum shell around
kF . This requirement thus relates the number of patches
N with the number of Landau levels NL. In fact, the
limits N → ∞, ℓB → ∞ do not commute. To clarify
this point, suppose that we may (wrongly) take the limit
N → ∞, fixing the magnetic length ℓB. Then, the width
of the energy shell around the Fermi energy gets smaller
than the gap between Landau levels, ∆ǫ < ωc. In this
case, the concept of a Fermi liquid with a well defined
Fermi surface is lost. As a last interesting remark, notice
that in Eq. (3.15), the magnetic field contribution is ex-
act, i. e. , there are no higher order correction terms in
a 1/ℓBkF expansion.
Having stablished the bosonic character of the field

δnS , we can introduce the local quadratic Hamiltonian,

HB =
πvF
L2Λ

∑

S

∫

d2x : δn2
S(x) : , (3.17)

where the colons mean normal order with respect to the
filled Fermi sea state, |FS〉. By computing the Heisen-
berg equation of motion,

∂δnS(x)

∂t
= i [HB, δnS(x)] , (3.18)

using the bosonic algebra of Eq. (3.15), we find that
it is exactly the same equation, Eq. (3.11), that we
have found above by direct computation in terms of the
fermionic fields.
Thus, we stablished that, the low energy fermionic

Hamiltonian HF , of Eq. (3.7), with the standard anti-
commutation relations, leads to the same equation of mo-
tion for the particle-hole excitations that the one derived
by using the quadratic bosonic Hamiltonian HB , of Eq.
(3.17), with the bosonic covariant Schwinger algebra, Eq.
(3.15). This is the main result of this section.
It is convenient to have a representation of the Fermi

surface deformations, and the low energy Hamiltonian,
in terms of canonical Bose fields. Since δnS(q) does not
annihilate the ground state, we define the following op-
erators:

aS(q) =

√

2π

L2Λ
(3.19)

×
∑

S′

[

αS,S′(q)δnS′(q)Θ(qn′ ) + α†
S,S′(q)δnS′(−q)Θ(−qn′)

]

a†S(q) =

√

2π

L2Λ
(3.20)

×
∑

S′

[

α†
S,S′(q)δnS′(−q)Θ(qn′) + αS,S′(q)δnS′(q)Θ(−qn′)

]

where αS,S′(q) is a set of matrices to be determined,
qn′ = n̂S′ · q, and Θ is the usual Heaviside distribution.
It is immediate to verify that

aS(q) |FS〉 = 0 . (3.21)

In addition, the requirement that the bosonic operators

aS and a†S satisfy canonical commutation relations

[aS(q), a
†
T (q

′)] = δS,T (δq,q′ + δq,−q′) , (3.22)

fixes the matrix αS,T (q) to satisfy,

∑

T ′

α†
T,T ′ (q)αT ′,S(q) = D̃−1

S,T (q), (3.23)

where D̃−1
S,S′(q) is the Green function

{

n̂S · q − i

ℓ2BkF

∂

∂ϕS

}

D̃−1
S,S′(q) = δS,S′ . (3.24)

We will see that this Green function plays a central role of
the bosonization theory. It will recurrently appear in the
structure of the bosonization construction, as well as in
the computation of all correlation functions. In Appendix
C, we study in detail its mathematical properties.
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Inverting Eqs. (3.19) and (3.20), we obtain the desired
relation that describes the Fermi surface deformation in
terms of a set of canonical harmonic oscillators,

δnS(q) =
L

2π
Λ1/2 (3.25)

×
∑

S′

[

βS,S′aS′(q)Θ(qn′) + β†
S,S′a

†
S′(q)Θ(−qn′)

]

where we introduced the matrix β = α−1. We see that, a
local deformation of the Fermi surface δnS(q) is given by
a linear superposition of canonical harmonic oscillators
around the Fermi surface.

Replacing Eq. (3.25) into Eq. (3.17), we obtain the
bosonic Hamiltonian in terms of canonical harmonic os-
cillator fields,

HB = vF
∑

S

∑

q

a†S(q) D̃S(q) aS(q) . (3.26)

As expected, the quadratic bosonic Hamiltonian is not
diagonal in the patch basis, when written in terms of
canonical fields.

IV. SYMMETRIES OF THE LOW-ENERGY
EFFECTIVE HAMILTONIAN

Symmetries of a microscopic model should be checked
in an effective low-energy model. On the other hand, low
energy Hamiltonians often tend to exhibit larger sym-
metries, that are broken at a more microscopic level. A
standard example is rotational symmetry which is broken
down to the (discrete) point group symmetry of a lattice
but becomes continuous at a critical point. Another ex-
ample more relevant here is the case of a Fermi liquid.
A microscopic interacting fermionic Hamiltonian should
have global gauge U(1) invariance, related with the con-
servation of particle number. Of course, any low energy
effective theory, such as Landau theory of Fermi liquids,
or higher dimensional bosonization, should at least have
this same symmetry (provided the total particle number
is still conserved.)

However, new symmetries can emerge at low energies.
In fact, in the Landau theory of the Fermi liquid the
low energy Hamiltonian is invariant under a global phase
transformation at each point (patch) of the Fermi sur-
face. Then, the system with N patches has a U(1)N

symmetry, related with the particle number conservation
at each patch. In the thermodynamic limit, the theory
formally has a huge U(1)∞ invariance. In the language of
the renormalization group, we say that the microscopic
interactions that break U(1)∞ symmetry are irrelevant
operators at the Fermi liquid fixed point.15,20,48 We will
now see that something similar occurs in the Fermi gas
in a magnetic field.

A. Global U(1) symmetry

Let us begin with the symmetries of the projected
low energy Hamiltonian. Since the particle number
is globally conserved, the Hamiltonian should be in-
variant under global phase transformations, ψ′

S(x) =
exp(iα)ψS(x), for S = 1, . . . , N and α a constant. How-
ever, unlike the Fermi liquid fixed point which has a
U(1) symmetry for each patch, the Hamiltonian of a
Fermi gas coupled to an external uniform magnetic field is
not invariant under phase transformation on each patch,
ψS(x) → exp(iαS)ψS(x), since the magnetic field breaks
this symmetry, thus implying that the charge is not con-
served separately at each patch.
This effect has a close relation with the chiral anomaly.

If we take for instance a one-dimensional sub-system by
considering two opposite patches, say S1 and −S1, the
Hamiltonian is invariant under the chiral transformation
ψ′
±S1

(x) = exp(±iα)ψ±S1(x). In the presence of an ex-
ternal electric field along nS1 the divergence of the chiral
current is not zero, meaning that the charge is not con-
served in each patch independently. In this case, the
system develops a charge density way, breaking transla-
tion invariance49. This chiral anomaly is a direct conse-
quence of the Schwinger term in the U(1) current algebra.
The magnetic field has no effect on each one-dimensional
sub-system. However, it breaks translation symmetry to
magnetic translations. To take this effect into account,
the chiral anomaly (the Schwinger term) should be mod-
ified by the magnetic field, mixing different patches as we
have already described in Eq. (3.15). This term should
transfer charge from path to path along the Fermi sur-
face.
At the quantum level, the generator of the global U(1)

symmetry is the particle number operator ∆N , normal
ordered with the filled Fermi sea reference state |FG〉. In
the bosonic representation, it can be written as

∆N =
∑

S

∆NS =
∑

S

∫

d2x δnS(x) , (4.1)

where we have introduced the number operator at each
patch ∆NS . Using the bosonized Hamiltonian HB, given
by Eq. (3.17), and the covariant Schwinger algebra of Eq.
(3.15), it is simple to derive the commutation relation
[∆NS , HB] = −iωc

d∆NS

dϕS
. Consequently, the equation of

motion for the particle number at each patch is

∂∆NS

∂t
+ ωc

∂∆NS

∂ϕS
= 0 . (4.2)

A general solution, ∆NS ≡ ∆NS(ϕS − ωct), is a local
charge perturbation wrapping around the Fermi surface
with velocity ωc/kF .
In the absence of magnetic field, ωc → 0, [∆NS , HB] =

0, and the system is U(1) invariant at each patch, inde-
pendently. However, even for a weak magnetic field, this
huge symmetry is broken. Of course, by summing up
over the patches of the hole Fermi surface, we obtain
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[∆N,HB] = 0, as it should be, since the total charge is
conserved.

B. Magnetic translations

The full Hamiltonian, Eq. (2.1), is not invariant under
translations, due to the presence of the uniform magnetic
field. Instead, it is invariant under the transformation
ψ(x) → exp{−i(B/2)a × x}ψ(x + a), that character-
izes the group of magnetic translations. Its infinitesimal
generators are D∗

i = ∂i − ieAi, which satisfy

[D∗
i , D

∗
j ] = iBǫij , (4.3)

[D∗
i , Dj] = 0 . (4.4)

Elements of the group, i. e. , finite magnetic translation
labeled by a vector a, Ta = exp(a · D∗), satisfy the
algebra

[Ta, Tb] = 2i sin

(

B

2
ẑ · (a× b)

)

Ta+b . (4.5)

Using Eqs. (2.1), (4.3) and (4.4), we easily show that
[Ta, H ] = 0, confirming that this is indeed a symmetry.
Evidently, this symmetry should also be obeyed by the
(patched) low-energy Hamiltonian.
It is instructive to see how the infinitesimal generators

of magnetic translations are represented on the fermionic
basis for each patch, ψS(x). Considering the projection
of D∗

i on the small shell around the Fermi surface, we
have

D∗
i = ∇i + ikS,i +

1

ℓ2B
ǫij

∂

∂kS,j
. (4.6)

It is very easy to check that these operators in fact sat-
isfy the algebra of Eqs. (4.3) and (4.4) . In fact, Eq.
(4.4) guarantees that these generators commute with the
Hamiltonian, [D∗

i , HF ] = 0, implying that the low energy
Hamiltonian is invariant under the infinitesimal transfor-
mation

δψS(x) =

(

a ·∇+ ia · kS +
1

ℓ2B
a× ∂

∂kS

)

ψS(x) .

(4.7)
The action of a finite magnetic translation on a patch
fermion is

ψ′
S(x) = TaψS(x) = eikS ·aψS+∆S(x+ a) (4.8)

where, ∆S = n̂S · a/ℓ2BkF . The net effect on ψS is, not
only to translate the position x → x+a, but also to shift
the patch parameter S by ∆S. The transformation also
changes the phase by an amount kS · a.
To clarify that the transformation of Eq. (4.8) is in

fact a magnetic translation, it is necessary to reconstruct
the full fermion operator by adding up the contributions

over the patches of the whole Fermi surface. We then
have,

ψ′(x) =
∑

S

eikS ·xeikS ·aψS+∆S(x+ a)

=
∑

S

eikS−∆S·(x+a)ψS(x+ a) , (4.9)

where, in the last equality, we have shifted S → S−∆S.
In the limit of small magnetic fields, 1/ℓBkF ≪ 1, we can
write kS−∆S · x = kS · x− (x× a) · ẑB/2, and then

ψ′(x) = ei
B
2 ẑ·(a×x)ψ(x+ a), (4.10)

which is precisely a magnetic translation of the full
fermion operator.
Our next task is construct a bosonic representation of

the magnetic translation generators. It is known that the
elements of the group can be represented as non-trivial
linear superposition of fermion bilinears.50,51 In our case,
it is more convenient to use a non-linear representation
in terms of the bosonic excitations δnS or, equivalently,

aS , a
†
S . The desired representation of the generators of

magnetic translations is

Π =

√

Λ

kF

1

kFL

∑

S

∫

d2x

(

ikSδnS(x) +
1

2
n̂S :δn2

S(x) :

)

(4.11)
which coincides with the canonical momentum of a Fermi
liquid.18 The covariant Schwinger algebra, Eq. (3.15),
guarantees that this expression satisfies the magnetic
translation algebra, Eq. (4.3). It is possible to rewrite
Eq. (4.11) in terms of the canonical bosonic fields aS and

a†S . However, in that representation, Π is not diagonal
in the patch variable S.

C. Translations

As anticipated, the low-energy Hamiltonian, HF , has
more symmetries than the full Hamiltonian H . In fact,
HF is also invariant under translations ψ′

S(x) = ψS(x+
a). This happens because the projection process brings
about a splitting of scales, as was already observed in the
structure of the covariant derivative, Eq. (3.8). Indeed,
the rapidly oscillating part, proportional to kF · x, has
been extracted from the definition of ψS(x), leading to a
slowly varying field on scales |x| ≫ k−1

F . The infinitesi-
mal generator of translations, P = −i∇, commutes with
all the other symmetry generators and with the Hamilto-
nian, i. e. , [Pi, Pj ] = [Pi, D

∗
j ] = [Pi, Dj ] = [Pi, HF ] = 0.

The bosonic representation of P is written in a simpler

way in terms of the bosonic fields aS and a†S,

P =
∑

S

∫

d2q q a†S(q)aS(q) . (4.12)

Notice that, if rewritten in terms of the fields δnS , this
is a non-local function of the patch variable S.
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V. THE FERMION OPERATOR

To push forward the bosonization program we need to
build the fermion operator in terms of canonical bosonic
fields. The fermion operator should satisfy the following
commutation relations,

[∆N,ψS(x)] = −ψS(x)

[Πi, ψS(x)] =

(

∇i + ikS,i +
1

ℓ2B
ǫij

∂

∂kS,j

)

ψS(x)

[Pi, ψS(x)] = −i∇iψS(x) , (5.1)

where ∆N , Π and P are the infinitesimal generators of
the main symmetries of the low energy system, already
described in the previous section. Their bosonic repre-
sentation is given by Eqs. (4.1), (4.11) and (4.12), re-
spectively.
Interestingly, these three commutation relations are si-

multaneously satisfied by simply using,

[ψS(x), δnT (y)] = δ(x− y)δS,TψS(x) . (5.2)

For consistency, Eq. (5.2) can be independently con-
firmed by means of the definition of δnS and the usual
fermionic algebra.
Similarly to the Fermi liquid case,15 we propose the

following ansatz for the fermion operator,

ψS(x) =
1

2π

√
Λλ KS e

iφS(x) , (5.3)

where KS are the Klein factors (that insure anticom-
mutation relations of the fermion operators at different
patches), and φS(x) is a bosonic phase field. Both oper-
ators will be determined below.
Upon replacing Eq. (5.3) into Eq.(5.2), and addition-

ally assuming that [KS , δnT ] = 0, and [φS(x), δnT (x
′)] =

c, where c is a complex number, we find that the bosonic
field φS(x) must obey

[δnS(y), φT (x)] = −iδ(x− y)δS,T . (5.4)

Evidently, the fermionic phase, φS(x) is the canonical
conjugate field to δnS(x). This algebra is then exactly
solved by defining

δnS(x) =
Λ

(2π)2
DSφS(x) , (5.5)

with the commutation relations,

[φS(x), φT (y)] =
(2π)2

Λ
D−1

S,T (x− y) . (5.6)

Eqs. (5.5) and (5.6) are an elegant (and important)
generalization of the usual expressions of bosonization of
Fermi liquids. Indeed, in the limit ωc → 0, the covariant
derivative becomes DS → n̂S ·∇ and the Green function
approaches the limit D−1

S,T (x−y) → sgn(x−y)δS,T , thus

recovering previous existing results.13–17

By inverting Eq. (5.5) we obtain the desired relation
between the phase φS(x) of the fermionic operator and
the bosonic particle-hole excitations,

φS(x) = −i
(

2π

L

)2
1

Λ

∑

q

e−iq·x
∑

S′

D̃−1
S,S′(q)δnS′(−q) .

(5.7)
We can now see the main change between bosonization
in the absence of a magnetic field and with the appli-
cation of a weak enough field. In the former case, the
phase of the fermionic patch operator is a local function
of the density fluctuation δnS . In the latter, instead, the
phase at a single patch S is defined by the contribution
of δnS on the entire Fermi surface. The structure of the
patch superposition is coded in the Green function of the
normal covariant derivative, D̃−1

S,S′.
It is useful to rewrite the phase of the fermionic field

in terms of canonical fields operators. By replacing Eq.
(3.25) into Eq. (5.7), we obtain

φS(x) = −i 2π

LΛ1/2

∑

q

e−iq·x (5.8)

×
∑

S′

{

αS,S′(q)a†S′(q)Θ(qn′)− α†
S,S′(−q)aS′(q)Θ(−qn′)

}

.

Here, the phase operator is written in terms of a coher-
ent superposition of harmonic oscillators, defined on the
whole Fermi surface. The corresponding weight is given
by the functions αS,S′ , that can be roughly thought as

the square root of the Green function, α ∼ D̃
−1/2
S . The

precise definition of αS,S′ is given in Eq. (3.23). In the
limit of zero magnetic field, the Green function becomes
local in the patch basis, and Eq. (5.8) reduces to the
usual local expression.15,19,22

The Klein factors KS should be built in order to insure
anticommutation relations between fermions defined on
different patches. Consider for instance,

KS = lim
q→0

eiπ
∑S−1

S′=1
δnS′(q) (5.9)

where we have chosen an arbitrary reference S = 1 and
we have ordered the patches counterclockwise. It is then
straightforward to show that the Klein factors commute
with each other, [KS,KT ] = 0, and that they are their

own inverse, i.e. KSK
†
S = 1. Moreover, by using Eq.

(5.4), we have,

K†
TψSKT =

{

−ψS if T > S

+ψS if T ≤ S
(5.10)

This construction completes the definition of the fermion
operator.

A. The fermion propagator at equal times

As an example, and to check the consistency of the
construction, let us compute the fermionic equal time
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expectation value on the same patch. Using the definition
of the fermion operator, Eq. (5.3), we have

〈ψ†
S(x)ψS(0)〉 =

λΛ

(2π)2
〈e−iφS(x)eiφS(0)〉 . (5.11)

Using the Baker-Hausdorff formula,

eÂeB̂ =: eÂ+B̂ : e〈ÂB̂+(1/2)(Â2+B̂2)〉 (5.12)

we can write,

〈ψ†
S(x)ψS(0)〉 =

λΛ

(2π)2
eGφ(S,x) (5.13)

where we used the notation

Gφ(S,x) = 〈FS|φS(x)φS(0)− φ2S(0)|FS〉

= −1

2
〈FS|(φS(x)− φS(0))

2|FS〉 . (5.14)

Using the representation of the bosonic field φS in terms
of harmonic oscillators, Eqs. (5.8), and the fact that
aS |FS〉 = 0, it is simple to obtain,

Gφ(S,x) =

(

2π

L

)2
1

Λ

∑

q,qn>0

(

eiq·x − 1
)

D−1
S,S(q) ,

(5.15)
where D−1

S,S(q) is the diagonal sector of the covariant

derivative Green function given by (see Appendix C for
its computation),

D−1
S,S(q) =

∑

ℓ

ei2πℓ(vS ·q/ωc)

n̂S · q . (5.16)

Replacing Eq. (5.16) into Eq. (5.15), and integrating
over qn and qt (in the local frame) we find,

Gφ(S,x)=

{

∑

ℓ ln
[

i/λ+2πℓℓ2BkF

n̂·x+i/λ+2πℓℓ2
B
kF

]

, for |n̂× x|Λ ≪ 1

−∞, for |n̂× x|Λ ≫ 1

(5.17)
Plugging this result into the equal-time propagator of the
patch fermion, Eq.(5.13), we find,

〈ψ†
S(x)ψS(0)〉 =

iΛ

(2π)2

∏

ℓ

1 + i2πℓℓ2BkFλ

n̂ · x+ i/λ+ 2πℓℓ2BkF

∼ iΛ

(2π)2

∑

ℓ

1

n̂ · x+ 2πℓℓ2BkF + i/λ
+

+O(1/NL) (5.18)

for |n̂S×x|Λ ≪ 1 and zero otherwise. The last expression
coincides with the result for the fermion propagator, Eq.
(2.7), at equal times r0 = 0, with corrections at least of
order N−1

L .

VI. QUANTUM DYNAMICS OF THE FERMI
SURFACE IN A MAGNETIC FIELD

To describe the Fermi surface dynamics, we write the
generating functional in a coherent state path integral
representation,15

Z =

∫

(

∏

S

Da†SDaS
)

eiS[aS ,a†

S
] , (6.1)

where the action is

S[aS , a
†
S ] =

∑

S

∫

dtd2x
{

a†Si∂taS −HB[aS , a
†
S ]
}

.

(6.2)
Using the explicit form of HB, Eq. (3.26), the action
takes de form

S[a] =

∫

d2qdω
∑

S,T

a†S(q, ω)M
−1
S,T (q, ω)aT (q, ω) , (6.3)

with

M−1
S,T (q, ω) =

{

ω − vF D̃S(q)
}

δS,T (6.4)

and the covariant derivative, D̃S(q), was given in Eq.
(3.14).
The Bosonic correlation function,

〈a†S(ω, q), aT (ω, q)〉 =M(ω, q, ϕS, ϕT ) , (6.5)

is found by solving the linear differential equation,
(

ω − vS · q + iωc
∂

∂ϕS

)

MS,T = δp(ϕS − ϕT ) , (6.6)

where δp(ϕS) =
∑

n δ(ϕS + 2πn) is the periodic Dirac
delta function.
We can express the Green function in terms of eigenval-

ues, λn, and eigenfunctions, ψn(ω, q, ϕS), of the operator
M−1

S,T . We have,

MS,T =
∑

n

1

λn
ψ∗
n(ϕS)ψn(ϕT ) (6.7)

provided λn 6= 0. The eigenvalue equation reads,
(

ω − vS · q + iωc
∂

∂ϕS

)

ψn = λnψn , (6.8)

with periodic boundary conditions ψn(ϕS) = ψn(ϕS +
2π). The solutions of this equation are the orthonormal
eigenfunctions,

ψn(ϕS) =
1

2π
einϕS−i

vF q

ωc
sinϕS , (6.9)

and the eigenvalues are λn = ω−nωc, with n integer. By
replacing Eq. (6.9) into Eq. (6.7), we obtain

MS,T (ω, q) =
1

(2π)2
e−i

vF q

ωc
(sinϕS−sinϕT )

×
∞
∑

n=−∞

ein(ϕS−ϕT )

ω − nωc
. (6.10)
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with the desired property, MS,T = M∗
T,S . We observe

that MS,T has poles at frequencies corresponding to the
energies of the Landau levels, ω = nωc. To the best of
our knowledge, this is the first time that the Landau level
quantization appears in a bosonization procedure. An
equivalent phenomenon has been described in the context
of a hydrodynamic description of composite fermions in a
half-filled Landau level.45 Here, the Landau levels appear
as zero modes, λn = 0, of the operatorM−1

S = ω−D̃S(q),
upon imposing periodic boundary conditions around the
Fermi surface. Thus, in our context, Landau quantiza-
tion is a global property of the Fermi surface, and cannot
be seen in a single patch expansion.
The limit of small frequencies, ω ≪ vF q, and in par-

ticular the limit ω → 0, is highly singular an needs to be
handled with care. To this end, it is useful to rewrite the
Green function in terms of the dual Fourier series of the
Landau levels. Using the Poisson summation formula, we
have

∞
∑

n=−∞

einθ

ω − nωc
=

∞
∑

ℓ=−∞

∫ ∞

−∞

dz
eiz(θ−2πℓ)

ω − zωc
. (6.11)

Defining θ = ϕS − ϕT as the angle subtended by two
patches (see Fig. 2) and performing the z integration
(analytically continued to the complex plane), we find

M(ω, q, ϕS , θ) =
i

2ωc

∑

ℓ

sgn(θ − 2πℓ) exp(iαℓ) , (6.12)

where we defined the phase

αℓ(ω, q, ϕS , θ) =
ω

ωc
(θ − 2πℓ) (6.13)

− vS · q
ωc

sin θ − vS × q

ωc
(1− cos θ) .

Eq. (6.12) is completely equivalent to Eq. (6.10).
In order to compute the intra-patch (diagonal sector)

Green function, we coarse-grain the bosonic Green func-
tion on each patch, by integrating over the variable θ on
one patch. We define

GSS(ω, q) =

∫ +Λ/2kF

−Λ/2kF

dθ M(ω, q, ϕS , θ) . (6.14)

In the limit, |θ| ≪ 1, sin θ ∼ θ and 1− cos θ ∼ θ2. Thus,
at leading order, the phase αℓ becomes,

αℓ(ω, q, ϕS , θ) =
ω

ωc
θ − vS · q

ωc
(θ + 2πℓ)

where we have shifted θ → θ + 2πℓ in order to have a
well-defined limit for small frequencies ω ≪ vS · q. The
result of the integration in Eq. (6.14) is, in the limit
NL/N ≫ 1,

GSS(ω, q) =
∑

ℓ

e−i2πℓ(vS ·q

ωc
)

ω − vS · q + i∆ǫ sgn(ω)
, (6.15)

where we have performed the analytic continuation ω →
ω + i∆ǫ sgn(ω).
The ℓ = 0 term in Eq.(6.15) is the well-known result

for the particle-hole correlation function of a Fermi liquid.
The effect of the magnetic field is to introduce oscillatory
terms, which lead to the discretization of the spectrum.
This is depicted schematically by the shaded area in Fig.
2. Finally, we note that this expression has the correct
low frequency behavior since

lim
ω→0

GSS(ω, q) = −D−1
SS(q) , (6.16)

used above in Eq. (5.16). An independent detailed com-
putation is presented in Appendix C.
In the same way we can compute the inter-patch (off-

diagonal) bosonic correlation functions. Consider θ =
θ̄+δθ, where θ̄ is the finite angle subtended by the patches
S and T , and integrate over |δθ| < Λ/kF . The result is

GST (ω, q) =

∑

ℓ

sin
[

Λ
2kFωc

(ω − vS · q cos θ̄ + vS × q sin θ̄)
]

ω − vS · q cos θ̄ + vS × q sin θ̄ + i∆ǫ sgn(ω)
e−iαℓ(θ̄) ,

(6.17)

with |θ̄| > Λ/kF . For weak magnetic fields, this a
strongly oscillating function of ω. Due to the analytic
continuation ω → ω + i∆ǫ sgn(ω), the Fourier transform
yields an exponential factor of the form GS,T (t,x) ∼
exp(−NL/N), that enforces the condition that the limit
limωc→0GS,T (t,x) = 0, as it should be.

VII. DE HAAS-VAN ALPHEN OSCILLATIONS

A distinct characteristic of metals in weak magnetic
fields is the presence of quantum oscillations.52,53 They
encode the main features and existence of a Fermi sur-
face. The de Haas-van Alphen effect (dHvA),27,53 con-
sists of the periodic oscillation of the magnetization as a
function of an external magnetic field. It is widely used
as a tool to investigate the structure and topology of the
Fermi surface. In this section we show how the dHvA
can be computed by using the bosonization approach. In
particular, we show that the structure of the oscillations
is contained in the bosonized action, and depends on the
dynamics of the collective modes of the Fermi surface.
This is important because, on the one hand, confirms
that the bosonization procedure we present here correctly
captures the structural properties of the Fermi surface.
On the other hand, it opens the possibility of computing
quantum oscillations in extensions of the present work to
strongly correlated systems, e.g. the nematic Fermi fluid.
We begin with the bosonic path integral representation

of Eq. (6.1). Integrating over the bosonic fields aS and a†S
we find the zero temperature limit of the thermodynamic
potential, F = − lnZ. We find

F (ωc) = −Tr ln
(

M−1
)

, (7.1)
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where the operatorM−1 is the kernel given by Eq. (6.4).
The orbital magnetic moment, M, can be computed

as

M = −
(µB

L2

) ∂F

∂B
= −µB

(

vF
kFL2

)

∂F

∂ωc

= µB

(

vF
kFL2

)

Tr

{

M
∂M−1

∂ωc

}

. (7.2)

Here µB = 1/2m = vF /2kF is the Bohr magneton in the
natural units for our system. The operatorsM and M−1

are diagonal in both frequency and momentum variables
(ω, q). However, they are not diagonal in the patch index
S. Then, the trace can be computed as

Tr
{

M × ∂M−1

∂ωc

}

=

L2

vFλ

∫

dωd2q
∑

S,T

〈S|M |T 〉〈T |∂M
−1

∂ωc
|S〉 . (7.3)

Here, for simplicity, we use the notation |S〉 ≡ |S, ω, q〉.
On the other hand,

〈T |∂M
−1

∂ωc
|S〉 = i

∂

∂ϕS
δ(ϕS − ϕT ). (7.4)

Then the magnetization takes the form,

M = i

(

µB

kFλ

)
∫

dωd2q
∑

S

∂MS,T

∂ϕT

∣

∣

∣

∣

T=S

. (7.5)

Here, the condition T = S should be understood as ϕT =
ϕS in the sense of a coarse-grained expression on a patch,
i. e. , −Λ/2kF < ϕS − ϕT < Λ/2kF . Thus, using θ =
ϕS − ϕT we have,

∂MS,T

∂ϕT

∣

∣

∣

∣

T=S

= − lim
Λ/kF→0

∫ Λ/2kF

−Λ/2kF

dθ
dM(ϕS , θ)

dθ
, (7.6)

where M(ϕS , θ) is given by Eq. (6.12).
Now, we choose a local coordinate system in each

patch, d2q = dqndqt, and integrate over qt and ω. Af-

ter taking the continuum limit (Λ/kF )
∑

S →
∫ 2π

0 dϕS ,
we find the following expression for the orbital magneti-
zation M

M = −1

2

(

v2F
kFωc

)

∑

ℓ

∫ λ

0

dq

∫ 2π

0

dϕS e
i2πℓ

vF q

ωc
cosϕS

= −
(

πv2F
kFωc

)

∑

ℓ

∫ λ

0

dqJ0(2πℓvF q/ωc) , (7.7)

where J0(z) is the Bessel Function of the first kind. Fi-
nally, we compute the q integration, remembering that
we are working in the asymptotic limit vFλ/ωc ≫ 1.
Disregarding constant terms, we find for the oscillatory
part of the magnetization the result

Mosc = −2µB

√

ωc

2πvFλ

∑

ℓ=1

1

ℓ3/2
sin

{

2πℓvFλ

ωc
+
π

4

}

.

(7.8)

We see that, the magnetization oscillates with the vari-
able 1/ωc, with period 1/(ℓvFλ). Each harmonic is
weakly damped by the power law ℓ−3/2. The overall os-
cillating function is damped at low fields with an enve-
lope function (ωc/2πvFλ)

1/2. This result coincides with
the zero-temperature limit of the well-known Lifshitz-
Kosevich formula.27 From a geometrical point of view,
the envelope function is the flux of the magnetic field
through the area 1/2πkFλ, corresponding (in momen-
tum space) to the area limited by the shell of width λ
around the Fermi surface. It is interesting to note that
the argument of the sin function, vFλ/ωc, is the number
of Landau levels contained in each patch. Thus, the mag-
netization completes one period every time an additional
Landau level enters the patch, as the magnetic field is
lowered.

In figure 3 we depict the orbital magnetization, Eq.
(7.8), where we have summed the first twenty harmon-
ics. Higher harmonics make no difference within the
graphic precision. In fig. 4 we present the magnetic

FIG. 3: Orbital magnetization Mosc/µB, Eq. (7.8), as a
function of vFλ/ωc. We have considered the first twenty
terms in the sum. Higher harmonics make no difference
within the graphic precision. Each time the variable
vFλ/ωc is an integer, the magnetization has a cusp,
corresponding with an additional complete filled

Landau level inside the patch.

susceptibility χ = ∂M/∂B. We observe divergencies,
each time a new Landau level enters the region bounded
by |q| ≤ λ/2. The divergence arises because higher har-
monics are damped with the extremely low power ℓ−1/2,
producing a divergent series at each Landau level. Even
though, this is a zero temperature computation, temper-
ature fluctuations put another energy scale in the prob-
lem. For relatively strong fields, ωc > kBT (where kB
is the Boltzmann constant), the results essentially co-
incide with the zero temperature expression. For weak
fields, ωc < kBT , temperature exponentially damps out
higher harmonics, and only the leading term, ℓ = 1, sur-
vives. In this case, the divergencies of the susceptibility
are rounded by temperature.
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FIG. 4: Magnetic susceptibility ∂Mosc/∂B, as a
function of vFλ/ωc. We have considered the first twenty

terms in the sum. For vFλ/ωc =integer, the
susceptibility diverges, corresponding with the inclusion
on an additional complete filled Landau level inside the

patch.

VIII. FORWARD SCATTERING
INTERACTIONS

The power of bosonization as a non-perturbative tech-
nique is due in part to the fact that two-body forward
scattering interactions can be written as quadratic oper-
ators in the bosonic basis. The more general two-body
interaction term in the low-energy Hamiltonian can be
written in terms of products of four fermionic opera-

tors, ψ†
S1
(x)ψ†

S2
(y)ψS3(x)ψS4(y), where {S1, S2, S3, S4}

is a set of patches over the Fermi surface. Symmetries
strongly constrain the possible terms that should be con-
sidered. Momentum conservation, kS1+kS2+kS3+kS4 =
0, selects two kinds of processes: forward scattering in-
teractions for which, S1 = S3 and S2 = S4, and BCS
type interactions for which S1 = −S2 and S3 = −S4.
Moreover, exchange processes (S1 = S4, S2 = S3 ) are
absent in the spinless model with reasonably local inter-
actions. In the absence of magnetic fields, these types
of low-energy Fermi surface interactions were extensively
studied both in the fermionic basis,20,54 as well as with
bosonization techniques.13–19,22,24,25

Considering a simple model, based on a circular Fermi
surface, couplings between different patches can be clas-
sified according with irreducible representations of the
rotation group. Each representation is labeled with an
angular momentum quantum number ℓ. Then, it is pos-
sible to consider forward-scattering interactions between
charge densities (ℓ = 0), dipole moment density (ℓ = 1),
quadrupole moment density (ℓ = 2), and so on. The sim-
plest term is a density-density interaction of the form,

Hint =
∑

S,T

∫

d2xd2yf0(x− y)ψ†
S(x)ψS(x)ψ

†
T (y)ψT (y)

(8.1)
where, in the Fermi liquid phase, the interaction potential
can be considered as being essentially local, f0(x− y) =
f0δ

2(x− y).

By carefully computing the point-splitting product of

fermion operators, limǫ→0 : ψ†
S(x + ǫn)ψS(x − ǫn) :,

using the fermion operator defined in Eq. (5.3), we find
the usual bosonization rule

ψ†
S(x)ψS(x) → (1/L) δnS(x). (8.2)

Notice, however, that the bosonization of the local charge
density operator ρ(x) = ψ†(x)ψ(x) contains, in addition
to this contribution, other operators involving fermion
operators on different patches, e.g. the charge-density-
wave operator that involves patches on opposite sides of
the Fermi surface. We will not consider these interesting
effects in this work.
With this identification, the interaction Hamiltonian,

Eq. (8.1) is bosonized to a quadratic operator

Hint =
f0
L2

∫

d2x
∑

S,T

: δnS(x)δnT (x) : . (8.3)

Thus, the interacting fermionic model is mapped into a
system of non-trivially coupled harmonic oscillators.
The bosonization of forward scattering interactions

with higher angular momentum, such as, for instance,
quadrupolar interactions, is more involved. The reason
is that the quadrupole density contains second order co-
variant derivatives that do not commute. Thus, in order
to bosonize them, it is necessary to carefully implement
a point-splitting computation on the Fermi surface vari-
ables. We postpone this study for a separate future pre-
sentation. We finish this section by showing a calculation
of collective modes in the simpler, but non-trivial, case
of density-density interactions.

A. Collective modes

An instructive application of the bosonization tech-
nique in a magnetic field is the computation of Fermi
surface collective modes. Let us consider the interacting
Hamiltonian

H = H0 +Hint (8.4)

where H0 and Hint are given by Eqs. (3.17) and (8.3)
respectively. Using the covariant Schwinger algebra, Eq.
(3.15), we can write the Heisenberg equation of motion,
∂tδnS = −i[H, δnS], as

∂δnS(x)

∂t
+ vS ·∇δnS(x)− ωc

∂δnS(x)

∂ϕS

+ F0vS ·∇
∑

T

δnT (x) = 0 , (8.5)

where we defined the dimensionless parameter F0 =
N(0)f0, where N(0) = kF /vF is the one-particle den-
sity of states at the Fermi surface. Fourier transforming
in x and t we find,
(

ω − vS · q + iωc
∂

∂ϕS

)

δnS = F0 (vS · q) ρ(q, ω) (8.6)



15

where we have introduced the (long wavelength) density
ρ(q, ω) =

∑

S δnS(q, ω). This equation can be inverted
as,

δnS(q, ω) = ρ(q, ω)F0

∑

T

MS,T vT · q , (8.7)

where the Green function MS,T is defined in Eq. (6.10),
or equivalently, Eq. (6.12). This is a formal solution,
since δnS is present on both sides of the equation, thor-
ough ρ(q, ω). In order to find the self-consistent condi-
tion for the collective modes, we sum up Eq. (8.7) over
the patch variable S, and we take the continuum limit.
Thus, we find

vF q

(2π)2

∫ 2π

0

dϕSdϕT M(ϕS , ϕT ) cosϕT =
1

F0
. (8.8)

For weak magnetic fields, the Green function M(ϕS , ϕT )
is strongly picked at ϕS ∼ ϕT . Then, in that limit, the
integral over ϕT can be easily done. At leading order in
the magnetic field we obtain,

∞
∑

ℓ=−∞

∫ 2π

0

dϕS

2π

cosϕS

s− cosϕS
ei2πℓ

vF q

ωc
cosϕS =

1

F0
(8.9)

where we have introduced the usual Fermi liquid param-
eter s = ω/(vF q). Solutions of Eq. (8.9) provide the
dispersion relation ω(q) of the collective modes of the
system. The term with ℓ = 0 is the zero magnetic field
condition, found in usual Fermi liquids. The presence of
a weak magnetic field produces highly oscillatory compo-
nents for ℓ 6= 0. In order to compute corrections to the
Fermi liquid result we need to integrate over ϕS . This
calculation can be done exactly using the expansion55

eiz cosϕ =

+∞
∑

k=−∞

ikJk(z)e
ikϕ (8.10)

where Jk(z) is the kth order Bessel function of the first
kind. By replacing Eq. (8.10) into Eq. (8.9), calculating
the angular integrals over ϕS , and taking advantage of
the symmetry properties of the bessel functions, J2k(z) =
J−2k(z), J2k+1(z) = −J−(2k+1)(z), we find that Eq.(8.9)
takes the form

χ0(s)

{

1 + 2

∞
∑

ℓ=1

J0

(

2πℓ
vF q

ωc

)

}

+ 4

∞
∑

n=1

χ2n(s)

∞
∑

ℓ=1

J2n

(

2πℓ
vF q

ωc

)

=
1

F0
(8.11)

where. χn(s) are multipole Fermi liquid susceptibilities

χn(s) =

∫ 2π

0

dϕ

(2π)

cosϕ

s− cosϕ
einϕ (8.12)

When needed, we have analytically continued the vari-
able s→ s+ iǫ sgn(s). For s > 1,

χn(s) = −δk,0 +
s√

s2 − 1

(

s−
√

s2 − 1
)n

. (8.13)

In the second line of Eq. (8.11), the sum over n can be
exactly performed in the asymptotic limit vF q/ωc ≫ 1.
We have found the following expression,

∞
∑

n=1

χ2n(s)J2n

(

2πℓ
vF q

ωc

)

=

− (1 + χ0(s))
(s−

√
s2 − 1)2

1 + (s−
√
s2 − 1)2

J0

(

2πℓ
vF q

ωc

)

+O

[

(

ωc

vF q

)3/2
]

(8.14)

Replacing this result into Eq. (8.11), we finally get

χ0(s)

{

1 + 4

√
s2 − 1

s

∞
∑

ℓ=1

J0

(

2πℓ
vF q

ωc

)

}

=
1

F0
(8.15)

This is a non-trivial algebraic equation for ω(q). In fact it
is a non-analytic equation in terms of the two dimension-
less variables, s = ω/vF q and ωc/vF q. We have solved
Eq.(8.15) perturbatively in the parameter (ωc/vF q)

1/2,
considering s > 1, and obtained,

s =
1 + F0

√

(1 + F0)2 − F 2
0

+∆(F0)

(

ωc

vF q

)1/2 ∞
∑

ℓ=1

e−2πℓǫ/ωc

√
ℓ

cos

(

2πℓvF q

ωc
− π

4

)

+O

[

(

ωc

vF q

)3/2
]

, (8.16)

where we have define the quantity

∆(F0) =
4

π

F 3
0

(F0 + 1)[(1 + F0)2 − F 2
0 ]

3/2
. (8.17)

Equation (8.16) is the main result of this section. It
represent the corrections to the zero sound dispersion
relation at leading order in (ωc/vF q)

1/2. Taking the limit
ωc → 0 in Eq. (8.16), only survives the first line of the
equation, i. e. ,

s =
1 + F0

√

(1 + F0)2 − F 2
0

, (8.18)

which is the well known linear dispersion relation of the
underdamped Landau zero sound in two dimensions.14

The second line in Eq. (8.16), is the leading order cor-
rection due to the presence of the homogeneous magnetic
field. The corrections are highly oscillatory terms whose
periods are integer multiples of ωc/ℓ. The damping factor
in the sum over ℓ appears due to the analytic continua-
tion ω → ω + iǫ sgn(ω), necessary to properly define the
Green function. In the presence of a magnetic field, it is
subtle to take the limits ωc → 0 and ǫ → 0. If we take
ǫ → 0 at fixed magnetic field, all harmonics contribute
to the sum, producing singularities each time the energy
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of the particle-hole pair, vF q, which coincides with the
energy of a Landau level. Conversely, if we take the limit
ωc → 0 first, all harmonics are damped to zero. In prac-
tice, the scale of ǫ is given by temperature, that blurs the
finely discretized dense spectrum. Thus, if ωc

<∼ kBT ,
only very few harmonics contribute to the sum, produc-
ing a nicely oscillatory behavior. On the other hand, if
ωc

>∼ kBT , more and more harmonics contribute to the
sum, producing peaks whenever a Landau level coincides
with the energy of the particle-hole pair. In the extreme
case of ωc ≫ kBT , equivalent to zero temperature, the
result turns out to be discontinuous peaks. However, in
this regime, the gaps are important and the Fermi liquid
type description breaks down. We depict this behavior in
figure 5. Using Eq. (8.16), where we have plotted ω/ωc,
as a function of the dimensionless variable vF q/ωc. The
straight line is the classical result of Landau, for a typ-
ical value of F0 = 1. In 5a, we fixed the damping term
ǫ/ωc = 0.15. In this case, only the very few first har-
monics appreciably contribute to the sum, producing the
oscillatory behavior shown in the figure. In Fig. 5b, we
fixed the damping term one order of magnitude weaker,
ǫ/ωc = 0.05, corresponding to a regime with stronger
magnetic fields. We observe pronounced peaks for in-
teger values of vF q/ωc, i. e. , when the energy of the
particle hole excitation is commensurate with the energy
of a Landau level.
In Fig. 6 we have fixed the value of the particle-hole

excitation energy vF q, and have depicted the frequency
of the collective mode in terms of the inverse magnetic
field ω−1

c , in the same scale, using Eq. (8.16). To draw
the picture we chose F0 = 1 and ǫ/vF q = 0.002. We ob-
serve a damped oscillation as we decrease the magnetic
field. This behavior is another manifestation of quantum
oscillations. However, different form the dHvA effect, it
is proper of a Fermi liquid and it is not present in the
Fermi gas. Indeed, the amplitude of the oscillations is
governed by ∆(F0). As we can see from Eq. (8.17),
limF0→0 ∆(F0) = 0 and, in this case, there is no correc-
tion to the free dispersion, ω = vF q.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have presented a bosonization tech-
nique that describes a 2D system of fermions at fixed den-
sity in a weak magnetic field. We focused on a regime in
which there is a large number of Landau levels in a small
energy band around the chemical potential. In this way,
the system is, in some sense, near a Fermi liquid regime,
since the concept of Fermi surface still make sense. The
main idea of the bosonization approach is to project the
states of the system onto a restricted subspace, spanned
by states very near the Fermi surface. At very low tem-
perature, it is assumed that fluctuations of the Fermi sur-
face are responsible for the main properties of a fermionic
system. Processes originating from transitions deep in-
side the Fermi sea are completely irrelevant in this low en-
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vF q

ωc
61
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FIG. 5: Dispersion relation for the collective mode
described by Eq. (8.16). In both figures we have fixed
F0 = 1. The straight line is the classical Landau result

for the zero sound mode. In (a), we have fixed
ǫ/ωc = 0.15, corresponding to a weak magnetic field
regime (ωc < kBTc). In (b), we fixed ǫ/ωc = 0.05,

corresponding with stronger values of the magnetic field
(ωc

>∼ kBTc). The peaks coincide with values of vF q/ωc

integers.

ergy regime. Within this perspective, we coarse-grained
the fermion operator in small patches of the Fermi sur-
face, in which we can linearize the dispersion relation.
Fermi surface deformations can be parametrized by a set
of bosonic operators describing the creation of particle-
hole excitations in each patch.

We showed that these operators satisfy a magnetic-
field-dependent covariant Schwinger algebra. In addi-
tion to the usual Schwinger term, proportional to the
normal derivative of the delta function, there is now a
tangential term, proportional to the magnetic field, that
mixes neighbor patches. This algebra is one of the im-
portant results of the paper, and it is the cornerstone
of bosonization construction. The bosonization program
is completed by constructing the full fermion operator in
terms of bosonic excitations. Unlike the case of bosoniza-



17

30 35 40 45 50

vF q

ωc

1.15

1.16

1.17

1.18

1.19

ω

vF q

FIG. 6: Energy of the collective mode excitation in
units of vF q, for fixed q, as a function of the inverse

magnetic field in the same scale, vF q/ωc. The curve was
depicted with Eq. (8.16) where we have fixed F0 = 1
and ǫ/vF q = 0.002. The horizontal line is the value of
the zero sound energy in the absence of magnetic field,

given by Eq. (8.18).

tion of the Fermi liquid, the phase of a fermionic oper-
ator on each patch depends on a coherent superposition
of bosonic fields all around the Fermi surface. With this
construction at hand, we computed the fermionic equal
time propagator, showing that it coincides with the one
computed with standard procedures. Moreover, we have
shown that the low-energy fermionic Hamiltonian can be
exactly mapped to a local quadratic bosonic Hamilto-
nian.
The dynamics of the Fermi surface can be represented

by a path integral coherent state formalism. The effec-
tive action is written in terms of a set of couple canonical
bosonic fields. We showed how to use this formalism to
compute bosonic correlation functions. As an example,
we have computed the orbital magnetization and showed
that the bosonized action correctly captures quantum
oscillations responsible for the de Haas-van Alphen ef-
fect. The fact that quantum oscillations can be obtained
from the bosonized action opens the possibility of com-
puting them at strong coupling. We have also studied
the bosonization of forward scattering interactions, en-
coded in the Landau parameter F0. We computed the
spectrum of collective modes, in particular, corrections
to the Landau zero sound mode. We have shown that the
corrections are damped oscillations, in terms of the mo-
mentum, and either in term of the inverse magnetic field.
These results resemble the problem of quantum oscilla-
tions and, in fact, have the same origin. However, this
oscillation, in a non-equilibrium property, is completely
due to interactions. In fact, the correction vanishes in
the limit of F0 → 0.
In this work we considered the case of a fluid of spinless

fermions at finite density with the main goal to establish
the bosonization rules for a system in a uniform magnetic
field. We have also discussed some effects of Fermi liquid
corrections due to forward scattering interactions. An

important and challenging extension is to apply these
ideas and techniques to the more interesting case of 2D
Fermi systems at and near quantum criticality. Higher
dimensional bosonization was used before to study the
quantum phase transition to a nematic state driven by a
Pomeranchuk instability.25 Such systems are the simplest
examples of non-Fermi liquids. In a separate publication
we will study the effects of a uniform magnetic field in
these non-Fermi liquid phases of matter and quantum
critical points. The great interest of such studies is how
non-Fermi liquid behavior affects quantum oscillations
and similar magnetic field driven phenomena.

Note: After this work was completed we became aware
of a recent paper by Nguyen and Son56 on an algebraic
approach to the fractional Hall effect. Although the prob-
lem that these authors study is formally different than
ours, their formalism is in spirit similar to the theory of
higher dimensional bosonization of dense Fermi systems
that we use here.
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Appendix A: The Fermion Propagator in a uniform
magnetic field

The propagator for two-dimensional spinless free
fermions in a uniform magnetic field, with p filled Landau
levels, can be written as,57

iG(x,y, t− t′) =

Θ(t− t′)

∞
∑

m=p

∫

dk

2π
e−iωm(t−t′)ϕmk(x)ϕ

∗
mk(y)

−Θ(t′ − t)

p−1
∑

m=0

∫

dk

2π
e−iωm(t−t′)ϕmk(x)ϕ

∗
mk(y),

(A1)

where ωm = ωc(m + 1/2) and the eigenfunctions of the
Hamiltonian of Eq. (2.1), in the Landau gauge A1 =
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−Bx2, A2 = 0, are given by

ϕmk(x) =

√

1

2mm!
√
πℓB

× eikx1e
− 1

2

(

x2
ℓB

−kℓB
)2

Hm

(

x2
ℓB

− kℓB

)

,

(A2)

where Hm are the Hermite polynomials of order m.
Integrating over k we find,

iG(x,y, t− t′) =
1

2πℓ2B
e
−
(

r
2ℓB

)2

eiθB

×
{

Θ(t− t′)

∞
∑

m=p

e−iωm(t−t′)Lm[(r/2ℓB)
2
]

− Θ(t′ − t)

p−1
∑

m=0

e−iωm(t−t′)Lm[(r/2ℓB)
2]

}

, (A3)

where r = |x− y|, r0 = tx − ty,

θB(x,y) =
1

2
B(x1 − y1)(x2 + y2) (A4)

with x = (x1, x2), y = (y1, y2), and Lm are the Laguerre
polynomials.
In the weak magnetic field regime, the number of filled

Landau levels is huge, p ≫ 1, and ǫF = k2F /2M ∼ ωcp.
We are interested in the limit ωc → 0 (or ℓB → ∞) and
p → ∞, while keeping the chemical potential constant,
ωcp = ǫF = µ. To this end, we will use the following
asymptotic property of Laguerre polynomials58

Ln(x) = e
1
2xJ0(2

√
nx) , (A5)

valid for n ≫ 1 and x ≫ 1/(4n). Here, J0 is the Bessel
function of the first kind of order zero. Using this prop-
erty we find,

iG(x,y, t− t′) =
1

2πℓ2B
eiθB (A6)

×
{

Θ(t− t′)

p+∆
∑

m=p

e−iωm(t−t′)J0[
√
2m(r/ℓB)]

−Θ(t′ − t)

p
∑

m=p−∆

e−iωm(t−t′)J0[
√
2m(r/ℓB)]

}

,

(A7)

with p≫ 1, and kF r ≫ 1. The cut-off ∆ = (E − ωp)/ωc

is the number of Landau levels near the Fermi energy.
To go further we use the Poisson summation formula,

b
∑

n=a

F (n) =
F (a) + F (b)

2
+

+∞
∑

ℓ=−∞

∫ b

a

dxF (x)ei2πℓx .

(A8)

Then, the propagator reads,

iG(x,y, t− t′) =
1

2πℓ2B
eiθB

+∞
∑

ℓ=−∞

{

Θ(t− t′)

∫ p+∆

m=p

dm ei2πℓme−iωm(t−t′)J0[
√
2m(r/ℓB)]

−Θ(t′ − t)

∫ p

m=p−∆

dm ei2πℓme−iωm(t−t′)J0[
√
2m(r/ℓB)]

}

+
1

2πℓ2B
eiθBe−iǫF (t−t′)J0(kF r) sgn(t− t′). (A9)

Upon the change of variables m = (1/2)ℓ2Bk
2, we obtain

iG(x,y, t− t′) =
1

2π
eiθB (A10)

×
+∞
∑

ℓ=−∞

{

Θ(t− t′)

∫ kF+λ/2

kF

dkkeiπℓℓ
2
Bk2

e−iωk(t−t′)J0(kr)

−Θ(t′ − t)

∫ kF

kF−λ/2

dkkeiπℓℓ
2
Bk2

e−iωk(t−t′)J0(kr)
}

+
1

2πℓ2B
eiθBe−iǫF (t−t′)J0(kF r) sgn(t− t′).

We now define q = k − kF in the first integral and
q = kF − k in the second one. We next use the inte-
gral representation of the Bessel function,

J0(x) =

∫ 2π

0

dϕ

2π
eix cosϕ (A11)

to obtain

iG(x,y, t− t′) = (A12)

kF
2π
e−iǫF (t−t′)eiθB

+∞
∑

ℓ=−∞

∫ 2π

0

dϕ

2π
eikF r cosϕ

×
{

Θ(t− t′)

∫ λ/2

0

dqeiq(r cosϕ−vF (t−t′)+2πℓℓ2BkF )

−Θ(t′ − t)

∫ λ/2

0

dqe−iq(r cosϕ−vF (t−t′)+2πℓℓ2BkF )
}

+O(ℓ−2
B ).

Implementing a smooth cut-off for the momentum inte-
grals we finally find,

iG(x,y, t− t′) =
ikF
2π

e−iǫF (t−t′)eiθB
+∞
∑

ℓ=−∞

(A13)

∫ 2π

0

dϕ

2π

eikF r cosϕ

r cosϕ− vF (t− t) + 2πℓℓ2BkF + iα sgn(t− t)
,

which coincides with Eq. (2.4).
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Appendix B: Density of States

The density of states can be computed from the imag-
inary part of the self-correlation function as,

N(ω) = − sgn(ω − ǫF )
1

π
ImGF (x,x, ω) , (B1)

where

GF (x,x, ω) =

∫ +∞

−∞

dt GF (x,x, t)e
iωt.

=
kF
2π

+∞
∑

ℓ=−∞

∫ 2π

0

dϕ

∫ +∞

−∞

dt Gℓ,ϕ(0, t)e
−i(ǫF−ω)t .

(B2)

Notice that N(ω) is Gauge invariant since θB(x,x) = 0
in any Gauge. By computing the time integral in the
complex plane we find,

Gℓϕ(ω) =
−1

vF

∫ +∞

−∞

e−i(ǫF−ω)t

t− 2πℓ
ℓ2
B
kF

vF
+ iα sgn t

dt

=
−2πi

vF
e−i2π|ℓ (ω−ωc)

ωc
| [Θ(ω − ǫF )Θ(−ℓ)−Θ(ǫF − ω)Θ(ℓ)] .

(B3)

Replacing this expression into Eq. (B1) we obtain

N(ω − ǫF ) = N(0)
∑

n

δ
n,

ω−ǫF
ωc

, (B4)

where N(0) = kF /vF is the density of states at the Fermi
surface of a two-dimensional Fermi gas. Equation (B4)
is just another consistency check of the asymptotic prop-
agator, Eqs. (2.4) and (2.7).

Appendix C: Green function of the covariant
derivative

The covariant derivative

D̃S = n̂S · q − i

ℓ2BkF

∂

∂ϕS
, (C1)

as well as, its inverse D−1
S,T (q) play a central role in the

bosonization procedure. For this reason, it is useful to
have a deeper understanding of their properties. There
are two simple, however instructive, limits: ℓB → ∞
(with q 6= 0), and q → 0 (with B 6= 0). In the former

case, D̃S = n̂S ·q. The only solution of the homogeneous
equation D̃Sψ = 0, is the trivial one ψ0 = 0. Then, given
properly initial conditions, the Green function is uniquely
determined and it is given by D−1

S,T = δS,T/n̂S · q. The
latter case is also quite simple. When q = 0, the periodic
solution of D̃S(0)ψ = 0 is trivial, ψ = 0, and then, the
Green function is well defined. It is given by

D−1
ST (0) = i

ℓ2BkF
2

∑

n

sgn(ϕS − ϕT − 2nπ) . (C2)

However, in the presence of a finite q particle-hole pair
excitation and a finite magnetic field ℓB 6= ∞, the homo-
geneous equation D̃S(q)ψ = 0 has a non-trivial periodic

solution, ψ0(q, ϕS). Therefore, the operator D̃S(q) has a
zero mode and, rigorously, its inverse does not exist.
Then, we can look for a modified Green function by

limiting the functional space to be orthogonal to the zero
mode. To be concrete, consider one wants to solve the
following inhomogeneous first order linear equation,

D̃S(q)ψ(q, ϕS) = f(q, ϕS) (C3)

where f(q, ϕS) is a smooth function of q and ϕS . Since
the homogeneous equation

D̃S(q)ψ0(q, ϕS) = 0, (C4)

has a non-trivial solution then, for any f(ϕS), Eq. (C3)
has no solution. However, it has an infinite number of
solutions whether the function f(ϕS) is orthogonal to the
zero mode59 ψ0, i. e.

∫ 2π

0

dϕSf
∗(q, ϕS)ψ0(q, ϕS) = 0 . (C5)

Restricting the domain to the orthogonal functional
space, the solutions of Eq. (C3) can be written as

ψ(ϕS) =

∫ 2π

0

dϕT Gm(ϕS , ϕT )f(ϕT ) (C6)

in which we have defined the modified Green function
Gm(ϕS , ϕT ) satisfying
{

n̂S · q − i

ℓ2BkF

∂

∂ϕS

}

Gm(q, ϕS , ϕT ) = δp(ϕS − ϕT )

− 1

2π
ψ∗
0(ϕS)ψ0(ϕT ). (C7)

It is immediate to show that the inhomogeneity of Eq.
(C7) is orthogonal to the zero mode ψ0.
We can now solve Eq. (C7) for ϕS 6= ϕT + 2nπ, ob-

taining

Gm(ϕS , ϕT ) = iℓ2BkFψ0(ϕS)×

×
{

ψ∗
0(ϕT )−

1

2π
ψ0(ϕT )

∫ ϕS

ϕT

[ψ∗
0(ϕ

′)]
2
dϕ′

}

(C8)

(to simplify notation we are not displaying the momen-
tum q explicitly). We complete the calculation by im-
posing that

lim
ϕT→ϕ+

S

Gm(ϕS , ϕT )− lim
ϕT→ϕ−

S

Gm(ϕS , ϕT ) = iℓ2BkF

(C9)
The result is

Gm(ϕS , ϕT ) =
iℓ2BkF

2
sgn(ϕS − ϕT )ψ0(ϕS)× (C10)

×
{

ψ∗
0(ϕT )−

1

2π
ψ0(ϕT )

∫ ϕS

ϕT

[ψ∗
0(ϕ

′)]
2
dϕ′

}

(C11)
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with ψ0(0) = 1. By solving Eq. (C4), we see that the
zero mode with the require boundary conditions in given
by

ψ0(ϕS , q) = e−iℓ2BkF (q×n̂S) . (C12)

The orthogonality relation with respect to the zero mode
has important consequences in the form of the Green
function. In fact, we are interest in the response to rea-
sonable smooth and isotropic electromagnetic fields. In
this cases, f(ϕS) ∼ f =constant. As a consequence, the
inhomogeneous equation of motion will have solutions
provided

∫ 2π

0

ψ0(ϕ)dϕ = 2πJ0(qℓ
2
BkF ) = 0 (C13)

Thus, the momentum should be quantized in units of
1/ℓ2BkF and are given by the zeros of the Bessel func-
tion. At low magnetic fields, the argument of the Bessel
function is large and, from the asymptotic expression we
can infer that the zeros are equally spaced. We can im-
plemented this condition introducing the quantization in
the following way

G(q, ϕS , ϕT ) =
∑

n

δn,qℓ2
B
kF
Gm(q, ϕS , ϕT )

=
∑

ℓ

ei2πℓ(
q·vF
ωc

)Gm(q, ϕS , ϕT ) (C14)

Finally, in order to compute D−1
SS we need to coarse grain

the Green function in the patch. For concreteness

D−1
SS =

∫ ϕS+Λ/2kF

ϕS−Λ/2kF

G(ϕS , ϕT )dϕT . (C15)

Disregarding terms of higher order in a 1/ℓBkF expan-
sion, we obtain,

D−1
S,S(q) =

∑

ℓ

ei2πℓ(vS·q/ωc)

n̂S · q . (C16)

We use this expression in , Eq. (5.16), to compute the
fermion propagator. Eq. (C16) also coincides with the
zero frequency limit of the diagonal Green function

D−1
SS(q) = − lim

ω−>0
GSS(ω, q) (C17)

computed in section VI.
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