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Multifold fermions are generalizations of two-fold degenerate Weyl fermions with three-, four-, six-
or eight-fold degeneracies protected by crystal symmetries, of which only the last type is necessarily
non-chiral. Their low energy degrees of freedom can be described as emergent relativistic particles
not present in the Standard Model of particle physics. We propose a range of experimental probes
for multifold fermions in chiral symmetry groups based on the gyrotropic magnetic effect (GME)
and the circular photo-galvanic effect (CPGE). We find that, in contrast to Weyl fermions, multifold
fermions can have zero Berry curvature yet a finite GME, leading to an enhanced response. The
CPGE is quantized and independent of frequency provided that the frequency region at which it
is probed defines closed optically-activated momentum surfaces. We confirm the above properties
by calculations in symmetry-restricted tight binding models with realistic density functional theory
parameters. We identify a range of previously-unidentified ternary compounds able to exhibit chiral
multifold fermions of all types (including a range of materials in the families AsBaPt and Gd3Cl3C),
and provide specific predictions for the known multifold material RhSi.

I. INTRODUCTION

Weyl fermions are chiral, massless spin-1/2 particles
obeying the Weyl equation1. Predicted shortly after the
formulation of the Dirac equation, Weyl fermions have
yet to be discovered as fundamental particles. How-
ever, condensed matter analogues of Weyl fermions have
been proposed and experimentally realized in so-called
Weyl semimetals (WSMs)2–5, in which they exist as two-
band crossings of linearly-dispersing bands. The cross-
ings points – known as Weyl nodes – are perturbatively
stable on dimensional grounds6,7, a fact which carries
with it a topological interpretation: each node carries
a monopole of Berry curvature, and hence a gap can
only be opened when nodes of opposite charge annihi-
late. The Berry curvature causes those fermions with
crystal momenta close to a node to behave as if they
are in the presence of an effective magnetic monopole.
These monopoles are responsible for many exotic phys-
ical properties of Weyl semimetals, including protected
surface Fermi arcs8 connecting the bulk nodes and un-
conventional magnetoresistance9,10.

Weyl excitations exist in Helium-311,12 and in solid
state systems, where they were first predicted7,13 and
realized in the TaAs family of materials14,15. The cor-
responding Weyl nodes and the associated Fermi arcs
were identified with angle resolved photoemission spec-
troscopy (ARPES) and quasiparticle interference (QPI)
in surface tunneling measurements15–22.

The topological stability of Weyl nodes allows them

to be present in any crystal symmetry group, provided
that either time-reversal or inversion symmetry (or both)
is broken2. In particular, the existence of Weyl nodes
does not require a chiral crystal structure (one with
only orientation-preserving symmetries). In chiral crys-
tals, however, Weyl nodes of opposite charge need not
be coincident in energy. Furthermore, Weyl nodes in
chiral crystals may occur at time-reversal invariant mo-
menta (TRIMs23)24–26. Recent work has identified that
a wider variety of topologically charged fermions be-
yond the Weyl paradigm can appear in condensed mat-
ter systems, unconstrained by Lorentz invariance and
the spin-statistics connection27–31. In the chiral space
groups, there exist three-, four-, and sixfold band degen-
eracies protected by crystal symmetries, which we refer
to collectively as multifold fermions24,31–34. In this work,
we investigate how multifold fermions may be probed
in electrical and optical experiments. We will focus
on the unique interplay between topological charge and
magneto-electric and polarization-dependent response.

As with bands emanating from a Weyl node, bands
meeting in a multifold degeneracy in a chiral group can
be assigned (generically non-zero) Chern numbers, de-
fined by the flux of the Berry curvature through a closed
surface in momentum space. Certain non-chiral space
groups are able to exhibit eight-fold and alternative six-
fold crossings, but the bands cannot be assigned Chern
numbers, so are not topologically charged in the sense
considered here30,31. We do not consider these struc-
tures in this paper, although we occasionally refer to chi-
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FIG. 1. Chiral optical responses and multifold fermions. Top: Schematics of the physical effects considered in this
work and the response functions that describe them. a) The gyrotropic magnetic effect (GME), a current response parallel to
the direction of an applied low-frequency magnetic field. The GME is the low-frequency limit of natural optical activity, the
rotation of the plane of linearly-polarized light upon transmission through a gyrotropic material. (b) The circular photogalvanic
effect (CPGE) is the photo generation of a current which changes sign under a change in the polarization of the incident light,
and which is proportional to the light’s intensity. The CPGE is quantized to an integer (given by a combination of Chern

numbers) multiple of β0 = πe3

h2 for chiral multifold fermions. (c) Schematic dispersion relations for chiral multifold fermions.
The threefold node harbors effective spin-1 quasiparticles. The Chern numbers of the bands are C = −2, 0, 2 from low to
high. The sixfold node is a symmetry-protected doubling of the spin-1 node. The first fourfold node is a symmetry-protected
doubling of a standard spin-1/2 Weyl node, and the bands have Chern numbers C = −1,−1, 1, 1 from low to high. The second
node realises effective spin-3/2 quasiparticles. The Chern numbers of the bands are C = −3,−1, 1, 3 from low to high.

ral multifold fermions to emphasise that these cases are
excluded. In Fig. 1 we show the four possible chiral mul-
tifold nodes and the associated Chern numbers of the
bands. In each case the corresponding low-energy effec-
tive Hamiltonian at the node can be written as a gener-
alization of the Weyl form Ĥ = k · S, and in many cases
the matrices S additionally take the form of higher-spin
representations of SU(2). Multifold fermions, predicted
to occur for example in the chiral semi-metal RhSi, fea-
ture many Fermi arcs with intricate connectivity, mak-
ing ARPES experiments challenging32,33. Bulk transport
and optical probes could provide alternative tests of their
existence, as in Weyl semimetals35–39, but until now have
been unexplored for multifold fermions.

In this work, we study two bulk transport responses
that display specific, unique features of the chiral mul-
tifold fermions: the gyrotropic magnetic effect (GME)
and the circular photogalvanic effect (CPGE). The GME
is the low-frequency limit of ‘natural optical activity’,
the rotation of the plane of linearly-polarized light upon

transmission through an inversion-broken (gyrotropic)
material40–42 [see Fig. (1) (a)]. It has been extensively
revisited recently in the context of Weyl semimetals43–47

due to its connection to the chiral magnetic effect48–50,
which is defined as the existence of a current flowing par-
allel to a magnetic field B51–59. Such a response can only
occur under static fields with a non-equilibrium band
population56,60, or as a low frequency response to dy-
namical electromagnetic fields. The latter connects to
the GME expressed using Faraday’s law B = q × E/ω
as the electric current response generated by a low fre-
quency oscillating magnetic field.

The GME tensor measures the magnetic moment of
bands at the Fermi level44. In two band models, such
as those around Weyl nodes, the orbital moment is ac-
cidentally proportional to the Berry curvature. In this
work we find that for multifold fermions the bands’ GME
responses and Chern numbers not only fail to be propor-
tional, but in many cases they form reversed hierarchies,
in which bands with the largest orbital moment have the
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smallest (even zero) Berry curvature (integrating both
quantities over some surface enclosing the node). We fur-
ther identify a signature of threefold fermions in the form
of a discontinuous derivative in the GME as a function of
chemical potential, and note that the magnitude of the
GME response in these systems is generically enhanced
relative to Weyl semimetals and other chiral materials.

The second effect we study is the CPGE [see Fig. (1)
(b)], which contributes to the nonlinear response, second
order in electric field, describing the (DC) current that
flows in response to an incident light pulse. In particu-
lar, the CPGE is the contribution to the response that
switches sign when reversing the sense of the polariza-
tion of light61–64. Second order nonlinear effects require
the breaking of inversion symmetry, a condition that per-
mits the existence of topologically charged Weyl points.
This observation65,66 naturally places Weyl semimetal
materials under the spotlight for the search of novel
and enhanced photovoltaic phenomena67–76. Indeed, ex-
perimentally, nonlinear responses are significantly en-
hanced77–82, yet the underlying microscopic mechanisms
are yet to be thoroughly understood.

Along with these observations recent work has pre-
dicted that the trace of the CPGE tensor is quantized in
units of e3/h2 for a range of frequencies in Weyl semimet-
als, as it is directly determined by the monopole charge
of the nodes69. It was shown that this quantization is
exact only in two band models: the presence of addi-
tional bands introduces non-universal corrections that
scale with frequency ω, and their energy separation to
the Weyl point ∆E, as ω2/∆E2. The presence of these
corrections severely restricts the search for potential can-
didates to present the effect, since the sub-set of the
two Weyl bands must be significantly far away in energy
from all other states in the spectrum. Naively, one might
think that these corrections exclude the possibility of a
quantized CPGE trace in multifold fermions, contrary to
what was suggested in Ref. 32. Since multifold fermions
are protected crossings of several bands, the correction
ω2/∆E2 would diverge since ∆E2 → 0 for any frequency.

In this work we prove that this simplistic reasoning is
incorrect and that the CPGE trace is in fact quantized to
different integer values related to the monopole charges
of the bands, for any chiral multifold fermion in a range
of frequencies, provided some conditions are met, which
we derive. Together with the unique GME responses, we
therefore outline a range of unique signatures of multifold
fermions applicable to a wide variety of bulk transport
and optical set-ups. Note that both effects are the re-
sponse of the electric current to a pseudovector (B in
the GME, E×E∗ in the CPGE). As a result, the traces
of the GME and CPGE tensors vanish in the presence
of any orientation-reversing operation, and can only be
non-zero in the chiral (or enantiomorphic) point groups.
We therefore study, beyond low energy models, realistic
tight binding Hamiltonians, taking into account the effect
of the (often overlooked) orbital embeddings. Using first
principles calculations, we predict a range of previously

unexplored materials (in the families Gd3Cl3C and As-
BaPt) as being able to demonstrate the phenomena out-
lined in this work. This adds to the previously-identified
multifold material family containing RhSi31–33.

This paper proceeds as follows. In Section II we review
some relevant information on multifold fermions, as well
as the GME and CPGE. In Section III we provide an-
alytical calculations of the GME responses of each type
of multifold node. In Section IV we provide both ana-
lytical and numerical calculations of the nodes’ CPGE
responses. In Section V we provide numerical results for
the GME in realistic band structures in groups 198 and
199; between them these models feature all possible mul-
tifold node types. We additionally provide specific pre-
dictions for transport and optical experiments in RhSi, a
material in space group 198. In Section VI we present the
results of ab initio calculations which result in materials
where clear multifold nodes lie close to the Fermi level.
Finally, in Section VII we provide concluding remarks.

Technical details are left to the appendices, which are
as follows. Appendix A features calculational details of
the GME. Appendix B clarifies which phenomena can
occur in which inversion-broken space groups. Appen-
dices C and D provide formulae for the frequency and
energy scales of three-fold and four-fold fermions respec-
tively, referred to in the CPGE plots in the main text.
Appendix E provides details of the ab initio methods
employed in the search for new materials. Appendix F
provides details of the construction of the tight-binding
models used throughout the paper as well as the models
themselves. Finally, Appendix G demonstrates the de-
coupling of the doubled fermion structures, along with
additional details of the k · p Hamiltonians used in the
text.

II. BACKGROUND

In this section we provide some relevant background
to multifold fermions, the gyrotropic magnetic effect
(GME), and the circular photogalvanic effect (CPGE),
as well as a number of original explanations and clarifi-
cations.

A. Multifold Fermions

In the 65 chiral space groups, isolated point degen-
eracies at high-symmetry points in the Brillouin zone
are generically monopole sources of Berry curvature. A
Chern number can be defined by integrating the flux of
Berry curvature of each band through a closed surface
enclosing the node. The simplest known case is that
of a Weyl node at a time-reversal invariant momentum
(TRIM)25,26 in a spin-orbit coupled material, a twofold
Kramers degeneracy where bands have Chern numbers
C = ±1. The presence of extra symmetries can lead to
the protection of nonlinear twofold27,28 or linear higher-
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node Cn Dn No SO SO

Threefold (spin-1) −2, 0, 2 1, 2, 1 195− 199, 207− 214 199, 214

Sixfold (doubled spin-1) (−2, 0, 2)× 2 (1, 2, 1)× 2 – 198, 212, 213

Fourfold (spin-3/2) −3,−1, 1, 3 3
2
, 7
2
, 7
2
, 3
2

– 195− 199 , 207− 214

Fourfold (doubled spin-1/2) (−1, 1)× 2 (1, 1)× 2 19, 92, 96, 198, 212, 213 18, 19, 90, 92, 94, 96, 198, 212, 213

TABLE I. Multifold fermions in the 65 chiral space groups. The names in parentheses indicate the corresponding
effective theories appearing for special parameter choices. Cn indicates the Chern number of the bands, and Dn indicates the
GME prefactor (see Section II B). The final two columns list space groups featuring each node type, both with and without
spin-orbit (SO) coupling.

fold degeneracies with higher Chern numbers. The latter
are the focus of this work, which we refer to as multi-
fold fermions. In systems with negligible spin-orbit cou-
pling (which we can regard as a spinless system since
spin degeneracy is trivial), protected degeneracies can
also be found, which in general occur in different space
groups and high symmetry points compared to the spin-
orbit coupled case. An exhaustive enumeration consider-
ing both spinless and spinful cases reveals that multifold
fermions in the chiral groups come only in four types,
which are schematically shown in Fig. 1 and summarized
in Table I.

The first type can occur at a TRIM at the corners
of the BZ in the presence of a twofold screw axis, which,
when combined with time-reversal symmetry, can enforce
a doubling of the usual twofold degeneracy, in either spin-
orbit or spin-orbit free systems. The resulting fourfold
crossing can be seen as a double spin-1/2 fermion. With-
out spin-orbit coupling, a double spin-1/2 fermion can
occur at the R point in space groups 19, 198, 212, and
213, and at the A point in space groups 92 and 96. With
spin-orbit coupling, double spin-1/2 fermions occur at
the S and R points in space groups 18 and 19; the M
and A points in space groups 90, 92, 94, and 96; and
the M point in space groups 198, 212, and 213. This is
summarized in Table I. These data were extracted from
Refs. 83–87. Taking space group (SG) 90 at the M (or
A) point as a representative example, the Hamiltonian
can be written as (see Appendix G for further details)

H90(k) =

(
HW (k, b) 0

0 −H∗W (k,−b)

)
(1)

where

HW (k, b) = ~vF

(
akz ck− + ibk+

−ibk− + ck+ −akz

)
. (2)

Here, a, b, and c are real numbers. Note that bands
remain doubly degenerate along the lines kx = ky = 0
(similar decoupling arguments hold for the other space
groups which feature double spin-1/2 fermions with spin-
orbit coupling, although there are more degrees of free-
dom in those cases. See Appendix G for further details.
Together these k·p Hamiltonians describe all double spin-
1/2 fermions.). A double spin-1/2 fermion can also oc-
cur in the spinless case as predicted in Ref. 24, where the

spinless Hamiltonian can be written in the same way with
c = a and b = 0. In these cases bands are doubly degen-
erate at every point. Since the Berry curvature texture
of the Weyl Hamiltonian in Eq. (2) is analogous to that
of a spin-1/2 in a magnetic field, we may also call this a
double spin-1/2 fermion. While specific double spin-1/2
fermions in spin-orbit coupled systems have appeared be-
fore26,34, the full classification and k · p theory is a new
result of this work.

The rest of the more complicated multifold fermions
can only be found in the cubic space groups, and were
previously catalogued in a combination of Refs. 24,31,
and 32. First, threefold degeneracies can occur at
TRIM points in symmorphic groups without spin-orbit
coupling, and at non-TRIM points in nonsymmorphic
space groups with spin-orbit coupling. These threefold
fermions have a Berry curvature texture that is homo-
topic to that of a spin-1 moment in a magnetic field88.
The most general k · p Hamiltonian near these threefold
degeneracies takes the form

H3f (φ,k) = ~vF

 0 eiφkx e−iφky
e−iφkx 0 eiφkz
eiφky e−iφkz 0

 (3)

where the value of the parameter φ is material depen-
dent in general. In the absence of spin-orbit coupling,
time-reversal symmetry restricts φ = π/224, since the
threefold degeneracy occurs at a TRIM in these cases.
For φ = π/2 mod π/3, the threefold Hamiltonian takes
the form H3f = k ·S, where the matrices S form a spin-1
representation of SU(2). Thus at these special values of φ
the linearized Hamiltonian has full rotational symmetry.
Without spin-orbit coupling, these chiral threefold degen-
eracies can be found at the Γ point in space groups 195–
199 and 207–214, the R point in space groups 195, 207,
and 208, the H point in space groups 199, 211 and 214,
and the P point(s) in space groups 197 and 211. With
spin-orbit coupling, threefold degeneracies can be found
in space groups 199 and 214 at the P and −P points.

Additionally, fourfold degeneracies can be found in
the spin-orbit coupled case, corresponding to the restric-
tion of the spin-3/2 representation of SU(2) onto its
tetrahedral32,33 or octohedral31 subgroup (in the tetra-
hedral case, time-reversal symmetry is required). These
fourfold degeneracies have a Berry curvature texture that
is homotopic to that of a spin-3/2 moment in a magnetic
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field. The most general k ·p Hamiltonian for the octahe-
dral case is:

H4f =


akz 0 −a+3b

4 k+
√
3(a−b)
4 k−

0 bkz
√
3(a−b)
4 k− − 3a+b

4 k+

−a+3b
4 k−

√
3(a−b)
4 k+ −akz 0√

3(a−b)
4 k+ − 3a+b

4 k− 0 −bkz


(4)

where a = ~vF cosχ and b = ~vF sinχ, and χ is again
a material-dependent parameter. An extra term, given
in Appendix G, is present in the tetrahedral case89.
Contrasting with the double spin-1/2 fermions discussed
above, bands are generically non-degenerate near a spin-
3/2 degeneracy, except at special values of χ where
the Chern numbers of bands change31. When χ =
arctan(−3) or χ = arctan(−1/3), this Hamiltonian takes
the form H4f = k · S with S forming a spin-3/2 rep-
resentation of SU(2), and H4f recovers full SU(2) in-
variance. As summarized in Table I, a chiral fourfold
crossing can be realized in the groups 195–198 and 207–
214 at the Γ point, as well as at the R point in SGs
207, 208, and the H point in 211 and 214. The four-
fold degeneracy in the octahedral space groups 207–
214 can arise from the irreducible spin-3/2 representa-
tion of the octahedral group, while those in the tetra-
hedral groups 195–198 arise from the paired 1F̄ 2F̄ (co-
)representation of the tetrahedral group32,83,87, as men-
tioned above. Throughout this work, an unqualified ref-
erence to fourfold fermions will refer to these rather than
to double spin-1/2 fermions.

Finally, similarly to the ‘double spin-1/2’, a ‘double
spin-1’ fermion with sixfold degeneracy can be protected
by cubic symmetry. The Hamiltonian of a general sixfold
fermion to linear order can be written as (see Appendix G
for further details)

H6f =

(
H3f (π2 − φ,k) 0

0 H3f (π2 + φ,k)

)
. (5)

Sixfold fermions can be found in primitive cubic space
groups 198, 212 and 213 at the R point. SG 198 can
be pictured as resulting from zone folding of the body-
centered space group 199, and similarly 212–213 can be
seen as the result of zone-folding the body-centered space
group 214. In all cases, the P and −P points which host
threefold degeneracies are folded into R, which therefore
hosts a sixfold crossing.

In summary, there are four types of multifold fermions
in the chiral groups. Since for the double spin-1/2
fermions the response is known from the previous litera-
ture on Weyl fermions, in this work we study the chiral
optical responses of the other three classes, first with the
effective k·p models, then with lattice tight-binding mod-
els in space groups where they are realized. For concrete-
ness, we choose space group 198 with spin-orbit coupling
which features a spin-3/2 fermion at Γ and a double spin-
1 fermion at R, and space group 199 without spin-orbit

coupling which realizes spin-1 fermions at Γ and H (note
also that 198 features a double spin-1/2 fermion at M).
Several candidate materials have been predicted for SG
198, including CoSi, RhSi, CoGe, and RhGe31,33,90. In
this work we also present a new family of materials in
SG 198 and two new materials in SG 214 with spin-1
fermions near the Fermi level.

B. The Gyrotropic Magnetic Effect

The Gyrotropic Magnetic Effect (GME) is the elec-
tric current response to a low-frequency magnetic field
Bj (ω):

ji (ω) = αij (ω)Bj (ω) (6)

where indices i, j, k, . . . span cartesian directions. Re-
peated indices i, j, k, . . . are summed over throughout
the paper unless otherwise stated. The GME can be
understood as the low-frequency limit of ‘natural op-
tical activity’, the rotation of the plane of linearly-
polarized light upon transmission through an optically
active material40–42 (schematically shown in Fig. 1, top
left panel). The GME tensor αij also characterizes the
‘inverse GME’45,91–97, where a magnetization Mi is pro-
duced in response to an applied electric field (in the pres-
ence of time-reversal symmetry):

Mi (ω) = −iω−1αji (ω)Ej (ω) . (7)

Appendix B provides details of the responses possible in
optically active point groups and places them in the con-
text of responses from general inversion-broken media.
In particular, it should be noted that natural optical ac-
tivity can only be measured in transmission but not in
reflection98,99.

The GME tensor receives both inter- and intra-band
contributions45. At low frequencies, the intraband con-
tribution dominates and is given by the Fermi surface
integral

αij (ω) =
iωτ

iωτ − 1

e

(2π)
2
h

∑
n,a

∫
FS

dSav̂
n
Fim

n
j (8)

where a labels the different Fermi surface pockets, n is the
band index, v̂Fi = vFi/|vF | is i-th component of the nor-
malized Fermi velocity, and τ is the scattering time44,45,
which in this work is taken to be τ →∞. In the opposite
limit, ω � 1/τ , only a dissipative inverse GME exists (in
the ωτ → 0 limit, the inverse GME Eq. (7) will be deter-
mined by interband contributions that are not included
in the Fermi surface response of Eq. (8); see Ref. 45 for
a full discussion).

The quantity mn
j (k) = mn

orb,i (k) + Sni (k) is the mag-

netic moment of band n at wavevector k45,100, whose
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orbital part is given by

mn
orb,i (k) =

i

2

e

~
εijk

∑
n′ 6=n

〈n|
(
∂jHk

)
|n′〉〈n′|

(
∂kHk

)
|n〉

εn′ − εn
(9)

where ∂i = ∂/∂ki, and εnk and |n〉 are the energies and
wavefunctions of the Bloch Hamiltonian Hk|n〉 = εnk|n〉.
The spin contribution to the magnetic moment is given
by

Sni = −egs~
4me
〈n|σi|n〉 (10)

where e, me and g ' 2 are the charge, mass, and spin fac-
tor of the electron respectively. Note that σi here refers
to the real spin, as opposed to the pseudospin referred to
in the k ·p Hamiltonians of the previous section. For the
rest of this work, we will only consider the trace of the
GME tensor, which we designate α = tr (αij).

C. The Circular Photogalvanic Effect

In the circular photogalvanic effect (CPGE), circularly
polarized light incident on a gyrotropic material causes
a time-dependent current density which relaxes to a DC
current response. This response can be produced by dif-
ferent mechanisms, and in this work we will concentrate
on the intrinsic contribution at τ → ∞, termed the ‘in-
jection current’, given by

dji
dt

= βij(ω) [E(ω)×E∗(ω)]
j
, (11)

where E(ω) = E∗(−ω) is the electric field (the star indi-
cates complex conjugation). This current grows linearly
in time for t� τ . The CPGE tensor βij can be written
in general as61:

βij(ω)=
πe3

~V
εjkl

∑
k,n,m

fknm∆i
k,mnr

k
k,nmr

l
k,mnδ(Ek,mn − ~ω)

(12)

where V is the sample volume, Ek,nm = Ek,n −
Ek,m and fknm = fkn − fkm are the differences between
band energies and Fermi-Dirac distributions respectively,
rk,nm = i 〈n|∂k|m〉 is the cross gap Berry connection, and
∆i

k,nm = ∂kiEk,nm/~. For the rest of this work, we will
only focus on the trace of the CPGE tensor, which we
label as β = tr (βij).

III. GYROTROPIC MAGNETIC EFFECT:
RESULTS FOR LOW-ENERGY EFFECTIVE

MODELS

We first consider the GME produced by all types of chi-
ral multifold fermions with effective low energy models.

As we consider crossings with more than two bands, the
Berry curvature (defining the topology of the node) and
the orbital moment (responsible for GME) are indepen-
dent, as shown in Table I. To emphasize this distinction,
in this section we compute the GME for the multifold
fermions in the limit where their Hamiltonians have full
rotational invariance.

A. GME of Threefold Fermions

The generic low energy Hamiltonian of a threefold
fermion is given in Eq. (3). The Hamiltonian can be
written H = ~vF kiSi, and at the special point φ = π/2
the Si form a spin-1 representation of SU(2). Close to
the node the energies are E1,2,3 (k) = ~vF k, 0, −~vF k,
where k = |k| and the bands have Chern numbers
C1,2,3 = 2, 0, −2.

The orbital magnetic moment can be calculated using
Eq. (9). Assuming a small spherical Fermi surface pocket
around the node, the result is found in Appendix A to
be:

mn
orb,i =

e

2
DnvF

ki
k2

(13)

with Dn = 1, 2, 1 for the three bands respectively. There
are three important points to note. First, the value of Dn

depends geometrically on the surface taken around the
node, unlike the Chern number Cn which is topological.
Second, mn

orb,i is equal for the two bands in which the
Chern number is opposite. Third, the band which has
zero Berry curvature and zero Chern number has the
largest orbital moment of all the three bands. The last
statement shows that, not only is the magnitude of the
orbital moment (and thus the GME) not related to the
Berry curvature, but the hierarchies between the bands
are distinct.

We proceed to calculating the GME tensor αij of
Eq. (8). For the analytic results of this section we ne-
glect the spin contribution to the magnetic moment, re-
turning to it in Section V. The effective model of Eq. (8)
at φ = π/2 presents the problem that the middle band
is completely flat and does not form a Fermi surface at
any chemical potential µ. The GME from this band is
determined from quadratic corrections to H. With the
simple term H(2) = ~2k2/2m, which is always allowed
by symmetry, the middle band does form a Fermi sur-
face with the same orbital moment. The resulting tensor
is then

αij = δij
1

3

e2

h2


D1 (µ− εnode) Θ(µ− εnode)

D2vF
√

2m (µ− εnode)Θ (µ− εnode)
D3|µ− εnode|Θ (εnode−µ)

(14)

with Θ(x) the Heaviside step function. As a result, the
dependence on µ switches from linear to square root be-
haviour when crossing the node. This is a clear experi-
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mental signature unique to (threefold and sixfold) mul-
tifold fermions. The results are plotted in Section V.
We note that in general other, non-diagonal, quadratic
corrections are allowed. Since their phenomenology is
material-specific we defer a discussion of these effects to
the numerical results from TB models in Section V.

B. GME of Fourfold Fermions

The low energy Hamiltonian of fourfold fermions is
given in Eq. (4). The Hamiltonian can again be writ-
ten in the form H = vFk · S, and at the special points
χ = arctan(−3) and χ = arctan(−1/3) the matrices S
form a spin-3/2 representation of SU(2). At these points
the Berry curvature and orbital moment can be com-
puted analytically. Ordering the four bands E1 < E2 <
E3 < E4, for χ = arctan(−3) they have Chern numbers
C1,2,3,4 = 3, 1, −1, −3, and for χ = arctan(−1/3) the
signs are reversed. A third option, C1,2,3,4 = 3,−1, 1,−3,
is present in another range of values, but the Si matri-
ces do not form an irreducible representation of the spin
algebra, and we do not consider this case here31. The or-
bital magnetic moment again takes the form of Eq. (13),
with prefactors D1, 2, 3, 4 = 3/2, 7/2, 7/2, 3/2. The GME
tensor features a linear dependence on chemical potential
close to the node:

αij = δij
1

3

e2

h2


D1 (µ− εnode) Θ (µ− εnode)
D2 (µ− εnode) Θ (µ− εnode)
D3 |µ− εnode|Θ (εnode − µ)

D4 |µ− εnode|Θ (εnode − µ)

(15)

where we have again neglected the spin part of the mag-
netic moment. The results are plotted in Section V; dif-
ferent values of χ cannot be treated analytically, but such
cases occur in realistic material models, and are again
considered in that section.

C. GME of Sixfold Fermions

As shown in Section II A, and in particular Eq. (5), any
sixfold Hamiltonian can be brought into a block-diagonal
form in which the blocks are the Hamiltonians of three-
fold nodes. As a result, the contribution of each threefold
band is doubled to make the sixfold case. The result is
therefore exactly the same as the threefold case with the
response doubled. The values of Dn and Cn are given for
all multifold node types in Table I.

IV. CIRCULAR PHOTOGALVANIC EFFECT:
RESULTS FOR LOW-ENERGY EFFECTIVE

MODELS

As predicted in Ref. 69, the trace of the CPGE tensor is
exactly quantized for a two-band model of a Type-I Weyl

semi-metal in a certain frequency range; is quantized up
to power law corrections in the presence of extra bands;
is not quantized for a Type-II Weyl. In this section we
first discuss under what conditions the CPGE remains
quantized in multifold fermions. Under very general as-
sumptions, we prove that for any model of a multifold
fermion that is linear in momentum, there is always a
range of frequencies for which the CPGE tensor remains
exactly quantized.

The full CPGE tensor is given in Eq. (12). Using the
terms defined in that equation, and additionally defining
the quantity

Rjnm = εjklr
k
nmr

l
mn (16)

where n,m are not summed over, we can write the CPGE
trace as

β(ω) = 4π2β0

∫
d3k

(2π)3

∑
n,m

fnm∂kiEnmR
i
nmδ(~ω − Emn)

≡ 4π2β0
∑
n,m

∫
d~Snm · ~Rnm, (17)

where β0 = πe3

h2 , and the Fermi function and energy dif-
ferences fnm and Enm are defined below Eq. (12). For
every pair nm of bands, this integral computes the flux of
the vector Rinm through a manifold Snm defined by the
k-points for which exactly one of bands n and m is occu-
pied, and the bands are separated in energy by exactly
ω. In spherical coordinates this reads

β(ω) = 4π2β0

∫
d3k

(2π)3

∑
n,m

fnm
∂kiEnm
|∂kEnm|

Rinmδ(k − knm(θ, φ))

(18)

where ∂kiEnm = ∂kEnmk̂i + 1
k∂θEnmθ̂i + 1

k sin θ∂φEnmφ̂i.
If we further assume a Hamiltonian that is linear in mo-
mentum for any multifold fermion, several simplifications
occur. First, if there is a frequency range where Snm is
a closed surface, fnm = 1 by definition and the δ func-
tion is trivially integrated. Moreover, the lack of energy
scale in a linear model ensures that the integrand is |k|-
independent, so the result for a closed surface does not
depend on µ or ω. Explicitly, since Rinm has dimensions
of k−2, in the absence of any other scale in the problem
one may define Rinm = 1

k2 R̄
i
nm where R̄inm is dimension-

less and k-independent. The contribution from a closed
Snm is then

4π2β0

∫
d~Snm · ~Rnm = 4π2β0

∫
dΩ

(2π)3
∂kiEnm
|∂kEnm|

R̄inm

(19)

where n,m are not summed over. Next we show that for
any linear model, Rinm is purely radial. This is because
kiv

i
nm = ki 〈n|∂kiH|m〉 = ki 〈n|Si|m〉 = 〈n|H|m〉 = 0,

so the off-diagonal velocity operators are orthogonal to

ki. The same argument applies to vimn. Since ~Rnm =
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~vnm × ~vmn/(En − Em)2, ~Rnm is perpendicular to the
plane spanned by Re(vinm) and Im(vimn), which are both

orthogonal to ~k. Thus we must have ~Rnm = k̂Rnm. In
this case, the angular integral simplifies to

4π2β0

∫
d~Snm · ~Rnm = 4π2β0

∫
dΩ

(2π)3
R̄nm (20)

(n,m are not summed over) which now makes no refer-
ence to the shape of the Snm surface. We can then use
the relation between Rinm and Berry curvature

Ωcn = i
∑
m6=n

Rcnm (21)

to determine in which conditions quantization is possible
for the different multifolds69.

For completeness we first review the result in Ref. 69
for a single Weyl node with top and bottom bands labeled
by n = 1, 2, and Chern numbers Cn = 1,−1. In this case
there is only a single surface S12, and when this surface
is closed

β(ω) = 4π2β0

∫
d~S12·~R12 = −i4π2β0

∫
d~S12·~Ω1 = iC1β0

(22)
so the result is quantized for the twofold case. For a
Type-I node there is always a frequency range where S12

is closed. Outside this frequency range, S12 is open and
the result is not quantized. For a Type-II, the Weyl node
is overtilted and S12 becomes an open surface at any
frequency, where β(ω) is never quantized. For a double
spin-1/2 fermion Hamiltonian, which can be decoupled
into two Weyl blocks as shown in Appendix G, this result
applies to each block separately, and the total result is
the sum of the two contributions.

For a threefold fermion, we label top middle and bot-
tom bands n = 1, 2, 3, with Chern numbers Cn = 2, 0,−2.
If S12 and S13 are both closed surfaces but S23 is Pauli
blocked (i.e., S23 is an empty set since both bands are ei-
ther occupied or unoccupied at the resonant frequency),
then using Rc12 = −iΩc1 −Rc13 yields

β(ω) = 4π2β0

(∫
d~S12 · ~R12 +

∫
d~S13 · ~R13

)
= 4π2β0

(
−i
∫
d~S12 · ~Ω1

+

[
−
∫
d~S12 +

∫
d~S13

]
· ~R13

)
= iβ0C1 (23)

where we used the fact from Eq. (20) that the shape of the
surfaces does not matter to deduce that the correction in
square brackets is zero, and the result is quantized. An
analogous result would hold if S23 and S13 were closed.
The same result holds for a sixfold fermion, due to the
decoupling in Eq. (5).

For a fourfold fermion, we label bands from top to bot-
tom as n = 1, 2, 3, 4, with corresponding Chern numbers

Cn = 3, 1,−1,−3. If S13, S14, S23, S24 are closed and
the rest are blocked then

β(ω) = 4π2β0

(∫
d~S13 · ~R13 +

∫
d~S14 · ~R14

+

∫
d~S23 · ~R23 +

∫
d~S24 · ~R24

)
= 4π2β0

(
−i
∫
d~S13 · ~Ω1 − i

∫
d~S23 · ~Ω2

−
∫
d~S13 · (~R12 + ~R14) +

∫
d~S14 · ~R14

−
∫
d~S23 · (~R21 + ~R24) +

∫
d~S24 · ~R24

)
= iβ0(C1 + C2) (24)

where we have used Eq. (20) again to recover the Chern
numbers of bands 1 and 2.

A. CPGE of Threefold Fermions

Having determined the conditions under which quanti-
zation is possible, we now compute the CPGE explicitly
for the threefold fermion with the Hamiltonian in Eq. (3),
the results of which we present in Fig. 2. The energies and
wavefunctions of this Hamiltonian can be computed an-
alytically for arbitrary φ and are presented in Appendix
C. A representative band structure (for φ = π/6 + 0.2) is
plotted in Fig. 2 (a).

To calculate the CPGE we first note that as opposed
to the GME calculation, no quadratic corrections are re-
quired for a meaningful calculation. The resonant surface
of integration for CPGE is defined by Enm − ω when n
is occupied and m unoccupied, and this can be closed at
finite µ in the linear model, despite the presence of open
Fermi surfaces. The different frequency ranges where
these resonant surfaces become open or closed depend
on the parameter φ (see Fig. 2 (b)) and are bounded
by the characteristic energy scales ωi with i ∈ [0, 5] de-
picted in Fig. 2 (a). The manifold S12 becomes active
for ω > ω0 and is closed for ω1 < ω < ω2 while S13 be-
comes active for ω > ω3 and fully closed for ω > ω4. S23

becomes active with ω > ω5 and is never closed in the
linear model.

It is worth discussing the φ = π/6 case first, where
the threefold Hamiltonian has full rotational symmetry.
In this case the energies are simply En = vF k, 0,−vF k,
and there are no open surfaces. S12 becomes closed at
ω0 = ω1 = µ and S13 becomes closed at ω3 = ω4 = 2µ.

However, due to the full rotation symmetry ~R13 = 0, and
according to Eq. (23) we get a fully quantized plateau at
ω = µ (see Fig. 2 (d)).

When φ 6= π/6, ~R13 is finite in general, and according
to Eq. (23) we only have a quantized plateau once both
S12 and S13 are closed, which only occurs for ω > ω4

indicated by the shaded region in Fig. 2 (b) and (c).
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When ω1 < ω < ω2, S12 is closed and there is a non-
quantized plateau that is non-universal. Nevertheless,

the contribution from ~R13 is actually quite small, and
approximate quantization starts already at ω > ω1 as
shown in Fig. 2 (c) for the particular case φ = π/6 + 0.2.
The plateau is preserved up to ω < ω2. If φ > φc =
arctan(−2 +

√
13)/(

√
3) ≈ 0.75 the window closes and

there is no plateau as seen in Fig. 2 (d).
The presence of quadratic terms in the Hamiltonian

will have two types of effect. First, the changes in en-
ergies will determine the new frequency windows where
quantization can be observed. Second, quadratic correc-
tions will introduce an energy scale mv2F , with m an ef-
fective mass, so that the shapes of the resonant manifolds
become important and the cancellations of the correction
terms will in general not occur. Quantization will there-
fore get power law corrections in ω/(mv2F ), which can
be avoided by measuring at frequencies lower than this
scale. It should be noted that power law corrections at
higher frequencies are expected anyway in the presence
of extra bands beyond those forming the multifold node,
which have the same origin as the corrections in the Weyl
node case69.

B. CPGE of Fourfold fermions

Fourfold (spin-3/2) fermions have the low-energy
Hamiltonian specified in Eq. (4). A representative energy
spectrum is shown in Fig. 3 (a) (analytic expressions can
be found in Appendix D).

In analogy with the threefold case, we show in Fig. 3
(a) and (b) the relevant energy scales (ωi with i ∈ [0, 8],
see Appendix C for concrete expressions) where the dif-
ferent resonant surfaces open and close depending on
the parameter −π < χ < 0 which we recall was de-
fined above as χ = arctan(b/a) under Eq. (4). Taking
µ > 0 for concreteness, for −π < χ < arctan(−3) or
arctan(−1/3) < χ < 0, S12 becomes active for ω > ω0,
and is closed for ω1 < ω < ω2. For ω2 < ω < ω3 it is open
again, and becomes blocked at ω > ω3. S13 becomes ac-
tive at ω = ω4 and closed for any ω > ω5. S14 and S23

are active and already closed for ω > ω6. Finally, S24

becomes active at ω = ω7 and is closed for ω > ω8. If
arctan(−3) < χ < arctan(−1/3), the following frequen-
cies are interchanged: ω0 ↔ ω1, ω2 ↔ ω3, ω4 ↔ ω5,
ω7 ↔ ω8 (see Fig. 3 (b)).

As with the threefold case, it is instructive to first
discuss the case χ = arctan(−1/3) ≈ −0.32 where full
rotational invariance is recovered (solid line in Fig. 3
(d)). In this case the energies are E1 = 3~vF |k| =
3E2 = −3E3 = −E4 and optical surfaces are either fully
closed or inactive. Due to angular momentum conserva-

tion imposed by rotational invariance, ~Rnm can only be
nonzero when |n − m| = 1. Because of this, only two
surfaces contribute: S12 for 2/3 < ω/µ < 2 and S23 for

2 < ω/µ. Furthermore, in this special case ~R12 = iΩ1

and ~R23 = i(Ω1 + Ω2). This gives rise to two exactly

quantized plateaus at 3β0 and 4β0 respectively (horizon-
tal gray dashed lines in Fig. 3 (d)).

In the general case χ 6= arctan(−1/3), several more
surfaces contribute. There is still a quantized plateau for
ω > ω7, ω8, when the only active surfaces are S13, S14,
S23, S24. The region where this happens is shaded blue
in Figs. 3 (b) and (c). According to Eq. (24), this plateau
is exactly quantized in the linear model, even without the
full rotational invariance. Other plateaus can be found
with non-quantized values when other surfaces are closed,
but again the deviations from quantization can be acci-
dentally small. As with the threefold case, power law
corrections to quantization due to both quadratic terms
in the Hamiltonian and the presence of extra bands69 are
also to be expected.

C. CPGE of Sixfold Fermions

As mentioned in Section II A, using the unitary trans-
formation presented in Appendix G, the sixfold node can
be brought into block-diagonal form with blocks made
from the Hamiltonians describing threefold nodes. For
this reason the response of the sixfold node is not fun-
damentally different from the threefold case considered
above.

V. REALISTIC MATERIAL HAMILTONIANS

To connect our results with realistic materials it is nec-
essary to go beyond low energy effective models, in order
to enable us to provide space group specific predictions
of the responses we study. The tight binding models we
present and study in this section incorporate the intrinsic
chirality of the space groups and will also take into ac-
count the proper embedding of the orbitals in real space.
The latter, sometimes overlooked, is strictly necessary
to get accurate position operator expectation values and
accurate predictions101.

We mainly consider models in two space groups (198
and 199), which can be generalized to three more
(212/213 and 214 respectively) by specifying the men-
tioned orbital real space embedding. The first is
space group 198, with minimal 4a Wyckoff positions
parametrized by a dimensionless number x (see Fig. 4 (a)
for the corresponding band structure, and Appendix F
for the precise tight-binding model). At x = 1/8 and
x = 5/8 the symmetry group can be enhanced from tetra-
hedral to octahedral, and the resulting structure is in
the more symmetric groups 212 or 213. Since x can be
changed by conjugating the Hamiltonian with a unitary
matrix102, the band structure is independent of the em-
bedding. The GME and CPGE responses, however, are
sensitive to x. The second space group we consider is 199
with minimal 8a Wyckoff positions parametrized by u.
For u = 1/4, the symmetry can again be promoted from
tetrahedral to octahedral, resulting in space group 214.
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FIG. 2. CPGE for an effective 3-fold fermion model: (a) A representative band structure of Eq. (3) for φ = π/6+0.2 ∼
0.72, with the chemical potential depicted by the dashed horizontal line. The frequencies ωi where the different resonant
surfaces Snm change from active to inactive and from open to closed are depicted with a consistent color coding with that of
(b) and (c). Analytical expressions for the spectrum and for ωi can be found in Appendix C. (b) Evolution of the different ωi
as a function of φ. The colored blue region indicates the region where exact quantization holds due to the fact that S12 and
S13 are closed. In the region ω1 < ω < ω2, S12 is closed and a non-quantized CPGE plateau exists. The vertical gray line
corresponds to φ = π/6 + 0.2, the value used to calculate the CPGE in (c). (c) As in (b) the shaded area denotes the region
with exact quantization. Between ω1 < ω < ω2 the plateau is non-universal yet close to the quantized value 2β0 due to the
small magnitude of the corrections. (d) CPGE for different values of φ deviating from the SU(2) invariant case φ = π/6. The
small deviations (even at φ = π/6) from 2β0 are due to numerical artifacts that decrease with increasing momentum resolution.

An example band structure for a minimal tight-binding
model featuring these symmetries is shown in Fig. 4(b).
In Appendix F we again provide further details of the
model band structure.

Recently, a number of materials in space group 198
have been suggested in which the relevant multifold nodes
are predicted to lie near the Fermi level, well separated
from other bands. For concreteness we focus on Rhodium
Silicide (RhSi), employing the tight-binding band struc-
ture developed in Ref. 32, with modifications specified in
Appendix F. We plot the band structure in Fig. 4. Single
crystals of this material have been grown and character-

ized90, with x = 0.3959 for the relevant bands.

This material features two protected multifold cross-
ings. One of these lies at the Γ point. As shown in
Fig. 4 (a) (magnified in Fig. 5 (a)), without spin-orbit
coupling it takes the form of a spin-degenerate threefold
crossing. When spin-orbit coupling is included, the six-
fold crossing splits into a fourfold crossing with Chern
numbers C = 3, 1,−1,−3, describing a spin-3/2 fermion,
and a twofold crossing with a standard Weyl node with
C = 1,−1. At the point R = (π, π, π) without spin-orbit
coupling there is a spin-degenerate double spin-1/2 cross-
ing (magnified in Fig. 5 (b)). Including spin-orbit cou-
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FIG. 3. CPGE for an effective 4-fold fermion model: (a) A representative band structure of Eq. (4) for χ = −0.36 (see
Appendix D for analytic expressions for arbitrary χ). The relevant frequency scales ωi (see Appendix D for expressions) are
depicted with a consistent color coding with that of (b) and (c). The chemical potential is indicated by a dashed horizontal
line. (b) Evolution of the different ωi as a function of χ bounding the different types of surfaces Snm (open, closed, inactive or
active) of allowed optical transitions. The colored blue region indicates the region where exact quantization holds due to the
fact that S13,S14,S23 and S24 are closed. As for the threefold case other regions have closed surfaces resulting in a non-quantized
CPGE plateau. The vertical gray line corresponds to χ = −0.36, the value used to calculate the CPGE in (c). (c) The shaded
area denotes the region with exact quantization (4β0), yet a plateau close to (3β0) is seen for ~ω/µ ∼ 1. The latter is only
exactly quantized at the value of χ that realizes the spin-3/2 multifold case, χ = arctan(−3) ≈ −0.32 (solid curve in (d)). (d)
The CPGE for different values of χ.

pling splits it into a sixfold crossing and a regular Weyl
node33. In addition, there are several type-II Weyl nodes
away from high-symmetry locations33. The nodes at R
and Γ have a significant separation in energy. Finally,
there is also a double spin-1/2 at M with spin-orbit cou-
pling, however it is far below the Fermi level and plays
little role in low-frequency response.

A. GME for Space Groups 198 (RhSi) and 199

For RhSi we have numerically calculated the GME re-
sponse, αij , using Eq. (8) employing the tight-binding
model outlined in Ref. 32 with the essential modification
described in Appendix F to include the real space embed-
ding of the orbitals. This numerical calculation allows us
to account for the non-zero spin-orbit coupling, and to
move away from the low-energy limit. Calculational de-
tails are provided in Appendix A.

In Fig. 5 we show the contributions to the GME from
the Γ and R nodes separately, both with and without
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FIG. 4. Tight binding band structures. (a) The band structure of the 8-band model used for RhSi, from Ref. 32, including
spin-orbit coupling. The model without spin-orbit coupling is shown in Appendix F. (b) The band structure of a minimal
model featuring the symmetries of space group 199, without spin-orbit coupling. As this is not fit to any particular material
the energies are schematic, but the band connectivities and node structures are accurate.

the spin-orbit coupling present in the real material. The
GME tensor αij is proportional to the identity matrix in
all multifold fermions (recall that we denote tr (αij) = α).
We allow the chemical potential to vary in order to give a
controllable experimental handle, adjustable by doping.

The Γ point without spin-orbit coupling features a spin
degenerate threefold node at −0.07 eV. As the chemical
potential µ is lowered above the node, α decreases lin-
early. At the node the gradient dα/dµ varies discontin-
uously, and the trace vanishes at the node (as does the
Fermi surface pocket). Below the node there are two con-
tributions to α: a linear part, and an α ∝ √µ part. This
is in accordance with the analytic predictions of Section
III, overlaid in Fig. 5 (See Appendix A 3 for details).

When the spin-orbit coupling is included, the spin de-
generate threefold node at Γ splits into a fourfold spin-
3/2 node and a standard Weyl node, with the separation
set by the spin-orbit coupling energy scale. At chemical
potentials above the spin-3/2 node, and below the spin-
1/2 node, the behavior matches the case without spin-
orbit coupling. Aside from affecting the band structure,
there is now a spin contribution to the magnetic moment.
The effect is around an order of magnitude smaller than
the orbital part, and the results presented in Fig. 5 are
not significantly affected by this term’s omission. This is
a result of the relatively small spin splitting of the bands
around the node in this material.

At the R point without spin-orbit coupling there is a
spin degenerate double spin-1/2 node at around 0.48 eV
below the Fermi level, and the effective Hamiltonian is
simply four copies of a Weyl node. Varying µ about this
node leads to a linear change in the GME response, en-
hanced by a factor of four compared to the standard Weyl
case45. The sign of the response switches at the node.

When spin-orbit coupling is included the spin degen-

erate double spin-1/2 node at R breaks up into a sixfold
(double spin-1) node at −0.47 eV, and two bands sepa-
rated from this node by the spin-orbit coupling energy
scale. The sixfold node is inverted relative to that at Γ
in the spin-orbit free case.

Also shown in Fig. 5 is the response of a threefold node
without spin-orbit coupling, as occurs at the Γ point in
space group 199. This particular realization of a three-
fold node has anisotropic quadratic corrections about the
node, indicated in Fig. 5(c) by showing cuts along the
M → Γ → R directions. The Γ → X direction features
no dispersion close to the node. The quadratic correc-
tions cancel, giving a linear change in the trace of the
GME tensor as a function of chemical potential.

As the GME tensor αij is proportional to the iden-
tity in all multifold fermions, the response (either cur-
rent or magnetization) will always be parallel to the ap-
plied (magnetic or electric) field. From the Drude form
of the frequency dependence of α (Eq. (8)), at low fre-
quency in unclean samples the inverse GME is expected
to dominate, whereas the direct GME dominates in clean
samples at higher frequencies45. Owing to the difficulty
with which RhSi and related compounds such as CoSi are
grown, it is likely that scattering times τ will be short.
With this in mind, the inverse GME is likely more easily
measurable.

Low and high frequencies are defined relative to the
offset of the topological nodes from the Fermi level. In
RhSi the node offsets correspond to maximum frequen-
cies of 16.9 THz at Γ and 116 THz at R. The lowest probe
frequencies are set by the scattering time τ in the Drude
form of Eq. (8) and are dependent on sample quality.

It is natural to expect the magnitude of the response
from multifold nodes to be significantly enhanced relative
to Weyl node pairs, as more bands add to the effect, all
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FIG. 5. Trace of the GME tensor for space groups 198 and 199: In the top row the different nodes are reproduced
from Fig. 4. Spin orbit (SO) coupling is either present (blue) or absent (red). In the bottom row the trace of the GME tensor
is calculated numerically for the cases with and without spin-orbit coupling (same color scheme), and analytically for the case
without spin-orbit coupling (black dashed lines). The chemical potentials of nodes are indicated with arrows. (a) the Γ point
for RhSi, space group 198. Without spin-orbit coupling the Γ point features a doubly-degenerate isotropic threefold node at
−0.07 eV (µ2). The gyrotropic response is linear in chemical potential at energies above the node, and scales as a square root
plus a linear part below the node. With spin-orbit coupling the node splits into a fourfold node (µ1) and a standard Weyl
(µ3). (b) the R point in the same model. Without spin-orbit coupling all 8 bands meet at a spin-degenerate double spin-1/2
node (µ5). Spin orbit coupling splits this into a sixfold node (µ4) and two separated bands. All cases are isotropic. (c) an
isolated threefold node appears in space group 199 at the Γ point. The node is not isotropic, and the quadratic corrections
approximately cancel out leaving a linear variation of the GME trace as a function of chemical potential close to the node.

contribute with the same sign, and all add either the same
amount as a standard Weyl band or some larger multi-
ple thereof. A simple estimate for the GME response
in general multifold materials with small spin-orbit cou-
pling can be made by using the coefficients Dn in Table I.
RhSi features one multifold node 0.07 eV below εF at Γ,
and another 0.48 eV below εF at R. Owing to the relative
sizes of the Fermi surface pockets, the Γ node may be ne-
glected. The node at R contributes a (spin-degenerate)
double spin-1/2, giving twice the response of a standard
(spin-degenerate) Weyl node, featured for example in the
candidate chiral Weyl semi-metal SrSi2 in which the node
appears around 0.1 eV below the Fermi level45. The re-
sponse in both cases is proportional to the offset of the
node from the Fermi level, and this simple estimate there-
fore suggests a GME response 9.6 times stronger in RhSi
than from a node pair in SrSi2. However, there are multi-
ple symmetry-related nodes in SrSi2 contributing to the
material’s response.

For a more thorough estimate we can use the numer-
ically calculated value of α for undoped RhSi in Fig. 7,
which is around α = 1.3×1010 AWb−1. A 1 mT magnetic
flux density would therefore generate a current density of
around 107Am−2. The rotatory power of a material is the
angle per unit length through which the plane of polari-
sation of linearly polarised light is turned upon transmis-
sion. It is given in terms of the trace of the GME tensor
by45:

ρ (ω) = −1

3
µ0α (ω) . (25)

In RhSi at ω → 0 this gives a value of 5.4 rad mm−1, an
order of magnitude larger than the value of 0.4 rad mm−1

predicted for a single node pair in SrSi2 for ω → 0, in
agreement with the simple estimate above.

The GME is not restricted to multifold fermions and
Weyl nodes, however, and occurs in any material with
a gyrotropic space group and states at the Fermi level.
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Natural optical activity is also quantified by the ro-
tatory power: the chiral metal tellurium is predicted
to exhibit a rotatory power of 0.157(3) rad mm−1 at
~ω = 0.117 eV and 77 K, an order of magnitude smaller
than the RhSi response92. The optically-active insula-
tor α-quartz features a rotatory power of ρ = 0.38 rad
mm−1 at λ = 5893 Å, again around an order of magni-
tude smaller than RhSi40,41,103.

B. CPGE for Space Groups 198 (RhSi) and 199

As for the GME we have used the above realistic tight
binding lattice models to calculate the CPGE for space
groups 198 and 199. The results are summarized in
Fig. 6.

There are two main contributions to the CPGE for
space group 198, one associated to the Γ point and one
associated to the R point. Depending on the chemical
potential they can either be Pauli blocked or optically
active, but only in the case where one of them is opti-
cally active do we expect the CPGE to be quantized. We
analyze both possibilities in what follows.

Illuminating pristine RhSi (µ = 0, see Fig. 4) will op-
tically activate transitions near the Γ point provided the
frequency is large enough to overcome Pauli blocking at
Γ but small enough to Pauli block transitions at R. The
corresponding CPGE for frequencies falling in this range
is shown in Fig. 6 (a). We observe a plateau close to 4β0
which we interpret as the plateau that corresponds to the
optically active threefold (fourfold) fermion at Γ without
(with) spin-orbit coupling. As explained in section IV,
the total CPGE is given by the Chern number of the
bands with optically allowed transitions, which in both
cases (with and without spin-orbit coupling) leads to an
expected quantization of 4β0, consistent with what we see
in the numerical data. It is important to note that the
absence of exact quantization is hard to exclude in realis-
tic lattice models since small but finite optical transitions
cannot be ruled out. First, there is a Fermi pocket near
R which may have allowed optical transitions. Second,
the spin-orbit splitting of the degeneracy at Γ is small,
so changing the frequency slightly can drastically change
the nature of the optical surfaces, in particular whether
they are open or closed. Finally, quadratic corrections
can affect the frequency window at which quantization
can occur as discussed in IV.

If instead we assume that the chemical potential can
be tuned to be closed to the R point (µ = −0.5 in the
energy scale of Fig. 4) the relevant transitions will be
those around R and the CPGE will resemble that of Fig. 6
b) where a plateau close to −4β0 appears. In the case
without spin-orbit coupling it is the (spin degenerate)
fourfold that generates the plateau while in the spin-orbit
coupled case it is the sixfold fermion. As for the Γ point,
the quantization cannot be claimed to be exact, although
corrections decrease as the momentum grid size is taken
to be finer.

Our results for space group 198 suggest that the RhSi
has indeed, for practical purposes a quantized CPGE at
realistic parameter values.

C. GME, CPGE and The Importance of the
Orbital Embedding

As discussed above, the spatial embedding of the or-
bitals changes the space group and can change the re-
sponse functions by modifying the eigenstates.

In Fig. 7 we show the total GME and CPGE (for µ = 0)
responses of the material RhSi as a function of chemical
potential and frequency respectively, taking into account
spin-orbit coupling. To highlight the effect of the orbital
location we also show the response of an imagined ma-
terial which has an identical band structure, but with
x = 1/8.

For the GME, close to the node around εF the two em-
beddings behave similarly, but away from the node non-
linear corrections become important and the responses
differ significantly. The CPGE also changes for different
orbital embeddings, but the effect of x is stronger away
from the quantization plateau.

VI. MATERIALS PREDICTIONS

In order to find material candidates in which the GME
and CPGE could be experimentally measured, we have
performed an extensive search among the space groups
that can display multifold fermions (see Table I). First we
searched for spin-degenerate threefold crossings in mate-
rials with negligible spin-orbit coupling, and found two
material candidates of the same family where threefold
crossings are relatively isolated and well split close to the
Fermi level. These are Gd3Cl3C104 and Gd3I3Si105 in SG
I4132 (214) (see Fig. 8). In the presence of weak spin-
orbit coupling SG 214 displays a threefold crossing at the
H point24,83,87. Figs. 8 (a) and (b) show the band struc-
ture of Gd3Cl3C without and with spin-orbit coupling
respectively. We see from the figures that the spin-orbit
interaction is indeed weak in this material. At the H
point there is still a slight splitting of 4+2 bands, clearer
along high symmetry lines. However, since the splitting
is smaller than 1 meV, these compounds are suitable for
measuring the properties of threefold fermions.

As was previously reported, sixfold and fourfold
fermions are realized in SG P213 (198) in RhSi. We
also present here a new family of ternary compounds in
the same SG featuring fourfold fermions near the Fermi
level. The principal candidate is AsBaPt106, shown in
Fig. 8 (d). One can observe the eightfold connected bands
close to the Fermi level, and a fourfold crossing just be-
low the Fermi energy at the Γ point. Other candidates
of the same family are CaPtSi107, BaPtSi108, BaPPt106

and BaPdSi109.
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FIG. 6. Trace of the CPGE tensor for space groups 198 and 199 as a function of frequency ω for the tight binding
models considered in the text. See Fig. 4 for the corresponding band structures. (a) SG198 at Γ (µ = 0.) (b) SG198 at R
(µ = −0.5eV) and (c) SG199 at Γ (µ = −2.7eV). For 198 the CPGE with and without spin-orbit (SO) coupling is plotted.
The origin of the observed deviations from quantization is discussed in the main text and is attributed to a combination of
finite momentum space resolution, quadratic corrections and the contributions of small CPGE active pockets. The latter are
only allowed in the case with spin-orbit coupling.

VII. CONCLUSIONS

In this work we have calculated two different optical
responses of multifold fermions that are enabled by the
chiral nature of the space groups they in which they
are realized, the gyrotropic magnetic effect (GME) and
the circular photogalvanic effect (CPGE). To do so we
have first presented a full account and classification of
all types of three-fold four-fold and six-fold degenera-
cies. In particular, we enumerated the space groups and
low-energy Hamiltonians for double spin-1/2 degenera-
cies, which had not been fully specified before.

All multifold nodes can be written in the form H =
k · S, where k is the crystal momentum, and for certain
special parameter choices the matrices S form represen-
tations of the SU(2) algebra. The absence of any charac-
teristic energy scale at low energies and the topological
charge of these fermions conspire to produce the peculiar
and large responses we find compared to Weyl semimetals
and other chiral metals.

Using their low energy description as well as realistic
tight binding models for space groups 198 and 199 we
have shown that the gyrotropic magnetic effect and the
circular photogalvanic effect can serve as experimental
probes for distinguishing multifold fermions from other
band degeneracies. Multifold (semi-)metals will have
an enhanced gyrotropic magnetic effect relative to Weyl
semimetals and chiral metals; the GME is the low fre-
quency (transport) limit of natural optical activity, and
the rotatory power of multifold materials is similarly en-
hanced relative to standard cases such as quartz40 (al-
though the transparency of quartz means the total opti-
cal rotation can be larger in that material). We addition-
ally identified a unique signature of threefold and sixfold
nodes in the form of a kink in the GME response as a
function of chemical potential about the node.

Furthermore, we have proven under which circum-

stances multifold fermions can have a quantized CPGE
response. This result is surprising, since the corrections
spoiling exact quantization of two band models were ex-
pected to diverge for bands crossing the nodes69. We
have analytically shown that this naive expectation is
resolved by virtue of vanishing matrix elements at spe-
cific frequency windows where the surfaces of optically
allowed transitions are closed. This condition generi-
cally results in frequency independent CPGE plateaus.
In the specific case where all optical transition surfaces
are closed the plateau is strictly quantized in units of
e3/h2 times a sum of Chern numbers. As for the GME,
the magnitude of the CPGE is generically larger in multi-
folds than in Weyl semimetals, since large Chern numbers
multiply the large universal constant β0 (see Ref. 69 for
a discussion on the estimated size of the photocurrent).

The GME and CPGE therefore can act as multifold
detector probes, that distinguish between different types
of chiral fermions beyond surface-state ARPES or static
magneto-transport, with access, in the case of the CPGE,
to their topological charge. It would be interesting to ex-
plore how other optical probes, such as resonant X-ray
scattering110 which can also carry topological informa-
tion, can serve as alternatives to the effects discussed in
this work.

Throughout this work, we have also had occasion to ex-
plore some subtleties related to atomic embeddings which
plague the study of both topological semimetals and lin-
ear response theory. In our study of space groups 198
and 199, we were careful to emphasize the importance of
our basis function positions to our tight binding models.
Because the positions of the basis functions do not affect
the spectrum of a tight-binding Hamiltonian, they are
often chosen arbitrarily or overlooked entirely. We have
emphasized in our discussion that the basis function po-
sitions, due to their effect on the boundary conditions of
Bloch functions, have measurable consequences. In par-
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FIG. 7. GME and CPGE dependence on atomic po-
sitions (a) The trace of the GME tensor in our model of
RhSi (black), shown with the trace of the GME tensor in a
hypothetical material with x = 1/8, with the same spectrum
but different orbital embeddings (dashed blue). Note the sig-
nificant deviations in the GME tensor for µ away from 0. (b)
Trace of the CPGE tensor for the same two models. Here we
see that the dependence on orbital embedding is strongest for
large ω, far from the quantized plateaus.

ticular, both the GME and CPGE depend on matrix ele-
ments of the position operator, which depend crucially on
these choices101. In space groups 198 and 199, the basis
function positions are not constrained by symmetry, and
we showed that different choices can have a marked ef-
fect on the non-quantized part of response functions. We
hope this pedagogical exercise serves as a useful guide to
future research on response theory.

While both the GME and CPGE provide imple-
mentable tests for the existence and properties of mul-
tifold nodes, there are some drawbacks and experimental
challenges to be overcome. First, both effects require
chiral, non-magnetic, metallic multifold systems in order

to be measured. Such materials are quite rare yet this
adds value to the family of materials we have presented
in this work. The potential of recently developed efficient
approaches111–113 for the search of novel topological met-
als makes us confident that other materials can be soon
added to the list where these effects can be measured.

Second, although the GME has been measured114–117

and largely understood92,93 in materials like Tellurium, it
so far lacks experimental confirmation in topological met-
als. We believe our work brings it closer to experimental
realization, since we have showed that multifold fermions
add additional materials where the GME can be probed
and measured due its large magnitude and the multiple
materials that can potentially display the effect.

Thirdly, measurements of the bulk injection current in
the CPGE may require some experimental ingenuity. As
discussed in 69 we expect that quantization can have its
clearest signatures in a time-resolved photocurrent mea-
surement, with the use of light pulses that are shorter
than the relevant scattering time τ ∼ps. Measuring the
photo-current directly in topological semimetals is pos-
sible77–80, and although it will result in CPGE plateaus,
these will generically depend on the scattering τ and not
only on fundamental constants69,70.

Finally, as we have seen the quantization of the CPGE
can be weakly violated at certain frequencies due to the
presence of quadratic corrections and extra optical tran-
sitions, necessitating some care in choosing the appro-
priate experimental platform. Additionally, measuring
the trace of the CPGE tensor βij requires summing over
all polarization planes which might be experimentally
challenging in chiral Weyl semimetals. Remarkably, all
multifolds except doubled spin-1/2 occur in cubic point
groups, so βij = δij and measuring one component is
enough. This presents a clear practical advantage over
non-cubic Weyl semimetals69.

Weyl semi-metals provide a condensed matter ana-
logue of exotic (and as yet unobserved) fundamental par-
ticles, Weyl fermions, governed by the Weyl equation
of particle physics. Multifold fermions provide a con-
densed matter analogue of particles ‘beyond the stan-
dard model’. In this work we have provided their full
classification and unraveled, both analytically and nu-
merically their gyrotropic and photogalvanic responses,
providing as well new materials where these predictions
can be tested. Our results aim to motivate experimen-
tal work and material growth that may lead to a deeper
understanding of these emergent pseudo-relativistic exci-
tations as well as enhanced optical phenomena.
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Appendix A: Calculational Details to derive the GME

1. Mathematical Details of Gyrotropy and Connection to GME

In general materials the displacement field Di and electric field Ej can be related through the expression41,118

Di = (εij(ω)− iλijl(ω)kl + · · · )Ej , (A1)

where εij is the dielectric susceptibility, and λijl (ω) is the gyrotropy tensor. The material is optically active (gy-
rotropic) when the gyrotropy tensor is nonzero. The ellipsis accounts for the fact that this relation can be viewed as an
expansion in the momentum of the incident radiation, which is typically small compared to the inverse lattice spacing.
For notational convenience, we will suppress the dependence of tensors on angular frequency ω for the remainder of
the discussion. A non-zero λ implies that inversion symmetry is broken. Moreover since εij(ω,k) = εji(ω,−k) k we
have that λijl = −λjil. Therefore λijl has 9 independent components and can be written as λijl = εijmgml in terms of
the gyrotropy tensor gml, with εijm the Levi-Civita symbol. This enables us to define the gyration vector G through

λijlkl = εijmgmlkl ≡ εijmGm, (A2)

and thus Eq. (A1) can be written as

Di = εijEj − i(G×E)i. (A3)

Note that the GME tensor αij used in the main text is related to the gyrotropy tensor through the relation

gij =
1

ωcε0
(αji − tr (α) δij) , (A4)

as stated in the supplementary material of Ref. 45. It is sometimes custom to invert Eq. (A3) and write

Ei = ε−1ij Dj − i(f ×D)i, (A5)

where we have implicitly defined

ε−1ij (ω,k) = ε−1ij (ω) + iδijlkl · · · , (A6)

and

δijlkl = εijmfmlkl ≡ εijmfm. (A7)
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Note that f has the same symmetry properties as G. The inverse gyroptropy tensor fij only enters the electromagnetic

wave equations with the scalar product fij k̂ik̂j
118. The rotatory power, defined as the angle of rotation of the plane of

polarization per unit length of propagation, is proportional to fij k̂ik̂j and is thus only determined by the symmetric
part of fij . For the point groups C4v,6v,3v the second rank tensor gij and thus fij have a zero symmetric part, and
thus do not rotate the plane of polarization of light. They can however be ‘weakly gyrotropic’, meaning that the
gyrotropy tensor is nonzero but purely antisymmetric. The symmetry properties of the inverse gyrotropy tensor are
shown in Table II.

The tensor αij , used in the main text, is given by

ji = αijBj , (A8)

which, together with Eq. (A1), implies that αij shares the same symmetry properties as gij . This extra i/ω prefactor
differs from the definitions used in Ref. 44.

2. Numerical Evaluation of the GME Tensor

Reference 45 gives the following expression for the GME tensor αij

αij =
e

(2π)
3

∑
n

∫
d3k

∂f

∂εn
vni

 e

2~
Imεjlm

∑
n′ 6=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs~
4me
〈n|σj |n〉

 . (A9)

Here, e is the electron charge; f (εn) is the Fermi function evaluated for band n with energy εn; vni = ~−1∂iεn =

〈n|~−1 (∂iHk) |n〉 is the velocity of band n in Cartesian direction i, where ∂i , ∂/∂ki; gs ≈ 2 is the spin g-factor for
the electron; me is the mass of the electron; and σj is the jth Pauli matrix. Einstein summation notation is assumed.

Evaluating the expression at zero temperature, the Fermi function reduces to a Dirac delta function

αij = − e

(2π)
3

∑
n

∫
d3kδ (εn − µ′) vni

 e

2~
Imεjlm

∑
n′ 6=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs~
4me
〈n|σj |n〉

 . (A10)

We now employ the following approximation to deal with the delta function∫
d3kδ (εn − εF ) ≈ 1

δE

∫ εF+δE/2

εF−δE/2
dE′

∫
d3kH (E′) , (A11)

where

H (E) =

{
1 if εF − δE

2 , < εn < εF + δE
2

0 otherwise.
(A12)

The δE expression must be symmetric about εF . This can be seen from the GME expression for a single node, which
is proportional to (εnode − εF ); if the window of H (E) were defined to be εF < ε < εF +δE, the average value of εnode
would become proportional to δE, leading to a linear dependence of α on the choice δE. Physically, δE corresponds
to a finite-width shell of energies to be averaged over around the Fermi level.

Defining the volume of the crystal V = N3a3 we have, in partial pseudocode

αij = − e

V

1

δE

∑
n

∑
k∈BZ

[
if − δE

2
< εkn <

δE

2

] [
1

~
〈n|∂iHk|n〉

] e

2~
Imεjlm

∑
n′ 6=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs~
4me
〈n|σj |n〉

 .

(A13)

Now define the dimensionless variable k = 2π
a k, with a the lattice constant of the material, such that the Brillouin

zone is defined by k ∈
[
− 1

2 ,
1
2

]
. Using gs = 2:

αij = − e2

4πh2
1

δE

∑
n

 1

N3

∑
k∈BZ

[if − δE

2
< εkn <

δE

2

]
〈n|∂iHk|n〉

Imεjlm
∑
n′ 6=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− h2

mea2
〈n|σj |n〉

 .

(A14)



22

Note that the only material-specific parameter is the lattice constant, which only affects the spin part. In the
main text, the only material whose spin-split bandstructure we consider is RhSi, in Section V. Inserting the values of
fundamental constants and the RhSi lattice constant a = 4.67 Å for the spin part, we have the final result (with E
etc. dimensionless):

αRhSi
ij = −7.45× 108

A

Tm2

1

δE

∑
n

 1

N3

∑
k∈BZ

[if− δE
2
<εkn<

δE

2

]
〈n|∂iHk|n〉

([
1

eV

]
Imεjlm

∑
n′ 6=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

−13.8〈n|σj |n〉

)
.

(A15)

3. Analytic Evaluation of the Orbital Magnetic Moment

We illustrate the derivation of the orbital magnetic moment, required for the GME calculations, for the case of the
threefold node. This also applies to the sixfold case by the reasoning presented in the main text. The threefold node,
as described by Eq. (3), with φ = π/2 (general expressions for φ 6= π/2 can be found in Appendix (C)), reads

H = i~vF

 0 kx −ky
−kx 0 kz
ky −kz 0

 (A16)

with eigenenergies

E1 = 0, E2 = ~vF k, E3 = −~vF k (A17)

and corresponding normalized eigenvectors

|1〉 =
1

k
(kz, ky, kx)

T

|2〉 =
(√

2k
√
k2x + k2z

)−1 kykz − ikkx
−k2x − k2z
kxky + ikkz


|3〉 =

(√
2k
√
k2x + k2z

)−1 kykz + ikkx
−k2x − k2z
kxky − ikkz

 . (A18)

The Berry curvature is given by

Ωni = iεijk
∑
m 6=n

〈n| (∂jH) |m〉〈m| (∂kH) |n〉
(En − Em)

p (A19)

with p = 2. With p = 1 the expression instead gives the orbital magnetic moment divided by e/2~.
For band n = 1 we have:

Ω1
1 = i

〈1|∂2H|2〉〈2|∂3H|1〉
(E1 − E2)

2 + i
〈1|∂2H|3〉〈3|∂3H|1〉

(E1 − E3)
2 + c.c.

= i
〈1|∂2H|2〉〈2|∂3H|1〉

(−~vF k)
2 + i

〈1|∂2H|3〉〈3|∂3H|1〉
(~vF k)

2 + c.c.

= (~vF )
2

(√
2k
)−1 (

k2z + k2x
)1/2 (√

2k
√
k2x + k2z

)−1
(kxk − ikzky)

(−~vF k)
2 +

+ (~vF )
2

(√
2k
)−1 (

k2z + k2x
)1/2 (√

2k
√
k2x + k2z

)−1
(−kxk − ikzky)

(~vF k)
2 + c.c. (A20)
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The real parts of the first two terms cancel, leaving the imaginary parts, which then cancel with the complex conjugates,
giving zero

Ω1
i = 0

(the other components similarly vanish owing to the isotropic nature of the Weyl node).
To obtain the orbital magnetic moments we set p = 1 rather than 2. As a result, a relative sign is introduced

between the formerly canceling terms. The result is therefore

m1
1 =

e

2~
(~vF )

2

(√
2k
)−1 (

k2z + k2x
)1/2 (√

2k
√
k2x + k2z

)−1
(kxk − ikzky)

−~vF k
+

+
e

2~
(~vF )

2

(√
2k
)−1 (

k2z + k2x
)1/2 (√

2k
√
k2x + k2z

)−1
(−kxk − ikzky)

~vF k
+ c.c.

= −evF k−2kx (A21)

and similarly

m1
i = −evF k−2ki. (A22)

Bands n = 2, 3:

Ω2
1 = i

〈2| (∂2H) |1〉〈1| (∂3H) |2〉
(E2 − E1)

2 + i
〈2| (∂2H) |3〉〈3| (∂3H) |2〉

(E2 − E3)
2 + c.c. (A23)

the second term vanishes, since 〈2| = |3〉T and the ∂iH are elements of the cross product.

Ω2
1 = − (~vF )

2

(√
2k
)−2

(ikzky + kxk)

(~vF k)
2 + c.c.

= − (~vF )
2 k−1kx

(~vF k)
2 (A24)

giving

Ω2,3
i = (−,+) k−3ki. (A25)

Again changing the denominator in the penultimate line we obtain the expression for the orbital magnetic moment:

m2,3
i = −evF k−2ki (A26)

(N.B. this has the same sign between bands). The other cases can be calculated in a similar fashion.
With the calculated orbital moments, the contribution to the GME trace for band n can be computed as

αn = e

∫
d3k

(2π)3
∂kiEn

~
mi,nδ(En − µ)

=
e

~

∫
d3k

(2π)3
∂kiEnmi,n

δ(k − kF )

|∂kiEn|

=
e

2π2~

∫
k2dk

evFDn

2k
δ(k − kF )

=
e2

4π2~
kF vFDn (A27)

For the threefold fermion at the φ = π/2 point at chemical potential µ measured from the node, the upper band
has kF = µ/(~vF ). For the middle band, quadratic corrections are needed to have a Fermi surface. Including
H = 1/2m(k2x + k2y + k2z) which does not change the orbital moment, we have kF = ~−1

√
2mµ. So for the three bands

we have

αn =
e2

4π2~2


µD1Θ(µ)

vF
√

2mµD2Θ(µ)

|µ|D3Θ(−µ).

(A28)
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To compare this prediction with the tight binding model for RhSi used in Section V A, we need to compute vF and
m from the tight binding parameters v1, vp, and v2 of Ref. 32. These can be obtained in perturbation theory to be
vF = vp/2 and m = 1

2 [(4v21 − v2p)/(16v1)− v2/2]−1.

Group P E G wG OA Pz LPGE CPGE fsij

C1
√ √ √ √ √ √ √

all

C2
√ √ √ √ √ √ √

f11, f22, f33, f13

Cs
√ √ √ √ √ √

f12, f23

C2v
√ √ √ √ √ √

f12

C3
√ √ √ √ √ √ √

f11 = f22, f33

C3v
√ √ √ √ √ √

none

C4
√ √ √ √ √ √ √

f11 = f22, f33

C4v
√ √ √ √ √ √

none

C6
√ √ √ √ √ √ √

f11 = f22, f33

C6v
√ √ √ √ √ √

none

D2
√ √ √ √ √ √

f11, f22, f33

D2d
√ √ √ √ √

f12

D3
√ √ √ √ √ √

f11 = f22, f33

D4
√ √ √ √ √ √

f11 = f22, f33

D6
√ √ √ √ √ √

f11 = f22, f33

S4
√ √ √ √ √

f11 = −f22, f12
C3h

√ √
none

D3h
√ √

none

Td
√ √

none

T
√ √ √ √ √ √

f11 = f22 = f33

O
√ √ √ √

f11 = f22 = f33

TABLE II. List of non-centrosymmetric point groups, i.e. groups without an inversion center. The tick indicates if the
point group is Polar (P), Enantiomporphic (E), Gyrotropic (G), weakly Gyrotropic (wG), Piezoelectric (Pz), Optically active
(OA) or has a linear or circular photogalvanic effect (LPGE and CPGE). The trace of the CPGE or GME is only nonzero for
enantiomorphic (E) groups. The final column lists the nonzero elements of the symmetric part of the inverse gyrotropy tensor
fij , f

s
ij = fsji, which has the same symmetry as gij and αij . Parts of this table appear in Refs. 41, 118–122.

Appendix B: Symmetry Constraints for Response Coefficients in non-Centrosymmetric Point Groups

Non-centrosymmetric point groups – There exist 21 noncentrosymmetric point groups, listed in Table II. In the
following we discuss some of the effects they can host due to the absence of inversion and list the corresponding subset
of point groups for each effect.

Polar point groups – There are 10 polar point groups (also known as ferro-electric or pyro-electric materials):

C1, Cs, C2, C2v, C4, C4v, C3, C3v, C6, C6v.

In a polar point group all symmetries, including mirrors, leave one direction invariant. An insulator with these
symmetries can have a non-vanishing polarization along this direction.

Enantiomorphic or chiral groups – These groups, defined as those with no orientation-reversing elements, are123:

C1, C2, C3, C4, C6, D2, D4, D6, T,O.

In this work, we have considered the following space groups with chiral point groups that can host different multifold
fermions: 18, 19 (D2), 90, 92, 94, 96 (D4), 195-199 (T ), 207-214 (O). The constraints for the gyrotropy tensor (and
thus for CPGE and GME as well) are given in Table II.

Gyrotropic point groups – The term ‘gyrotropic’ can generate some confusion in the literature since some works use
it interchangeably with ‘optically active’, but others distinguish optically active from ‘weakly gyrotropic’.

Prior to the work of Fedorov in 1959119,120 the rotation of the plane of polarization of linearly polarize light was
taken as a definition for gyrotropy and was assumed to be the same as having a non-zero gyrotropy tensor gij . These
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are the classes known as optically active (see OA column in Table II) and add up to a total of 15 point groups.
However, Fedorov showed121 that three more point groups should be called gyrotropic. These are C4v, C3v and C6v,
marked wG for ‘weakly gyrotropic’ in the table. The reason to call them gyrotropic is that the gyrotropy tensor is
also non-zero. However, since in these three classes this tensor is fully antisymmetric it does not rotate the plane
of polarization. As described in Appendix A, the rotatory power is determined only by the symmetric part of the
gyrotropy tensor41,118,122.

Weakly gyrotropic crystals differ from non-active crystals in the sense that light reflected from them is elliptically
polarized124. Thus, the number of crystallographic classes in which gyrotropy is possible is 18 (marked under G in
Table II), and not only the optically active 15.

To summarize, the antisymmetric part of the gyration tensor does not enter the rotation of the polarization plane
of a transmitted wave. Therefore, when a material has a zero symmetric part and a non-zero antisymmetric part,
the material is called weakly gyrotropic and elliptically polarizes a reflected wave. When the symmetric part of the
gyration tensor is non-zero, irrespective of the antisymmetric part, the material is referred to as optically active
because it rotates the plane of polarization. Both of these together are the gyrotropic point groups. We also note
that some authors use the terms ‘optically active’ and ‘gyrotropic’ interchangeably, but we prefer to distinguish them
as explained here.

Piezoelectric point groups – Piezoelectricity is a current response to an applied mechanical strain uij . There are 20
piezoelectric point groups125,126 which are all the non-centrosymmetric ones except the O group.

Point groups with finite Linear and Circular Photogalvanic effects – The linear photogalvanic effect is a current
response to a symmetric tensor EiE

∗
j + E∗i Ej and the symmetry constraints are therefore the same as for piezoelec-

tricity. As stated in the main text, the circular photogalvanic effect is the current response to a pseudovector E×E∗

and therefore it has the same symmetry constraints as gyrotropy125.
Finally, the diagonal elements of the CPGE and GME tensors are zero for all non-enantiomorphic point groups

except S4. This point group has no mirrors, so the response tensors have non-vanishing elements in the diagonal; but
their sum (the trace) is zero due to the improper rotation. Therefore only enantiomporphic point groups can show a
nonzero quantized trace of CPGE, or a GME.

Appendix C: Analytical Solution of H3f

In this appendix we derive the analytical eigenstates and energies of H3f Eq. (3) for general φ, and in particular
we show explicitly that the quantity Rinm is radial. The energies can be obtained from

det(H − IE) = −E3 + Ek2 + 2kxkykz cos 3φ = 0 (C1)

This is a cubic equation without quadratic term (known as depressed cubic). The three solutions can be written in
closed form as

En = 2|k|√
3

cos
(

1
3 arccos

(
3
√
3kxkykz
k3 cos 3φ

)
− 2π(n−1)

3

)
(C2)

for n = 1, 2, 3, and with 0 < arccosx < π. When φ = π/2 we have E1 = k, E2 = 0 and E3 = −k. Note kxkykz/k
3

takes its maximum value in the (1,1,1) direction where kxkykz/k
3 = 1/(3

√
3). In this direction we have

E(1,1,1)
n = 2√

3
|k| cos

(
φ− 2π(n−1)

3

)
(C3)

where due to the definition of arccosx, φ should be understood in the sector 0 < φ < π/3. And the splitting between
bands is given by E12 = 2|k| cos(φ+ π/6), E23 = 2|k| sinφ, E13 = 2|k| cos(φ− π/6). In the (−1,−1,−1) direction the
same expressions hold with φ→ −φ+ π/3.

The manifold S12 becomes active for ω > ω0 and is closed for ω1 < ω < ω2 while S13 becomes active for ω > ω3 and
fully closed for ω > ω4. S23 becomes active with ω > ω5 and is never closed in the linear model. These frequencies
are

ω0 = µ

√
3 cos(φ+ π/6)

cos(φ)
ω1 = µ

√
3 cos(φ+ π/6)

cos(φ− 2π/3)
ω2 = µ

√
3 cos(−φ+ π/2)

cos(−φ+ π/3)

ω3 = µ

√
3 cos(φ− π/6)

cos(φ)
ω4 = µ

√
3 cos(−φ+ π/6)

cos(−φ+ π/3)
ω5 = µ

√
3 sinφ

cos(φ− 2π/3)
(C4)
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The normalized eigenfunctions that correspond to En are

ψn =
1√

(3E2
n − k2)(E2

n − k2z)

 E2
n − k2z

Enkxe
−iφ + kykze

2iφ

Enkye
iφ + kxkze

−2iφ

 (C5)

To prove that this is indeed an eigenvector, Eq. (C1) was used with E = En. These wavefunctions can be used to
obtain the diagonal velocity matrix elements as

vinn = 〈ψn|∂kiH|ψn〉 =
2Enki + 2(kxkykz/ki) cos 3φ

3E2
n − k2

(C6)

For the CPGE integral the difference ∆i
nm = vinn − vimm is needed and is given by

∆i
nm =

2Emn

[
ki(3EnEm + k2) + 3(Em + En)

kxkykz
ki

cos 3φ
]

(3E2
n − k2)(3E2

m − k2)
(C7)

The quantities Rinm = rjnmr
k
mnε

ijk = 1
(En−Em)2 〈n|∂jH|m〉 〈m|∂kH|n〉 ε

ijk are given by

Rinm = ki
2(En + Em)2

(
E2
nE

2
m + (EnEm − k2)k2z + k4z

)
sin 3φ

(En − Em)(E2
n − k2z)(−3E2

n + k2)(E2
m − k2z)(−3E2

m + k2)
(C8)

Where we have used

E2
n + E2

m + EnEm = k2 (C9)

and

(En + Em)EnEm = −2kxkykz cos 3φ (C10)

which can be obtained by subtracting Eq. (C1) for En and Em provided n 6= m. This shows that Rinm is indeed
purely radial.

Appendix D: Energy Scales for H4f

The eigenvalues of H4f in Eq. (4) can be obtained from

det(H4f − EI) = E4 − E2k2 + f(k, χ) = 0 (D1)

with

f(k, χ) = 1
8 (1− cos 4χ)(k4x + k4y + k4z) + 1

8 ( 11
4 + 7

4 cos 4χ+ 3 sin 2χ)(k2xk
2
y + k2xk

2
z + k2yk

2
z). (D2)

The solutions in decreasing order are given by

E1(k) =

√
k2 +

√
k4 − 4f(k, χ)

2
E2(k) =

√
k2 −

√
k4 − 4f(k, χ)

2

E3(k) =−

√
k2 −

√
k4 − 4f(k, χ)

2
E4(k) =−

√
k2 +

√
k4 − 4f(k, χ)

2
(D3)

Defining k100 = k(1, 0, 0) and k111 = k(1, 1, 1)/
√

3, the different frequencies defined in the main text are given by

ω0 = µ
E1(k111)− E2(k111)

E1(k111)
ω1 = µ

E1(k100)− E2(k100)

E1(k100)
ω2 = µ

E1(k100)− E2(k100)

E2(k100)

ω3 = µ
E1(k111)− E2(k111)

E2(k111)
ω4 = µ

E1(k100)− E3(k100)

E1(k100)
ω5 = µ

E1(k111)− E3(k111)

E1(k111)

ω6 = µ
E1(k111)− E4(k111)

E1(k111)
ω7 = µ

E2(k111)− E4(k111)

E2(k111)
ω8 = µ

E2(k100)− E4(k100)

E2(k100)
(D4)
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Appendix E: Ab Initio Calculation Methods

Calculations have been performed within the DFT127,128 as implemented in the Vienna Ab initio Simulation Package
(VASP)129,130. The interaction between ion cores and valence electrons was treated by the projector augmented-wave
method131, the generalized gradient approximation (GGA) for the exchange-correlation potential with the Perdew-
Burke-Ernkzerhof for solids parametrization132 and spin-orbit coupling was taken into account by the second variation
method133. A Monkhorst-Pack k-point grid of (4×4×4) for reciprocal space integration and 500 eV energy cutoff of
the plane-wave expansion have been used to get a residual error on the energy of less than 10−3 meV, resulting in a
fully converged electronic structure including spin-orbit coupling.

Appendix F: Tight-binding Band Structures

In this appendix, we review our construction of tight-binding models in space groups 199, 214, and 198, paying
particular attention to the boundary conditions imposed by the atomic positions. Subsection F 1 reviews the con-
struction of the nearest-neighbor model for space groups 199 and 214 without spin-orbit coupling, largely following
the discussion in Ref. 24. In Subsection F 2 we show how to modify the tight binding model of Ref. 32 to accurately
describe the atomic positions of RhSi.

1. SGs 199 and 214

Here we will construct minimal tight-binding models for space groups 199 and 214 without spin-orbit coupling.
Both of these groups are body-centered cubic, with Bravais lattice vectors

R1 =
a

2
(−x̂ + ŷ + ẑ)

R2 =
a

2
(x̂− ŷ + ẑ)

R3 =
a

2
(x̂ + ŷ − ẑ). (F1)

For simplicity, we will take the lattice constant a = 1 for the remainder of this work. Note first that space group 199
is generated by

G199 = 〈{C2x|
1

2

1

2
0}, {C3,111|000}, {E|100}, {E|010}, {E|001}〉 (F2)

Here E denotes the identity rotation, and the translation part of space group elements will be given in reduced
coordinates, i.e.

{E|1
2

1

2
0} → 1

2
R1 +

1

2
R2. (F3)

Space group 214 is obtained by appending to this generating set the additional twofold screw

G214 = 〈G199, {C2,110|
1

2
00}〉. (F4)

To construct a minimal tight binding model, we will place spinless s-orbitals at the minimal-multiplicity Wyckoff
position in the space group, and consider nearest neighbor hoppings. In both SGs 199 and 214, the minimal-multiplicity
Wyckoff position is the 8a position (and also the 8b position in SG 214), with multiplicity 4 in both cases. Because
the stabilizer group of this position in SG214 contains C2,110, the tight binding models for both SG199 and 214 will
be formally identical. Concretely, the four points in the 8a (or b) position are, in reduced coordinates

{q1,q2,q3,q4} = {(u, u, u), (
1

2
− u, 1

2
, 0), (0,

1

2
− u, 1

2
), (

1

2
, 0,

1

2
− u)}, (F5)

obtained by acting successively with x̂, ŷ and ẑ twofold rotations on q1. For SG199 the value of u is arbitrary,
− 1

2 < u < 1
2 , while for SG 214, u is fixed to ± 1

4 . As this will be the only difference between the two models, we will
leave u arbitrary. For simplicity, we will take u > 0 without loss of generality. Our final model will be applicable for
either sign of u.
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By using s-orbitals as our basis functions, all symmetries in the stabilizer group of the 8a position are repre-
sented trivially. Thus, to construct our model, we need only ensure that all hoppings appear in symmetry invariant
combinations. Note that the shortest distance between orbitals in the lattice is given by

|q1 − qj |2 =
1

4
− u+ 2u2 <

1

4
, (F6)

equal for all all symmetry related bonds. Thus, we find for the nearest neighbor Hamiltonian

HNN = tNN
∑
R

(
c†2,Rc1,R + c†3,Rc1,R + c†4,Rc1,R + c†4,R−R1

c3,R + c†4,R+R2
c2,R + c†3,R−R3

c2,R

)
+ h.c. (F7)

where ci,R annihilates a fermion at site i in unit cell R. We can Fourier transform this using

ci,R =
∑
k

ei,k·(R+qi)cik (F8)

to obtain

HNN = tNN
∑
k

(
c†1,k c†2,k c†3,k c†4,k

)
V †(u,k)H0(k)V (u,k)


c†1,k
c†2,k
c†3,k
c†4,k

 (F9)

with

H0(k) =


0 1 1 1

1 0 e−ik·R3 eik·R2

1 eik·R3 0 e−ik·R1

1 e−ik·R2 eik·R1 0

 (F10)

and

V (u,k) =


eik·q1 0 0 0

0 eik·q2 0 0

0 0 eik·q3 0

0 0 0 eik·q4

 . (F11)

Note that only the matrix V , which determines the embedding of the orbitals, distinguishes between SG 199 and 214
in this model.

2. RhSi and SG 198

In this section, we introduce some modifications to the tight-binding model of RhSi given in Ref. 32, in order to
obtain more physically meaningful results for the GME and CPGE. In particular, we focus on the embedding and
boundary conditions on Bloch functions. The tight-binding model without spin-orbit coupling is shown in Fig. F1,
and that with spin-orbit coupling was shown in Fig. 4. First, we note that Ref. 32 chose for the locations of their
atoms

qA = (0, 0, 0)

qB = (
1

2
,

1

2
, 0)

qC = (
1

2
, 0,

1

2
)

qD = (0,
1

2
,

1

2
), (F12)
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FIG. F.1. RhSi bandstructure without spin-orbit coupling. The real material features a small spin-orbit coupling as
shown in Fig. 4 in the main text.

given in reduced coordinates (which here are aligned with the cartesian directions). Introducing the matrix

V (k) = exp




0 0 0 0

0 i
2 (k1 + k2) 0 0

0 0 i
2 (k1 + k3) 0

0 0 0 i
2 (k2 + k3)


⊗ σ0 (F13)

we have that their tight-binding Hamiltonian H(k) satisfies

H(k + G) = V (G)†H(k)V (G). (F14)

The rows and columns of our matrices correspond to orbitals A,B,C and D, in that order.
However, these are not boundary conditions and atomic coordinates of the dominant states near the Fermi energy

in RhSi. Our ab-initio calculations reveal that the relevant orbitals near EF originate from Rh atoms in this material,
which are located at

qA = (x, x, x)

qB = (
1

2
+ x,

1

2
− x,−x)

qC = (
1

2
− x,−x, 1

2
+ x)

qD = (−x, 1

2
+ x,

1

2
− x), (F15)

with x = 0.3959. To obtain a tight-binding Hamiltonian in the proper embedding, we must take

Hx(k) ≡ Ux(k)†H(k)Ux(k) (F16)

with

Ux(k) = exp



ix(k1 + k2 + k3) 0 0 0

0 ix(k1 − k2 − k3) 0 0

0 0 ix(k3 − k2 − k1) 0

0 0 0 ix(k2 − k1 − k3)


⊗ σ0 (F17)

With this choice, we can easily verify that

Hx(k + G)αβ = e−iG·qαHx(k)αβe
iG·qβ , (F18)

where there is no implied summation over repeated indices.
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Appendix G: Low energy Hamiltonians for the Double Spin-1/2 and Double Spin-1 Fermions

In this section, we elaborate on some details of the derivation of the k ·p Hamiltonians for the double spin-1/2 and
double spin-1 fermions given respectively in Eqs. (4) and (5) in the text. We also derive the low energy Hamiltonian
for tetrahedral spin-3/2 fermions. In this Appendix, ki will be used to denote the displacement away from a high-
symmetry momentum K for convenience.

1. Double spin-1/2 Fermions

As mentioned in Sec. II A, double spin-1/2 fermions are protected by the combination of a perpendicular twofold
screw rotational symmetry and time-reversal symmetry. Due to the chiral nature of the space groups in question,
this fourfold degeneracy takes the form of two Weyl points of the same charge pinned to lie at the same energy, with
symmetry-allowed inter-node coupling.

Following the methods of Ref. 31, the low energy k · p Hamiltonian for the double spin-1/2 fermions in SG 90 can
be shown to be

H90(k) =


akz bεk+ ck− 0

bε∗k− −akz 0 ick+
c∗k+ 0 −akz −bε∗k−

0 −ic∗k− −bεk+ akz

 , (G1)

where ε = e−iπ/4, a and b are real parameters, and c is complex. This Hamiltonian is written in the basis where the
time reversal operator is the natural one,

ρ(T ) =

(
0 I
−I 0

)
K, (G2)

where K is complex conjugation; and the spatial symmetries are represented by the block-diagonal matrices

ρ(C4z) =


e−3πi/4 0 0 0

0 e−iπ/4 0 0

0 0 e3πi/4 0

0 0 0 eiπ/4

 , ρ({C2x|
1

2

1

2
0}) =


0 e−iπ/4 0 0

eiπ/4 0 0 0

0 0 0 eiπ/4

0 0 e−iπ/4 0

 (G3)

Note that even though there is coupling between the Weyl fermions, along the plane δkx = 0, bands remain doubly
degenerate. This is a generic feature of these double spin-1/2 fermions, and is due to the fact that they are protected
by a twofold screw symmetry g = {C2x| 12

1
20}. Because the double spin-1/2 occurs at a point K with Kx = 1/2, we

have that the product of g and time-reversal symmetry leaves the plane kx = 0 invariant and squares to −1, thus
enforcing a Kramers degeneracy.

By applying a constant unitary rotation to Eq. (G1), we can transform it to a basis where the two Weyl fermions
are decoupled. First, writing c = |c|eiφ we note that the operator

A =


0 0 0 −ei(φ−π/4)

0 0 ei(φ−π/4) 0

0 e−i(φ−π/4) 0 0

−e−i(φ−π/4) 0 0 0

 (G4)

commutes with Eq. (G1), and has eigenvalues (1, 1,−1,−1). Re-expressing the Hamiltonian in the eigenbasis of A
and reabsorbing the constant phase ε into the definition of the basis states we recover Eq. (1) of the main text.

The double spin-1/2 fermion in space group 198 at the M point has a similar, but slightly less constrained Hamil-
tonian, due to the absence of fourfold rotational symmetry. The little group at the M point has a four dimensional
physically irreducible representation which can be expressed as

ρ({C2x|
1

2

1

2
0}) = σzτ0, ρ({C2z

1

2
0

1

2
}) = iσyτ0, ρ(T ) = −iσ0τyK, (G5)
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which lead to the linear Hamiltonian

H198 = ckzσyτ0 + kxσz~v1 · ~τ + kyσx~v2 · ~τ , (G6)

where ~σ and ~τ are vectors of Pauli matrices, τ0 is the identity matrix in “τ -space”, and the tensor product of σ and
τ is implied. Additionally, c is a real scalar, and ~v1, ~v2 are three-vectors of real parameters. The additional degrees of
freedom in this Hamiltonian compared to the one in SG 90 arise due to the absence of C4 symmetry. Nevertheless,
we can still decouple this double spin-1/2, by noting that the operator

A =
1

|~v1 × ~v2|
σy(~v1 × ~v2) · ~τ (G7)

commutes with H198, and has eigenvalues (1, 1,−1,−1). Expressing the Hamiltonian in terms of the eigenspaces of A
thus generically decouples the Hamiltonian. The dispersion of this Hamiltonian is quite complicated, and takes the
form

ε±± = ±
√
|~v1kx|2 + |~v2ky|2 ± 2|~v1 × ~v2|kxky + c2k2z . (G8)

Finally, note that when ~v1 ‖ ~v2 the operator A is not defined, however in this case the Hamiltonian is trivially
decoupled by A′ = v̂1 · ~τ .

2. Double spin-1 Fermion

The low energy Hamiltonian for the doubled S = 1 fermion was given in Ref. 31 as

H6f (k) =

(
H3f (φ,k) bH3f (0,k)

b∗H3f (0,k) −H∗3f (φ,k)

)
. (G9)

Noting that H6f commutes with the operator

A =

(
cosφ b

b∗ − cosφ

)
⊗ I3×3, (G10)

H6f can be decoupled into two blocks labeled by the eigenvalues of A, ±
√

cos2 φ+ |b|2. The result takes the form

H6f =
√

1 + |b|2
(
H3f (π2 − δφ,k) 0

0 H3f (π2 + δφ,k)

)
(G11)

with δφ = tan−1
(√

cos2 φ+ |b|2/ sinφ
)

. For H212,213 ≡ H198(φ = π/2) this reduces to δφ = tan−1 |b|.

3. Tetrahedral Spin-3/2 Fermions

The tetrahedral spin-3/2 fermions in space groups 195–198 arise from the octahedral spin-3/2 fermions in space
groups 207–214 upon the breaking of fourfold rotational symmetry. These relaxed symmetry constraints allow for an
additional term in the k · p Hamiltonian at linear order, which takes the form

H4f,T = H4f + vT


0 kz −

√
3kx iky

kz
2kz√

3
iky

kx−2iky√
3

−
√

3kx −iky 0 −kz
−iky kx+2iky√

3
−kz − 2kz√

3

 , (G12)

where H4f is the octahedral spin-3/2 Hamiltonian given in Eq. (4), and vT is a real parameter proportional to
the strength of C4 symmetry breaking. This gives the most general linear Hamiltonian invariant under the 1F̄ 2F̄



32

(co-)representation of the tetrahedral group, which is generated by

ρ(C2x) = −i


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , ρ(C3,(1,−1,1)) =
1

4


1− i

√
3(1− i) 1 + i (1 + i)

√
3

(−1 + i)
√

3 1− i −
√

3(1 + i) 1 + i

−1 + i
√

3(−1 + i) 1 + i
√

3(1 + i)√
3(1− i) −1 + i −

√
3(1 + i) 1 + i

 , (G13)

ρ(T ) =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

K, (G14)
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