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Half-metals have fully spin polarized charge carriers at the Fermi surface. Such polarization
usually occurs due to strong electron–electron correlations. Recently [Phys. Rev. Lett. 119, 107601
(2017)], we have demonstrated theoretically that adding (or removing) electrons to systems with
Fermi surface nesting also stabilizes the half-metallic states even in the weak-coupling regime. In the
absence of doping, the ground state of the system is a spin or charge density wave, formed by four
nested bands. Each of these bands is characterized by charge (electron/hole) and spin (up/down)
labels. Only two of these bands accumulate charge carriers introduced by doping, forming a half-
metallic two-valley Fermi surface. We also prove that two types of such half-metallicity can be
stabilized. The first type corresponds to the full spin polarization of the electron and holes at the
Fermi surface. The second type, with antiparallel spins in electron-like and hole-like valleys, is
referred to as a “spin-valley half-metal” and corresponds to the complete polarization with respect
to the spin-valley operator. We analyze spin and spin-valley currents and possible superconductivity
in these systems. We show that spin or spin-valley currents can flow in both half-metallic phases.

PACS numbers: 75.10.Lp, 75.50.Ee, 75.50.Cc

I. INTRODUCTION

Electron states at the Fermi surface of usual metals are
degenerate with respect to the spin projection. Conse-
quently, the spin polarization of such electron systems is
zero. However, strong electron-electron interactions can
lift this degeneracy and thus, the electron liquid at the
Fermi surface acquires spin polarization. In the most
extreme case, electrons with only one spin projection
(spin-up or spin-down) reach the Fermi surface, while
the states with opposite spin projection are pushed away
from the Fermi energy. These systems are referred to as
half-metals1–3. The most immediate consequence of the
half-metallicity is the perfect spin polarization of the elec-
tric current. This makes half-metals promising materials
for applications in spintronics3,4. Many rather different
materials are now classified as half-metals; for example:
NiMnSb,5 La0.7Sr0.3MnO3,

6 CrO2,
7 Co2MnSi,8 among

others. Along with the listed above ferromagnets, the
half-metallicity can exist in the systems with different
magnetic ordering. In Ref. 9 using the first-principles
density functional approach, it was shown that in double-
perovskite structure [Pr2−xSrxMgIrO6]2 synthesized re-
cently, half-metal antiferromagnetism or ferrimagnetism
can be observed depending on the Sr doping level.

It is commonly accepted2 that the half-metallicity
of the compounds listed above is related to an ap-
preciable electron-electron interaction, associated with
the transition-metal atoms. However, in recent years,
transition-metal-free half-metallicity has been a subject

of intense research activity. As a specific example, one
can mention density-functional studies10,11, which pre-
dict the existence of half-metallicity in graphitic carbon
nitride g-C4N3. Another well-known suggestion is to
look for half-metallicity at the zigzag edges of graphene
nanoribbons12. Some other proposals have also been dis-
cussed13,14. Transition-metal-free half-metals could be
of interest for bio-compatible applications and, in gen-
eral, are consistent with current interest in carbon-based
and organic-based mesoscopic systems15–20. The spin-
orbit coupling produces a significant effect on the spin
polarization and, consequently, on the condition under
which the half-metallicity is observed. In the materials
without transition metals, this coupling is small. In our
consideration, we neglect spin-orbit interaction since the
main idea of our proposal is to demonstrate that the half-
metallic state can exist in the systems consisting only of
light atoms, when all effects related to heavy atoms are
disregarded.

A strong electron-electron interaction is not charac-
teristic of materials composed entirely of s- and p-
elements. Therefore, it is reasonable to focus the search
for transition-metal-free half-metals on systems, in which
the electrons at the Fermi surface can be completely po-
larized under the condition of weak electron-electron cou-
pling.

In our recent work, Ref. 21, we have proposed a mecha-
nism for half-metallicity in the weak-coupling regime. We
demonstrated that doping a spin-density wave (SDW)
or charge-density wave (CDW) insulator may stabilize
a certain type of half-metallic state provided that the
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undoped system has two nested spin-degenerate Fermi
surface sheets, which we will also refer to as valleys.
The nesting between the electron and hole Fermi sur-
face sheets makes the system unstable with respect to
density wave formation21. The SDW or CDW instability
opens a gap, giving rise to an insulating ground state.
When doping is introduced, the system becomes metal-
lic, with two new Fermi surface sheets21. Both sheets
are half-metallic. If the spin polarizations of the sheets
are parallel to each other, a half-metallic state, denoted
below as a CDW half-metal, emerges. For antiparallel
polarizations, a different half-metallic state, the SDW or
spin-valley half-metal, appears21.
In this paper, we present a more detailed analysis of

the previously proposed approach21 to half-metallicity.
The most immediate consequences of the half-metallicity
are also discussed. Specifically, we calculate the phase
diagram of the model as a function of doping. Then, the
relation of the electric current to the spin and spin-valley
currents is discussed. Namely, below we show that, de-
pending on the specific parameters, the current carry, in
addition to the electric charge, either spin or spin-valley
quantum numbers. Finally, the structure of a possible su-
perconducting order parameter is discussed. Since there
is no spin degeneracy in a half-metal, but two valleys
are available, the superconductivity in such a system is
rather different from that of common s-wave supercon-
ductors.
The paper is organized as follows. In Sec. II we formu-

late the model, derive its mean field solution, and con-
struct the model’s phase diagram. Both commensurate
and incommensurate density wave order parameters are
investigated. In Sec. III the conductivity of the system
is analyzed. Superconductivity is considered in Sec. IV.
Finally, the main results are discussed in Sec. V.

II. MODEL

We consider here an isotropic two-band electron model.
Both bands or valleys have a quadratic dispersion law.
Bands a and b are the electron and hole bands, respec-
tively. The bands are schematically shown as blue and
orange parabolas in Fig. 1(a). Thus, the single-particle
dispersions of the bands can be written as (~ = 1)

εa(k) =
k2

2ma

+ εamin − µ, εamin < εa < εamax, (1)

εb(k+Q0) = − k2

2mb

+ εbmax − µ, εbmin < εb < εbmax. (2)

Here, band a is centered at k = 0, and band b is shifted
by some momentum Q0. Below, for simplicity, we as-
sume perfect electron-hole symmetry: ma = mb = m
and εbmax = −εamin = εF = µ. Zero doping corresponds to
µ = 0. In the absence of doping, the Fermi surface sheets
for the a and b bands are spheres [see Fig. 1(b)] with the
same Fermi momentum kF =

√
2mεF and the same den-

sity of states (per spin projection) NF = mkF/(2π
2) at

FIG. 1: Electron bands of the model when the electron-
electron coupling is neglected and doping is zero. (a): Elec-
tron band εa(k) and hole band εb(k) are shown by solid
curves. The dashed parabola is the hole band translated by
the nesting vector Q0. The vertical axis is energy and the hor-
izontal axis is momentum, while the Fermi level µ is shown
by the horizontal dash-dot line. (b): Spherical Fermi surfaces
of the electron and hole bands. The spheres coincide if we
translate one of them by the nesting vector.

the Fermi energy. A model of this kind was introduced
long ago by Rice in connection to the incommensurate
SDW in chromium22. Hereafter, εF, kF, and NF denote
the corresponding values at zero doping.
The quasiparticle dispersion given by Eqs. (1) and (2)

exhibits perfect nesting; that is, after translating the elec-
tron Fermi surface by the vector Q0, the electron sheet
completely coincides with the hole sheet, see Fig. 1. The
vector Q0 is usually referred to as the nesting vector.
In general, electrons interact with each other, so the

total Hamiltonian of the system is

Ĥ = Ĥe + Ĥint . (3)

Here Ĥe is the one-electron term, which corresponds to
the dispersion laws (1) and (2). The term Ĥint describes
the interaction between quasiparticles.
We are interested in the weak-coupling regime, as it

was mentioned above. We assume that the interband
and intraband interactions are of the same order. Thus,
to treat the SDW or CDW instability, it is sufficient to
keep in Hint only the interaction between the electrons
in band a and holes in band b, respectively [21,22]. It
is this term in the interaction Hamiltonian, which gives
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rise to opening the gap and cannot be considered as a
perturbation. A weak intraband coupling can be consid-
ered within the perturbation approach and can be safely
neglected since it leads rise only to small corrections to
our results. This common feature of BCS-like approaches
can be proved by a direct calculation.
Below we assume that the interaction is a short-range

one. In this case, Ĥint can be presented as

Ĥint = Ĥdir + Ĥex, (4)

where

Ĥdir=g

∫

d3r
∑

σσ′

ψ†
aσ(r)ψaσ(r)ψ

†
bσ′(r)ψbσ′(r) , (5)

and

Ĥex=g⊥

∫

d3r
∑

σσ′

ψ†
aσ(r)ψbσ(r)ψ

†
bσ′(r)ψaσ′ (r) . (6)

Here, ψασ(r) denotes the usual fermionic field operator
for band α (= a, b) and spin projection σ onto the z axis;

and r refers to spatial coordinates. The term Ĥdir rep-
resents the direct part of the density-density interaction,
while Ĥex corresponds to the exchange part of this inter-
action. The constants g and g⊥ describe the electron-hole
interaction. We assume that the interaction is repulsive
(g, g⊥ > 0) and weak (gNF, g⊥NF ≪ 1).

A. SDW instability and spin-valley half-metal

The Hamiltonian (3) can be used to describe the spon-
taneous formation of low-temperature density-wave or-
der when the Fermi surface sheets of holes and electrons
perfectly match each other (perfect nesting). We start
with the SDW. Looking ahead, we can state that the
SDW order has a lower free energy than the CDW one
if we take into account only electron-electron coupling
Eqs. (5) and (6), and disregard, say, electron-lattice in-
teractions. Up to rotations of the spin-polarization axis,
the SDW ground state is believed to be unique. In the
weak-coupling regime, it is well described by a mean-field
BCS-like theory.
To construct a mean-field theory of the SDW order,

we group the electron operators into two sectors, labeled
by the spin index σ = ±1/2 (or σ =↑, σ =↓): sector
σ consists of ψaσ and ψbσ̄ (here σ̄ means −σ). In the
mean-field approach, the sectors are decoupled, and the
(sector-dependent) SDW order parameter is

∆σ =
g

V

∑

k

〈

ψ†
kaσ ψkbσ̄

〉

, (7)

where V is the system volume, and 〈. . .〉 denotes the di-
agonal matrix element for the ground state. The symbol

ψkασ is the Fourier transform of the operator ψασ(r), in
which the momentum k is measured from the center of

the band α. The latter convention simplifies the nota-
tion; however, one must remember that the centers of
the band a and band b are separated by the nesting vec-
tor Q0. Consequently, the order parameter ∆σ oscillates
in space with a period related to the wave vector Q0.
Following a mean-field approach, it is straightforward

to check that only the direct interaction (5) contributes
to the SDW ordering. The exchange term, Eq. (6), can-
not be expressed as a product of two bilinear combina-

tions of the form ψ†
aσ ψbσ̄, which enter the definition of

order parameter (7). Therefore, Ĥex can be neglected
in the lowest approximation, similar to the intravalley
terms. Thus, in the mean-field approximation, the model
Hamiltonian can be rewritten as

ĤSDW=
∑

kασ

[

εα(k)ψ†
kασψkασ−∆σψ

†
kᾱσ̄ψkασ+

∆2
σ

g

]

,

(8)
where α = a, b and ᾱ means ‘not α’. The spectrum of
Hamiltonian (8) is

E
(1,2)
kσ = ∓

√

ε2k +∆2
σ, (9)

where εk = k2/2m− εF .
The equilibrium parameters of the system can be de-

rived by minimizing the grand thermodynamic potential,
defined for arbitrary temperature T by the usual formula

Ω = −T ln
{

Tr exp[−(Ĥ − µN̂)/T ]
}

. (10)

In this expression, N̂ is the operator of the total particle
number and the Boltzmann constant kB = 1. In the
mean-field approach, the grand potential of our system
is a sum Ω =

∑

σ Ωσ, where partial grand potentials Ωσ

are equal to21

Ωσ=
∆2

σV

g
−
∑

k

[

µ− E
(1)
kσ +

(

µ−E(2)
kσ

)

θ
(

µ−E(2)
kσ

)]

.(11)

The symbol θ(z) denotes the step function. To describe
the system at finite doping x it is convenient to introduce
the partial dopings

xσ = −∂Ωσ

∂µ
, (12)

which are the amounts of additional charge accumulated
in sector σ. Obviously, they satisfy

x↑ + x↓ = x . (13)

The order parameter ∆σ minimizes the grand potential,
Ωσ(∆σ):

∂Ωσ

∂∆σ

= 0. (14)

Thus, to describe the system at finite doping one has to
solve the system of Eqs. (12)–(14) to obtain µ and ∆σ
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as functions of x. Expressions (11)–(14) are valid pro-
vided that the state of the system remains homogeneous,
and the SDW order remains commensurate even at finite
doping (see Section II C and Ref. 23). Note here that
different electron pockets are usually located near the
high-symmetry points of the Brillouin zone. Thus, the
vector Q0 is related to the underlying lattice structure
and the order may be called commensurate. At nonzero
doping, we may try to optimize the energy further by
treating the translation vector, Q1 = Q0 +Q, as a vari-
ational parameter, which is not directly related to the
lattice constant. Further on, such order is referred to as
an incommensurate one.
Direct calculations show that, at zero doping, the sec-

tors in the ground state are degenerate: ∆↑ = ∆↓ = ∆0.
The nesting is perfect and the order parameter is equal
to the BCS-like value

∆0 ≈ εF exp (−1/gNF) . (15)

The obvious BCS structure of this expression is a con-
sequence of the fact that in each sector, the mean-field
procedure is mathematically equivalent to the BCS cal-
culations.
Once ∆0 is known, the spectrum of the model at x = 0

can be evaluated, see Fig. 2(a). Note also that at zero
doping, the definition of the order parameter Eq. (7) im-
plies that the total SDW polarization in real space is
directed along the x axis21

〈Sx(r)〉 =
∆↑ +∆↓

2g
exp(iQ0r) + c.c. (16)

=
2∆0

g
cos(Q0r),

〈Sy(r)〉 =
∆↑ −∆↓

2ig
exp(iQ0r) + c.c. ≡ 0 . (17)

The doping shifts the chemical potential from zero
and destroys the perfect nesting. The number of low-
energy states competing to become the true ground state
increases. Both incommensurate and inhomogeneous
phases22,24–31 were considered as ground states of the
Hamiltonian (3) and its modifications. In our previous
paper Ref. 21, we show that the half-metallic state is yet
another viable contender in the case of imperfect nesting.
Here, we consider this problem in more detail.
According to Eqs. (12) and (14), the two sectors σ are

decoupled within the mean-field approach. Then, ap-
plying a well-known procedure23,24,31, one can calculate
the order parameters ∆σ and the chemical potential µ as
functions of xσ . This gives

∆σ = ∆0

√

1− xσ
NF∆0

, µ = ∆0 −
xσ
2NF

. (18)

We see that the doping of sector σ destroys the order
parameter in this sector. In the homogeneous commen-
surate state, ∆σ is zero when xσ ≥ x0, where

x0 = NF∆0 (19)

(b) E (2)

E (1)

E (2)

E (1)

k

(c) E (2)
E (2)

E (1)

E (1)

(a)

E(1)

E(2)

FIG. 2: Electron band structure for the insulating and half-
metallic states. The vertical axis is the energy, while the hor-
izontal axis is the momentum. The Fermi level µ is shown by
the horizontal dash-dot lines. (a): If doping is zero (x = 0),
the ground state is an insulating SDW or CDW depending on
the model parameters, with degenerate sectors (∆↑ ≡ ∆↓).

The energies of electron and hole bands E
(1,2)
σ are given by

Eq. (9). (b) and (c): If x > 0, the sectors are no longer
degenerate (∆↑ < µ < ∆↓ ≡ ∆0), with the charge accumu-
lating in sector “↑”, in which a Fermi surface appears. The
spin polarizations (arrows) of the Fermi surface sheets in (b)
correspond to the spin-valley half-metal, and in (c) – to the
CDW half-metal.

is a characteristic doping level.
It is usually assumed without extra examination (see,

e.g., Refs. 22,23,31) that the charge carriers are spread
evenly between both sectors, that is,

x↑ = x↓ =
x

2
, and ∆↑ = ∆↓. (20)

Nevertheless, it is easy to show that the spontaneous lift-
ing of the degeneracy (20) optimizes the energy. To prove
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this, the system free energy F must be obtained. (Switch-
ing from Ω to F is necessary to work at fixed doping.)
The free energy equals to the sum F =

∑

σ Fσ, where
the partial free energy,

Fσ = Ωσ + µxσ, (21)

can be calculated as

Fσ(xσ) = Fσ(0) +

xσ
∫

0

dx′µ(x′) , (22)

where

Fσ(0) = −1

2
NF∆

2
0 (23)

is a well-known BCS-like expression for the free energy at
perfect nesting. Then, using µ from Eq. (18), we derive

Fσ

V
= −NF∆

2
0

2
+ ∆0xσ − x2σ

4NF
, xσ < x0 , (24)

F

V
=
∑

σ

Fσ

V
= −NF∆

2
0 +∆0x−

x2↑ + x2↓
4NF

. (25)

Thus, only the third term in Eq. (25) depends on the dis-
tribution of the charge between the two sectors. Expres-
sion (25) has to be minimized under the constraint (13).
It is easy to check that F has the smallest value when
xσ = x and xσ̄ = 0. In other words, for fixed x, within
the studied class of spatially homogeneous mean-field
states, the most stable one corresponds to the case when
all the doped charge is accumulated in one sector. The
other sector is completely free of extra charge carriers.
Thus, the degeneracy between sectors σ =↑ and σ =↓
is lifted, and equations (20) are no longer valid. To be
specific, let us assume that σ =↑ represents the sector ac-
cumulating extra charge. Therefore, in the ground state,
we have

F

V
= −NF∆

2
0 +∆0x− x2

4NF
, (26)

µ = ∆0 −
x

2NF
, (27)

∆↑(x) = ∆0

√

1− x

NF∆0
, ∆↓(x) = ∆0 . (28)

These relations are valid for low doping x < x0. An im-
portant feature of Eq. (26) is that the second derivative
∂2F/∂x2 is negative. This means that the doped system
may be unstable with respect to electronic phase sepa-
ration23,24,28,29,32–35. However, the long-range Coulomb
interaction can suppress phase separation36,37. Thus, it
is reasonable to study here the properties of the homo-
geneous state.
It follows from Eqs. (27) and (28) that

∆↑(x) < µ(x) < ∆↓(x) = ∆0, when 0 < x < x0. (29)

This means that in the sector ↓, the order parameter
remains equal to ∆0. Since the chemical potential is lower
than ∆↓, no charge enters sector ↓, see Fig. 2(b). In the
sector ↑, two Fermi surface sheets emerge. According to
Eqs. (9), (19), (27), and (28) they are determined by

ε2k = [µ(x)]2−[∆↑(x)]
2, or k = kF

√

1± ∆0

2εF

x

x0
. (30)

The doped state acquires non-trivial macroscopic
quantum numbers, since charge carriers introduced by
the doping are distributed unevenly between the sectors.
To characterize the macroscopic state, it is useful to spec-
ify the spin operator Ŝ and spin-valley operator Ŝv:

Ŝ =
∑

ασ

σN̂ασ, Ŝv =
∑

ασ

σναN̂ασ, (31)

where

N̂ασ =
∑

k

ψ†
kασ ψkασ. (32)

Here, the operator N̂ασ describes the number of electrons
with spin σ in valley α. The index να is defined according
to the rule νa = 1, νb = −1.
The Hamiltonian (3), as well as the mean-field Hamil-

tonian (8), commutes with both Ŝ and Ŝv. The field
operators satisfy obvious commutation rules

[Ŝ, ψασ] = σψασ, [Ŝv, ψασ] = σναψασ. (33)

Namely, in addition to the usual spin-projection quantum
number σ, the field ψασ can be characterized by the spin-
valley projection σνα.
Using Eqs. (33), it is easy to check that in the sector

σ, both ψaσ and ψbσ̄ carry the same spin-valley quantum
equal to +σ. In the sector σ̄, the field operators corre-
spond to a −σ quantum of Ŝv. That is, the Fermi surface
sheet of the doped system is characterized by only one
projection of the spin-valley operator. The Fermi sur-
face sheets with the opposite projection of Ŝv are absent,
since the sector σ =↓ is gapped. Thus, the doped sys-
tem can be referred to as a spin-valley half-metal21: like
a classical half-metal, our system exhibits complete po-
larization of the Fermi surface. However, in contrast to
the usual half-metal, the polarization is not just the spin
polarization, but rather, the spin-valley one. Therefore,
the electric current flowing through the spin-valley half-
metal is completely spin-valley polarized.
What does Fermi surface polarization of this type

mean? Imagine that the spin-valley half-metal is in the
state with spin-valley projection +1. Therefore, electron
states at the Fermi energy have spin projection ↑, hole
states have ↓ projection (of course, if an electric current
is present, it is carried by electrons with spin ↑ and holes
with spin ↓).
Experimental measurements of the spin-valley polar-

ization are likely to be more complicated than the mea-
surements of pure spin polarization. Indeed, to extract
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the spin-valley data, it is necessary to determine how spin
polarization is distributed over the Brillouin zone, as the
definition of Sv, Eq. (31), implies. On the other hand, the
spin-valley polarization may be useful for valley filtering:
if we insert perfectly spin-polarized electrical current into
a spin-valley half-metal, we can conclude, which valley is
participating in the transport. For example, if the cur-
rent spin polarization is ↑, it is carried by the electron
valley (no holes with σ =↑ are present at the Fermi level).
Spin-valley half-metal has some similarities with the

antiferromagnetic half-metals widely discussed mostly in
theoretical papers, see, e.g., Refs. 3,9. In an antiferro-
magnetic half-metal, itinerant charge carries at the Fermi
level are still spin polarized. But, in contrast to the usual
ferromagnetic half-metal, magnetic moment per unit cell
is zero owing to the presence of charge carriers in dif-
ferent bands, which compensates the spin polarization
of the itinerant electrons. In the spin-valley half-metal,
we also have spin compensation of two groups of charge
carriers, but here both electron-like and hole-like charge
carriers are itinerant ones and contribute to the Fermi
energy belonging to different Fermi surface sheets.
Since the sector ↓ is free of electrons introduced by

the doping, the average values of N̂a↓ and N̂b↑ remain

unaffected by the doping, while 〈N̂a↑〉 and 〈N̂b↓〉 change.
Let us denote the average occupation numbers 〈N̂ασ〉 as
Nασ = 〈N̂ασ〉. It is convenient to assume that in the
undoped state Nασ = 0. Therefore, we can write

Na↓ = Nb↑ = 0, and Na↑ +Nb↓ = xV. (34)

Consequently, Sv = 〈Ŝv〉 is proportional to x

Sv = σxV. (35)

In a system with perfect electron-hole symmetry, we have

Na↑ = Nb↓ =
xV

2
, (36)

which corresponds to S = 〈Ŝ〉 ≡ 0, for any x. If the
symmetry is absent, then

|S| ∝ x. (37)

However, the net spin polarization of the spin-valley half-
metal meets the inequality

|S| < |Sv|. (38)

The doping also affects the SDW order inherited from
the undoped state. Intuitively, since the charge is accu-
mulated only in one of the two sectors, the order param-
eters in different sectors become unequal to each other
for x > 0 [Eqs. (28) express this fact mathematically].
As a result, the simple SDW is replaced by a more com-
plicated order parameter. Analyzing Eqs. (16) and (17)
one can prove that at finite doping, a circularly polarized
spin component emerges

δS(r) =

(

δSx(r)
δSy(r)

)

=
∆↑−∆↓

g

(

−cos(Q0r)
sin(Q0r)

)

. (39)

10.50

0.15

F(
x

  , 
 x

x)
 /V

N
F

2 0

x  /x

0

FIG. 3: Dependence of ∆F = Fσ(xσ)+Fσ(x−xσ)−2F (x/2)
on the partial doping xσ calculated at T = 0 and fixed total
doping: x = 0.75x0 [(green) dashed curve], x = 1.5x0 [(red)
solid curve], and x = 1.9x0 [(blue) dash-dot curve]. The free
energy curves for all three doping values have a global maxi-
mum at xσ = x/2, implying that the usual metallic phase is
unstable. The free energy is the lowest for either xσ = 0 or
xσ = x: the free energy minimum at xσ = 0 (xσ = x) rep-
resents a half-metallic state with empty (filled) sector σ and
filled (empty) sector σ̄.

The amplitude of this component grows as 1 −
√

1− x/x0, when the doping increases.
The above considerations are valid if the doping x is

less than x0. To investigate the behavior of the system
in a wider doping range, we calculate the function

∆F (x, xσ) = Fσ(xσ) + Fσ(x− xσ)− 2Fσ(x/2) . (40)

If x < x0, the doping in both sectors is less than x0. In
this case, the free energy Fσ(xσ) is defined by Eq. (24)
and

∆F (x, xσ)

V
=

1

NF

[

−x
2

8
+
xσ(x− xσ)

2

]

. (41)

The corresponding parabolic curve is shown in Fig. 3 for
x = 0.75x0 by a dashed line as a function of the ratio
xσ/x. This function is negative and reaches its minimum
when all charge carriers introduced by the doping are
concentrated within one sector (that is, when either xσ =
0, or xσ = x); whereas the maximum of the function
∆F (x, xσ) represents the usual SDW state with x↑ =
x↓ = x/2. This means that the ground state corresponds
to the spin-valley half-metal phase, while the usual SDW
phase is unstable, in agreement with the results obtained
above.
When x > x0, the doping in one sector can be larger

than x0. If xσ > x0, the order parameter in sector σ
vanishes, and the partial free energy becomes

Fσ(xσ) =
x2σ
4NF

, (42)



7

  PM
METAL

SPIN-VALLEY COMMENSURATE
             HALF-METAL

210

x/x0

(a)

   METASTABLE 
INCOMMENSURATE 
    SDW METAL

        INCOMMENSURATE 
               SDW METAL

1.80.83 3.00

x/x0

  PM
METAL

       SPIN-VALLEY
  INCOMMENSURATE
       HALF-METAL

(b)

FIG. 4: Phase diagram of the system; (a) commensurate and
(b) incommensurate ordering. (a) Spin-valley half-metals ex-
ist within the doping range 0 < x < 2x0. At x = x0 (verti-
cal dashed line) the gap in one of the sectors vanishes and a
second-order phase transition occurs. However, a characteris-
tic polarization of the charge carriers at the Fermi surface
(half-metallicity) is not destroyed. When x = 2x0 [verti-
cal (red) solid line] a first-order transition occurs from the
spin-valley phase to the PM phase. (b) Spin-valley half-
metal exists within the doping range 0 < x . 1.8x0. At
x ≈ 1.8x0 [(red) solid line] a second-order phase transition
occurs from the spin-valley phase to the usual SDW incom-
mensurate state. If x ≈ 3x0 [vertical thin (black) solid line]
a first-order phase transition occurs to the PM phase. The
dashed vertical line shows the point (x ≈ 0.83x0) when the
incommensurate SDW order can exist as a metastable phase.

as in the disordered paramagnetic (PM) phase. Thus,
for x > x0, the function ∆F (x, xσ) is a piecewise func-
tion with the continuous first (but not second) derivative
∂∆F/∂xσ. In the vicinity of the point xσ = x/2, the
function ∆F has a parabolic shape. It coincides with
linear functions of xσ away from that point, see the (red)
solid (x = 1.5x0) and (blue) dot-dash (x = 1.9x0) curves
in Fig. 3. However, the function ∆F (x, xσ) is negative
and attains a minimum if either xσ = 0 or xσ = x. There-
fore, the ground state of the model is, again, a spin-valley
half-metal. In doing so, we readily obtain that a second
order transition occurs at x = x0, where the gap in the
doped sector is closed. Comparing the free energies of the
spin-valley half-metal phase and of the usual PM state,
we conclude that the PM state becomes favorable when
x = 2x0. At this point, the gap in the undoped sector
closes in a jump-like manner, and a first order transition
to the usual PM phase occurs. The obtained results are
summarized in Fig. 4(a).

B. CDW half-metal

The CDW order is characterized by a finite average
value 〈ρ̂(r)〉 of the density operator

ρ̂(r) =
∑

σk

ψ†
kaσψkbσ exp(iQ0r) + h.c. (43)

The CDW order is described by a formalism similar to the
one developed above for the SDW. To switch between the
two types of density waves, the mean-field sectors must
be redefined. Specifically, we will assume below that the
sector σ consists of the operators ψaσ and ψbσ. This
rearrangement of the sectors may be formally expressed
by the substitution

ψb↑ → ψb↓, ψb↓ → ψb↑. (44)

Under this substitution, we have

∑

kσ

〈ψ†
kaσψkbσ̄〉 →

∑

kσ

〈ψ†
kaσψkbσ〉. (45)

Therefore, the finite modulation of the spin density is
replaced by a finite modulation of the charge density:

2〈Ŝx(r)〉 → 〈ρ̂(r)〉. (46)

Equation (44) allows us to adopt the results derived for
the SDW to describe the CDW state with little modifi-
cations.
In the CDW phase, we use the finite expectation values

of 〈ψ†
kaσψkbσ〉 and 〈ψ†

kbσψkaσ〉 to apply the mean-field
decoupling in Hamiltonians (5) and (6). Unlike the SDW
case, both the direct and exchange terms contribute to
the mean-field Hamiltonian of the CDW phase:

ĤCDW=
∑

kσα

[

εα(k)ψ†
kασψkασ+∆̃σψ

†
kασψkᾱσ+

∆̃2
σ

g̃

]

, (47)

∆̃σ =
g̃

V

∑

k

〈

ψ†
kaσ ψkbσ

〉

, (48)

where

g̃ = g − 2g⊥ (49)

is the renormalized electron-electron coupling. Hamilto-
nian (47) is similar to the SDW Hamiltonian, Eq. (8).
Thus, as expected, the CDW problem is mapped onto
the SDW one solved in the previous Section. In par-
ticular, the CDW order parameter at zero doping is
∆̃0 ≈ εF exp (−1/g̃NF). Since g⊥ > 0 (repulsive interac-

tion), the CDW is always either metastable (∆̃0 < ∆0),
or absolutely unstable (2g⊥ ≥ g ⇔ g̃ < 0). Of course, the
stability of the CDW order may be improved by adding
parameters, which are beyond our simple model; for ex-
ample, also considering an applied magnetic field and the
interaction with the lattice.
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Calculations identical (up to relabeling) to the case of
the SDW order demonstrate that for x > 0 the charge
carriers are accumulated in a single mean-field sector.
However, the sectors structure is changed by the trans-
formation (44): unlike the case of spin-valley half-metals,
now both electronic fields within a single sector have the
same spin projection. Therefore, if the introduced charge
fills sector σ, both Fermi surface sheets have identical
spin polarizations equal to σ, see Fig. 2(c). This perfect
polarization of the Fermi surface is a hallmark feature of
half-metals. Thus, the spin-valley half-metal is related
to the CDW half-metal by substitution (44). This sub-

stitution, in particular, switches the operators Ŝ and Ŝv.
Consequently, in the CDW half-metal, we have

S = σxV, and |Sv| < |S|, (50)

and Sv = 0 in the case of the perfect electron-hole sym-
metry. When x > 0, in addition to the CDW order pa-
rameter, the SDW order parameter 〈δSz〉 is generated:

〈δSz(r)〉 = ∆̃↑−∆̃↓

g
cos(Q0r). (51)

It grows monotonically with x. This is a direct analog of
Eq. (39).
In the case of CDWs, we obtain formulas for the free

energy, chemical potential, and order parameter similar
to Eqs. (26)–(28), replacing ∆0 by ∆̃0. Thus, the CDW
order parameter is at least metastable in the doping range

0 < x < 2x̃0 = 2NF∆̃0. (52)

Since x̃0 < x0, the CDW phase becomes absolutely un-
stable at lower doping value than that in the SDW. To
illustrate this, let us now calculate the difference in the
free energy between the CDW half-metal and the spin-
valley half-metal

∆F

V
= NF

(

∆2
0 − ∆̃2

0

)

−
(

∆0 − ∆̃0

)

x. (53)

It is easy to see that, as long as x < x̃0 and ∆0 < ∆̃0, the
difference ∆F decreases when doping grows; however, it
is always positive. Thus, we conclude that the spin-valley
state is more stable than the CDW half-metal phase.

C. Incommensurate ordering

Here we analyze a possible incommensurate ordering in
the model under discussion22,23. We start with the SDW
order. The order parameter ∆σ, calculated in the pre-
vious sections, couples electrons with unequal momenta.
Consequently, in coordinate space, the local spin polar-
ization rotates with wave vector Q0. Typically, the cen-
ters of different Fermi surface pockets are located near
the high-symmetry points of the Brillouin zone. There-
fore, the vector Q0 is related to the underlying lattice

structure. Such an order may be called commensurate.
Yet, as it has been already mentioned above, we may try
to relax the requirement of the commensurability and
optimize the energy further by treating the translation
vector Q1 = Q0 + Q as a variational parameter. The
new order parameter has the form

∆σ(Q) =
g

V

∑

k

〈

ψ†
kaσ ψk+Qbσ̄

〉

, (54)

where, as before, the momentum for electrons in band α
is measured from the center of the band α. The vector
Q is small,

|Q| ∼ ∆0m/kF ≪ |Q0|. (55)

The order parameter (54) describes the SDW order with a
rotating spin polarization. This rotation is characterized
by the spatial period 2π/|Q0 + Q|. This value is unre-
lated to the underlying lattice and such order is called
incommensurate.
To describe the incommensurate state, we calculate the

grand potential Ω. In the mean-field approach, Ω is a sum
of grand potentials Ωσ = Ωσ(xσ). Similar to Eq. (9), the
eigenvalues of the mean-field Hamiltonian are

E
(1,2)
kσ =

εk+Q−εk
2

∓

√

∆2
σ(Q)+

[

εk+Q+εk
2

]2

. (56)

With this new formula for E
(1,2)
kσ , the expression for

the partial grand potentials Ωσ, Eq. (11), remains un-
changed. We add the minimization condition ∂Ωσ/∂Q =
0 to Eqs. (12)–(14) and solve the obtained system numer-
ically as it was described in Ref. 23 [see Eqs. (11)–(20)
of that paper].
The partial free energy F ic

0 (xσ) of a sector with par-
tial doping xσ in the incommensurate state is calculated
according to Eq. (22). Within the considered mean-field
approach, the free energy of the system in the presence
of the incommensurate SDW equals

F ic(x) = min
x↑+x↓=x

[

F ic
0 (x↑) + F ic

0 (x↓)
]

. (57)

The free energy of the system in the ground state is found
by its minimization under the condition x↑+x↓ = x. Our
numerical analysis shows that

∂2F ic
0 (xσ)

∂x2σ
< 0, (58)

for xσ less than the threshold value x∗ ∼= 0.83x0. Since
the second derivative of F ic

0 is negative, the sum F ic
0 (x↑)+

F ic
0 (x − x↑) as a function of x↑ ∈ [0, x] is concave. Con-

sequently, the extremum of the latter sum at x↑ = x/2
corresponds to a maximum, not a minimum [see Fig. 5].
Therefore, the total free energy is minimized as follows:

F ic(x) = F ic
0 (x) + F ic

0 (0), at xσ = x and xσ̄ = 0. (59)
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FIG. 5: Dependence of ∆F ic
0 (xσ, x−xσ) ≡ F ic

0 (xσ)+F ic
0 (x−

xσ)−2F ic
0 (x/2) on the partial doping xσ, calculated at T = 0

and fixed total doping x = 1.4x0 [(red) solid curve], x =
1.76x0 [(green) dashed curve], and x = 2.0x0 [(blue) dash-
dot curve]. At high doping (x = 2.0x0), the state at xσ =
xσ̄ = x/2 has the lowest free energy, therefore, the usual
metal, with even distribution of the doped charges among the
sectors, is a stable phase. When the doping is low (x = 1.4x0),
the half-metal is stable. In this situation, the free energy
minimum at xσ = 0 (xσ = x) represents a half-metallic state
with empty (filled) sector σ and filled (empty) sector σ̄. At
some intermediate doping 1.4x0 < x∗ < 2.0x0, a first order
transition from the usual metal to the half-metal occurs. Near
the transition, one of the phases may become metastable. For
example, a well-defined local (but not global) minimum of the
free energy at xσ = xσ̄ = x/2 is clearly seen for the (green)
dashed curve. This implies that for x = 1.76x0, the usual
metal is metastable, while the half-metal is truly stable. The
activation barrier for the transition into the more stable half-
metallic phase is shown by the vertical arrow. The presence
of the metastable phase is marked in Fig. 4(b).

Thus, the undoped sector σ̄ remains insulating. All
doped charge goes to sector σ, which becomes metal-
lic, with a well-defined Fermi surface, and we recover the
spin-valley half-metal with an incommensurate SDW.
Note that the compressibility of the material is propor-

tional to the second derivative of its free energy. Hence,
the compressibility of the system under study is negative
at low doping. This is a rather general feature of models
with imperfect nesting, which, in particular, gives rise to
the possibility of phase separation in them23,24,28,29,35.
If xσ > x∗, then

∂2F ic
0 (xσ)

∂x2σ
> 0, (60)

and the total free energy F ic
0 (xσ) + F ic

0 (x− xσ) acquires
a local minimum at x↑ = x↓ = x/2 (see Fig. 5). When
doping increases even further, this minimum becomes a
global minimum for x ∼= 1.8NF∆0. Consequently, the
first order transition from incommensurate spin-valley
half-metal to the usual incommensurate SDW phase oc-
curs at this point.
The results obtained are summarized in Fig. 4(b).

Comparing them with the case of commensurate order

[Fig. 4(a)], we observe a definite difference. While the
spin-valley half-metal exists in both cases approximately
within the same doping ranges, the transition from the
half-metal to the PM phase occurs in a different way: di-
rectly from the half-metal to the PM if Q = 0 and via
the intermediate incommensurate SDW state if Q 6= 0.
Comparing the computed free energies of the commen-

surate and incommensurate phases, we see that the in-
commensurate phase is more stable than the commensu-
rate one. Accounting for the incommensurability allows
us to extend the range of existence for the ordered state,
as one can notice comparing Fig. 4(a) and 4(b). How-
ever, the difference between the ordering with Q = 0
and Q 6= 0 is small. The contributions, which are ig-
nored in our treatment (e.g., disorder), can be favorable
for commensurate ordering.
The results for the CDW phase can be mapped with

the above calculations by a simple replacement ∆̃0 → ∆̃0,
and, consequently, the incommensurate CDW half-metal
is the ground state of the system at low doping.
Among the four mean-field states discussed here

(commensurate SDW/CDW half-metals, incommensu-
rate SDW/CDW half-metals), the incommensurate SDW
has the lowest energy at low doping, within the frame-
work of our model. However, the difference in free energy
between the SDW and CDW phases may be small. In-
deed, the direct interaction parameter g equals to g(0),
where g(k) is the Fourier transform of the inter-electron
repulsion energy g(r), while the exchange interaction pa-
rameter g⊥ represents the interaction at the momentum
transfer Q1 ≈ Q0: g⊥ = g(Q1). If g(Q1) ≪ g(0) (e.g.,
as in the case of bare Coulomb repulsion), then, g⊥ ≪ g

and ∆ ≈ ∆̃. Also, other factors, which are not included
in our study, could favor the CDW half-metal. For ex-
ample, the proximity to a lattice instability can make
the CDW half-metal a ground state. The applied mag-
netic field acts similarly, since the total spin of the CDW
half-metal exceeds the spin of the spin-valley half-metal.

III. ELECTRIC, SPIN, AND SPIN-VALLEY

CONDUCTIVITIES

In the system under study, the charge carriers at the
Fermi surface are spin or spin-valley polarized. Conse-
quently, the currents are also polarized. The problem of
the polarized currents in our half-metal deserves a sepa-
rate investigation and here we discuss it only very briefly.
In particular, we assume the perfect electron-hole sym-
metry and consider only commensurate ordering, since
in the case of incommensurate SDW or CDW the results
are qualitatively similar.
The electrical conductivity of the isotropic system at

zero temperature in the free-electron approximation can
be written as38

σE =
e2

3
NF(µ) τ(µ) v

2(µ), (61)
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where NF(µ) is the density of states, τ(µ) is the mean
free time, and v(µ) = |∂εk/∂k| is the electron velocity,
and all values here are taken at the Fermi level µ. For
simplicity, we assume further that the mean free time is
the same for electrons and holes and is independent of
µ. In Eq. (61), electrons with both spin projections are
taken into account. For a quadratic electron dispersion,
we have σE = e2nτ/m, where n is the electron density in
the conduction band.
If we neglect the electron-hole coupling, the conduc-

tivity of the two-band system, Fig. 1, is the sum of the
electron and hole conductivities, σE = σa + σb. When
doping is zero, we have

σa = σb = e2n0τ/m = σ0, and thus, σE = 2σ0. (62)

Here n0 = k3F/(6π
2) is the density of electrons (na) or

holes (nb) in the conduction band at zero doping. If we
dope the system electronically, then, na = n0 + x. As-
suming that x≪ n0, we obtain in the linear approxima-
tion: nb ≈ n0 − x. Therefore, the electrical conductivity
remains approximately constant, σE(x) ≈ 2σ0. In this
framework, the Fermi surface is spin degenerate; conse-
quently, the corresponding spin conductivity is zero.

A. Spin-valley half-metal

First, we consider the case of SDW instability and spin-
valley half-metal. The electron-hole coupling opens a gap
in the spectrum and the conductivity in the system be-
comes equal to zero at zero doping.
At finite doping, the mobile charge carriers are accu-

mulated in the conduction bands. When x < x0, the
band corresponding to the sector σ = +1/2 is filled,
while the band corresponding to σ = −1/2 is empty. We
have two Fermi-pockets in the filled band, one electron-
like (∂Ek/∂k > 0) and one hole-like, (∂Ek/∂k < 0), see
Fig. 2. The Fermi momenta of these pockets are given
by Eq. (9), where µ = Ekσ. Using Eqs. (18) and having
in mind that ∆/εF ≪ 1, we derive

k
(e,h)
F

kF
= 1± ∆0

4εF

x

x0
≈ 1, x < x0, (63)

where the superscript e (superscript h) and the plus (mi-
nus) sign corresponds to the electron (hole) pocket. Re-
call that kF and εF denote the corresponding values at
zero doping. In the same approximation, we have

v
(e,h)
F ≈± x

2x0−x
kF
m
, N

(e,h)
F ≈ 2x0−x

x
NF , x < x0. (64)

Therefore, in the lowest-order approximation when
∆0/εF ≪ 1, the electron-hole symmetry is preserved.
The energy gap ∆σ in the σ = +1/2 sector vanishes if

x > x0, while the filling of the σ = −1/2 sector remains
zero (see Section IIA). Thus, for ∆0/εF ≪ 1, the conduc-
tivity becomes σ0, that is, one-half of the conductivity of
the system in the PM state.

Now we can calculate the electric conductivity σE,
which is the sum of the electron, σe, and the hole, σh,
contributions. Using Eq. (61) and (64), we obtain

σE = σ0G(x) ≈ σ0

{

x/(2x0 − x), 0 < x < x0,
1, x0 < x < 2x0.

(65)

The derivative of the function σE(x) has a singularity
at x = x0, when the second order transition occurs [see
Fig. 4(a)]. When x > 2x0, the half-metal phase disap-
pears, the spin degeneracy of the Fermi surface is re-
stored, and the conductivity exhibits a stepwise change
from σ ≈ σ0 to σ ≈ 2σ0.
The conductivity in the half-metallic state is of the

order of σ0 if the doping x is not small, x ∼ x0. The
obtained results are valid if the temperature T and scat-
tering frequency 1/τ are both smaller than the charac-
teristic energy µ −∆σ, which is necessary “to mix” the
electrons-like and the hole-like excitations. When x ∼ x0,
this means that both T, 1/τ ≪ ∆0.
If the electric current j is spin-polarized, the spin cur-

rent js associated with j is nonzero. We can define the
spin current as js = j〈sz〉/e, where 〈sz〉 is the average
spin projection per one electron or hole at the Fermi sur-
face. Using Eq. (61), we define a spin conductivity as

σs =
e〈sz〉
3

NF(µ) τ(µ) v
2(µ), (66)

where we assume that there are no magnetic impurities
in the sample. The spin conductivity of the system is
the sum of spin conductivities in the electron σs

e , and
the hole, σs

h pockets. To calculate σs, we need to know
the spin polarization of the Fermi surface valleys. At
small doping x ≪ x0, the valley polarizations are weak
|〈sz〉| ≪ 1/2. They grow as the doping increases, and
saturates when x ∼ x0. In this case, we have 〈sz〉 ≈ 1/2
for the electrons and 〈sz〉 ≈ −1/2 for holes. Therefore,
σs
e ≈ −σs

h, and

σs ≈ 0 (67)

with the accuracy σs
0(∆0/εF), where σ

s
0 = σ0/2e.

In our system, we can define the spin-valley conductiv-
ity as well. Indeed, similarly to the electron spin, we can
attribute the spin-valley quantum number ±1/2 to the
electron states at the Fermi energy, see Eq. (33). When
the electrical current flows through the system, it can
carry this quantum number, in addition to the charge.

To specify the spin-valley conductivity, we replace the
spin polarization 〈sz〉 in Eq. (66) by an average spin-
valley projection 〈sv〉. For the spin-valley half-metal,
〈sv〉 = 1/2 for both Fermi pockets. As a result, we readily
obtain

σv = σv
0G(x), (68)

where σv
0 = σs

0 = σ0/2e.
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B. CDW half-metal

In the case of the CDW half-metal, electron-like and
hole-like charge carriers have the same spin projections,
while the spin-valley projections have opposite signs. It
is easily proven that in the CDW case, the charge con-
ductivity is the same as for the SDW phase, Eq. (65),
while the spin and spin-valley conductivities must be in-
terchanged, as compared to the spin-valley phase, that
is,

σE=σ0G(x), σs=σs
0G(x), σv≈0. (69)

We can see from Eqs. (69) and (68) that the electric cur-
rent in our systems carries, besides charge, an additional
quantum number: either spin, or spin-valley projection.

IV. SUPERCONDUCTIVITY

In the half-metal phases under study, we have itinerant
electrons in two Fermi pockets. Therefore, an attractive
interaction between these quasiparticles can give rise to
a unconventional superconductivity. We briefly analyze
such a possibility. For simplicity, we consider below only
commensurate SDW or CDW ordering.
Let us assume that the effective Hamiltonian of the

system can be written as

Ĥeff = ĤHM + ĤBCS, (70)

where the first term in the right-hand side, ĤHM, corre-
sponds either to the spin-valley SDW phase, Eq. (8), or
to the CDW half-metal, Eq. (47). The second term is a
usual BCS attraction. We consider first the CDW phase.
In this case, all electrons in both Fermi-pockets have the
same spin projection σ =↑. Thus, the BCS term can be
expressed as

ĤBCS = −
∑

kk′αβ

V αβ
kk′C

†
k↑αC

†
−k↑αC−k′↑βCk′↑β , (71)

where C†
k↑α (Ck↑α) are the creation (annihilation) op-

erators of a quasiparticle with momentum k and spin
projection ↑ at the Fermi surface pocket α = e, h; while

V αβ
kk′ = V βα

kk′ are the corresponding matrix elements of the
electron-electron attraction.
The superconducting order parameter is commonly de-

fined as

∆α
sc(k) =

∑

k′

V αβ

kk′

〈

C†
k′↑αC

†
−k′↑α

〉

. (72)

In particular, this means that

∆α
sc(k) = −∆α

sc(−k) . (73)

Following the standard Bogolyubov approach for the case
of two-band superconductivity39, we obtain a system of

equations for calculating the two superconducting gaps

∆α
sc(k) = −

∑

k′β

V αβ

kk′∆β
sc(k

′)

2Eβ
k′

tanh

(

Eβ
k′

2T

)

, (74)

where

Eα
k =

√

(

E
(2)
k↑ − µ

)2

+∆α
sc(k)

2 . (75)

In this expression E
(2)
k↑ is determined by Eq. (9), in which

the SDW order parameter ∆σ should be replaced by the
CDW order parameter ∆̃σ. Note that in the case of the
CDW half-metal, both gaps ∆e,h

sc (k) correspond to su-
perconductivity with a spin-polarized supercurrent.
In the case of a usual half-metal, a unconventional su-

perconducting ordering exists if the matrix element of
the electron-electron attraction obeys certain symmetry
rules40,41. In contrast to a usual half-metal, we have
a two-component superconducting order parameter, one
component per one valley. However, the symmetry analy-

sis of V αβ

kk′ is very similar to the case of a single-component
unconventional superconductivity. We simply have to de-
mand that the symmetry of the matrix element should
be consistent with the symmetry of the order parameters,
Eq. (73).
For simplicity, let us assume that V ee

kk′ = V hh
kk′ = V eh

kk′ =
Vkk′ . This assumptions are reasonable, since the differ-
ence in the Fermi momenta of different Fermi pockets is
small. From the definition

Vkk′ = 〈k′ ↑,−k′ ↑ |V |k ↑,−k ↑〉. (76)

Thus, the matrix element must obey the following sym-
metry rules41,42

Vkk′ = −V−kk′ = −Vk−k′ = V−k−k′ . (77)

We conclude that the interaction matrix element should
have a definite k-space dependence, otherwise Vkk′ = 0
according to Eq. (77) and then superconductivity would
be impossible. This non-trivial k-space dependent in-
teraction must ensure a correct sign of the sum in the
right-hand side of Eq. (74). For example, if the matrix
element has the form

Vkk′ = −kk
′

k2F
V0, (78)

then V0 must be positive and

∆α
sc(k) = f(k)∆̄α

sc. (79)

Here ∆̄α
sc is k-independent and derived as the usual BCS

superconducting gap in the case of the two-band model39.
It depends on the Fermi momenta kαF defined by Eq. (63)
and on the interaction parameter V0.
The above discussion can be easily adopted to the case

of the spin-valley half-metal phase. The only difference
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is that the spin polarizations of the two valleys are an-
tiparallel to each other. Consequently, the supercurrent
carries a spin-valley polarization. As for the spin polar-
ization of the current, it is small, or even zero.
As in the case of the usual BCS treatment, our con-

sideration of the superconductivity is valid if the super-
conducting gap is much smaller than the characteristic
Fermi energy of the half-metal state. That is,

|∆̄α
sc| ≪ ∆0(1 − x/2x0 −

√

1− x/x0), (80)

which in the case of sufficiently high doping, x ∼ x0,
reduces to the condition |∆̄α

sc| ≪ ∆0.

V. DISCUSSION

Here we have discussed a weak-coupling mechanism
of half-metallicity. Since it does not require a strong
electron-electron coupling, it may be operational in sys-
tems composed of light atoms only. For example, the
proposed half-metallicity could exist in systems without
transition metals. Moreover, in addition to the usual
half-metal with spin-polarized electrons at the Fermi sur-
face, we predicted a possible existence of a new phase,
which we referred to as a spin-valley half-metal. This
phase is characterized by the valley quantum number,
and the charge carriers at the Fermi surface are not
only spin-polarized but also valley-polarized. This unique
property may be of interest for applications in spintron-
ics, and the newly emerging field of spin-valley-tronics.
The presented mechanism for the formation of half-

metallicity is quite general, and may be relevant to
any material with nesting-driven density waves. How-
ever, here we consider only a specific type of inter-
action, namely, short-range electron-electron repulsion,
Eqs. (4)–(6), with g and g⊥ > 0. In this case, we
observe two instabilities of the electronic state: SDW
and CDW. From the former, the spin-valley half-metal
state emerges, Fig. 2(b), while the latter one gives rise to
the CDW half-metal state, Fig. 2(c). Note that in real
materials, a short-range approximation for the electron-
electron coupling is well justified when the system is
in metallic (or in our case half-metallic) state. In the
SDW or CDW insulating state, the long-range interaction
could be of significance. However, the use of a more so-
phisticated interaction potential does not affect our main
results: the density wave instability occurs in the sys-
tem with nesting under condition of weak coupling and
the ground state of doped system (when electron-electron
interaction is a short-range one) is the half-metal.
We assume that both the electron and hole sheets of

the Fermi surface are perfectly nested at zero doping.
More realistically, the sheets have non-identical shapes,
causing finite denesting even at zero doping. For exam-
ple, one sheet may be spherical, while the other may be
elliptical29.
If the zero-doping denesting is sufficiently weak, the

range of doping where ∂2F ic
0 (x)/∂x2 < 0 shrinks29, but

does not disappear. When the sheet shapes differ sig-
nificantly, one has ∂2F ic

0 (x)/∂x2 > 0 for all x, and the
half-metallic states become impossible.
On the other hand, if the sheets are non-spherical,

but the zero-doping nesting is preserved (at x = 0 the
sheets are identical), our conclusions endure, and only
minor mathematical modifications to the formalism are
required (the density of states acquires a dependence on
the spherical angles).
In addition, we assumed the electron-hole symmetry of

the “bare” (when the electron-hole coupling is neglected)
bands, Fig. 1. This approximation simplifies the interme-
diate formulas considerably; fortunately, it does not triv-
ialize the main results. Straightforward modifications to
the formalism allows one to study a more general model.
It is interesting to note that the model we study in this

paper is well-known and was discussed in many research
papers. Yet, despite these efforts, the Hamiltonian (3)
still provides an unexpected many-body phase of elec-
tronic liquid. This is associated with the fact that a
doped density-wave system has several states whose en-
ergies are almost identical (“stripes”, phase separation,
incommensurate density waves). They compete against
each other to become the “true” ground state. The
multiplicity of the competing phases makes a theoreti-
cal description particularly challenging: it is impossible
to prove that no new states will not be added to the list in
the future. Thus, to realize the proposed mechanism in
an actual material, a multidisciplinary study is necessary.
In addition to analytical many-body tools, numerical ab
initio calculations of Fermi surfaces and other electronic
and lattice properties are highly desirable. Of course, a
guidance from the experiment is indispensable in such a
study.
The most striking feature of the half-metal states con-

sidered here is the possibility to observe spin or spin-
valley polarized currents. The corresponding conductivi-
ties are significant if the doping is not small and is of the
order of the characteristic value

x0 = NF∆0 ∼ ∆0n0/εF. (81)

In this regime, the results obtained are valid at suffi-
ciently low temperatures, T ≪ ∆0, and in the absence
of a strong electron scattering, 1/τ ≪ ∆0. The absence
of magnetic impurities that spoil the spin polarization is
also necessary. We neglected here several perturbations
(disorder, spin-orbit coupling, Umklapp processes). The
stability margins of the half-metallic phases against these
factors, as well as their effects on the polarized currents,
should be checked in the further studies.
Since the half-metals posses an ungapped Fermi sur-

face, a superconductivity may coexist with these phases.
The allowed type of superconductivity is p-type, with
parallel or antiparallel orientations of spin polarizations
on the electronic and hole sheets. When the polarizations
are parallel (antiparallel), the supercurrent, in addition
to the electric charge, carries also spin (spin-valley) quan-
tum.
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The electronic phase separation and formation of in-
homogeneous states of electronic matter is an inherent
property of the systems with imperfect nesting23,43. A
strong long-range Coulomb repulsion suppresses the for-
mation of the inhomogeneous states. We assumed here
that this Coulomb interaction guarantees the homogene-
ity of the electron liquid and neglected the possibility of
phase separation. However, the problem of phase sep-
aration in the system considered here is of interest and
deserves a separate analysis because it makes the phase
diagram of the model richer.
The above calculations demonstrate that, among sev-

eral mean-field states discussed above, the incommen-
surate spin-valley half-metal has the lowest energy, at
least for not too strong doping. However, in realistic
sp-electron materials the exchange interaction is small44.
Then, the renormalization of the interaction constant for
the CDW ordering Eq. (49) is also small. Therefore, the
difference in the free energy between the SDW and CDW
phases cannot be large. The difference in the free energy
between the incommensurate and commensurate states
is also small if coupling is weak, as it follows directly
from our calculations. It is reasonable to assume that,
in general, factors neglected in our treatment (temper-
ature, magnetic field, disorder, electron-lattice coupling,
etc.) may change the ground state. However, in any of
the studied half-metal phases, one can observe either spin
or spin-valley currents.

To conclude, we discussed the recently proposed weak-
coupling mechanism for half-metallicity, as well as its
most immediate consequences. We calculated the phase
diagram for the studied model and explore the connec-
tion between spin conductivity, spin-valley conductiv-
ity, and usual electric conductivity for different phases
of the model. We also pointed out that in our model
the half-metallicity may coexist with superconductivity.
The supercurrent in such a superconducting phase would
demonstrate nontrivial spin or spin-valley polarization.
The mechanism discussed in this work may be of impor-
tance for the current search for non-toxic biologically-
compatible materials with nontrivial electronic proper-
ties.
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