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Local excitations in fractional quantum Hall systems are amongst the most intriguing objects
in condensed matter, as they behave like particles of fractional charge and fractional statistics. In
order to experimentally reveal these exotic properties and further to use such excitations for quantum
computations, microscopic control over the excitations is necessary. Here we discuss different optical
strategies to achieve such control. First, we propose that the application of a light field with non-
zero orbital angular momentum can pump orbital angular momenta to electrons in a quantum Hall
droplet. In analogy to Laughlin’s argument, we show that this field can generate a quasihole or a
quasielectron in such systems. Second, we consider an optical potential that can trap a quasihole,
by repelling electrons from the region of the light beam. We simulate a moving optical field, which
is able to control the position of the quasihole. This allows for imprinting the characteristic Berry
phase which reflects the fractional charge of the quasihole.

I. INTRODUCTION

Since the discovery of topological matter in two
dimensions1,2 it has become clear that the distinction
between fermions, as particles which obey the Pauli ex-
clusion principle, and bosons, as particles which do not,
is incomplete on the level of emergent particles. Instead,
topological many-body systems can host also quasi-
particles, so called anyons with intermediate quantum-
statistical behavior.3,4. In many respects, an anyon be-
haves like the fraction of a particle, and accordingly it
possesses fractional quantum numbers. For instance,
electronic systems in the fractional quantum Hall regime
host quasiparticles whose electric charge is only a fraction
of the electron’s charge. If two identical anyons are ex-
changed, their wave function may acquire a U(1) phase,
which in contrast to the case of bosons and fermions
is not restricted to integer multiples of π. An even
more exotic type of anyons are the non-Abelian ones5:
they have a characteristic number of (quasi-)degenerate
ground states, and under particle exchange a state in this
manifold can evolve into another one. Importantly, such
mixing is not possible under local perturbations, which
has triggered the hope for an exciting technological appli-
cation, namely a robust quantum memory. The quantum
information stored in the topologically protected state
of the anyons can be processed by the braiding of non-
Abelian anyons, possibly allowing for fault-tolerant quan-
tum computing6. The first step to achieve this goal is
to gain control over quasiparticles in fractional quantum
Hall systems.

The standard way of creating fractional excitations is
by tuning the magnetic field strength and/or the elec-
trostatic backgate potential. Current schemes for de-
tecting anyonic behavior are based on transport mea-
surements in interferometric devices7–9. However, there

are also different optical techniques which can be used
to probe quantum Hall physics beyond electronic trans-
port measurements: Since the early days of quantum
Hall physics, the light emission from quantum Hall sam-
ples has been measured10,11 in order to probe the in-
teraction between electrons and holes12–14. In addition
to emission spectra, also the elastic and inelastic scat-
tering of light has been detected15. Recently, a novel
spectroscopic approach with improved energy resolution
has been achieved by bringing a GaAs quantum well into
a cavity, and detecting polariton resonances via light
reflection16. Landau level transitions in graphene have
been probed by infrared absorption spectroscopy17,18,
and Raman spectroscopy19,20. Photocurrent measure-
ments in graphene have combined optical probing with
transport measurements21,22. Moreover, using a scan-
ning single-electron transistor23 or a scanning tunneling
microscope24–27, the local density of states has been de-
tected for graphene in the quantum Hall regime. The
resolution of these measurements allows for identifying
single quasiparticles, and this technique has recently
been suggested for the direct imaging also of fractional
quasiparticles28.

At the same time, there have also been remarkable ad-
vances in optical control and manipulation of synthetic
many-body systems. The first vortices in Bose-Einstein
condensates have been created by optically imprinting
a phase onto the atomic wave function29. Later exper-
iments have achieved vortex generation by transferring
the orbital angular momentum of photons to the atoms30.
For atomic quantum Hall droplets, it has been proposed
to create anyons via AC Stark shift, and to directly ob-
serve their dynamical behavior31–33. In such systems,
spectroscopic properties can also reveal the fractional
statistics of excitations34. In optical lattices, adiabatic
flux insertion is suited to grow fractional quantum Hall
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FIG. 1. Two schemes to optically prepare quasi-

particles in a FQH system. (a) Synthetic flux insertion:
Light with orbital angular momentum couples to a quantum
Hall system on a Corbino disk, and shifts (quasi-)particles
through the annulus. Since only entire electrons may flow
through a wire connecting inner and outer edge, a fractional
quantum Hall system at filling ν = 1/q requires q pumping
cycles for a measurable signal. (b) Light-induced potentials:
Local light beams create an optical Stark shift which is suited
to trap quasiparticles in a FQH system.

states35, or to create anyonic excitations36,37. Angular-
momentum resolved spectroscopy of emitted light has
been suggested as a tool to gain microscopic insight to a
photonic quantum Hall system38. Exploiting light beams
with orbital angular momentum has been proposed for
the engineering of polaritonic fractional quantum Hall
systems39.

In the present paper, we apply a quantum optics tool-
box to manipulate electrons in quantum Hall liquids.
A major advantage of optical methods is their versatil-
ity. For instance, while manipulating an electronic mate-
rial with a gate potential requires built-in contacts, op-
tical potentials could have less hardware requirements.
Moreover, compared to transport measurements, optical
schemes can be suited for local probes, and the position of
an optical potential can flexibly be tuned. These proper-
ties suggest that optical techniques may become particu-
larly useful for braiding quasiparticles. In this paper, we
present two different schemes to create and manipulate
quasiparticles in electronic fractional quantum Hall sys-
tems, as schematically shown in Fig. 1: (a) Synthetic flux
insertion creates quasiparticles, and (b) light-induced po-
tentials are able to trap quasiparticles.

(a) Synthetic flux insertion: In this scheme, pre-
sented in Sec. II, we exploit the orbital angular momen-
tum of light to synthesize the insertion of a magnetic flux,
and to create individual quasiholes or quasielectrons.
Specifically, we use a pulsed light field with a non-zero
orbital angular momentum, and coherent light-matter in-
teractions to pump the electrons into a state with the
angular momentum shifted by the value of the photons’
orbital angular momentum. From the conceptual point
of view, this process is equivalent to adding/removing a
magnetic flux into/from the system. Therefore, each light
pulse can be designed to exactly produce one quasihole
or one quasielectron, if the orbital angular momentum of
the light field is ±1.

Details of the optical coupling depend on the material:
(i) For Dirac materials like graphene, we consider a sin-
gle optical transition from the Landau level at the Fermi
surface to an empty Landau level. Such a selective cou-
pling is enabled by the anharmonicity of the relativistic
energy spectrum, in contrast to systems with quadratic
dispersion, e.g., GaAs. If the electron and the photon ex-
change orbital angular momentum, such a transition can
be used to change the angular momentum of an electron.
By timing the pulse duration, such that it matches the
value π (in units given by the inverse Rabi frequency),
we can coherently increase (decrease) the angular mo-
mentum of all electrons by one, and thereby, produce a
quasihole (quasielectron). (ii) In systems with quadratic
dispersion, we consider a Raman-type coupling between
two spin manifolds in the conduction band, and the va-
lence band. This approach requires spin-orbit coupling
in the valence band, as found in GaAs. Exploiting a
STIRAP-like protocol, cf. Ref. 40, the Raman beams
coherently flip the spin of the (spin-polarized) fractional
quantum Hall state without producing excitations from
the valence band. As in the case of graphene, it is again
possible to increase (decrease) the angular momentum of
each electron by using light with orbital angular momen-
tum. Both protocols are robust against disorder provided
the timescale for the optical transfer process is fast com-
pared to the disorder potential.

Our optical method is particularly unique as it pro-
vides an experimentally applicable and well controlled
method to generate quasielectrons in a similar setting as
the quasiholes. Despite their apparent similarity, there
is a fundamental distinction between the two types of
quasiparticles, and this can be understood from the fact
that the quasihole state is an eigenstate of the parent
Hamiltonian for the Laughlin state in the presence of an
additional repulsive potential. In contrast, adding an at-
tractive potential in place of the repulsive one does not
generally produce the quasielectron state, due to the fact
that the position of the potential might be already occu-
pied by another electron41,42.

(b) Light-induced potentials: In this scheme, we
propose that by using an off-resonance light field, one
can generate an AC Stark shift to produce a local poten-
tial, as presented in Sec. III. By choosing the frequency
of the light field to be larger than the one of the corre-
sponding Landau level transition, we show that the re-
sulting repulsive potential can stabilize the system with
a single quasihole. The optimal size of the trap corre-
sponds to a situation where the potential width is of the
order of the magnetic length. However, within the quan-
tum Hall regime, this length scale is usually smaller than
the wavelength of light, which sets the minimal trap size.
Improvements on the potential can be achieved by an al-
ternative sub-wavelength trapping scheme. Specifically,
by coupling three electronic levels, e.g., from two spin
levels and the valence band, it is possible to engineer op-
tical potentials below the diffraction limit. Furthermore,
we show that by adiabatically moving the optical poten-
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tial, the electronic wave function acquires a Berry phase
which reflects the fractional charge of the excitation. By
explicitly simulating the dynamics of a small system, we
determine the maximum speed at which the potential
can be moved without resulting in non-adiabatic behav-
ior. Our simulation demonstrates that optical traps may
become a useful tool for the braiding of anyons.
Although our optical schemes can be applied to differ-

ent fractional or integer quantum Hall phases, the present
paper focuses on systems in the Laughlin phase2. Despite
its relatively simple form, the Laughlin wave function
supports fractional quasiparticles, and it captures very
well the ground state of electrons at filling 1/3. In the
remainder of this introductory section, we briefly discuss
some general properties of the Laughlin wave function
and of its excitations, which will be used in this work.
The Laughlin wave function is given by

ΨL ∼
∏

i,j

(zi − zj)
3 exp[−

∑

i

|zi|2/(4lB)], (1)

where zj = xj − iyj are the spatial coordinates of the jth

electron, with lB =
√

~/(eB) being the magnetic length
in a field of strength B. The wave function assumes that
electrons are confined to the lowest Landau level, denoted
by a Landau level index n = 0. We note that within
the n = 0 Landau level, there is no difference between
graphene and semiconducting materials, except for an
additional valley degree of freedom in graphene. In the
Laughlin state, spin and valley degrees of freedom are
assumed to be fully polarized.
For N electrons, the z-component of total angular mo-

mentum in the Laughlin state is LN = 3
2N(N−1). In the

thermodynamic limit, this quantum number is replaced
by the filling factor ν, that is, by the ratio between the
number of electrons, and the number of states within
a Landau level. The filling factor is also well-defined
in compact geometries such as the torus. The Laughlin
wave function corresponds to a filling ν = 1/3.
One distinguishes between low-energy excitations at

the edge and in the bulk of a Laughlin system. Excita-
tions at the edge are gapless deformations, which increase
the angular momentum slightly (by a value ≪ N~). The
anyonic quasiparticles which we are interested in here
are excitations in the bulk. They are gapped excita-
tions which appear as fractional electrons (“quasielec-
trons”) or fractional holes (“quasiholes”), that is, as a
local increase or decrease of the charge density. The
wave function of a quasihole at position ξ is obtained by
multiplying the Laughlin wave function with a prefactor

f ξ
qh =

∏N
i=1(zi − ξ). From this expression it is seen that

a quasihole increases the z-component of total angular
momentum by O(N) above the Laughlin value (in units
~). In contrast, for a quasielectron in the lowest Landau
level located at a position ξ the Laughlin wave function

should be multiplied by f ξ
qe =

∏N
i=1(∂zi − ξ), where the

derivative does not act on the exponential factor of the
Laughlin wave function. Obviously, the quasielectron has

the opposite effect on total angular momentum compared
to quasihole.
Within the lowest Landau level, the coordinate zi can

be replaced by the operator b†i which raises the angular
momentum of an electron. With this, we can re-write the
quasihole state as

Ψξ
qh ∼

N
∏

i=1

(

b†i − ξ
)

ΨL, (2)

Choosing the quasihole position to be in the center, ξ =
0, this expression shows that the quasihole state can be
produced by shifting each electron into the next angular
momentum orbital. A similar expression can be obtained

for the quasielectron by replacing b†i with bi, which shows
that in this case the angular momentum of each electron
should be decreased by one. This observation outlines the
strategy which we will pursue in the following section in
order to generate Laughlin quasiparticles.

II. SYNTHETIC FLUX INSERTION

In this section, we present two approaches to synthe-
size the insertion of a flux, i.e. to add quantized angular
momenta to the electronic system. In both approaches,
we achieve this by applying a light field with orbital an-
gular momentum. Our first approach, presented in Sec.
II A, uses several π-pulses, which resonantly couple two
Landau levels. This approach is best suited for Dirac
materials such as graphene with an anharmonic Landau
level spectrum. The schematics of our approach is illus-
trated in Fig. 2(a). The proposed coupling brings an
electron from the Fermi surface into an empty Landau
level, so the action of the coupling is to change the Lan-
dau level index by one: n → n + 1. Simultaneously, the
coupling increases the electron angular momentum by ~,
i.e. the orbital quantum number within the Landau level
increases by one: m → m+1. By a proper timing of this
coupling (that is, by applying a π-pulse), all electrons
can coherently be transferred, resulting in a quasihole
state according to Eq. (2) within a higher Landau level.
To remove the Landau level excitation, one can apply a
second π-pulse at constant angular momentum. In this
Section, we perform a numerical simulation of the system
dynamics which shows that decoherence due to electron-
electron interactions is small, if the Rabi frequency is on
the order of the Coulomb interactions (∼ 1 eV). Sponta-
neous emission from the excited Landau level can then
be neglected, as lifetimes on the order of picoseconds are
much longer than the duration of a π-pulse.
The second approach, presented in Sec. II B, is based

on a three-level scheme, as shown in Fig. 2(b). Here,
a Raman-type coupling between two spin Landau levels
in the conduction band leads to a spin flip. An impor-
tant ingredient to enable the Raman transition is spin-
orbit coupling in the valence band, which can be found
in prominent quantum Hall materials, including GaAs.
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FIG. 2. Different schemes for generating quasiholes.

(a) Coupling scheme for graphene: Electrons from the Fermi
surface at LL0 are shifted to an empty Landau level (LL1)
by a π-pulse. If the beam carries orbital angular momentum,
it will also act on the orbital quantum number, m → m + 1.
A second π-pulse is applied to remove the Landau level exci-
tation, while leaving the angular momentum increased. The
final state is a quasihole excitation at the Fermi level. (b)
Coupling scheme for GaAs quantum well: A Raman-like cou-
pling, consisting of a π- and a σ- polarized light beam, couple
two spin Landau levels in the conduction band to the valence
band. We can flip the spin of all conduction band electrons,
while avoiding excitations from the valence band by using the
shown STIRAP-like timing of the pulses. That is, we initially
turn on a coupling between the filled conduction band level
and the filled valence band level, and subsequently couple the
valence band level to an empty conduction band state. If one
of the light beams carries orbital angular momentum, the spin
flip is combined with an orbital shift, m → m + 1. The final
state is a quasihole excitation within the spin-excited Landau
level.

As in our first approach, angular momentum transfer
from the photons to the electrons generates the desired
orbital shift, m → m + 1. This approach produces a
quasihole state within the spin-reversed Landau level.
Since interactions are spin-independent, this scheme is
free from decoherence due to interactions. Moreover, life-
times of spin excitations are extremely long (on the order
of nanoseconds)43,44, so the final state is sufficiently sta-
ble. Excitation of valence-band electrons can be avoided
by applying a detuned STIRAP protocol.
In Sec. II C, we discuss an experimental proposal to

measure the fractional charge of an anyon. The main idea
is that by increasing the angular momentum of each elec-
tron by ~, a charge e/q is pumped through the system,
with q = 1/ν, which is set by the filling factor ν.

A. π-pulse coupling in graphene

We consider an optical coupling between the fraction-
ally filled Landau level n at the Fermi surface to an empty

Landau level n′. Such a selective coupling is possible in
Dirac materials such as graphene, as they exhibit a non-
equidistant Landau level spectrum. The selection rules
for circularly polarized light, |n| ↔ ±(|n|± 1), determine
optically allowed transitions, cf. Ref. 17. For concrete-
ness, we will focus on graphene at a fractionally filled
n = 0 level, and consider a coupling to n′ = 1. We note
that both Landau levels support Laughlin-like ground
states45–47 at filling ν = 1/3. If the light also carries or-
bital angular momentum ℓ, the selection rule regarding
the orbital quantum number m is given by |∆m| = ℓ, see
Ref. 48.
In the rotating frame, such coupling is described by a

time-independent Hamiltonian45:

H0 =
∑

m

[

~δc†m,1cm,1 + ~
Ωm

2

(

c†m+ℓ,1cm,0 + h.c.
)

]

.

(3)

The operators c†m,n (cm,n) create (annihilate) electrons
in the mth orbital of the nth Landau level, δ is the de-
tuning of the laser field from the Landau level transition
frequency, and Ωm =

∫

d2r 〈m+ ℓ, 1|E(r)·r |m, 0〉 is the
Rabi frequency of the optical transition m → m + ℓ in
the (3D) electric field E(r) within the 2D-plane r.
In the following, we will take Ωm = Ω, that is, a con-

stant for all orbitals m. This assumption is not strictly
valid for any system size, since in order to carry orbital
angular momentum, the light beam must have a vortex
line somewhere, and orbitals which are localized near the
vortex line will experience a weaker Rabi frequency than
others. In a large enough system only few orbitals are
affected from the vortex, and our assumption of a m-
independent Rabi frequency holds approximately. The
assumption becomes more rigorous, if one considers a
Corbino disk geometry, i.e. a disk with a hole in the cen-
ter, such that the hole may coincide with the vortex of
the light beam.
Considering the time evolution under H0 in the weakly

detuned limit, δ → 0, the electrons are found to per-
form Rabi oscillations between orbitals |n = 0,m〉 and
|n = 1,m+ ℓ〉 with period T = 2π/Ω. That is, if initially
all electrons were in the n = 0 level, they will be flipped
into n = 1 after a time t = T/2. A light field which is
properly timed, i.e. a π-pulse, will therefore modify the
initial N -electron state, |Ψ(0)〉, in the following way:

|Ψ(T/2)〉 = e−iπH0/Ω |Ψ(0)〉 =
N
∏

i=1

[ã†i (b̃
†
i )

ℓ] |Ψ(0)〉

≡
∣

∣Ψ′
qh

〉

. (4)

Here, ã†i and b̃†i denote the operators which raise the Lan-
dau level index n and the orbital quantum number m:

ã† ≡
∑

n,m

|n+ 1,m〉 〈n,m| , b̃† ≡
∑

n,m

|n,m+ 1〉 〈n,m| .

(5)
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For ℓ = 1, the state defined in Eq. (4) describes a quasi-
hole excitation similar to the one defined in Eq. (2). How-
ever, Eq. (2) defines the quasihole by applying ladder
operators to the ground state wave function, whereas
Eq. (4) uses projection operators b̃†. The ladder oper-
ators differ from the projection operators by a normal-
ization factor

√
m+ 1. The effect of these normalization

factors in the ladder operators is minor for small systems
and vanishes in the thermodynamic limit, as we show in
the appendix. Thus, the orbital shift in Eq. (4) produces
a quasihole excitation. In addition to the orbital shift,
the π-pulse also increases the Landau level index of each
electron. Such a projection of the Laughlin state and its
excitations into higher Landau levels is a straightforward
generalization which has been discussed in Refs. 49 and
50.

Having established that an idealized light pulse creates
a quasihole, we will in the following consider different pro-
cesses which cause decoherence, and which could reduce
the fidelity of our scheme: (a) electron-electron interac-
tions, (b) spontaneous emission from the excited level, or
non-radiative dissipation (heating).

a. Electron-electron interactions. Since interaction
in the n = 1 Landau level also support a Laughlin-like
phase, interactions will not cause decoherence once the
full population has been transferred from one Landau
level into the other, that is to say, the initial and the
final state will not be affected by interactions. However,
during the transfer both Landau levels are occupied, and
inter-level interactions differ significantly from intra-level
interactions, cf. Ref. 45. A straightforward strategy to
keep the resulting decoherence small is by using short
pulses, that is, by applying a strong Rabi frequency.

To make this assessment more quantitative, we have
numerically simulated the time evolution under H =
H0 + VC for N = 5 electrons, where the single-particle
part H0 is defined in Eq. (3), and VC denotes Coulomb
interactions. In the simulation, we have restricted the
Hilbert space to the two coupled Landau levels, and the
angular momentum of the initial state fixes the quantum
number

∑

i(mi−ℓni). For the initial state Ψ(0), we have
chosen the ground state of VC within the n = 0 level at
fixed total angular momentum LN . This state has large
overlap (∼ 0.99) with the Laughlin state. We then de-
termine the overlap of the evolved state Ψ(t) with the

state Ψ′
qh ≡∏i a

†
if

0
qhΨ(0), that is, a state obtained from

the initial state by introducing a quasihole and raising
the Landau level index of all electrons. In Fig. 3(a), we
plot the maximally attained overlap during the course of
the evolution as a function of the detuning δ and Rabi
frequency Ω. As a promising result, we find that the
Rabi frequency does not have to be much larger than the
many-body gap for the fidelity to reach values close to
one. We note that the many-body gap above the Laugh-
lin phase is on the order 0.15e2/ǫlB. This value corre-
sponds to 0.3 eV, if we assume a typical magnetic field
strength of 10 teslas, and use the permittivity of the vac-
uum, ǫ = ǫ0. Our numerical simulation also shows that

FIG. 3. Fidelity of the quasihole pump. We consider a
system of N = 5 electrons, initially prepared in the ground
state of V within the n = 0 Landau level at total angular
momentum Ln. This initial state Ψ(0) has a large (> 0.99)
overlap with the Laughlin state. We then evolve this state
under H0 + VC, and consider the overlap of the evolved state
Ψ(t) with other trial wave functions, including the one for
the quasihole state. In (a), we plot the maximally attained
overlap between evolved state Ψ(t) and quasihole state Ψ′

qh

(defined in Eq. (4) as a function of the detuning δ and the
Rabi frequency Ω. In (b), we plot the overlap between Ψ(t)
and different trial wave functions as a functions of time. This
includes the overlaps with the initial state Ψ(0) (blue dashed
line), with the quasihole state Ψ′

qh (red dotted line), and with
the model wave function Ψmodel(t) given in Eq. (7) (green
solid line). Here we have chosen coupling parameters Ω =
0.2e2/ǫlB and δ = 0.04e2/ǫlB. Units of time are given as
inverts of Ω′ =

√
Ω2 + δ2.

the best choice for the detuning is not at resonance, but
at about δ = 0.05 e2/ǫlB, that is, for an optical fre-
quency below the Landau level resonance. The value of
the detuning roughly compensates the interaction energy
difference when electrons are pumped into the quasihole
state. Due to a larger total angular momentum in the
quasihole state, the Coulomb repulsion in this state is
decreased, and the many-body resonance is shifted away
from the single-particle value.
b. Spontaneous emission. Spontaneous emission

limits the lifetime of any state above the Fermi level.
Therefore, we need to prepare the state of interest in the
Landau level at the Fermi energy. This can be achieved
by applying two subsequent π-pulses, as shown in Fig. 2:
The first pulse, with orbital angular momentum ℓ = 1,
transfers the electrons into an excited Landau level,
and simultaneously shifts the orbital quantum number
m to m + 1, as discussed above. The second pulse
with ℓ = 0 returns the electrons to the original Landau
level, without changing orbital states. Using sufficiently
large Rabi frequencies, both pulses can operate at large
fidelities. The combination of both pulses then results



6

FIG. 4. Fidelity of the quasielectron pump. The setup
in this case is similar to Fig. 3, but the pump photons have
orbital angular momentum l = −1. Moreover, we simulate
pumping in the presence of an additional potential in the low-
est Landau level acting on m = 0 state, to initially remove
the population of this state (see main text). (a) We plot
the maximally attained overlap with the quasielectron state
during a pumping cycle. (b) We plot the overlap of the time-
evolved state with the quasielectron state (shifted into LL1)
Ψ′

qe (red dotted line), the Laughlin state ΨL (blue dashed
line), or a time-dependent model wave function Ψmodel(t)
(green solid line). The coupling parameters are Ω = 0.4e2/ǫlB
and δ = −0.1e2/ǫlB

.

in a quasihole excitation within the Landau level at the
Fermi surface. With this scheme, spontaneous emission
can only occur during the pulse duration. To neglect
this effect, we have to demand that the lifetime in the
excited level is large compared to the duration t = π/Ω
of a π-pulse. In other words, the coupling has to be
fast compared to the emission rate. In summary, large
Rabi frequencies (on the order of eV) suppress both
decoherence due to interactions or due to spontaneous
emission. However, strong Rabi couplings also lead to
non-radiative losses. This will set a practical limit to the
Rabi strength of the pulse, and thus, to the fidelity of our
scheme. A further requirement on the Rabi frequency
is that it is large compared to the disorder potential,
which ensures that the selection rules for orbital angular
momentum are well obeyed.
Within our simulation, we have also studied how the

system evolves from the initial Laughlin-like state (polar-
ized in n = 0 at t = 0) into a quasihole state (polarized in

n = 1 at t = π/Ω′ with Ω′ ≡
√
δ2 +Ω2). It is found that

at intermediate times 0 < t < π/Ω′ the system evolves
through a series of edge-like excitations. The most rele-
vant edge states, denoted by Ψ(s), are of the form:

Ψ(s) =
1

√

(

N
s

)

∑

{k1,...,ks}

(−1)
∑

s
j=1 kj

s
∏

j=1

ã†kj
b̃†kj

Ψ(0). (6)

Here the sum is over all s-tuples {k1, . . . , ks} with 1 ≤
k1 < · · · < ks ≤ N , i.e. all ways of choosing s out of
N particles. For s = 0 and s = N , this definition recov-
ers the initial state Ψ(0) and the quasihole state Ψ′

qh of

Eq. (4). Generally, s specifies the number of electrons in
n = 1, which is equal to the excess of angular momentum
quanta with respect to the Laughlin value LN . Thus, the
states Ψ(s) interpolate between edge and quasihole exci-
tations. By definition, a quasihole excitation increases
the total angular momentum by O(N), while an edge
excitation is characterized by an increase of O(1).
We also note that the family Ψ(s) contains only a se-

lection of edge states, namely those where s electrons are
excited by only one angular momentum quantum. Other
edge states are barely relevant for the dynamics in our
system, and we can model with high fidelity the system
evolution using only states Ψ(s) with 0 ≤ s ≤ N . There-
fore, we make the following ansatz:

Ψmodel(t) =
N
∑

s=0

Ns cos(
1

2
Ω′t)N−s sin(

1

2
Ω′t)sΨ(s), (7)

where Ns = (−i)mod(s,2)
√

(

N
s

)

. In Fig. 3(b) we plot, for

N = 5 electrons, the overlap of the exact state with this
model wave function as a function of time. Despite our
choice of a relatively weak Rabi frequency, Ω = 0.2e2/ǫlB,
the model wave function Ψmodel(t) captures the evolution
rather well.
This establishes the following picture for our quasihole

pump: During a pumping period, the quasihole state is
reached via a series of edge excitations. Therefore, as
shown by Eq. (7), for large systems our scheme requires
fine-tuning of the pumping period in order to reach the
quasihole state. As a function of time, the overlap with
the quasihole state behaves like ∼ sin(12Ω

′t)N , so the
time window where the evolved state has large overlap
with the quasihole state becomes short for large N . We
note that our simulation has assumed a rotationally in-
variant system, and the effect of edge-bending has been
neglected. In a more realistic scenario, states at the phys-
ical edge of the system might be off resonance, and the
term “edge excitation” then refers to the outermost states
which are still resonant with the optical field.
We note that the scenario here is different from another

mechanism to produce a quasihole which has been dis-
cussed in the context of cold atoms31, and which is based
on a local repulsive potential. By adiabatically increasing
the potential strength, the Laughlin state is turned into
the quasihole state without involving significant contri-
butions from other states. In contrast to our scheme, this
approach involves a first-order phase transition which
would make the adiabatic evolution prohibitively slow in
the thermodynamic limit. On the other hand, in small
systems, the method provides an intermediate superpo-
sition between Laughlin state and quasihole state which
can be used for interferometric measurements.
The optical scheme makes it possible to induce the

quasielectron state in a similar manner as for the quasi-
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FIG. 5. Distinct cases in the STIRAP scheme. In Case
I, the ↑-electron (black ball) is transferred into the empty ↓
state (empty dotted ball) via a coupling to the filled valence
band (VB) level. Under a particle-hole transformation, this
process maps onto a single-particle process, flipping the spin
of the conduction band (CB) hole, and the standard single-
particle STIRAP scenario applies. In Case II, both CB states
are empty, but coupled to a filled VB state. To avoid Rabi
oscillation of the valence band electron, both couplings Ωπ

and Ωσ must be sufficiently strongly detuned from the single-
photon resonance.

hole. To this end, we consider an optical pump with
angular momentum l = −1 and follow a similar proce-
dure as outlined above. An important difference in this
case is that the pump cannot transfer the electron with
angular momentum m = 0 to the higher Landau level
due to the absence of the resonantly coupled state. In
contrast, in order to produce the quasielectron wave func-
tion, the components of the Laughlin wave function for
which the m = 0 state is occupied should be destroyed
by the quasielectron prefactor. Given the strongly cor-
related nature of the Laughlin ground state, this might
appear as a challenge for generating the quasielectron
state. Particularly, in exact diagonalization calculations
with finite number of electrons and using the Laughlin
state as the initial state, the highest value of the over-
lap which we were able to obtain with the quasi-electron
state is 87% (not shown). However, the overlap can be
significantly increased to 99% (Fig. 4), if we add a re-
pulsive potential acting on the m = 0 state in the low-
est Landau level. Such potential excludes the m = 0
state from the initial wave function, which thus deviates
from Laughlin state (Fig. 4 (b)). The addition of this
potential might appear as a mathematical artifact, but
it clearly demonstrates that in the absence of a m = 0
(as on an annulus), the quasielectron wave function can
be produced by our pumping scheme. Moreover, optical
methods may even allow to directly implement such a po-
tential in real experiments. To this end, one could exploit
optical Stark effect (which is discussed in the next sec-
tion) using an off-resonant coupling from the Fermi level
(e.g. (n = 0) to another Landau level (e.g. n = −1). If

the light beam has angular momentum l = 1, it will cou-
ple levels (n = −1,m) and (n = 0,m+ 1), and the level
(n = 0,m = 0) remains uncoupled. Thus, the AC Stark
effect shifts the energy of all holes in the n = 0 Lan-
dau level, except for the m = 0 state, and effectively can
repel electrons from this state. The large overlap with
the quasielectron state which is achieved in exact diago-
nalization, after we implement such potential, shows the
promise of our method for the controlled generation of
quasielectrons, and for manipulating such states. As can
be seen from Fig. 4 (b), the model wave function (7) with

the appropriate change of b̃†i with b̃i captures the dynam-
ics quite well for this case as well. The maximum over-
lap is now attained for detuning δ = −0.12 e2/ǫlB, that
is, at opposite sign compared to the quasihole pumping.
This is due to the fact that producing a quasielectron
reduces the total angular momentum in the system, and
thus leads to increased Coulomb repulsion. As a conse-
quence, the many-body resonance is shifted to an optical
frequency above the Landau level gap.

B. STIRAP spin-flip scheme in GaAs

We now consider an alternative coupling scheme which
is illustrated in Fig. 2(b). The goal and the general strat-
egy is the same as in the previous subsection, but instead
of selectively coupling Landau levels, we now achieve the
desired momentum transfer via a Raman spin flip pro-
cess. This approach avoids the need of an anharmonic
Landau level spectrum, and thus it can be applied to
non-relativistic materials. On the other hand, coupling
different spin manifolds in the conduction band to the
same level in the valence band requires the presence of
spin-orbit coupling51,52. Therefore, the approach in this
section is well suited for GaAs, but it cannot be applied to
graphene. One of the Raman beams shall carry orbital
angular momentum, such that the coupling effectively
transfers conduction band electrons from |n = 0,m, ↑〉
into |n = 0,m+ 1, ↓〉. As discussed before, the angular
momentum transfer creates a quasihole state, but now, as
an additional bonus, the final state remains in the n = 0
Landau level, with only the electron spin being flipped.
Given the long spin lifetimes of the order of nanoseconds,
measured for GaAs in Refs. 43 and 44, the final state is
effectively stable. Moreover, since the Coulomb interac-
tions are spin-independent, the final state will not be sub-
ject to decoherence due to interactions. We remark that
our approach is robust against sample disorder provided
the timescale for the optically induced transfer process
is much faster than the characteristic frequency of the
disorder potential.
In order to avoid excitations from the valence band,

the timing of the light fields may follow a STIRAP pro-
tocol (see Ref. 40 for a recent review on STIRAP tech-
niques). In the standard STIRAP scenario, a particle
is transferred between two stable states, involving two
fields which couple these states to a third radiative level.
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The characteristic feature of STIRAP is the fact that, for
properly timed fields, full state transfer is possible with-
out populating the radiative level at any time. Our case,
though, is different from the standard STIRAP scenario:
While we also want to transfer a particle between two
(relatively) stable conduction band states, we achieve this
via a coupling to a filled valence band level. The scenario
is illustrated as Case I in Fig. 5. Although this process
involves two electrons, STIRAP can be applied if we view
the process as the transfer of a single hole. This particle-
hole transformation only requires to interchange pump-
and probe-fields, and Coulomb interactions between the
electrons simply renormalize the resonance frequencies.
Our situation, however, is more complicated through the
presence of a second scenario, illustrated as Case II in
Fig. 5. This case may occur whenever the many-body
state is at fractional filling, such that the couplings also
act onto empty orbitals. This scenario may give rise to
undesired excitations from the valence band. A natural
way to avoid these excitations is by operating far detuned
from a single-photon resonance.

In order to achieve high fidelities, the STIRAP pro-
tocol should be characterized by T ≫ 2π/Ω & 2π/δ.
Here, T denotes the duration of a STIRAP pulse, which
needs to be significantly longer than a π-pulse. However,
due to the spin-independence of Coulomb interactions,
there is no need to keep T small compared to the time
scale of interactions, set by e2/(ǫlB), where ǫ = ǫ0ǫd.
Note that in GaAs, a dielectric constant ǫd ≈ 12 sup-
presses Coulomb interactions by a factor of 12 compared
to graphene. Thus, at a field strength of about B ≈ 10 T,
the energy scale of Coulomb interactions is on the order
of tens of THz, i.e., at femtosecond time scales. In con-
trast, the lifetimes of spin excitations is on the order of
nanoseconds, so it is justified to treat both spin levels as
stable levels.

Since the transfer dynamics now involve three different
Landau levels, including the filled valence band Landau
level, its numerical simulation is hard. We restrict our-
selves to simulating a minimal example of the scheme:
As plotted in Fig. 6(a), we truncate the Landau levels
to having only 4 states, and load the system with N = 6
electrons. Choosing the bandgap and the Zeeman gap
sufficiently large compared to the Coulomb interactions,
the ground state of this system will be a filled valence
band, and two electrons in the spin-up manifold of the
conduction band, forming a “Laughlin” state of two elec-
trons, i.e. Ψ(z1, z2) ∼ (z1 − z2)

3 |↑↑〉. If we wanted to
pierce a hole into this state, this would increase the an-
gular momentum by 2, which is not permitted in our
truncated Landau levels. Therefore, we simulate only
the coherent transfer part of our scheme, that is, a cou-
pling as shown in Fig. 6(a), leaving the angular momen-
tum constant. Applying the STIRAP protocol shown
in Fig. 6(b), we evaluate the fidelity, that is, the over-
lap of the time-evolved state Ψ(t) with the target state,
Ψtarget(z1, z2) ∼ (z1 − z2)

3 |↓↓〉. As seen in Fig. 6(c),
this fidelity reaches unity, if the Rabi frequency is suf-

ficiently strong, i.e. ΩT ≫ 2π. For the pulse duration
(defined by the FWHM of a Gaussian pulse), we have
chosen T ≈ 415ǫlB/e

2, which for typical magnetic field
strengths is on the order of hundreds of picoseconds. To
avoid excitations from the valence band, the detuning
should be larger than the Rabi frequency, δ > Ω.

C. Detecting anyonic properties

In the remainder of this section, we briefly discuss pos-
sible detection schemes for fractional charge and statis-
tics, which potentially benefit from a method to generate
exactly one quasihole by a pulsed light beam.
a. Fractional charge. A possible charge measure-

ment can be performed on a Corbino disk. The inser-
tion of flux through a Corbino disk has been discussed in
Ref. 53. As described in the previous section, our scheme
increases the angular momentum of the electrons. This
shifts them towards the outer edge in the same way as cre-
ation of an additional flux through the inner circle of the
Corbino disk would do. The reverse process, which trans-
ports charges towards the inner edge can be achieved by
decreasing the angular momentum of the electrons.
The confining potential at the edge makes it energeti-

cally favorable for the charge to return to its original po-
sition. This leads to transport through a wire connecting
the two edges of the Corbino disk. However, consider-
ing a fractional quantum Hall system at filling ν = 1/q,
q quasiparticles need to be shifted to the outer edge in
order to accumulate a total electronic charge e. Thus, n
pumping cycles are expected to produce a current of n/q
electrons, and the number of pumping cycles serves as a
direct measure of the fractional charge.
b. Fractional statistics. The detection of fractional

statistics is possible using interferometers, either of the
Fabry-Perot or the Mach-Zehnder type. Such devices are
suited to detect Aharonov-Bohm phases, as proposed for
instance in Ref. 54 and realized in Refs. 7–9, by mea-
suring the interference of currents along different paths.
In these schemes, the interference pattern is sensitive to
changes of the magnetic field, which yields the value of
the fractional charge. It is also sensitive to the number
of quasiparticle between the different arms of the inter-
ferometer, and from this, the statistical angle of the exci-
tations can be deduced. However, to extract both charge
and statistical angle from the interference pattern, exact
knowledge about the number of excitations is needed.
Thus, our scheme may allow for improved measurements
as it provides individual control over these excitations.

III. LIGHT-INDUCED POTENTIALS:

The previous section has demonstrated that light with
orbital angular momentum can be used to mimic the ad-
dition of a flux, and to produce a quasiparticle excitation.
In the present section, we will not be concerned with the
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FIG. 6. Simulation of many-body STIRAP scheme. (a) Illustration of the STIRAP scheme for which we have performed
a numerical simulation in a minimal system: Each Landau level is truncated at m = 3 (4 states), and the total number
of electrons is six. For simplicity, we have considered a coupling at constant angular momentum, i.e. between |m, ↑〉 and
|m, ↓〉. Bandgap ∆bg and Zeeman gap ∆Z are chosen such that in the absence of the coupling, 4 electrons fill the valence
band, and the remaining 2 electrons polarize in the spin-up manifold of the conduction band, where they form a N = 2
“Laughlin” state, Ψ ∼ (z1 − z2)3. (b) Applied STIRAP pulses, with the pulse duration T = 415ǫlB/e

2, that is, on the order of
hundreds of picoseconds. The pulse maxima are separated by ∆t = 250ǫlB/e

2. (c) We simulate the time evolution for different
values of Rabi frequency Ω and detuning δ, obtaining the valence band filling (occupation per states), and the overlap with
initial state (a N = 2 Laughlin state in the spin-up manifold) and target state ((a N = 2 Laughlin state in the spin-down
manifold), as a function of time. In the upper plot of panel (c), the transfer is poor due to a relatively weak Rabi frequency
Ω = 0.025e2/(ǫlB), and comparably strong detuning δ = 0.1e2/(ǫlB). The plot in the center is for an increased Rabi frequency
Ω = δ = 0.1e2/(ǫlB), which allows for good transfer, but excitations from the valence band become relatively large. The lower
plot, for Ω = 0.1e2/(ǫlB) and δ = 0.3e2/(ǫlB), leads to good transfer at low excitation rates.

production of the excitation, but we will be interested in
ways to stabilize and control the quasiparticle. Specifi-
cally, we will consider an optical potential which locally
repels the electrons and thereby traps a quasihole. Pro-
viding a trapping scheme for quasiparticles is particularly
relevant for ultra-clean systems where the disorder land-
scape might be too weak to localize excitations.
A major concern addressed in this section is the fi-

nite width of the optical potential, in contrast to δ-like
potentials which have been studied earlier in the con-
text of cold atoms31,32. A numerical investigation shows
that a potential with small but finite width is even better
suited for trapping quasiholes than a point-like potential.
However, the gap above the quasihole state is found to
decrease when the potential becomes broader than the
magnetic length. Since the optical wavelength is usually
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larger than the magnetic length, we will present some
ideas to achieve subwavelength potentials using a three-
level coupling.
Given the flexibility of optical potentials, they appear

to be particularly well suited for moving the quasihole.
Thus, an optical trap for quasiholes may provide a tool
for braiding anyonic excitations. To demonstrate that
ability, we show that, when the potential is moved on a
closed contour, the wave function acquires a Berry phase
proportional to the fractional charge of the quasihole.
The calculations and discussions in this section hold

for both non-relativistic systems and for Dirac materials.

A. AC Stark shift

The mechanism which provides the desired optical po-
tential is AC Stark shift. The AC Stark shift is routinely
used to trap cold atoms in optical lattices. Recently, it
has been suggested to trap Dirac electrons in graphene
by exploiting AC Stark shift55. In a GaAs quantum well,
this shift can be produced by optically pumping below
the band gap56. Alternatively, if the system is coupled
to a cavity, an enhanced Stark shift can be achieved
using a resonance of the cavity57. In general, the en-
ergy shift ∆E experienced by the electronic energy in a
laser field E(r, t), is given by ∆E = d · E(r, t), where
d = α[Ex(r, t), Ey(r, t)] is the dipole moment induced by
the field. The polarizability α is inversely proportional
to the detuning ∆ from the closest resonance. With this,
the optical potential reads:

Vopt ∝
I(z)

∆
, (8)

where I(z) is the laser intensity in the complex plane,
assumed to be constant in time. In the following, we will
consider a Gaussian beam, that is, an optical potential

V
(ξ,w)
opt (z) =

(

lB
w

)2
Vopt,0 exp[|z − ξ|2/w2], characterized

by the position of the beam focus ξ, the width w of the

beam, and an potential strength V0. The prefactor
(

lB
w

)2

normalizes the intensity such that limw→0 V
(ξ,w)
opt (z) =

Vopt,0δ(z), with δ(z) being the Dirac distribution.
For the purpose of trapping a quasihole, it is necessary

that the strength of the potential compensates the energy
gap above the Laughlin state. Thus, the relevant energy
scale is given by the Coulomb energy e2/(ǫlB), with the
magnetic length lB representing the typical length scale
relevant for the quantum Hall physics. This length scale
determines the size of an electronic orbital, but also of
defects like quasiparticles and quasiholes. If B̃ is the

magnetic field strength in tesla, lB = 26 nm/
√

B̃. For
a magnetic field of 9 T, and with a dielectric constant
ǫd = 12 (as in GaAs), this energy scale is on the order
of 150 meV, and a typical gap will be on the order of
15 meV. An early measurement in GaAs56 has obtained
an AC shift of 0.2 meV was with a laser intensity of 8
MW/cm2.

Apart from the energy scale, also the length scale of
the potential plays an important role. With the size of
a quasihole being on the order of the magnetic length,
we expect that the length scale of a trapping potential
should not significantly exceed this scale. However, the
minimum length scale of an optical potential is limited by
the wavelength of the light, which in the visible regime is
on the order of hundreds of nanometers. In contrast, for
magnetic field strengths on the order of a few teslas, the
magnetic length is only a few nanometers. We will thus
need to evaluate whether a potential with finite width
w ≫ lB is still suited to trap quasiholes.

B. δ-like potentials

Before considering the case of finite-width potentials,
we verify that a point-like potential (w = 0) gives rise
to the desired excitations. This becomes obvious when
we look at the parent Hamiltonian of the Laughlin state,
that is, at some model interactions Vparent for which the
Laughlin wave function ΨL is the densest zero-energy
eigenstate. Such parent Hamiltonian is given in terms of
Haldane pseudopotentials Vm, specifying the interaction
strength between two electrons at relative angular mo-
mentum ~m. In the 1/3-Laughlin state, all pairs of elec-
trons have relative angular momentum 3~, so the Laugh-
lin state has zero energy in a model Hamiltonian with
Vm = 0 for m ≥ 3. Since for spin-polarized fermions the
relative angular momentum cannot be even, a Hamil-
tonian with only a single non-zero pseudopotential, V1,
provides a parent Hamiltonian for the Laughlin state. It

follows that the quasihole state f ξ
qhΨL becomes the dens-

est zero-energy eigenstate of Vparent + V0δ(ξ), when the
potential strength exceeds a critical value. To see this,
we note that the quasihole state carries the same anti-
correlations between the electrons as the Laughlin state,
but at the same time has vanishing density at position ξ.
The scenario of a δ-potential has been studied before in

greater detail in the context of cold atoms31,32. In these
systems of neutral particles, which can be brought into
the fractional quantum Hall regime by artificial gauge
fields, the cyclotron frequency is on the order of the
trap frequency (∼ 10 Hz), resulting in a magnetic length

lB =
√

~/(Mωc) on the order of microns, with M be-
ing the mass of the atoms. Due to this different length
scale, finite-width effects can indeed be neglected in these
artificial systems.

C. Finite-width potentials

To study the role of the finite potential width w, we
turn to numerical diagonalization methods, by which we

obtain the ground state of VC + V
(ξ,w)
opt for different laser

positions ξ and different beam widths w. Generally,
we find large overlaps of these states with the Laugh-
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FIG. 7. Gap above the quasihole state on a torus.

We plot the energy gap above the three degenerate quasihole
states on a square torus in the presence of an optical poten-

tial V
(ξ,w)
opt , as a function of the potential width w. The N

electrons are confined in the n = 0 Landau level, generated
by the presence of NΦ = 3N + 1 magnetic fluxes.

lin quasihole state f ξ
qhΨL, even when the beam becomes

as broad as (or even broader than) the electronic cloud.
In our numerics, we have considered both disk and torus
geometries which we discuss separately below.

a. Torus. The torus geometry is convenient because
due to its compact nature no trapping potential is re-
quired to confine the electrons. Since the torus has
no edge, this geometry is well suited for studying the
bulk behavior of large systems for which deformations
at the edge are irrelevant. Interestingly, on the torus,

the ground state of VC +V
(ξ,w)
opt is almost independent of

w. The overlap with the exact Laughlin quasihole state58

takes large values close to 1, cf. Table I. While this result
shows that the finite potential width does not modify the
quasihole state in the bulk, we also find that the energy
gap above the quashihole states is quite sensitive to the
width of the beam (see Fig. 7). Up to a certain value, of
the order of the magnetic length, a finite potential width
is found to increase the stability of the quasihole. How-
ever, the gap starts to decrease when the beam width
exceeds the magnetic length. This result can be under-
stood by noticing that also the quasihole has a finite size
of the order of the magnetic length, and the formation
of a quasihole reduces the energy due to the optical po-
tential most efficiently when the spatial overlap between
quasihole and potential becomes largest. Obviously, in
broader potentials a quasihole becomes less efficient for
reducing potential energy.

b. Disk. The disk, though the most natural geome-
try to study quantum Hall physics, suffers strongly from
finite-size effects. Even the concept of a filling factor
is not defined on an infinite disk because each Landau
level contains an infinite amount of states. It is neces-
sary to assume a trapping potential which controls the
electron density. A realistic trapping potential consists
of hard walls, so the potential is flat in the entire system,
except for the edge, where the potential energy steeply

w/lB Overlap on torus Overlap on disk
N = 7 N = 8
Nφ = 22 84 ≤ L/~ ≤ 92

0 0.9884 0.9450

3 0.9885 0.9552

6 0.9851 0.9409

TABLE I. Overlaps between Laughlin quasihole state, and

ground state of VC + V
(ξ,w)
opt on disk and square torus, for

different w. Parameters on the torus: V0 = 1, ξ = 0, and
on the disk: V0 = 10, ξ = 2. On the torus, exhibiting three
(quasi)-degenerate ground states, overlap refers to the three
(equal) eigenvalues of the 3x3 overlap matrix.

increases. Effectively, such potential puts a constraint
on the Hilbert space, as it restricts the orbitals to those
which fit into the flat region. This means that angular
momenta beyond a certain value are not available any-
more. Since we are interested in the Laughlin state (with
angular momentum LN ), and in its quasihole excitation
(increasing the angular momentum by up to N quanta),
we will assume that the trap effectively truncates the
Hilbert space at LN +N . Therefore, we perform the ex-
act diagonalization study within a space of Fock states
of angular momentum LN ≤ L ≤ LN + N . This choice
yields the quasihole state as the only zero-energy eigen-
state if the parent Hamiltonian is applied, that is, for a

point-like potential V
(ξ,w=0)
opt and pseudopotential inter-

actions Vm ∼ δ1,m.

Importantly, we find that Coulomb interactions do
not significantly alter the scenario. Comparing the ex-
act Laughlin quasihole state and the ground state of

VC+V
(ξ,w)
opt , we obtain an overlap of about 0.95 forN = 8.

Strikingly, the potential width w has only a minor effect
on these numbers if the potential is chosen sufficiently
strong, see Table I.

There is, however, a notable consequence of finite-
range interactions appearing in our numerics on the disk:
the quasihole position does not exactly coincide with the
position of the optical potential anymore, as seen in Fig.
8. Although this observation seems to be an artifact due
to the neglection of the trap, it will be important to take
it into account when determining the quasihole charge,
as discussed in the next subsection. To this end, the data
in Fig. 8 is needed to calibrate the quasihole position.

Energetic arguments explain the mismatch between
quasihole position and potential minimum: shifting the
quasihole towards the center increases the angular mo-
mentum, and thereby reduces the energy of long-ranged
interactions. A realistic trapping potential would com-
pensate this effect by penalizing the angular momentum
increase, but this term is missing in our numerical study.
If Coulomb interactions are replaced by the short-ranged
pseudopotential model, the quasihole position coincides
with the potential minimum. In this case, the interaction
energy is zero, and shifting the quasihole cannot lead to
an interaction energy gain.
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FIG. 8. Calibrating the quasihole position on the disk.

By neglecting the trapping energy, long-range interactions
lead to a shift of the radial position r of the quasihole to-
wards the center. The plotted curve is used to calibrate the
true quasihole position r as a function of the parameter |ξ|,
specifying the maximum of the optical potential, for N = 8
electrons.

D. Realization of sub-diffraction potentials

FIG. 9. Sub-diffraction potentials. (a) Engineering a sub-
diffraction potential via three-level coupling. An ⇑-hole at
the Fermi level (empty dotted ball) experiences an attractive
potential by coupling to the electrons (black balls) in the ↓-
level of the conduction band and in the valence band state
|v〉. A particle-hole transformation relates this process to the
standard single-particle EIT scenario, applied to a single hole.
Although the laser fields do not induce a direct potential for
↑-electrons, the attractive potential for ⇑-holes results in an
effective repulsive potential for the ↑-electrons. (b) We show
a 1D cut through the potential V (z) and the laser fields Ωc(z)
and Ωp. Even though Ωc is diffraction limited, we can achieve
a sub-diffraction V (z) by working with max[Ωc(z)] ≫ Ωp.

In the previous section, we showed that the manipula-
tion of anyons profits from potentials of width w ∼ lB.
This requires a sub-diffraction addressability which can
be achieved by employing techniques analogous to the
ones used in ultra-cold atoms59,60. The basic idea is to
use three energy levels which provides much more flexi-
bility than just the two-level scheme used to induce AC

Stark shift. As an example we consider GaAs, for which
we can use the level scheme shown in Fig. 9 (a), in anal-
ogy to Fig. 5 used for the STIRAP. The scheme consists
of two spin-levels in the conduction band and one level
in the valence band. We now choose the Fermi energy
through the upper spin level ↑, so both the ↓-level and
the valence band are occupied. The two-electron sys-
tem can be mapped onto a single-particle problem via
particle-hole transformation, and a repulsive potential on
↑-electrons will be achieved by engineering an attractive
potential for ⇑-holes. Therefore, we operate at the two-
photon detuning δ⇓ < 0.

Moreover, we use two laser fields: a strong Ωc(z) which
is position dependent [for the easiness of presentation we
fix it to Ωc(z)

2 = Ω2
0(1− exp[|z− ξ|2/w2])], and a weaker

Ωp which is homogeneous in space. The Hamiltonian
reads

Hal =







δ⇓ 0 Ωc(z)

0 0 Ωp

Ωc(z) Ωp ∆






(9)

in the bare hole-state-basis: {|⇓〉 , |⇑〉 , |v〉}. For |δ⇓| ≪
Ωp which ensures that we can consider δ⇓ perturbatively,
and for an appropriate preparation scheme60,61, the in-
ternal state of a hole can be described using a dark state

|D〉 = Ωc(z)√
Ω2

p+Ωc(z)2
|⇑〉 − Ωp√

Ω2
p+Ωc(z)2

|⇓〉. From the form

of |D〉, we see that the hole experiences an attractive po-

tential V (z) = δ⇓
Ω2

p

Ω2
p+Ωc(z)2

, which for Ω0 ≫ Ωp can have

sub-diffraction width ws = w/s characterized by the en-
hancement factor s ∼ Ω0/Ωp and the depth V0 = δ⇓.

Assuming that we can describe our system using three
levels, the available depth of the trap is mainly limited
by: (i) the validity of the rotating wave approximation,
and (ii) the coupling to the short-lived intermediate level.
The (i) limitation constrains the strength of Ωc(z) to
Ω0 ≪ ∆bg. Together with Ωp ≫ V0 and s = Ω0/Ωp,
we get that s ≪ Ω0/V0 ≪ ∆bg/V0. For ∆bg ∼ 1.5 eV,
Ω0 ∼ 0.5 eV, and V0 ∼ 15 meV, we see that enhance-
ment factors s on the order of 10 are within a reach.
The losses in (ii), lead to the broadening of the trap-

ping potential by γv
V 2
0

Ω2
p
≪ γv, which [compared with the

depth of the potential V0] is negligible for the lifetimes
τv = 1/γv on the order of 10 ps. Note that in contrast to
ultra-cold atoms60–63, the kinetic energy is quenched in
a magnetic field, and therefore non-adiabatic corrections
to the Born-Oppenheimer potentials61,62 are negligible.
This relaxes some of the constraints posed on the possi-
ble trapping depths. We leave a more detailed analysis,
beyond the estimates presented here, for the future work.

Finally, in the case of graphene, we envision similar
possibilities: for example, one can use other filled Landau
levels as the additional two levels in the ladder or lambda
three-level scheme.
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E. Moving a quasihole.

In the remaining part of this section, we consider an
optical potential which is moved on a closed loop. As a
quasihole is trapped by the potential, this procedure is
expected to imprint a Berry phase onto the wave func-
tion which is proportional to the charge of the quasihole.
Thus, by calculating the quasihole charge from the Berry
phase we will verify that moving the optical potential is
suited to move an excitation. By considering short-range
interactions instead of Coulomb interactions, finite-size
effects become small, and the fractional charge matches
with the value 1/3, expected for a thermodynamically
large Laughlin system. We will also compare an ideal-
ized adiabatic evolution, restricted to the ground state
Hilbert space, with the true dynamic evolution. This
establishes the maximal speed with which the potential
should be moved.
a. Relation between Berry phase and charge. If the

position ξ of a single charge q is moved, the wave function
Ψ(ξ) will pick up a Berry phase γ =

∮

dξ〈Ψ(ξ)|▽ξ |Ψ(ξ)〉,
and this phase is proportional to the magnetic flux
through the enclosed area A times the value q of the
electric charge. This relation is normalized such that the
electron charge e acquires a Berry phase γ = 2π when it
encircles one flux. In a constant magnetic field, with the
magnetic length defined such that an area 2πl2B contains
one flux quantum, we have the relation

q

e
= γ

l2B
A
. (10)

Thus, by studying the phase of the wave function upon
moving the quasihole, we can extract the electric charge
of the excitation.

b. Results from adiabatic evolution. We have per-
formed such calculation using the disk geometry with
N = 8 electrons. We considered a Hamiltonian H =
Vint + V

(ξ,w)
opt , where the interactions Vint are either

Coulomb interactions or the parent Hamiltonian of the

Laughlin state. For the optical potential V
(ξ,w)
opt , we con-

sidered a finite width w up to 3lB as well as the limit
w → 0. Our results are plotted in Fig. 10: Impor-
tantly, in case of the ideal interactions from the pseu-
dopotential model, the width of the optical potential has
a minor effect on the Berry phase, or, respectively the
measured charge of the quasihole. Both, for a point-like
potential and for a broad beam (w = 3lB), the quasihole
charge is almost independent of the quasihole position,
as it should be in a quantum liquid. Moreover, the value
of the charge is close to the expected value 1/3. The
accuracy of this result despite the small system size is
due to the particular choice of interactions. As the pseu-
dopotential model has short range interactions, finite-size
effects are much weaker than in the long-range Coulomb
case. For Coulomb interactions, the charge as a function
of quasihole position is found to be > 0.4e, that is, it dif-
fers significantly from e/3. Surprisingly, in the presence

of Coulomb interactions, the results for the finite-width
potential are closer to the ideal value 1/3.
The important conclusion which we draw from Fig. 10

is that the finite width of the optical potential does not
appear as a limiting factor for a charge measurement by
moving the potential. In other words, the observed be-
havior suggests that even if the optical trap is much wider
than the actual size of a quasihole, the quasihole still fol-
lows the contour described by the moving potential, and
despite their broad width optical potentials can be used
for moving and braiding anyons.
The results shown in Fig. 10 were obtained from an

“adiabatic” simulation, that is, we actually did not sim-
ulate the dynamics of the system while the potential is
moved, but we assumed that for any potential position
the system remains in its ground state. Thus, we simply
determine the ground state Ψn at different quasihole po-
sitions Reiϕn = Rein∆ϕ, and obtain the phase difference
between subsequent states from their overlap. Summing
up all phase differences along the contour gives the Berry
phase

γ =
∑

n

Im (〈Ψn+1|Ψn〉 − 1) . (11)

In this approach, it is important to fix the global gauge.
In our case of a non-degenerate ground state, the possible
global gauge transformations are U(1) rotation. Since we
compare eigenvectors obtained from two different diago-
nalization procedures, we have to assure that the global
gauge remains the same. This can be done by demanding
that a certain component of the state vector is real and
positive64. However, this procedure requires that some
assumptions and conditions hold: Of course, any state
along the path needs to have a non-zero overlap with
this reference state. Moreover, one must ensure that,
after discretization of the parameter space, the global
gauge transformation does not remove the Berry phase.
We can achieve this by choosing a reference component
which does not gain a phase when the potential is moved.
It is easy to find such a component, since we know that
the quasihole is described by a wave function of the type
∏

i(zi− ξ)Ψ. This means that the part of the wave func-
tion given by

∏

i ziΨ is not affected by the quasihole po-
sition. Any component which has non-zero overlap with
this expression can be used as a reference component,
that is, any occupied Fock state with angular momen-
tum L = LN +N~.
c. Dynamical evolution. In the remainder, we com-

pare the “adiabatic” approach with a dynamic one. In
the dynamic approach, we really simulate the time evolu-
tion of the system while the potential is moved, without
assuming adiabaticity of the process. Of course, the dy-
namic approach is much more costly, as it requires full
diagonalization of the Hamiltonian, whereas in the static
approach only the ground state is needed. But there
are some conceptual advantages of the dynamic method:
First, this method yields the overlap between initial and
final state which provides a measure for the adiabaticity
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FIG. 10. Charge of Laughlin quasihole. We plot the
charge q of a quasihole in a system of N = 8 electrons on
the disk as a function of radial quasihole position r. The to-
tal angular momentum is restricted to the Laughlin regime,
LN ≤ L ≤ LN + N , and the Hamiltonian consists of in-

teractions Vint and an optical potential V
(ξ,w)
opt , of width w

and focused at position ξ. We have tuned the radial position
|ξ|/lB of the optical potential from 0.1 to 2, and obtained
the corresponding radial position position r of the quasihole.
The potential is then moved on a circle around the origin,
which leads to a Berry phase which we evaluate using the
static method of Eq. (11) for 200 discrete steps. We consider
both Coulomb and pseudopotential interactions, the latter
providing a parent Hamiltonian for the Laughlin state. We
compare point-like potentials (w = 0) and finite-width poten-
tials (w = 3lB). Independently of the potential width, the
system with pseudopotential interactions agrees well with the
expected value q/e = 1/3, whereas finite-size effects spoil the
numerical value in the system with Coulomb interactions.

of the process. From this one can also obtain informa-
tion about how fast the optical potential may be varied.
Second, the dynamic method does not require the gauge
fixing procedure described above.
For our dynamical simulation we discretize time, and

define Hn as the Hamiltonian with the optical poten-
tial Vopt at position Reiϕn . We then evolve for short
periods ∆t under Hn, applying the evolution opera-
tor Un = exp (iHn∆t) to the quantum state, and af-
terwards we quench from Hn to Hn+1. Starting from
Ψ0, the ground state of H0, we reach a final state
Ψ =

∏nmax

n=1 UnΨ0, where nmax = 2π/∆ϕ − 1. If the
process was adiabatic, initial and final state only differ
by a phase 〈Ψ|Ψ0〉 = eiφ. This phase now consists of a
dynamical contribution φT , determined by the energy of
the state, and the Berry phase γ. In the particular case
of a circular rotation around the origin, the energy does
not change, and φT = E0T where T = nmax∆t. Thus,
the Berry phase is obtained by

γ = Im (ln〈Ψ|Ψ0〉)− E0nmax∆t. (12)

If the duration of a time step ∆t is of the order of
1/∆E, where ∆E is the energy gap, the dynamic method

10
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10
1

10
-4

10
-2

10
0

FIG. 11. Deviations from adiabatic process due to fi-

nite times. We compare two types of errors occurring if the
quasihole is not moved adiabatically, as a function of the time
step duration ∆t (in units ~ǫlB/e

2). The red curve shows the
relative phase error, defined as ∆γ/γad. Here, ∆γ is the dif-
ference between the adiabatically obtained Berry phase γad
via Eq. (11), and the value obtained dynamically using Eq.
(12). The blue curve shows the quantum state error, defined
as 1 − |〈initial state|final state〉|, that is, the amount of norm
which becomes excited during the evolution. The state error
is low (< 10−3) for time steps ∆t > 0.5, while a similar phase
error can only be achieved by significantly longer time steps
∆t > 15.

produces exactly the same result as the adiabatic one.
Interestingly, even for much shorter time steps, the sys-
tem still behaves adiabatic in the sense that its overlap
with excited states remains negligible, and initial and fi-
nal state remain the same up to a phase difference. How-
ever, this phase difference acquires some errors, in the
sense that it differs from the adiabatic value. This be-
havior is demonstrated in the data shown in Fig. 11 for
a system of N = 5 electrons with Coulombic interactions
and an optical potential of width w = 3lB. This finding
suggests that a quasihole can be moved relatively fast
without energetically exciting the system, but this yet
does not guarantee an adiabatic phase evolution.

IV. SUMMARY

We have proposed several optical tools which can pro-
vide microscopic control over excitations in integer or
fractional quantum Hall systems. In Sec. II, we have
developed ideas for a quasiparticle pump, based on inter-
actions between electrons and photons with orbital angu-
lar momentum. For graphene, empty and filled Landau
levels can optically be coupled as discussed in Sec. II A.
For GaAs, a spin-flip Raman coupling is possible, see
Sec. II B. We have applied a STIRAP scheme on this
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many-body scenario, which allows avoiding decoherence.
Our techniques to create individual quasiparticles are ro-
bust against disorder and can give rise to novel ways of
measuring fractional charge and statistics. A possible ap-
plication within a Corbino disk geometry is given in Sec.
II C.
In Sec. III, we have discussed different strategies for

optically trapping a quasihole. We have studied the role
played by the potential width for the stability of the trap.
Even shallow potentials are found to support quasihole
states, but the gap above the quasihole state is largest
when the width is on the order of the magnetic length.
A simple way of achieving an optical potential is based
on the AC Stark shift, but the potential width, lim-
ited by the wavelength, exceeds the ideal length scale.
Improvements are possible using a three-level coupling
scheme, where for the prize of a weaker trap the poten-
tial width can be brought below the diffraction limit. We
have also simulated the system dynamics in a moving
potential, showing that such a process imprints a Berry
phase in the electronic wave function according to the
fractional charge of the quasihole. The optical poten-
tials thus might become useful for braiding quasiparti-
cles, which is the operation on which future topological
quantum computers might be based on.
In summary, our manuscript advances quantum-

optical tools for engineering and manipulating quantum
Hall systems. In previous work, optical driving near a
Landau level resonance has been suggested as a tool for
engineering novel quantum Hall states45. Here, we have
applied similar ideas in order to control bulk excitations
of a quantum Hall system. Other interesting aspects of
optically coupled Landau levels regard quantized dissipa-
tion rates65, or optically induced electron localization66.
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Appendix A: Ladder operators vs. projection

operators in the description of a quasihole

Whether implemented as a π-pulse or as a STIRAP
process, the optical pumping described in Sec. II shifts an
electron from orbital m in the Landau level at the Fermi
surface to orbital m+ 1 in an empty Landau level above
the Fermi surface. In the STIRAP scheme (Sec. II B),

the Landau level shift is just a spin flip, so it does not
modify the spatial wave function. In the π-pulse scheme
(Sec. II A), the Landau level excitation produced by the
first pulse is removed by a second pulse. So in both cases,
the only effect of the pump on the spatial wave function
is to modify the orbital of each electron. This effect can
be described by projection operators b̃†: b̃†|m〉 = |m+1〉.
As seen from Eq. (2), shifting the orbital of all electrons
produces a quasihole, but in Eq. (2) these shifts are pro-
duced by the ladder operators b† which also change the
norm of the state, b†|m〉 =

√
m+ 1|m + 1〉. In this ap-

pendix we analyze the role played by these normalization
factors for the many-body wave function.

For a single Slater determinant, the normalization fac-
tors are irrelevant, as they are removed by normaliz-
ing the many-body state vector. Therefore, the opti-
cal pumping is exactly the procedure which creates a
hole within an integer quantum Hall state. Fractional
quantum Hall states, however, consist of many Slater de-
terminants, and each Slater determinant may obtain a
different normalization factor. Then, the overall normal-
ization of the many-body state does not fully remove the
normalization factors introduced by the ladder operators.
Instead, these factors will change the weight of each par-
ticipating Slater determinant.

To quantify this change, let us denote the Slater deter-
minants by |α〉. Each Slater state bijectively maps onto
the Slater state |α̃〉, in which all orbital quantum num-

bers are increased by one, m
(α)
i ↔ m

(α̃)
i = m

(α)
i + 1. We

write a generic initial state as

|Ψ(0)〉 =
∑

α

cα |α〉 , (A1)

with normalized coefficients,
∑

α |cα|2 = 1. The final
state then reads

|Ψ(T )〉 ≡
∣

∣

∣
Ψ̃qh

〉

=

(

N
∏

i=1

b̃†i

)

∑

α

cα |α〉 =
∑

α

cα |α̃〉 ,

(A2)

In contrast, the quasihole state as defined in Eq. (2) is
given by

|Ψqh〉 = N
(

N
∏

i=1

b†i

)

∑

α

cα |α〉

= N
∑

α

√

√

√

√

N
∏

i=1

(m
(α)
i + 1)cα |α̃〉 . (A3)

Denoting Bα ≡
√

∏N
i=1(m

(α)
i + 1), the normaliza-

tion factor of the quasihole state reads N =
(
∑

α |cα|2B2
α

)−1/2
. From this, the overlap between Ψ̃qh
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N 5 6 7 8 9 10 11

O 0.9792 0.9763 0.9760 0.9769 0.9779 0.9786 0.9789

TABLE II. Overlap O = |〈Ψqh|Ψ̃qh〉| between Laughlin quasi-
hole states produced from Eq. (A2) and from Eq. (A3).

and Ψqh is obtained as

|〈Ψqh|Ψ̃qh〉| =
∑

α |cα|2Bα
√
∑

α |cα|2B2
α

=
〈B〉0
√

〈B2〉0

=

√

〈B〉20
〈B〉20 + var(B)

. (A4)

In the last equality, the brackets 〈·〉0 denote the quan-
tum average of Bα with respect to state |Ψ(0)〉, and

the variance of B is taken with respect to the probabil-
ity distribution described by |Ψ(0)〉. Physically relevant
states are sharp in total angular momentum, and it fol-
lows that var(B) ≪ 〈B〉20, so the overlap is on the order
of 1. We have numerically checked this for the Laughlin
state in Table II, confirming that the two different quasi-

hole states |Ψqh〉 and
∣

∣

∣Ψ̃qh

〉

are approximately the same

(with overlap ∼ 0.98). Notably, their overlap grows with
the system size.
As a final remark, we note that the conventional defini-

tion using the ladder operators is particularly appealing
in terms of first-quantized wave functions, as the quasi-
hole insertion simply leads to a prefactor, without modi-
fying the structure of the polynomial wave function. On
the other hand, from a second quantized point of view,
the projector definition seems more natural as it leaves
the coefficients cα unchanged.
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