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We report temperature and density dependences of the spin susceptibility of strongly interacting
electrons in Si inversion layers. We measured (i) the itinerant electron susceptibility χ∗ from the
Shubnikov-de Haas oscillations in crossed magnetic fields and (ii) thermodynamic susceptibility χT

sensitive to all the electrons in the layer. Both χ∗ and χT are strongly enhanced with lowering the
electron density in the metallic phase. However, there is no sign of divergency of either quantity at
the density of the metal-insulator transition nc. Moreover, the value of χT, which can be measured
across the transition down to very low densities deep in the insulating phase, increases with density
at n < nc, as expected. In the absence of a magnetic field, we found the temperature dependence of
χ∗ to be consistent with Fermi-liquid-based predictions, and to be much weaker than the power-law,
predicted by non-Fermi-liquid models. We attribute a much stronger temperature dependence of
χT to localized spin droplets. In strong enough in-plane magnetic field, we found the temperature
dependence of χ∗ to be stronger than that expected for the Fermi liquid interaction corrections.

I. INTRODUCTION

Dilute two-dimensional electron systems (2DES) pro-
vide unique opportunity for exploring the physics of
strongly interacting charged fermions, with spin prop-
erties of these systems being of particular interest.
Within the framework of the Landau theory of Fermi

Liquid (FL), interacting electrons are described as a sys-
tem of quasiparticles with renormalized-by-interaction
parameters, such as the compressibility κ∗, effective mass
m∗, spin susceptibility χ∗, and g-factor g∗ [1–4]. These
parameters are predicted to grow with lowering tempera-
ture and density, and their measurement is an important
test of the theory. Strong renormalization of χ∗ and m∗

was indeed observed in 3He and is well-explained within
the framework of the Fermi liquid theory [1, 2].
Disorder, especially in 2DES, greatly complicates the

problem bringing into play another parameter, the den-
sity nc of an apparent metal-insulator transition (MIT).
This parameter happened to be very important: the spin
susceptibility χ∗ has been consistently found to grow
strongly as the density n is lowered towards nc. Increase
of χ∗ relative to the non-renormalized Pauli susceptibility
χP by a factor of 7 with decreasing electron density [5, 6]
was deduced from Shubnikov-de Haas (ShdH) oscillations
in tilted or crossed magnetic fields [7–12] and from anal-
ysis of the in-plane magnetoresistance data [13–15].
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Strong renormalization of χ∗ with n → nc raised an
intriguing possibility of magnetic instability [16] of a di-
luted disordered 2DES. As a result, large effort was in-
vested in extracting χ∗ as a function of density, typically
at the lowest accessible temperature, with several pa-
pers claiming divergent χ∗ with n → nc at T → 0, and
therefore a quantum phase transition. Temperature de-
pendence of χ∗, which provides an important test for the
theoretical models, was somehow overlooked.
In this paper we focus on the temperature depen-

dence of the spin susceptibility obtained from magneto-
oscillatory transport (χ∗) and from thermodynamic (χT)
measurements of high-mobility dilute electron gas in Si
inversion layers. We (i) on the basis of both χ∗ and χT

refute the claim for magnetic instability at n = nc , (ii)
report temperature dependence of χ∗, which happened to
be weak and not entirely consistent with available theo-
ries, (iii) report thermodynamic susceptibility χT, which
is large and strongly temperature-dependent. Finally, we
discuss the reason for the discrepancy between χ∗ and
χT.

A. Density dependence of χ∗: a brief overview

In a clean system, ferromagnetic instability originates
solely from the combined effect of electron-electron inter-
actions and the Pauli principle. In metals the long range
part of the Coulomb interaction is screened, whereas the
short range part leads to strong correlations in the elec-
tron liquid. In clean metals this short range part of the
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interaction leads to ferromagnetic (Stoner) instability at
sufficiently strong interaction. Critical rs values for the
expected instability in a single-valley 2D system varied
from 13 to 20 in early calculations [5, 6, 17]. According
to them, the ferromagnetic transition is likely to be of
the first order with a complete, rather than partial spin
polarization. More recent numerical Monte Carlo calcu-
lations [18–20] predicted a stable, fully polarized liquid
phase at T = 0 for rs > 25− 26, before the Wigner crys-
tallization occurs at around rs ≈ 35− 37 [21]. The valley
degree of freedom, even twofold, suppresses the tendency
to spin polarization making the fully spin-polarized state
unstable [22, 23].
Disorder, on the contrary, favors spin polarization.

Within the Wigner-Mott model [24, 25], the effective
mass and thus the spin susceptibility are predicted to di-
verge in the vicinity of the MIT: χ ∝ (n−nc)

−1, though,
according to numerical calculation [26], the system stays
unpolarized in the accessible density range (rs < 10) at
not-too-strong disorder (1/kF l . 1).
In this context, a strong in-plane field-induced magne-

toresistance in Si inversion layers [27, 28] was interpreted
in Refs. [13–15] as a signature of ferromagnetic instability
at, or very close to nc ≈ 0.8 × 1011cm−2 in the studied
samples, corresponding to rs ≈ 9.

B. Theoretical studies of the temperature

dependence of χ∗(T ): a brief overview

Within the Fermi-liquid theory, Fukuyama [29] and
Altshuler et al. [30] calculated interaction corrections to
electron spin susceptibility for a 2DES system in the dif-
fusive regime (low temperatures, Tτ ≪ 1) to be:

∆χ∗(T )

χP
∼ −

1

kF l
ln(Tτ). (1)

Here χP = 2µ2
Bmb/π stands for non-renormalized Pauli

susceptibility of electrons with bulk effective mass mb

and two-fold valley degeneracy, τ is the momentum re-
laxation time, kF and l denote the Fermi momentum and
the mean free path, respectively. Throughout the paper
we use units with ~ = kB = e = 1. Taking into account
the valley multiplicity nv = 2 for (100)-Si, and introduc-
ing the relevant Fermi-liquid parameters (see Appendix
A), this formula can be written as:

χ∗(T )− χ∗
P

χ∗
P

=
δχ∗(T )

χ∗
P

≈
2

πkF l

nvF
σ
0

(1 + F σ
0 )

ln(Tτ), (2)

where χ∗
P = nvµ

2
Bm

∗/[π(1 +F σ
0 )] is the spin susceptibil-

ity of the Fermi liquid at T = 0, which includes Fermi-
liquid-type renormalization in the absence of disorder,
m∗ is the effective mass renormalized by the electron-
electron interaction, and F σ

0 denotes the Fermi-liquid in-
teraction parameter in the particle-hole triplet channel.
In the ballistic regime (high temperatures, Tτ ≫ 1)

the leading-order in T correction to χ∗(T ) for the 2D

Fermi liquid was found to be proportional to the temper-
ature [31–36]:

∆χ∗(T ) = χ∗
PA

2 T

4EF
(3)

where EF is the Fermi energy. Within the theory of in-
teraction quantum corrections for a single-valley system
A is given in Ref. [35] by: A = (m∗/mb)

∑∞
n=0(−1)n(2n+

1)F σ
n /(1 + F σ

n ). Here mb denotes the non-renormalized
band electron mass. The particular expression for A de-
pends on the parameter range and the approximation
used.
Within the interval rs = 3 − 7 of our measurements,

|F σ
0 | ≈ 0.3÷ 0.5 is large [12, 37], n = 0 term in the series

of harmonics dominates, and Eq. (3) acquires a simple
form [33, 35]:

∆χ∗(T )

χ∗
P

≈
T

2EF
G, (4)

where G ≈ (m∗/mb)/(1 + F σ
0 ) ∼ 1 varies from 1.6 to

2.7 as rs increases from 3 to 7. It was noted in Ref. [35]
that prefactor A in Eq. (3) determines also the slope of
the linear-in-T correction to the conductivity ∆σ(T ) of
the 2D Fermi-liquid in the ballistic regime [38–40]. The
temperature dependence of the conductivity and magne-
toconductivity was carefully studied in Refs. [37, 41] and
found to be consistent with the calculated interaction cor-
rections [39]. This agreement encouraged us to perform
comparison of ∆χ∗(T ) with the predictions based on the
theory of interaction corrections.
We note that in the experimentally accessible param-

eter range both ballistic and diffusive interaction correc-
tions Eqs. 2-4 are expected to be rather small: ∆χ∗/χ∗

P .
3%. For high-mobility Si-MOSFETs the accessible tem-
perature range is set by 0.05 < Tτ < 5; the upper bound
is determined by the temperature T ∗ ∼ 10K, at which
τϕ(T

∗) becomes comparable with τ and quantum coher-
ence vanishes.
With temperature decrease the system is anticipated

to enter the diffusive regime, Tτ ≪ 1. Within two-
parameter renormalization group (RG) theory, interac-
tions become renormalized by the dimensionless param-
eter ln (lφ/l) = − ln (Tτ), where lφ is the phase breaking
length. Particularly, spin susceptibility is predicted to
grow strongly as T → 0 [42–44]: χ∗ ∝ T−ζ with ζ < 1
[45].
An important question is whether a 2D system of itin-

erant electrons undergoes spin ordering and conventional
Fermi-liquid model breaks down when the interactions
are strong and T → 0 [46, 47]. In particular, Khodel
et al. [47] predicted that the quasiparticle energy spec-
trum ε(k) flattens at the Fermi level as a result of inter-
actions, and, above a certain critical value rs ≈ 7, the
2D Fermi surface (a circle) breaks into the nested rings
[47]. This dispersion instability should result in an es-
sentially non-Fermi-liquid behavior, which would lead to
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strong temperature dependence of the spin susceptibility
χ∗ ∝ T−2/3 [48, 49].
The mean field theory [50] suggests that a low-

dimensional disordered system may undergo a finite tem-
perature spin polarization at significantly weaker inter-
action strength than its clean counterpart. The the-
ory predicts divergence of the spin susceptibility χ∗ at
a disorder-dependent temperature Tc, below which the
system should become ferromagnetic. This tendency to-
wards ferromagnetic transition originates from the effec-
tive enhancement of interactions by diffusive dynamics of
electrons.
To summarize this brief overview, Fermi liquid theory

and numerical Monte-Carlo calculations predict only a
weak temperature dependence of χ∗ and no ferromag-
netic instability for a multivalley system. By contrast,
a number of other theories [42–44, 48–50] predict diver-
gence of χ∗ in the vicinity of metal-insulator or topolog-
ical transition in a 2D system.

C. Experimental studies of the density and

temperature dependence of χ and their

interpretation

On the experimental side, we are not aware of any di-

rect measurements of the temperature dependence of χ∗

for the itinerant 2D electrons by transport techniques
such as magnetotransport and quantum magnetooscilla-
tions. Particularly, in Shubnikov-de Haas (SdH) oscilla-
tion measurements [8, 9, 51] no temperature dependence
of the susceptibility was observed. Indeed, this depen-
dence is very weak, as seen from our data, and there-
fore requires high precision SdH measurements in vector
fields.
In Refs. [52, 53] the temperature dependence of the

weak field in-plane magnetoconductivity in the vicinity of
nc was found to behave as ∆σ ∝

(

B2/T 2
)

T−ε; the factor
T−ε was conjectured to originate from the renormaliza-
tion of χ∗(T ) in the spirit of the two-parameter RG the-
ory [54]. Clearly, this interpretation is model dependent.
Based on such interpretation, the strong growth of χ∗(T )
was reported in Refs. [52, 53, 55]. Later, in Refs. [56, 57],
this magnetoresistance behavior was attributed to semi-
classical effects in the two-phase non-Fermi liquid state.
We also note that the magnetotransport measurements
in tilted magnetic fields [58], performed with the same or
similar Si-MOS samples as those in Refs. [52, 53, 55], re-
vealed that the in-plane magnetoresistance (MR) cannot
be described by electron-electron interaction correction
only. A simple evidence is that the observed strong par-
allel field MR quickly diminishes when the perpendicular
field component is applied on top of the parallel field [58].
These inconsistencies question the assumption required
for the applicability of the RG approach.
As the density decreases and interactions increase, a

part of the itinerant electrons become localized already
well above the critical density nc [60]. This tendency

strengthens with density approaching nc. In contrast to
the transport measurements, which are sensitive to the
most conductive parts of a sample, thermodynamic mea-
surements [59–61] probe the magnetization averaged over
the whole 2D system. Since the localized and mobile elec-
trons coexist and strongly interact, magnetic state of the
localized electrons may affect the transport properties.
Strongly temperature-dependent ∂M/∂n ≡ −∂µ/∂B

was observed already in [59]. However, contrary to
the predictions of the FL-theory in the ballistic regime
[31, 33–35] for the Pauli-type susceptibility, the mea-
sured thermodynamic paramagnetic susceptibility [59]
grew as temperature decreased. To account for the
anomalous sign of the dχ/dT found in Ref. [59], Shekhter
and Finkel’stein considered rescattering of pairs in the
Cooper channel, which leads to anomalous temperature
dependence ∆(1/χ(T )) ∝ −T in the ballistic regime
[62, 63].
Ref. [59] mostly discussed magnetization in strong

magnetic fields, µBB/kBT ≫ 1. In subsequent ther-
modynamic measurements [60] performed in weaker mag-
netic fields, the magnetization-per-electron ∂M/∂n was
found to overshoot the Bohr magneton at a magnetic
field of µBB/kBT ≈ 0.25, and thermodynamic suscepti-
bility was found to grow much faster, as ∆χ(T ) ∝ 1/T 2.
The low field data was shown to originate mainly from
the collective localized spins whose contribution greatly
dominates over and masks the Pauli spin magnetization
of the mobile electrons [60]. This interpretation was sup-
ported by the theory [64].

II. EXPERIMENTAL

Both transport and thermodynamic magnetization
measurements were performed on (100) Si-MOS samples
from two different wafers: “small” samples, 2.5×0.25mm,
with moderate peak mobility µpeak ≈ 2.4m2/Vs, (Si3-10,
Si6-14), and “large” ones, 5× 0.8mm with high mobility
µpeak ≈ (3.2 − 3.4)m2/Vs at T = 0.3K (Si-5, Si-15, Si-
UW1, Si-UW2). All samples had the 190 ± 20 nm thick
gate oxide thermally grown in dry oxygen, atop of which
an Al film (gate) was deposited by thermal evaporation.
For crossed-field transport measurements we preferably
used small-size samples in order to ensure homogeneity
over the sample area of the perpendicular field generated
by a small split-coil system [65]. For the thermodynamic
magnetization measurements, we mainly used large-size
samples in order to increase the signal.
The carrier densities referred to throughout the paper

have been found from the SdH oscillations and the Hall
effect measurements (more details are given in Appendix
B). The elastic scattering time τ shown in the figures
was measured following the approach of Refs. [37, 39, 41].
First, the temperature dependence of the conductivity σ
was measured at zero field and relatively high tempera-
tures, where σ linearly depends on T . Then, the σ(T )-
dependence was linearly extrapolated to T = 0 and τ was
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FIG. 1. (Color online) Example of the ρxx(B⊥) data at differ-
ent temperatures. n ≈ 2×1011cm−2 and B‖ = 2.5T. “Large”
high-µ sample.

found from σ(T = 0) using the Drude formula.

A. Spin susceptibility χ∗ of itinerant electrons

probed by quantum magnetooscillations

We determined χ∗ from the period and phase of the
beating patterns of the SdH oscillations [8]. In the
crossed-field (or vector-field) technique, the in-plane com-
ponent of the magnetic field partially spin-polarizes the
electron system, whereas a weak perpendicular compo-
nent probes the density of electrons in the split spin-
subbands (for details, see Ref. [65]). The data was col-
lected over the temperature range T = 0.1− 1K for elec-
tron densities n = (0.77−10)×1011cm−2, corresponding
to the dimensionless interaction strength rs = 9.5− 2.6,
respectively [5, 6]. An AC current 0.1 – 1 nA at fre-
quency 13Hz was supplied from a battery operated cur-
rent source to reduce the electron overheating [66].
Figure 1 shows an example of the raw ρxx data versus

perpendicular field B⊥; weak localization in fields B⊥ <
0.1T, smooth monotonic magnetoresistance (MR), and
SdH oscillations are visible for B⊥ > 0.15T. The data in
Fig. 1 was taken with in-plane field B‖ = 2.5T over the
range T = 0.3− 1K.
In order to extract the oscillatory component, we sub-

tracted the second order polynomial [8] from the raw data
(such as in Fig. 1). When the amplitude of oscillations is
small, the remaining oscillatory component ∆ρxx is well
described by the conventional Lifshits-Kosevich (LK) for-
mula [67–70]. Application of an in-plane magnetic field
induces beating of the SdH oscillations [8]; examples of
beating patterns at high and low electron densities are
shown in Figs. 2 and 3, respectively. For clarity the
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FIG. 2. (Color online) Examples of the normalized oscil-
latory magnetoresistance δρxx/(ρxxP1) for high electron
density n = 6.16 × 1011cm−2 measured at B‖ = 0.565T
and three temperatures. Blue dots are the data, blue
connecting lines - guide to the eye, and red lines - fit-
ting curves. The extracted from fitting χ∗ values and
their uncertainty are indicated in each panel. A “small
size”sample.

δρxx(B⊥) data was normalized by the amplitude P1(B⊥)
of the first harmonic of the oscillations [8, 67, 70] (for
more detail, see Appendix C).
One can see from Figs. 2 and 3 that the oscillations can

be precisely fitted by the LK formula. Since B‖ is weak
relative to the polarizing field, and the interval of B⊥ is
narrow, there is no need in using empirical corrections to
the LK formula [70]. We, therefore, were able to fit the
data with a single adjustable parameter, χ∗/χP .

In stronger magnetic fields, as exemplified in Fig. 2 and
Fig. 3 at B⊥ & 1T, the shape of the oscillations starts to
deviate from the LK formula. This is caused by magnetic
field dependent variations of screening and level split-
ting due to the interlevel interaction, the later is known
to be significantly enhanced in the quantum Hall effect
regime [71–73]. For this reason, below we analyze only
data obtained at B⊥ ≤ 1T.
The procedure of finding χ∗ from the interference pat-

tern is straightforward and does not involve model as-
sumptions; the χ∗ value is predominantly determined by
the position of the beats and by the phase of the oscil-
lations, which sharply changes by π through the node.
For this reason, the uncertainty in the χ∗ values is rather
small, ∼ 0.5− 4%, which enabled us to detect tempera-
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FIG. 3. (Color online) Examples of the normalized oscil-
latory magnetoresistance δρ/(ρP1) for low electron den-
sity and four different temperatures. Dots are the data
and blue lines are the fitting curves. The nominal density
n = 1.66× 1011cm−2, B‖ = 1.7T, a “small” sample.

ture variations of χ∗.
In general, the accuracy decreases with temperature

and reduction in B‖, therefore we were able to extract
χ∗(T ) only for T < 1K, where SdH oscillations are
clearly resolved in weak B⊥ fields [8, 74, 75]. Most sen-
sitive to the value of χ∗ is the node position in the per-
pendicular fields B⊥ ≈ 0.5 − 0.6T. Therefore, we report
χ∗ values obtained at such B⊥ fields. In the interval of
low electron densities, n = (1.1 ÷ 2.2) × 1011 cm−2, the
main harmonic of the oscillations is suppressed by the
Zeeman factor (for more details, see section IIID), and
the spin splitting causes asymmetric non-harmonic oscil-
lations. This fact favors oscillation analysis and enables
extracting χ∗ with high precision in very weak and even
in zero B‖ fields; the representative results are shown in
Fig. 4 (b).
We wish to stress that the deduced values of χ∗ are

independent of details of the fitting, such as, e.g. field
dependence of the oscillation amplitude. The χ∗ values
rely solely on the robust assumption that an in-plane
field causes Zeeman splitting of the Landau levels ~ωc(n+
1/2)±g∗µBBtotal/2 which, in its turn, leads to the phase
shift between the sequence of the oscillations produced
by the “spin-up” and “down” electrons. This method of
finding χ∗ also rely on the firm fact that the electron-
electron interactions in the 2D system affects neither the
frequency nor the phase of the oscillations.
Figures 4(a-d) show the obtained in this way tempera-
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FIG. 4. (Color online) Temperature dependence of χ∗

for a “small” sample with nc ≈ 1 × 1011cm−2 for three
densities indicated in units of 1011cm−2. Upper axes show
the temperature in units of Tτ . All the data corresponds
to B⊥ ≈ 0.3 − 0.6T; the in-plane field component B‖

is indicated in each panel. Dashed and dash-dotted lines
show the diffusive and ballistic corrections respectively. In
calculations for panels (a) we used rs = 3.35, F σ

0 = −0.3,
and for (b, c) rs = 5.77, F σ

0 = −0.425, [37]. Diffusive
and ballistic corrections were calculated using zero-field
expressions Eqs. (2), (4) for panels (a) and (b), and finite-
field Eqs. (A7), (A8) for panel (c).

ture dependences of χ∗ for three carrier densities. In the
explored range of densities, the temperature dependence
of χ∗ is weak [74]. At even lower densities, close to nc, χ

∗

is renormalized significantly. Unfortunately, at such den-
sities SdH oscillations can be observed only at the low-
est temperatures, and therefore temperature dependence
of χ∗ is experimentally inaccessible. In section “Discus-
sion”, we compare the extracted χ∗(T ) dependence with
the theory.

B. Thermodynamic spin susceptibility χT

Thermodynamic susceptibility χT = dM/dB|B=0,
whereM is the magnetization per unit area, was obtained
using the recharging technique [59, 60, 76], in which the
chemical potential response ∂µ/∂B to a modulation of in-
plane magnetic field is measured. By virtue of a Maxwell
relation, it can be expressed as a derivative of M with
respect to the density: ∂µ/∂B = −∂M/∂n. From the
low field slope, ∂χT/∂n = −∂2µ/∂B2 was extracted.



6

External magnetic field modulation with amplitude
δB(ω) at a constant gate voltage leads to a modulation
of the charge δQ(ω) given by:

δQ(ω) =
C(ω)

e

∂µ

∂B
δB(ω), (5)

where C(ω) is the sample capacitance. It is this charge
modulation which is detected in the recharging tech-
nique. Extracted from Eq. (5) ∂µ/∂B was converted
into ∂M/∂n using the Maxwell relation. The details
of this experimental technique have been provided in
Refs. [59, 60, 76]. The thermodynamic susceptibility in
principle can be obtained by integration of the low-field
slope dχT /dn = ∂2M/∂n∂B over density:

χ(n, T ) =

n
∫

0

∂χ/∂n(n′, T )dn′ (6)

In practice, the lowest density nL(T ) down to which
the recharging technique works is set by the sample and
contact resistances, which become large with lowering
the density and temperature. Importantly, it was re-
alized [76] that the technique can be used down to the
densities substantially below nc, even though the sample
capacitance acquires imaginary part. Under such con-
ditions, Eq. (5) should be used with the complex capac-
itance measured at the frequency of the magnetic field
modulation.
Although we were able to measure ∂χ/∂n down to the

densities as low as 4 × 1010 cm−2 at T = 1.7K, still in
order to integrate we had to extrapolate ∂χ/∂n to the in-
terval 0 < n < nL(T ). Figure 5 is obtained with ∂χ/∂n
constant and equal to its value at nL(T ). Taking in-
stead ∂χ/∂n= 0 in this interval would shift the data in
the figure by the value χT(nL); this would not lead to a
qualitative change of the result.
In our earlier paper [59], in which the thermodynamic

method has been used for the first time, the measure-
ments were performed down to T = 50mK. Treatment of
the thermodynamic data in the current paper differs from
the previously published results due to different method
of integration of ∂χ/∂n and ∂M/∂n over n: in [59] we in-
tegrated starting from a high density, assuming the mag-
netization at this density to be known. In the current
paper we integrated ∂M/∂n from a low density. The
minimal density nL(T ) down to which we can use this
technique increases at low temperatures due to increas-
ing resistance of both the 2DES and the contacts. and
no information can be obtained about magnetization at
n = nc. This complication is the primary reason to per-
form the current experiment at 4He temperatures rather
than at T ≪ 1K. Besides this, we were interested in
the low-field behavior, gµBB ≪ kBT . Measurements at
much lower temperatures would require very weak mag-
netic fields, which in turn would lead to a small, difficult-
to-measure recharging current. Note that the high-field
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FIG. 5. (Color online) Thermodynamic spin susceptibility
χT, determined from the chemical potential variations,
versus the carrier density. Different curves correspond to
temperatures (from top to bottom) 1.7, 1.8, 2, 2.4, 2.7,
2.9, 3.1, 3.3, 3.5, 3.8, 4, 4.2, 4.6, 5.1, 5.7, 6.9, 8, 9.2, and
13K. Green line shows the Pauli spin susceptibility χP .
The inset zooms in the same data for the lowest densities
and eight temperatures. The dashed vertical line depicts
the location of the critical density nc ≈ 8× 1010 cm−2 for
the studied sample.

(low-T ) measurements have been performed earlier in
Refs. [59, 61] and they are not the goal of the current
paper.
At low densities, χT grows linearly with n, which is

expected for noninteracting electrons. It reaches a max-
imum at some density n(T ) > nc and then starts to
decrease. We attribute this decrease to melting of the
spin droplets with density in the metallic phase. The
maximum of ∂M/∂n and evolution of its position with
temperature was discussed in detail in Ref. [60].
The thermodynamic susceptibility χT at the lowest

temperature of 1.7K is a factor of 40 greater than the
non-renormalized Pauli susceptibility. As the tempera-
ture increases, χT strongly decreases as T−α with α ∼
1 − 2 depending on the density, see Fig. 6. This behav-
ior contrasts sharply the weak temperature dependence
of the itinerant electrons’ susceptibility χ∗. The temper-
ature dependence of χT is much stronger than the the-
ory [62, 63] predicted for the itinerant electrons. More-
over, it is even stronger than the Curie law χ(T ) ∝ T−1

expected for noninteracting localized electrons. We,
therefore, conclude that χT is mainly due to easily po-
larized localized spin droplets [60], and contribution of
the itinerant electrons to χT is negligibly small. The
fact that α > 1 in the χT (T ) dependence points at the
ferromagnetic type interaction, because random antifer-
romagnetic interaction results in a spin susceptibility di-
vergence slower than the Curie’s low, with α < 1 [64].
There is a contradiction between the observed increase

of χT faster then 1/T with decrease of the tempera-
ture and the upper bound for the magnetic moment:
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FIG. 6. (Color online) Temperature dependence of χT at
different densities plotted for the same data as in Fig. 5.
χT ∝ T−α with α ≈ 2. χ ∝ T−2 and χ ∝ T−1 (the
Curie law) are shown for comparison. The fact that α >
1 means that the electrons, even at the lowest density,
cannot be considered as noninteracting localized ones; this
observation lead to the suggestion of the spin droplets
in [60].

M = µBn. Since χT saturates [60, 76] at Bc(T ) ∝ T ,
such divergency would lead to a divergent M(Bc, T ) =
χTBc ∝ T 1−α. Therefore, we conclude that this diver-
gency must be cut at a low temperature. This conclusion
is in accord with our early measurements [59], which ex-
tended down to 50mK, and in which ∂M/∂n was limited
from above. Unfortunately, at such low temperatures the
accessible range of densities starts from nc, and therefore
one cannot make reasonable assumptions to carry the in-
tegration as in Eq. (6).

C. Comparing χ∗(T ) dependence for the itinerant

electrons with the interaction corrections

In order to compare our data with interaction correc-
tions [30], we plotted in panels (a), (b), and (c) of Fig. 4
the diffusive and ballistic interaction corrections. The
data is consistent with the corrections at zero and low
B‖-field, see panels (a) and (b). In particular, there is
a qualitative similarity between the data in Fig. 4 and
the ballistic corrections (see Fig. 11 of Appendix A). Fur-
thermore, the χ∗(T ) temperature dependence in panels
(a) and (b) exhibits a shallow minimum (thought this
effect is weak and comparable with the error bars), ex-
pected for the ballistic-diffusive crossover [39]. Indeed,
as T increases, the diffusive correction decreases χ∗ (see
Eq. (2)), whereas the ballistic – increases [34] (see Eq. (3),
and for more details – Appendix A).
The overall explored temperature range, Tτ ≪ 1,

at first sight seems to belong to the diffusive interac-
tion regime. We note, however, that the conventional
crossover criterion Tτ = 1 is a qualitative estimate.
Quantitatively, the crossover temperature calculated for

transport [39] is [(1 + F σ
0 )/2πτ ], i.e. the crossover Tτ

value is expected to be ≈ 0.1 for our parameter range.
As for the spin susceptibility, the crossover regime has
not been calculated until now. Therefore, we plotted in
Fig. 4, in addition to the diffusive correction Eq. (A7),
also the ballistic one, using Eq. (A8). For weak field
(Fig. 4 (a)), we compare the data with zero-field theo-
retical result Eq. (2) rather than with Eq. (A5), since
the latter diffusive correction is applicable only above
T = (1 + γ2)gµBB/2π ≈ 0.5K (see Fig. 11, b), i.e. in
the region where predictions of Eq. (A3) [equivalent to
Eq. (2)] and (A5) almost coincide.

Surprisingly, when a strong field, e.g. B‖ = 2.5T
which corresponds to gµBB‖ ≈ 3K (see Fig 4 c), is ap-
plied, the χ∗(T ) dependence does not vanish [30]. This
observation contradicts the interaction correction calcu-
lated for diffusive regime, according to which the in-plane
field gµBB‖ ≫ T must cut off the χ∗(T )-dependence, see
Eq. (A(7)). Instead, the temperature dependence of χ∗

changes sign, qualitatively similar to what is expected
from ballistic correction (see Appendix A). Quantita-
tively, χ∗(T ) reduces with temperature somewhat faster
than the theory predicts (see Fig. 4 c). We note, however,
that the uncertainty in the value of prefactor G in Eq. (4)
may also be ∼ 2, being related to the unknown details of
the electron-electron coupling, and with approximations
used in deriving Eqs. (4), and (A8).

Importantly, since ∆χ∗(T ) and ∆σ(T ) stem from the
same mechanism, according to [35] they should behave
similarly with temperature. Consistent with the the-
ory [39], weakening of the interaction correction to the
conductivity ∆σ(T ) by B‖ field was reported for simi-
lar samples [37], therefore the anomalous ∆χ∗(T ) behav-
ior in strong fields is very surprising. A possible expla-
nation might be that the diffusive-ballistic crossover for
χ∗(T ) is shifted down in temperature and corresponds to
Tτ = 0.05 ÷ 0.1 rather than unity. It is worth to recall
also that we analyzed the SdH oscillations beatings in
the perpendicular field 0.5 ÷ 0.6Tesla. A non-zero mag-
netic field is predicted [34] to shift the χ∗(T ) minimum to
T = gµBB in the ballistic regime. In the data, the mini-
mum, indeed, shifts monotonically to higher temperature
with increase of the total magnetic field, which occurs in
sequence (b-a-d-c) in Fig. 4. However, the χ∗(T ) mini-
mum according to the ballistic theory should be located
at about 3 times stronger fields.

The listed above inconsistencies lead us to conclusion
that the temperature dependence of χ∗(T ) in moderately
strong magnetic fields, and may be even to lesser extent
in small fields, is affected by another, stronger mecha-
nism than the Fermi-liquid corrections. This conclusion
is supported by thermodynamic data, as will be shown
below.
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D. Upper bound on χ∗ as set by analysis of the

magnetooscillations

Above we reported the low-temperature χ∗ obtained
from the beats of the SdH oscillation. Unfortunately,
this technique cannot be used down to the critical den-
sity nc since the in-plane magnetic field quickly drives
the 2D system into an insulator state [27, 28, 77]. Never-
theless, we still can use SdH oscillations to set the limits

for χ∗. For this, we now turn to the analysis of (1) the
period, and (2) the phase (sign) of SdH oscillations just
above nc. The period reflects the degeneracy of the sys-
tem, which would drop by a factor of two if the system
becomes fully spin polarized and the Fermi energy dou-
bles. The phase depends on the ratio between the spin
and cyclotron splitting, and thus carries information on
the degree of spin polarization, (n↑ − n↓)/n.
We first look at the SdH oscillations, with no B‖ ap-

plied, at a relatively high density, for which we know χ∗

from the oscillation beats. We check that the oscillation
frequency and phase (sign) agree with the expectations,
and then apply the same analysis to even lower densities
for which SdH beats could not be measured; this will set
the upper limit for χ∗.
The logic behind this approach can be understood by

examining the schematic energy diagram in Fig. 7. We
presume Landau levels to be significantly broadened by
scattering, which is definitely true close to nc. Therefore,
in the following, we shall consider the valley splitting to
be negligible. When the spin splitting g∗µBBtotal is much
smaller than the cyclotron energy ~ωc and therefore un-
resolved, each Landau level is fourfold-degenerate. The
period of the SdH oscillations corresponds to ν = 4, and
ρxx(ν) minima are located at ν = 4i (where ν = nhc/eB⊥

is the filling factor and i–an integer [6, 8, 67, 68]). This
case is illustrated in Fig. 7(a); other cases [Fig. 7(b) and
(c)] are described in the caption to Fig. 7.

Although the Mermin-Wagner theorem prohibits spon-
taneous spin polarization at T > 0, one may expect
to see a strong χ∗(T ) growth as T → 0 in the vicin-
ity of a quantum (T = 0) phase transition to the spin-
polarized state. In such a case a half-period ∆ν = 2 of
the SdH oscillations would be observed starting from a
certain density-dependent in-plane magnetic field. This
field would decrease to zero with the density approach-
ing the quantum critical one nq. Indeed, frequency dou-
bling of the SdH oscillations induced by a strong exter-
nal field B‖ ∼ 2E∗

F /g
∗µB was experimentally observed

by Vitkalov et al. [78].
Using this approach we now want to test the possibil-

ity of anomalous growth of χ∗ in a low or zero in-plane
field with n → nc and show that, if exists, nq should
be well below nc. Typical SdH oscillations of ρxx for
very low densities, close to nc, are shown in Figs. 8 and
9 as a function of B⊥. Due to high electron mobility,
oscillations are detected in B⊥ fields as low as 0.14T for
densities down to nc (which corresponds to rs ≈ 9). The
shape of these oscillations cannot be described with LK
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c
c
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c
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=12
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FIG. 7. (Color online) Evolution of the energy spectrum
for the two-valley 2DES in (100) Si-MOS for various Zee-
man splittings: (a) EZ ≪ ~ωc, spin splitting is unresolved
and B‖ field does not affect the oscillations amplitude. (b)
EZ . ~ωc, spin splitting dominates and increases with the
field, causing the oscillations amplitude to grow with B‖.
(c) EZ ≈ 2~ωc, this situation does not occur in the studied
Si-MOS samples. Unresolved valley splitting is depicted
with double-lines. Filling factors denote the largest energy
gaps.

formula since (i) the electron-electron interactions at such
densities are important [70], and (ii) close to nc a 2DEG
is at the verge of the hopping regime [79, 80], and (iii) at
B⊥ & 1T the reentrant QHE-insulator transition quickly
develops, preventing analysis of oscillations [79, 81]. The
parameter space where oscillations can be analyzed in
the vicinity of nc is shown in AppendixD. We note that,
unless the 2D system is fully polarized, the period of os-
cillations is robust, since it depends only on the Landau
level degeneracy, which is not affected by interactions.
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FIG. 8. (Color online) (a) SdH oscillations for a “small” sam-
ple at six densities near nc ≈ 1.0 × 1011cm−2, T = 0.2K.
Curves 3 − 6 are terminated at the onset of the large insu-
lating peak in ρ [79]. (b) Enhancement of oscillations with
B‖. The inset in panel (b) illustrates the determination of
the critical density from the activation energy ∆, similarly to
[79, 80]. Densities are given in units of 1011 cm−2.

For low densities presented in Fig. 8, Zeeman splitting
is comparable to the cyclotron one [see Fig. 7(b)], and,
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therefore, the ρ(B⊥) minima in Fig. 8(a) are due to the
spin gaps [7, 8, 82, 83]. Figure 8(b) shows that the magni-
tude of the oscillations increases with in-plane magnetic
field B‖, which enhances only spin splitting. The in-
crease in the magnitude confirms that the ratio of the
Zeeman energy EZ = g∗µBBtotal to the cyclotron en-
ergy ~ωc lies within the interval 1/2 < EZ/~ωc < 1 [see
Fig. 7(b)]. This estimation is obtained from the oscilla-
tion phase in the density range rs = 6.3 – 8.2; it is in
good agreement with our earlier quantitative measure-
ments of χ∗(n)/χb ≈ 5 − 6 [8] from the beating pattern
of the SdH oscillations in low crossed fields.

Curve 5 in Fig. 8(a) corresponds to the density n = nc.
The latter value was determined by extrapolating the
density dependence of the activation energy ∆(n) for the
exponential temperature dependences ρ ∝ exp(∆/T ) in
the insulating regime to zero [79, 80, 84]; this procedure
is illustrated in the inset to Fig. 8(b).

In order to clearly illustrate the phase (sign) and pe-
riod of SdH oscillations in the low-field range, we present
in Fig. 9 the ∆ρxx/ρ0P1 data obtained at B‖ = 0 as a
function of the Landau level filling, ν = nh/eB⊥; the
data is normalized by the calculated amplitude of the
first SdH harmonic P1(B⊥) [8, 67]. In calculating P1, we
used the values of g∗ ∝ χ∗(n)/m∗ andm∗(n) measured in
Refs. [8, 37]. The Dingle temperature, TD, (see Eq. (B1))
was adjusted to match damping of the measured oscilla-
tions in weak fields.

In strong fields, the oscillations amplitude is not de-
scribed by LK formula, and is enhanced due to the fac-
tors mentioned above. Nevertheless, even in this case we
obtain a reliable estimation of χ∗, since we rely solely on
the oscillation period and phase, rather than the oscilla-
tions amplitude.

Down to the critical density for both samples, n ≈
1 × 1011cm−2 for the small one (panels a-b-c) and n =
0.77×1011cm−2 for the large one (panels d-e), the period
of SdH oscillations in weak B⊥ fields (large fillings) re-
mains equal to ∆ν = 4 providing evidence for the system
to be unpolarized. In order to illustrate this even further,
we show in panels (d) and (e) a simulation with χ∗ in-
creased by 6% (dashed line) and 12% (dash-dotted line);
the appearance of the second harmonic and the change
of oscillation phase by π that would be caused by such
an increase is clearly visible. From this we conclude that
χ∗ value cannot be increased even by a relatively small
factor.

In the analysis of SdH oscillations it is important to
limit the field range to B⊥ ≤ 1T in order to avoid (i)
the magnetic-field-induced spin polarization and (ii) the

emerging reentrant quantum Hall effect-to-insulator tran-

sitions [79, 81]. This limitation is violated at about ν = 5:
a shift of the minimum at ν ≈ 4 in Fig. 9(a) is caused by
reason (i), i.e. by partial lifting of the spin degeneracy
in perpendicular field B⊥ ≈ 1.3T . In Fig. 9 (b-e) this
limitation is also violated for ν < 10 and reason (ii) may
account for the excessive oscillation amplitude (for more
details see Appendix D).
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FIG. 9. (Color online) Oscillatory component of the resistiv-
ity ∆ρ(ν)/ρ0P1 in B‖ = 0. (a–c) “small” sample with data

1, 5 and 6 from Fig. 8(a), nc = 1.0× 1011cm−2. (d,e) “large”
sample with nc = 0.77 × 1011cm−2. Dots are the data, fits
are the lines [8] with parameters shown in the panels. The
temperature is 0.2K for panels (a - c) and 0.03K for pan-
els (d) and (e). The values of n are in units of 1011 cm−2.
The red dashed and blue dashed-dotted lines in panels (d)
and (e) show what happens to the oscillation shape if one
uses inappropriate (increased) values of the fitting parameter
(g∗m∗/2me) ∝ (χ∗/χP ).

We now consider the phase (sign) of the oscilla-
tions. The minima of ∆ρ in Figs. 9 are located at
ν = 6, 10, 14, 18, i.e. at ν = (4i − 2), in contrast to
ν = 4, 8, 12, 16, i.e. ν = 4i, as observed for higher densi-
ties. In other words, the phase of the oscillations at low
densities is reversed. The position of the oscillations min-
ima is consistent with earlier studies [79, 82, 83], with val-
ues of χ∗ measured from the oscillations beating [8], and
with the above analysis of the oscillation period [Fig. 9].
Schematically the energy spectrum for such a situation,
EZ & ~ω∗

c , is shown in Fig. 7(b). The oscillations phase
changes by π (i.e., sign changes) due to the Zeeman fac-
tor cos(πEZ/~ωc) when EZ exceeds ~ω∗

c/2, i.e. when
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χ∗/χP becomes equal to 1/2, which occurs at rs > 6.3
[8, 67], as schematically illustrated in Figs. 7 (a,b). The
sign change is fully consistent with other observations
(see, e.g., Refs. [82, 83]).
Since the phase of the SdH oscillations is determined

by the ratio of the Zeeman to cyclotron splitting [67, 69]:

cos

(

π
g∗µBB

~ω∗
c

)

= cos

(

π
χ∗

χP

mb

me

)

(7)

it was concluded in Ref. [85] that, in order to have π phase
shift in the range 10 > rs > 6, the spin susceptibility χ∗

must obey the following inequality: 2.6 = me/2mb <
χ∗/χP < 3me/2mb = 7.9. This inequality, together with
a vanishingly small χ∗(T )-dependence sets constrains on
the value of χ∗ at the MIT critical density.
The above analysis of the period and phase of oscil-

lations provides strong evidence for the absence of com-
plete spontaneous spin/valley polarization of the itiner-
ant electrons at the sample-dependent MIT critical den-
sity n ≥ 0.98 × 1011cm−2 (for a “small” sample) and
n ≥ 0.77× 1011cm−2 (for a “large” sample).
Another scenario, a potential divergence of χ∗ and m∗

for itinerant electrons at a sample-independent density
n0 was explored in Ref. [85] by scaling the χ∗(n − n0)
dependence. It was found that the χ∗(n) ∝ g∗m∗

data for both samples (the “large” and “small” ones)
obey a common critical dependence only if we choose
n0 < 0.53× 1011cm−2, the unrealistically low value that
belongs to the insulating regime.
This conclusion differs from the one suggested in

Refs. [13, 15]. A possible reason for this disagreement is
magnetization nonlinearity: strong magnetic field drives
the system near nc into insulator [86]. As was pointed
out in Ref. [87], the magnetoresistance data for in-plane
fields, analyzed in Refs. [13, 15], is only approximately
related to the spin susceptibility of itinerant electrons,
because it ignores the magnetic field dependence of χ
even in the “metallic” conduction regime [10].

E. Spin polarization probed by the thermodynamic

χT measurements

After setting the upper bound on the degree of spin
polarization of the itinerant electrons for T → 0, we shall
discuss the polarization of the whole system measured
with recharging technique.
In the same way as χT was obtained by integration of

∂χ/∂n, we obtained M(B) by integration of ∂M/∂n at
different magnetic fields and temperatures. The results
for T = 1.7K are shown in Fig. 10. The magnetic mo-
ment of the system as a whole grows linearly with the
field, thus excluding zero-field spin polarization. Indeed,
if existed, it would lead to an offset: a finiteM at B → 0.
At low densities below nc = 8×1010 cm−2 for the “large”
high mobility sample, the magnetic field of 0.5T almost
polarizes the system. When the density increases above

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

n (1011 cm-2) @ T=1.7K
 0.35  0.46  0.77 
 1.4  2.1  

m
 (1

011
 

B
cm

-2
)

B (T)

FIG. 10. (Color online) Magnetic field dependence of the
sample magnetization M at T=1.7K and several densities.
M is linear in B in weak fields, and saturates at values be-
low full polarization. Decrease of M with increasing B can
be attributed to inaccuracy of subtracting the diamagnetic
contribution to ∂M/∂n[76]. The data for a “large” sample.

nc, the magnetic moment at saturation stops to grow
with n, and even somewhat decreases.
At some temperature-dependent density, close but

above nc, sample magnetization starts to decrese with
density: e.g. magnetization for n = 2.1 · 1011 cm−2 is
smaller than magnetization for n = 1.4 · 1011 cm−2 This
is consistent with the non-monotonic density dependence
of χT shown in Fig. 5. There is also a slight decrease of
magnetization with magnetic field above B ≈ 0.7T. We
attribute it to inaccuracy of subtraction of the diamag-
netic contribution: this contribution, being unimportant
at weak magnetic fields, becomes important at strong, at
which the paramagnetic contribution saturates.
Finally, we note that the exponent α in the tempera-

ture dependence of χT in Fig. 6 shows no critical behavior
at n = nc: it increases monotonically with decrease of the
density. In Refs. [61, 88] opposite conclusion was drawn
from similar measurements of χT by erroneously iden-
tifying the densities at which χT reaches maxima (see
Fig. 5) with the onset of full spin polarization, see [89] for
discussion.

III. CONCLUSIONS

To summarize, we found that:

1. Spin susceptibility χ∗ of itinerant electrons in a
strongly correlated 2D electron system in Si inver-
sion layer weakly depends on temperature over the
range 0.05− 1K.

2. This weak χ∗(T )-dependence does not support non-
Fermi liquid predictions for the power-law diver-
gence of χ∗ as T → 0.
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3. The temperature dependence of χ∗ in low magnetic
fields is consistent with the Fermi liquid interaction
corrections. In contrast, the temperature depen-
dence of χ∗ in the magnetic field B‖ > T/µB seems
somewhat stronger than the interaction correction
in ballistic regime predicts; on the other hand, it
does not vanish, as expected for the interaction cor-
rection in diffusive regime.

4. The above inconsistencies might stem from the fact
that the diffusive-ballistic crossover in the suscep-
tibility sets at temperature much lower than the
conventional T = 1/τ value.

5. Thermodynamic spin susceptibility χT is much
larger than χ∗, and its temperature dependence is
much stronger. We attribute this large susceptibil-
ity to the localized spin droplets [60]. Their contri-
bution to thermodynamics, and, particularly, to the
spin susceptibility of the two-phase state is domi-
nant; it is magnetic field and temperature depen-
dent and, therefore, may also affect the ∆χ∗(T,B)
dependence observed in our experiments in in-plane
magnetic fields.

6. The striking difference of the weak χ∗(T ) and
strong χT (T ) dependences is an evidences for a
two-phase state consisting of easily polarisable spin
droplets and a Fermi-liquid (FL), even for the well
conducting “metallic” regime kF l ≫ 1.

7. By analyzing both thermodynamic and transport
data we exclude possibility of a magnetic instability
in Si 2DES at any density above 5.3 × 1010 cm−2,
including the MIT critical density n = nc. The
complete spin polarization is absent both in zero
and low fields, in the accessible range of tempera-
tures (down to 100mK).

We conclude that the FL type interaction corrections
describe the measured χ∗(T ) dependence for itinerant
electrons reasonably well. The observed deviations from
the FL picture may be caused by the presence of the
polarized spin-droplets, whose coexistence with the FL-
state is evidenced from the thermodynamic magnetiza-
tion data. In general, interacting electron systems often
have a tendency to phase separation in the vicinity of the
MIT [90] or superconductor-insulator transition [91, 92].
The concept of the 2D electron liquid as the two-phase
state [56, 57, 93] is capable of qualitatively explaining
thermodynamic magnetization data. The quantitative
description of χT (T ) and χ∗(T ) dependences, and, par-
ticularly, understanding the crossover regime in χ∗(T ),
however, requires further studies.
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Appendix A: Interaction corrections to χ∗(B,T )

In this Appendix we discuss briefly theoretical back-
ground for the interaction corrections to the spin suscep-
tibility χ∗(B, T ) in the diffusive and ballistic regimes.

1. Diffusive regime

The original Al’tshuler-Zyuzin result [30] predicts the
following behavior of the spin susceptibility of a disor-
dered 2D electron system in the diffusive regime:

∆χ(T ) ∝ −

{

ln(Tτ), B‖ = 0,

ln(gµBB‖τ), gµBB‖ ≫ T.
(A1)

Extension of the original result of Ref. [30] to an arbitrary
value of the ratio gµBB‖/T and an arbitrary number of
valleys, nv can be done under the following assumptions:
(i) the system is in the metallic regime, i.e. zero-field
conductivity is large, σxx(0) ≫ e2/h; (ii) the tempera-
ture is low enough: (1 + γ2)Tτ ≪ 1; (iii) the parallel
magnetic field is not too strong (1 + γ2)gµBB‖τ ≪ 1.
Here, we remind that parameter γ2 determines Fermi-
liquid renormalization of g-factor, g∗ = (1 + γ2)g, and
can be expressed through the temperature-independent
Fermi-liquid parameter F σ

0 : γ2 = −F σ
0 /(1 + F σ

0 ). For
the representative density 2 × 1011cm−2 the parameter
γ2 ≈ 0.6. Following the approach of Refs. [94, 95], one
can find:

χ(B‖)

χ(0)
= 1−

1

σxx(0)

n2
v(1 + γ2)

π2
F

(

gµBB‖

2πT

)

. (A2)

Here (0) stands for zero field, and σxx(0) is in units of
e2/~:

χ(0)

χP
=

[

1 +
1

σxx(0)

n2
vγ2
π2

(

ln
1

2πTτ
− ψ(1)

)]

, (A3)

and the function F is expressed through the Euler di-
gamma function:

F(h) = Re
[

ψ
(

1 + i(1 + γ2)h
)

−
ψ(1 + ih) + γ2ψ(1)

1 + γ2

]

.

(A4)
We emphasize that Eqs. A2 and A3 are derived to the
lowest order in 1/σxx(0) (in the dimensionless units, as
stated above).
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At weak fields and not too low temperatures, (1 +
γ2)gµBB‖/(2πT ) ≪ 1, one can expand the function F(h)
to the second order in h, and find:

χ(B‖)

χ(0)
= 1−

1

σxx

ζ(3)

π2
n2
v[(1+γ2)

3−1]

(

gµBB‖

2πT

)2

. (A5)

In the opposite limit of low temperatures, 2πT ≪ (1+
γ2)gµBB‖, we obtain the following asymptotic behavior:

χ(B‖, T )

χ(0)
= 1−

1

σxx

n2
vγ2
π2

[

ln
gµBB‖

2πT
− ψ(1)

+
1 + γ2
γ2

ln(1 + γ2)

]

. (A6)

This result implies

χ(B‖)− χP

χP
≈ −

1

σxx

n2
vγ2
π2

ln(gµBB‖τ), (A7)

that is perfectly consistent with the well-known result,
Eq. (A1) [30].
In Figure 11 we show the ∆χ(B‖, T ) dependences

calculated from Eq. (A3) for B‖ = 0 and from
Eqs. (A5),(A6) for B‖ = 0.1, 0.5T and 1T. Note, that
(1 + γ2)gµBB‖τ becomes unity at B ∼ 2.3T (τ is indi-
cated in the upper horizontal scale of Figs. 4(a)-(d), and
are also given in the captions to Fig. 11), so that assump-
tion (iii) of its smallness is violated for experimental pa-
rameters of Fig. 4d, and to some extent, of Fig. 4(c). In
such high fields, Eq. (A7), according to which χ∗ is tem-
perature independent, is more appropriate.
The logarithmic increase of ∆χ∗ with lowering temper-

ature comes from χ(0), Eq. (A5). The maximum and the
further decrease seen at very low temperatures (and not
observed in the experiment) for B‖ = 0.1T comes from
the field-dependent correction in Eqs. (A5),(A6).

2. Ballistic regime

For completeness, we remind the result for the inter-
action correction to the spin susceptibility ∆χ∗(T ) =
χ∗(T ) − χ∗(0) in the ballistic regime, Tτ ≫ 1. At zero
field, ∆χ∗(T ) for a 2D system increases approximately
linear with T (see Eq. (3)) and [31–36]). This linear in T
dependence appears in the second order in the interaction
corrections due to non-analytic behaviour of the polar-
ization operator at q = 2kF . In Ref. [34], the correction
to the spin susceptibility was computed in the presence
of a non-zero in-plane magnetic field. The result is the
following:

∆χ∗(T ) = χPA
2(π)Tf

(

gµBB‖/T
)

, (A8)

where

f(x) =
x

sinh2(x)

[

sinh(2x)− x
]

, (A9)
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(b)

T

0.0 0.5 1.0 1.5 2.0

FIG. 11. Temperature dependence of the diffusive inter-
action correction ∆χ∗(T ) for parameters corresponding to
Fig. 4(b): n = 2.08 × 1011cm−2, τ = 1.59ps, F σ

0 = −0.38,
γ2 = 0.61, “small” sample. (a) calculated from Eq. (A3)
for B = 0; temperature interval is cut by requirements
∆χ∗(T )/χP < 0.4 (T ≥ 0.05K), and Tτ < 0.42 (T < 2K).
(b) calculated from Eq. (A5) for B = 0.1, 0.56 and 1.0 T.
For the panel (b) temperature is limited from below by the
requirement (1 + γ2)gµBB‖/(2πT ) < 1, and from above - by
Tτ < 0.42 (T < 2K). Vertical position is chosen to obtain
vanishing ∆χ∗(T ) for Tτ = 1.

and A ∼ 1. In order to compare this prediction with the
experimental data in Figs. 4 (a-b-c) we show in Figs. 12
∆χ∗(T ) = χ∗(T ) − χ∗(0) dependence calculated from
Eq. (A8) for B‖ = 0, 0.56, and 2.5T. Though there
is a certain similarity, the whole explored temperature
range formally belongs to the diffusive interaction regime
Tτ ≪ 1 and the applicability of the ballistic corrections
(Fig. 12) to the data Fig. 4 is questionable.

Appendix B: Experimental determination of the

carrier density

The full carrier density n in the 2D channel of
Si-MOSFETs was determined from the SdH oscilla-
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T

FIG. 12. Ballistic correction ∆χ∗(T )/χP calculated from
Eq. (A8) of [34] for parameters corresponding to Fig. 4(a-b-
c): n = 2.08 × 1011cm−2, τ = 1.59ps, the “small” sample, at
B = 0, 0.56, and 2.5 T. Vertical scale is the same for all three
curves. Upper scale shows temperature in units of Tτ .

tions and from the Hall effect measurements. Both
methods are applicable down to the critical density
nc ≈ 1 × 1011 cm−2, and give the same results with
accuracy of a few percents [13]. Within the same
accuracy, these results also agree with the charge in the
gated Si-MOSFET directly measured by recharging or
capacitive-type techniques [96]:

n =
C

Se
(Vg − Vth).

Here Vth is the gate voltage at which density extrapo-
lates to zero and S is the sample area. The calculated
value of capacitance C agrees with the directly measured
capacitance of the sample.
Density of itinerant and localized electrons.

We presume the itinerant electrons to be those hav-
ing a ps-scale relaxation time and therefore providing a
dominant contribution to the DC conductance and SdH.
In contrast, the localized carriers are trapped for much
longer time, and their contribution to the conductivity
is negligible. Both SdH and Hall effect measurements
give results close to the the full electron density. At high
densities deep in the metallic phase and at low magnetic
fields in a uniform system all electrons are itinerant, and
ni = n.
In a nonuniform system, SdH and Hall effect also mea-

sure the full electron density. SdH counts the number of
filled Landau levels, without distinguishing between lo-
calized and extended states, an extreme example is the
QHE: there might be few extended states in the middle
of the Landau levels, but the density extracted from the
oscillations period is just the full one, n. In the QHE
case the Hall effect is stepwise; the width of the steps is
an indication for the number of localized states in this

regime. The density of localized states is known to oscil-
lates with filling factor or Fermi energy position relative
to the Landau levels. We are not aware of a straight-
forward way to infer the number of localized electrons in
low magnetic fields close to the MI transition. Our mea-
surements of the number of the easily-polarized spins can
be an indication.
Anyhow, the knowledge of ni at different scales is not

required for the subject of this paper: namely, the sus-
ceptibility and its properties with n and T being the gov-
erning parameters.

Appendix C: Fitting of the SdH oscillations

The magnetooscillations in the noninteracting Fermi
gas are usually fitted [8, 70] by the Lifshitz-Kosevich
(LK) formula, adapted for the 2D case and valid for a
small amplitude of oscillations δρ/ρ≪ 1 [67] :

δρxx
ρ0

= +2
∆D

D
=

∑

i

ALK
i cos

[

πi

(

~cπn

eB⊥
− 1

)]

Zs
i Z

v
i .

ALK
i = 4 exp

(

−
2π2ikBTD

~ωc

)

2π2ikBT/~ωc

sinh (2π2ikBT/~ωc)
(C1)

Here ωc = eB⊥/m
∗c is the cyclotron frequency, D is the

2D density of states, TD is the Dingle temperature, and
the Zeeman- and valley- splitting terms are:

Zs
i = cos

[

πi
~πPcn

eB⊥

]

, Zv
i = cos

[

πi
∆V

~ωc

]

, (C2)

where P = (n↑ − n↓)/n is the spin polarization, n↑ (n↓)
stand for the density of spin-up (spin-down) electrons,
and ∆V is the valley splitting [6].
In the absence of in-plane field, the Zeeman term re-

duces to the field-independent factor

cos

(

πi
∆Z

~ωc

)

= cos

(

πi
g∗m∗

2me

)

.

In the case of interacting electrons, the temperature de-
pendence of the oscillation amplitude changes [70, 97, 98].
The modified amplitude of the oscillations is a monotonic
function of B⊥ [70] and its exact shape does not affect
fitting in the narrow field interval in the vicinity of the
nodes (Fig. 2).

Appendix D: Domain of measurements of the SdH

oscillations close to nc

Figure 13(a) illustrates the parameter range, in which
the quantum oscillations were measured in the vicinity
of the insulating regime. For a density close to nc, as the
perpendicular field increases, the 2D system experiences
reentrant QHE-insulator transition (see Refs. [79, 82]).
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In weaker fields, however, the oscillations look quite or-
dinary, enabling their conventional analysis, as we de-
scribed above.
The oscillations amplitude in Fig. 13(b) is damped by

a factor of ∼ 1/50 in the field of B⊥ = 0.4T; converting
this “Dingle factor” to the quantum (all angle) scattering
time τq = ~/2πkBTD, we conclude that the 2D system
approaches critical density with rather high ωcτq ∼ 1
value in B⊥ = 0.4T . On the other hand, treating the DC
conduction with Drude formula, we find the momentum
relaxation time to be several times smaller. The fact that
τq exceeds the momentum scattering time τ when n ap-
proaches nc is puzzling, though well known. Its discus-
sion is beyond the framework of the current paper; we
only note that such unusual relation between the scat-
tering times indicates failure of the homogeneous Fermi-
liquid state and may be understood within the concept
of the two-phase state [56, 60].

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

100 (a)

 

 

Q
H

E

In
su

la
to

r

Q
H

E

In
su

la
to

r

 (h
/e

2 )

0.5

0.6

0.7

0.8

0.0 0.4 0.8

-1

0

1

 
(h

/e
2 )

 

(b)

6=14    10 no
rm

al
iz

ed
 a

m
pl

itu
de

B (T)

FIG. 13. Evolution of the SdH oscillations at different den-
sities close to the critical density of MIT for the “small” sam-
ple (nc ≈ 0.97 × 1011cm−2). Empty circles in panel (a) show
the ρxx oscillations at n ≈ 0.97 × 1011cm−2 which in high
fields are transformed into the reentrant QHE-insulator tran-
sitions [79]. Dashed line confines the region of our weak field
SdH measurements in Ref [85]. The oscillatory curves in the
confined regions are for densities (from top to bottom) 0.98,
0.99, 1.04, 1.10, 1.20, 1.30, and 1.98 in units of 1011cm−2.
(b) Right axis: expanded view of one of the ρxx(B) curves
at n = 1.04 × 1011cm−2 [marked with a circle on panel (a)];
left axis: the MR oscillatory component after subtraction the
monotonic magnetoresistance and normalization by the am-
plitude of the first harmonic P1(B⊥) [8].
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