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ABSTRACT 

We present angle-dependent high-frequency EPR studies on a single-crystal of a trigonal Mn'((( 

cluster with an unusual structure in which the local magnetic easy-axes of the constituent MnIII 

ions are tilted significantly away from the molecular C3 axis towards the ‘magic-angle’ of 

54.7 degrees, resulting in an almost complete cancelation of the 2nd-order axial magnetic 

anisotropy, 𝐷𝑆+,-, associated with the ferromagnetically coupled total spin ST = 6 ground state. This 

contrasts the situation in many related Mn'((( single-molecule magnets (SMMs) that have been 

studied intensively in the past, for which the local MnIII anisotropy tensors are reasonably parallel, 

resulting in substantial barriers to magnetization relaxation (Ueff ~ 30-35 cm-1) and magnetization 

blocking below about 2.5 K. The suppression of the 2nd-order anisotropy [note that the rhombic 

term, 𝐸/𝑆+0- − 𝑆+2-3, is also zero on symmetry grounds] in the present case results in a situation in 

which the zero-field splitting (ZFS) of the ST = 6 ground state is dominated by 4th- and higher-

order interactions. This provides a unique opportunity to study in depth how molecular geometry 
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influences these interactions that are responsible for quantum tunneling of magnetization in high-

symmetry SMMs. Angle-dependent EPR measurements provide a full mapping of the molecular 

magneto-anisotropy. Meanwhile, irreducible tensor operator (ITO) methods are employed in order 

to obtain analytic expressions that directly relate molecular anisotropy to the microscopic physics, 

i.e., the ZFS tensors associated with the individual MnIII ions, their orientations, and the exchange 

coupling between the three spins. The ITO methodology improves significantly upon previous 

numerical methods that have been applied to trigonal SMMs. We find that the magic-angle tilting 

leads to a massive compression of the ST = 6 ground state energy level diagram (< 3.5 cm-1 

separate the lowest and highest lying levels in zero-field) and strong mixing between spin 

projection states. Although these characteristics are antagonistic to SMM behavior, they provide 

important insights into the physics of polynuclear molecular nanomagnets. 
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I. INTRODUCTION 

The synthesis of bistable magnetic molecules, or single-molecule magnets (SMMs), relies on the 

ability to control the microscopic structural details that dictate the overall molecular magnetic 

anisotropy.1-11 This anisotropy lifts the degeneracy of spin states in the absence of an applied 

magnetic field and, in certain axial geometries, can generate an energy barrier separating spin-up 

and down states.1,12 In these cases, magnetic information can effectively be stored in the 

polarization state of the molecule, provided: (i) the barrier is large compared to kBT; and (ii) 

quantum tunneling through the barrier can be avoided.13 Both the barrier height and quantum 

tunneling are strongly influenced by molecular structure/symmetry, thus motivating detailed 

studies of structure-property relations.10 

One approach to creating SMMs involves assembling multiple paramagnetic ions 

possessing appreciable magnetic anisotropy into larger high-symmetry, high-spin molecules.1,14-18 

The design of these types of molecular spin clusters was historically motivated by the desire of 

increasing the energy barrier, 𝑈566 ≈ |𝐷𝑆9-|, separating the maximally projected spin-up and down 

states, where D parameterizes the 2nd-order uniaxial anisotropy (through the effective spin 

Hamiltonian, 𝐻;<=><? = 𝐷𝑆+,-, where 𝑆+, is the z-component spin operator) and ST the total spin 

associated with the magnetic ground state of the molecule.1,12 Naively, increasing ST may at first 

sight seem appealing, since the magnitude of the parabolic energy barrier is proportional to 𝑆9-. 

However, this requires coupling multiple anisotropic ions, which is not only synthetically 

challenging, but also leads to a dilution of the 2nd order axial molecular anisotropy that, in the best 

case, scales as D µ 1/ST.6,19-23 Moreover, the relatively weak exchange found in most transition 

metal clusters results in the emergence of higher-order corrections (µ 𝑆+AB, 𝑆+AC, etc., where µ = x, y, 

z) to the parabolic 2nd order anisotropy that: (i) ultimately produce completely different energy 
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landscapes; and (ii) may induce new quantum tunneling of magnetization (QTM) pathways.7-10 

These higher order anisotropies arise most prominently when the inter-ion exchange is comparable 

to (or weaker than) the local single-ion anisotropies; the transverse terms (i.e. µ = x, y) typically 

also require a tilting of the local anisotropy tensors away from the molecular symmetry (z-) 

axis.7,8,21,24 In such situations, higher lying spin multiplets effectively admix with the ground spin 

state, resulting in the aforementioned higher order corrections to the 2nd order anisotropy. 

However, molecular symmetry still dictates which interactions are allowed. In this regard, trigonal 

molecules provide a relatively simple case that can effectively demonstrate the interplay between 

molecular structure, exchange, and local single-ion anisotropy.7-11 Importantly, QTM is strictly 

forbidden for a purely 2nd order trigonal spin Hamiltonian, but may become rather strong in the 

weak exchange limit due to the emergence of symmetry allowed 4th and 6th order transverse 

interactions.8 Here, we present a rare example in which the structure of a trigonal Mn3 molecule 

results in a near total suppression of the 2nd order molecular anisotropy, such that the resultant 

magnetic and spectroscopic properties are dominated by 4th and higher order interactions. 

The article is organized as follows. An overview of the Mn3 molecule is given in Section II, 

highlighting the important structural features that give rise to the three-fold pattern observed in the 

electron paramagnetic resonance (EPR) measurements described in Section III. Simulations of the 

experimental EPR results based on the so-called Giant Spin Approximation (GSA) are presented 

in Section IV, revealing a significant trigonal contribution to the magnetic anisotropy, and an 

unusually small 2nd-order axial term. These findings require consideration of a Multi-Spin (MS) 

description, in which the local anisotropies of the constituent atoms are considered along with the 

exchange coupling between them. This framework is introduced in Section V, along with a 

mapping between the MS and GSA Hamiltonians using an irreducible tensor operator 
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representation, providing important microscopic insights into the structural factors that influence 

the total molecular anisotropy. Conclusions are then presented in Section VI. 

 

II. 𝐌𝐧𝟑𝐈𝐈𝐈 MOLECULAR STRUCTURE 

This investigation focuses on a ferromagnetically coupled Mn'((( triangular molecule (see Fig. 1) 

displaying rigorous C3 symmetry,25 in which each MnIII site hosts a local spin s = 2, yielding a 

total molecular ground spin state of ST = 6. The octahedrally coordinated MnIII sites are arranged 

in such a way that the principal (easy-) axes of the individual anisotropy tensors are tilted 

significantly (~54°) away from the molecular C3 axis towards the trigonal plane. These axes are 

defined by the Jahn-Teller (JT) elongated Mn···O bonds lying along the black arrows in Fig. 1(a). 

Importantly, the JT distortion generates a local 2nd order axial anisotropy of the form 𝐻;?DE<? = 𝑑�̂�,I
- , 

where d parameterizes the interaction strength and zi the orientation of the local axial interaction 

 
 

FIG. 1. (a) The [Mn3O(mheap)3(CH3OH)3](ClO4) molecule25 consists of three octahedrally coordinated 
MnIII ions, each with four unpaired electrons occupying 3d orbitals, yielding a total spin of s = 2 at each 
site. These spins are ferromagnetically coupled via superexchange through the oxygen bridges, giving rise 
to a giant spin ground state of ST = 6. The black arrows depict the approximate directions of the local easy-
axes. (b) Schematic defining the applied magnetic field orientation within the laboratory frame; the single-
crystal sample was oriented such that the plane of the Mn3 triangle was approximately in the xy plane of 
the lab frame; θ and f describe polar and azimuthal field rotation angles.  
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at each MnIII site, i; lowercase symbols are employed here in order to distinguish the parameters 

from those employed in the molecular Hamiltonian (Section IV). As will be shown, the relatively 

large easy-axis tilt, which approaches the ‘magic angle’ of 54.7o, suppresses most of the 2nd order 

molecular anisotropy, while also giving rise to 4th order trigonal (and 6th order hexagonal) terms 

that emerge within the coupled molecular spin Hamiltonian. The magic angle, defined as the angle 

for which the second order Legendre Polynomial, P2(cosθ) = 0, holds particular significance in 

magnetism. As seen in this study, suppression of the 2nd-order anisotropy due to the MnIII easy-

axis tilting close to the magic angle affords unprecedented sensitivity to higher-order anisotropies 

via high-field/frequency EPR (HFEPR) measurements. 

 

III.  HIGH FIELD EPR STUDIES 

HFEPR measurements were performed using a cavity perturbation technique, with a Millimeter-

wave Vector Network Analyzer (MVNA) employed as a source and detector.26,27 A single-crystal 

of [Mn3O(mheap)3(CH3OH)3](ClO4) [hereon Mn3, Fig. 1(a)],25 which crystalizes in the P3L space 

group, was mounted in a cylindrical microwave cavity situated within the bore of a 9-5-1 T vector 

magnet such that the magnetic field direction could be varied in both the polar (θ) and azimuthal 

(f) directions with respect to the sample [see Fig. 1(b)].28 Temperature control was achieved using 

a variable-flow helium gas cryostat. Details concerning the synthesis, crystal structure and 

magnetic properties of the Mn3 compound will be published elsewhere.25 Since Mn3 crystallizes 

in the form of hexagonal shaped plates, a single-crystal could be mounted such that the trigonal 

plane formed by the three MnIII ions was approximately co-planar with the xy plane of the lab 

frame. HFEPR spectra were then recorded at 89.2 GHz, in 10o steps in both θ and f, in order to 

obtain a complete mapping of the molecular anisotropy (see Fig. 1b for definition of coordinates). 
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The stacked plots in Fig. 2(a) and (b), with their accompanying simulations, show example field 

sweeps for values of θ spanning a full 180o, and two fixed orientations in f [(a) 40o and (b) 100o]. 
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From the stacked plots in Fig. 2, we observe that the position of the strongest EPR transition 

(assumed to correspond to the excitation from the ground state) does not vary with field orientation 

as sin2θ, as would be expected for a SMM in which the molecular anisotropy is dominated by the 

2nd-order axial term, 𝐻;<=><? = 𝐷𝑆+,-. Rather, it displays multiple turning points and a clear azimuthal 

(f-) dependence: for f = 40°, the maximum field position peaks at θ = 60°, i.e., 30o above the xy-

 

FIG. 2. (Left, blue) Experimental spectra collected at 89.2 GHz, in 10o steps of θ, for two azimuthal planes 
of rotation: (a) f = 40o, and (b) f = 100o. Dips in cavity transmission correspond to EPR absorptions. The 
measurements were performed at 1.65 K (base temperature of the cryostat) in order to minimize thermal 
population of excited states within the ST = 6 ground multiplet; hence the strongest resonance is assumed 
to correspond to an excitation from the ground state. (Right, red) Simulations of the experimental spectra 
at (c) f = 40o, and (d) f = 100o, generated using the program EasySpin30 according to the molecular giant 
spin Hamiltonian described in the following sections. 
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plane; for f = 100°, the maximum shifts to θ = 120o, i.e., 30o below the xy-plane. This already 

suggests that, compared to Mn3 triangles studied in the past,2,3,5-10,29 the molecular anisotropy is 

profoundly influenced by higher-order interactions. In order to investigate this further, the 

resonance position of the strongest EPR transition was mapped with respect to both θ and f, as 

shown in the color map in Fig. 3(a); additional weaker resonances, which are due to thermal 

 

FIG. 3. (a) Color map of the position of the strongest EPR transition at 89.2 GHz as a function of q and f; 
the positions were determined from data sets such as those shown in Fig 2. (b) Simulation of the color map 
in (a), generated according to the GSA Hamiltonian in Eq. 2, with the parameters listed in Table 1. In order 
to account for the slow (360o periodicity) oscillation with respect to f, the simulations were computed on a 
spherical grid that was iteratively rotated in order to reproduce the small mis-alignment between the crystal 
and lab coordinate frames; the best simulation was then determined via minimization of the residual with 
respect to the experimental data. After the minimization, it was found that to match the phase of the trigonal 
anisotropy terms of the simulation to the lab frame, an additional azimuthal offset of 21.5 o was required. 
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population of excited states within the ST = 6 ground multiplet, were not considered in this figure. 

The apparent three-fold pattern effectively demonstrates the molecular C3 symmetry inherent to 

the system [the slow oscillation with 360° periodicity in f is due to a few degrees of unavoidable 

misalignment of the flat crystal with respect to the lab frame; this is addressed in the simulation in 

Fig. 3(b)]. Rather than having an easy-axis/hard-plane type of anisotropy typical for a SMM, the 

color map instead reveals multiple hard directions located above and below the trigonal plane, 

albeit maintaining a C3 symmetry. The microscopic origin of the magnetic anisotropy that gives 

rise to this behavior will be the main focus of the remainder of this paper. 

 
 

IV.  GIANT SPIN MODEL 

For the case of exchange-coupled spins, it is common practice to describe a magnetic molecule 

using an effective Hamiltonian given by the GSA. In the case of Mn3 containing three s = 2 sites, 

this description is particularly advantageous since only the ST = 6 multiplet need be considered, 

where the lowest (2ST + 1) = 13 energy levels contain the majority of the Boltzmann population at 

low temperatures; this of course assumes strong ferromagnetic coupling, so that the ST = 6 ground 

state is well isolated. Such an approach is computationally convenient when compared to the MS 

description, which requires consideration of (2s + 1)n = 125 states, where n = 3 in the current case. 

The Zero-Field Splitting (ZFS) of the ground multiplet is well described by an expansion 

of the GSA Hamiltonian in terms of Extended Stevens Operators (ESOs):30,31 

 
𝐻;MNO = 	 Q Q 𝐵S

T
S

TU	VS

𝑂XS
T

SU-,B,C…

 (1) 

The 𝑂XS
T terms are comprised of spin operators of rank k, with q specifying the rotational symmetry, 

which are parameterized by their accompanying	𝐵S
T  coefficients. The sum includes non-zero 
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contributions for 𝑘 ≤ 2𝑆9, with the more familiar 2nd-order parameters D = 3𝐵-^ and E = 𝐵--, where 

E describes any rhombicity. Note here that the inclusion of higher order ESOs in the GSA gives a 

strictly phenomenological description of the ZFS. However, this approach has become 

commonplace in the description of polynuclear clusters,1,12 for which significant higher order 

anisotropies often arise due to ‘S-mixing’, i.e., admixing of excited ST-multiplets into the ground 

state due to weak intramolecular exchange coupling. The formalism in Eq. (1) was originally 

developed to describe the energy levels of isolated magnetic ions in crystalline electric fields as an 

alternative to lengthy expressions involving linear combinations of tesseral harmonics (for a 

complete review see M.T. Hutchings).32 Consequently, as applied in the present context, the terms 

in Eq. 1 need to reflect the symmetry of the molecule, since the operators themselves contain 

inherent symmetries. Thus, for a system having rigorous C3 symmetry, one can choose terms 

containing 𝑂XS
TU'_, m being a positive integer. As such, one arrives at the following expression for 

the molecular ZFS Hamiltonian:10,31 

𝐻;MNO,`ab = 𝐷𝑆+,- + 𝐵B^𝑂XB^ + 𝐵B'𝑂XB' + 𝐵C'𝑂XC' + 𝐵CC𝑂XCC (2) 

From the above symmetry related arguments, this expansion could include terms up to k = 12. 

However, including axial terms (q = 0) up to k = 4 and off-diagonal terms (q > 0) up to k = 6 

provides a satisfactory description of the ZFS for Mn3 (vide infra). From the above experimental 

results, the obtained best simulation parameters are given in Table 1, where we have additionally 

imposed the condition q ³ 0 in order to best match the azimuthal phase of the simulation with 

respect to the lab frame. Results for three similar C3 symmetric Mn3 triangles are also listed for 

comparison,3,8,9 and will be discussed further below.  

To have a functional SMM, it is desirable to have a large negative D while minimizing all 

of the off-diagonal (q ¹ 0) terms to prevent QTM via mixing of spin projection states, particularly 
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those on opposite sides of the barrier. However, in the present case, the near magic angle tilting of 

the local MnIII ZFS tensors in fact acts to suppress the 2nd-order axial anisotropy, D, while giving 

rise to sizeable 4th and 6th order trigonal (and hexagonal) q = 3 (q = 6) terms. To understand how 

this comes about, it is necessary to move to a multi-spin description.  

 

V. MULTI-SPIN MODEL 

For N spin sites, the exchange coupled multi-spin Hamiltonian is given by:8,10,19,33 

𝐻;`N 	= 	Q𝒔ef ∙ 𝑅fj
k

fUl

∙ 𝑑 ∙ 𝑅f ∙ 𝒔ef + Q 𝐽fn𝒔ef ∙ 𝒔en	;
k

f,npf

					𝑑 = 	

⎝

⎜
⎜
⎛
−
𝑑
3 + 𝑒 0 0

0 −
𝑑
3 − 𝑒 0

0 0
2𝑑
3 ⎠

⎟
⎟
⎞
, 

	

(3) 

 

 
where the indices i and j refer to the N sites in the molecule, with associated spin �̂�f, and local 2nd-

order anisotropy specified by the tensor 𝑑 (assumed to be the same at all three sites in the present 

case due to the C3 symmetry); d and e are respectively the local 2nd-order axial and rhombic 

anisotropy parameters. The 𝑅f tensors represent Euler rotation matrices, specified by angles ai, bi, 

and gi, that relate the local coordinate frame of each ion to the molecular (lab) frame. Specifying 

 
 

FIG. 4. Simplified model of the Mn3 molecule. The 𝑑 tensor of each MnIII ion is related to its neighbor by 
a rotation of α = 120°, with β specifying the tilt from the molecular C3 (z-) axis. 
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the Euler angles thus allows us to impose symmetry constraints on the system; note here that we 

use the ‘zyz’ Euler convention.30 

In order to demonstrate how molecular symmetry affects the total magnetic anisotropy of 

the Mn3 system, we model it as an equilateral triangle of ferromagnetically coupled �̂�f = 2 spins 

with axial 𝑑 tensors (initially keeping e = 0 for the sake of simplicity), fixing a1 = 0, a2 = 120o, 

a3 = 240o, and further imposing b1 = b2 = b3 = b  and γ1 = γ2 = γ3 = 0 to preserve the C3 symmetry. 

In general, the spin Hamiltonian has a symmetry that is higher than the spatial symmetry of the 

molecule. For example, the special case of b = 0 gives a MS Hamiltonian with cylindrical D∞h 

symmetry, because all of the local anisotropy projects onto a single axis (the molecular C3 axis). 

For b = 90o, the MS Hamiltonian has a hexagonal D6h symmetry while, for all 0 < b < 90o, the MS 

Hamiltonian adopts an D3d symmetry. These latter two cases acquire a higher symmetry than the 

molecule because of the additional time-reversal invariance of the spin-orbit interaction.10 

Inclusion of a finite e parameter reduces the symmetry in some cases, e.g., b = 0 reduces to D6h 

symmetry. However, in the absence of an applied field, the MS Hamiltonian never reduces to the 

C3 symmetry of the molecule. Based on these simple arguments, one can immediately predict 

which terms in the GSA Hamiltonian to expect in various limiting cases. For example, the q = 0 

ESOs all have D∞h symmetry, the 𝑂XCC operator possesses a hexagonal D6h symmetry, while the 

remaining 𝑂XB' and 𝑂XC' operators both impose an D3d symmetry on the GSA Hamiltonian. 

While the above qualitative arguments are appealing, we seek a quantitative 

correspondence between the MS and GSA parameterizations. To accomplish this, we take a 

perturbative approach following the procedure developed by Waldmann and Güdel,34 expressing 

the total molecular ZFS in terms of its equivalent multi-spin operators. This permits investigation 

of how both the orientations and magnitudes of the local anisotropies influence the molecular 
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anisotropy. Although not as precise as performing exact matrix diagonalizations, as in the case of 

Liu et al.,8 this approach allows us to derive analytical expressions connecting the microscopic MS 

and effective GSA models. 

We first reframe the problem by casting the local anisotropies as a perturbation to the 

isotropic exchange coupling. This allows us to calculate the matrix elements from the MS 

Hamiltonian up to 2nd order, such that equivalent operators can be generated in the subspace where: 

	y𝑆𝑀{𝐻;MNO{𝑆𝑀′} = y𝜏𝑆𝑀{𝐻;`N{𝜏′𝑆′𝑀′}, (4) 

in which 𝜏𝑆 specifies a single spin multiplet within the full Hilbert space described by the multi-

spin basis, while |𝑆𝑀⟩ specifies a single spin subspace spanned by the GSA introduced in Eq. (2). 

For a given S in the giant spin subspace, the case 𝑀 = 𝑀′ describes diagonal matrix elements. 

Similarly, matrix elements originating from within the same spin-multiplet have the same 𝜏 and 𝑆. 

Here, the label 𝜏 completely specifies the spin state in the MS description, and serves to simplify 

the more conventional coupled basis given by 	|𝑆l𝑆-𝑆l-𝑆'𝑆𝑀⟩.19,33 The procedure for finding 

equivalent operators thus involves taking projections of the following form for each term in the 

expansion: 

𝐻;MNO = 𝑃��𝐻;��𝑃���� = Q |𝑆𝑀⟩y𝜏𝑆𝑀{𝐻;`N{𝜏�𝑆�𝑀�}
�,��

⟨𝑆𝑀�| 

where, 
			𝑃�� = Q	|𝑆𝑀⟩

�

⟨𝜏𝑆𝑀| 

in which the sum is taken over the GSA substates. We begin by breaking up the MS Hamiltonian 

as:  

𝐻;`N = 	𝐻;^ + 𝐻;l, (6) 

(5) 
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where the 0th order isotropic exchange interaction is given by 𝐻;^ [2nd term in Eq. (3)], and 𝐻;l 

specifies the local anisotropies parameterized by 𝑑 and 𝑒 [1st term in Eq. (3)]. From here, the matrix 

elements can be written according to the following expansion:35,36 

y𝜏𝑆𝑀{𝐻;`N{𝜏𝑆𝑀′}

= 	𝐸^�� +	 ⟨𝜏𝑆𝑀|𝐻l|𝜏𝑆𝑀′⟩

+ Q
⟨𝜏𝑆𝑀|𝐻l|𝜏′′𝑆′′𝑀′′⟩⟨𝜏′′𝑆′′𝑀′′|𝐻l|𝜏𝑆𝑀′⟩

𝐸^������ − 𝐸^�����,	���,	���

 

(7) 

in which the leading term gives the energy due to exchange (𝐻;^), the 1st order perturbation 

considers mixing of M states due to intra-spin multiplet matrix elements (for a given 𝜏𝑆 state), 

while the 2nd order perturbation considers inter-multiplet mixing between states 𝜏𝑆 and 𝜏′′𝑆��, as 

illustrated in the Zeeman diagram of Fig. 5 (note that the Zeeman interaction is not explicitly 

included in the above zero-field expressions). Inter-multiplet mixing, more commonly referred to 

as ‘S-mixing’, is often considered to be weak in comparison to 1st order mixing in molecular spin 

systems. Such assumptions are based on the notion of well-separated spin states [large 

denominator in the 2nd order perturbation in Eq. (7)], particularly in ferromagnetic cases with 

appreciable exchange (J > d). However, as will be shown in the following sections, the suppression 

of 1st order mixing due to the magic-angle tilting of the local 𝑑 tensors in the Mn3 molecule 

considered here requires careful consideration of the 2nd-order terms. Those not interested in the 

explicit derivations, starting from Eq. (7), may proceed directly to the results given by Eqs. (8) and 

(9), which respectively consider the k = 2 and k = 4 anisotropy terms (1st and 2nd-order 

perturbations) in the GSA Hamiltonian. The derivations involving irreducible tensor operator 

methods are addressed in Appendix A. 
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A. First order perturbation 

In terms of the MS anisotropy parameterization in Eq. (3), consideration of intra-multiplet mixing 

yields the following expression for the k = 2 contribution to the GSA anisotropy: 

𝐷�D?(𝛽) = 3𝐵-^ =
'�
-
ΓSU-(𝑠)(3cos-𝛽 − 1), (8) 

where the projection factor described in Eq. (A9) has ΓSU-(𝑠) ≈ .0909 for s = 2 and S = 6 (see 

expressions in Table 11.9 of Boča).33 Note here that, for the sake of simplicity, we have neglected 

any contribution from local rhombic distortions in the perturbative calculation, i.e., we set e = 0. 

Moreover, the molecular C3 symmetry dictates that the k = 2, q = 2 GSA parameter 𝐸 = 𝐵-- = 0. 

 
 

FIG. 5. Zeeman energy level diagram for the lowest lying spin multiplets, with b  close to the magic angle. 
According to the perturbative approach in Eq. (7), the 0th order energy splitting (Δ) between spin multiplets 
is due purely to the exchange Hamiltonian. Meanwhile, the 1st and 2nd order ZFS interactions are due to 
intra- and inter-Multiplet spin-state mixing, respectively (see legend). Note that, while there exist many 
higher lying excited spin multiplets, the second order treatment discussed here mixes only the doubly 
degenerate S = 5 and triply degenerate S = 4 multiplets into the S = 6 ground spin multiplet. 
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From Eq. (8), one sees that there are two ‘magic’ angles where 𝐷�D?(𝛽) = 0, i.e., 𝛽 = 54.7° 

and 125.3o. To better understand this, we perform an exact diagonalization of the MS Hamiltonian 

of Eq. (3) at zero applied magnetic field to generate the energy eigenvalues as a function of 𝛽 (see 

Fig. 6). Considering only the ground ST = 6 multiplet [Fig. 6(b)], one sees that the eigenvalues 

converge and become nearly degenerate at the magic angles. Importantly, these angles delineate 

the boundaries separating regions with opposite signs of the molecular 2nd-order (k = 2) GSA 

 
 

FIG. 6. (a) Energy eigenvalues obtained via exact diagonalization of Eq. (3) using the MS parameters 
J = -6.35 cm-1 d = -3.73 cm-1 and e = 0, plotted as a function of the tilt angle β. (b) Expanded view of the 
ground ST = 6 spin multiplet; note that the eigenvalues converge at the two magic angles, β = 54.7° and 
125.3°, which delineate regions of negative (blue) and positive (yellow) Dmol. The red dashed line indicates 
the value of β that provides the best overall agreement between experiment and the simulations for this 
molecule (vide infra). Note that, although the ideal axial case is plotted above, the addition of a local 
rhombic ZFS interaction (finite e) will slightly shift where the energy levels converge in β. 



 18 

anisotropy (2nd-order refers here to the order of the GSA spin operators, as opposed to the 

perturbation order): assuming local easy-axis anisotropy (d < 0), the single-ion 𝑑 tensors project a 

net easy-axis anisotropy onto the molecular C3 axis for the regions 𝛽 < 54.7° and 𝛽 > 125.3°, 

giving Dmol < 0 and M = ±6 ground states; meanwhile, they project a net easy-plane anisotropy 

into the molecular xy-plane for 54.7° < 𝛽 < 125.3°, giving Dmol > 0 and a non-magnetic M = 0 

ground state. As such, one sees that the tilt angle plays a significant role in determining the total 

molecular anisotropy of the system, i.e., a tuning of this single parameter can result in entirely 

different magnetic behavior.  

At the magic angle, 𝛽 = 54.7°, the 2nd-order axial molecular anisotropy is completely 

suppressed, i.e., Dmol = 0. However, in spite of this suppression, the energy eigenvalues obtained 

via exact diagonalization of the MS Hamiltonian avoid complete convergence, as seen in Fig. 6(b). 

Since e = 0, and the C3 molecular symmetry forbids rhombic anisotropy (i.e., 𝐵-- = 0), this 

suggests the importance of higher order inter-multiplet ‘S-mixing’ effects. As noted above, such 

anisotropies are normally obscured in EPR experiments due to the dominant k = 2 contributions to 

the GSA anisotropy. However, the suppression of 𝐷�D? in the present case affords a rare 

opportunity to characterize the higher order trigonal anisotropy via EPR, thus justifying the need 

to consider the 2nd-order (of rank k = 4) perturbative expansion of Eq. (7).  

 

 
B. Second-order perturbation 

We next consider how inter-multiplet S-mixing gives rise to k = 4 ESOs in the GSA of Eq. (2). In 

order to generate the molecular ZFS parameters pertaining to Mn3, we focus on the ground S = 6 

multiplet, and consider mixing contributions from the doubly degenerate S" = 5 and triply 
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degenerate S" = 4 multiplets, which respectively lie Δ = 6J and Δ = 11J above the unperturbed 

ground state (see Fig. 5); the double prime used here refers to the excited states that mix with the 

ground spin state. Higher-lying (S" < 4) multiplets do not mix at 2nd-order of perturbation. Our 

goal here is to determine how the tilt angle 𝛽 influences the strength of the trigonal 𝑂XB' interaction. 

The 2nd order perturbation derivation addressed in Appendix A gives: 

𝐵B'(𝛽) = Q Γ-,B(𝑠)Γ-,B∗ (𝑠)𝑑l,-,'
-,-,B 3𝑑-

Δ cos𝛽 sin' 𝛽,
������

 (9) 

where the ΓS�,S projection coefficients relate the MS operators of order k1 = 2 to the GSA operators 

of order k = 4; the summation is over excited states, t"S", as seen in Eq. (A11) [see also Eq. A.19]. 

 
 
FIG. 7. Dependence of the absolute values of the GSA anisotropy parameters D, 𝐵B' and 𝐵CC on the easy-
axis tilt angle, β, associated with the local MnIII 𝑑-tensors (see Fig. 4). The vertical dashed lines refer to the 
simulations in Fig. 8, and the curves have been normalized to the maximum values of the parameters. At 
the tilt angle corresponding to the best simulation (β = 54.3, red dashed line), the usually dominant 𝐷𝑆+�- 
interaction is almost completely suppressed. Consequently, the 4th order 𝐵B'𝑂XB' interaction (2nd order in the 
perturbation of Eq. 7) makes a comparable contribution to the overall ZFS within the ground ST = 6 spin 
state, while the 𝐵CC𝑂XCC  contribution (3rd order perturbation) is about an order of magnitude smaller.  
 



 20 

Referencing the tabulated products of Wigner-3j and 6j symbols, given by the 𝑑T�T�T
S�S�S  values,34 and 

calculating the Γ-,B(𝑠) coefficients from the expressions given in Boča,33 a direct mapping can be 

made from the MS to the GSA Hamiltonian. It is important to note the inverse dependence on D 

and, therefore, J. Consequently, 𝐵B' provides a direct route to determining J, provided d and 𝛽 are 

independently known. 

Before explicitly relating the experimental GSA parameters in Eq. (2) to the MS 

parameters in Eq. (3) from the above derivations, we examine the dependence of 𝐷�D? and 𝐵B' on 

the MnIII 𝑑 tensor tilt angle 𝛽 for the three cases highlighted by dashed vertical lines in Fig. 7. For 

completeness, we also consider the contribution from the 𝐵CC𝑂XCC interaction, which varies as 

𝑑sinC(𝛽) (assuming e = 0), and is derived following the previously described steps to 3rd order in 

the perturbation.37 For the MS simulation shown in Fig. 8(a) with 𝛽 = 0°, for which all three 𝑑 

tensors are aligned with the molecular C3 axis, 𝐵B' is symmetry forbidden (as noted above), while 

𝐷�D? is negative and its magnitude is maximum (see Fig. 7). If we also neglect any local rhombicity 

(e = 0), the GSA Hamiltonian acquires a uniaxial D∞h symmetry that is rotationally invariant with 

respect to f [Fig. 8(a)]. This gives rise to the familiar easy-axis/hard-plane anisotropy that is 

characteristic of most SMMs. Tilting to the opposite extreme of 𝛽 = 90° yields the opposite result, 

with an easy-plane/hard-axis type anisotropy and a positive 𝐷�D? that is locally maximum at 

𝛽 = 90° [with 𝐷�D?(90D) = −�
�𝐷�D?(0

D)]. Note that 𝐵CC is also maximum for 𝛽 = 90°, which 

produces a weak 6-fold modulation of the anisotropy in the hard-plane. This rank-6 term is 

responsible for the D6h symmetry reflected in the simulated color map [Fig. 8(c)]. Like the 𝛽 = 0° 

case, 𝐵B' is symmetry forbidden for 𝛽 = 90° (provided e = 0). However, tilting away from these 

extremes results in the emergence of the 𝐵B'𝑂XB' interaction, which attains its maximum at 𝛽 = 60°, 
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i.e., close to the magic angle (54.7o) at which Dmol is exactly zero. This coincidence leads to a 

situation in which the simulations are extremely sensitive to 𝛽 in the vicinity of the magic angle, 

because it strongly influences the relative mixture of interactions that produce axial (D∞h 

symmetry) and trigonal (D3d symmetry) modulations of the EPR peak positions. This sensitivity 

provides tight constraints on the optimal value of 𝛽 = 54.3° [Fig. 8(b)] employed in the best MS 

model simulation (vide infra). 

 
 
FIG. 8. MS simulated color maps for the ground state resonance position for the three different easy-axis 
tilts highlighted in Fig. 7: (a) b = 0o, (b) b = 54.3o, and (c) b = 90o. Note here that the color scales differ for 
each map; the intent is to qualitatively highlight the symmetry pattern for each case (see also Fig. 3). 

 
Mapping the experimentally obtained GSA parameters onto the MS model now becomes 

a matter of choosing appropriate local anisotropy parameters d and e, then using the algebraic 

relations found for 𝐷�D?(𝛽) to constrain the tilt angle 𝛽, and the experimentally obtained value of 

𝐵B' to constrain J. Simulations obtained via exact diagonalization of the full 125 ´ 125 MS 

Hamiltonian give good agreement with the GSA model (and, hence, the experimental data) with 

local parameters: d = -3.73 cm-1 and e = -0.22 cm-1, together with 𝛽 = 54.3° and J = -6.35 cm-1. 

Although the preceding discussion considered the simple case where e = 0, the addition of a small 

rhombic anisotropy is required to improve the overall mapping between the two models. The full 

expressions that take this additional anisotropy into account are given in Eqs. (A14) and (A19). 
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The obtained single-ion anisotropy parameters, d and e (Table 1), are consistent with those 

deduced from studies of mononuclear MnIII complexes in similar Jahn-Teller distorted octahedral 

coordination environments,38 as well as those found for related trinuclear MnIII-oxo clusters.3,6,8,10 

Meanwhile, simulations of temperature-dependent magnetic susceptibility data for the present Mn3 

compound give an exchange coupling J = -7.44 cm-1, with ab initio calculations suggesting 

J = -8.12 cm-1.25 Moreover, the same ab initio calculations suggest that the tilt angle 𝛽 ∼ 60°. 

These findings are in good agreement with the present investigation. In fact, examination of the 

structure in Fig. 1 reveals that the Jahn-Teller elongated O—Mn—O bonds lie along three 

orthogonal edges of one half of a cube-like structure. Of course, the C3 axis of a perfect cube (the 

diagonal between opposite corners) is oriented exactly at the magic angle relative to its edges. 

When considering previous work on related trigonal Mn'((( molecules,8,9 we find several 

striking differences with the present example. For systems with minimal 𝑑 tensor tilting (𝛽 < 10°), 

the magnitude of 𝐵B' is substantially smaller than found here. Liu et al.8 compared examples with 

identical single-ion ZFS parameters, one with 𝛽 = 0 (Triangle 1) and another with 𝛽 = 8.5° 

(Triangle 2). In the 𝛽 = 0 case, it was shown numerically and argued on group theoretic/symmetry 

grounds that any trigonal GSA terms must be identically zero. On the other hand, for the 𝛽 = 8.5° 

case, inclusion of a small 𝐵B' was required to replicate QTM rates measured at certain avoided 

level crossings.7 This was also shown to be the case in a more recent investigation by Atkinson et 

al.,9 with 𝛽 = 6° (Triangle 3), in which a three-fold pattern of QTM rates could only be explained 

via inclusion of a 𝐵B'𝑂XB' interaction in the GSA Hamiltonian. In the present (more tilted) case, 

however, the experimentally obtained 𝐵B' parameter is larger by an order of magnitude compared 

to the previous examples, while D is smaller by an order of magnitude (see Table 1). This is 

attributed to the tilt of the 𝑑 tensor, where 𝛽 = 54.3° is just 0.4 degrees away from the zero of 
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𝐷�D?(𝛽), and only 5.7 degrees away from (or 4% below) the maximum of 𝐵'B(𝛽). Hence, the 

magnetization reversal barrier is almost completely suppressed, and effects due to S-mixing (i.e. 

QTM) are very pronounced (see below). It is therefore no surprise that the present Mn3 compound 

does not show any evidence for slow magnetization relaxation at low temperatures.25 

Similar effects due to tilting of local anisotropy tensors have been discussed in the context 

of other trigonal magnetic molecules. For example, an Fe3Cr propeller-type complex, for which 

the single-ion FeIII sites are easy-plane (positive d), has been studied extensively by Sorace et al.11  

Here, the individual hard-axes are oriented within 5o of the plane of the Fe3 triangle, thereby 

projecting an overall easy-axis (negative D) anisotropy for the coupled molecule (together with 

sizeable trigonal terms) – a situation corresponding to an energy inversion of Fig. 6. However, the 

hard-axis tilting is far from the magic angle, and the magnitude of D remains sizeable. 

 
TABLE 1. Comparison between the GSA and MS parameterizations of the present tilted Mn3 complex with 
three closely related molecules (Triangle #1,8 Triangle #2, 3,8 and Triangle #39,39). 
 

GSA Parameter Tilted Mn3 Triangle #1 Triangle #2 Triangle #3 
𝑫 (cm-1) -0.07 -0.762 -0.804 -0.602 

𝑩𝟒𝟎 (cm-1) -1 ´ 10-4 -1.52 ´ 10-5 -5.28	´ 10-5	 -2.78 ´ 10-5 

𝑩𝟒𝟑 (cm-1) -1.09 ´ 10-3 0 3.32 ´ 10-4 -1.99 ´ 10-4 

𝑩𝟔𝟑 (cm-1) 3.34 ´ 10-6 0 -- 0 

𝑩𝟔𝟔 (cm-1) 1.67 ´ 10-6 3 ´ 10-7 -- 7.97 ´ 10-7 

 
MS Parameter Tilted Mn3 Triangle #1 Triangle #2 Triangle #3 
d (cm-1) -3.73 -2.92 -2.92 -2.5 

e (cm-1) -0.22 0.626 0.626 0.43 

J (cm-1) -6.35 -6.95 -6.95 -2.15 

β (deg) 54.3 0 8.5 6.0 
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For completeness, Fig. 9 compares experimental EPR spectra with simulations (for B//C3-

axis) that have been generated using the spin-Hamiltonian parameters deduced on the basis of the 

best simulation of the color map in Fig. 3. These temperature-dependent spectra include transitions 

between excited spin projection states within the ground ST = 6 multiplet. As such, they provide a 

far more stringent test of the parameterization because the color maps in Fig. 3 consider only a 

single EPR transition from the lowest-lying M substate. The broadening and modulation of the 

lowest field (ground state) resonance in Fig. 9(a) is attributed to intermolecular interactions (the 

nearest-neighbor Mn-Mn distance is ~10 Å); these interactions are notoriously difficult to 

 
 
FIG. 9. (a) Experimental and (b) simulated 89.2 GHz EPR spectra at (q, f) = (0°, 0°) as a function of 
temperature (from 1.65 K to 100 K). The simulations were performed using the MS model and parameters 
described above. 
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simulate, requiring very significant computational resources. The effect is most pronounced at low 

temperatures due to exchange averaging at elevated temperatures. For this reason, it is only the 

ground state resonance at ~1.5 T that is significantly affected by intermolecular interactions for 

temperatures below ~15 K. Overall, the correspondence between experiment and simulations is 

highly satisfactory, both in terms of the resonance positions and spectral weight (integrated 

intensity). 

 

FIG. 10. Zero-field energies (referenced to the ground state) and spin projection (M) compositions of 
the 13 eigenstates associated with the ST = 6 ground state of the tilted Mn3 molecule. The color scale 
and vertical heights of the pillars denote the probability (c2) distributions associated with the eigenstates, 
which are highly mixed due to the off-diagonal terms in the GSA Hamiltonian (primarily 𝑂XB', 𝑂XC', 𝑂XCC) 
whose anti-commutators contain /𝑆+¨' + 𝑆+V'3 and /𝑆+¨C + 𝑆+VC3. The high symmetry of the molecule results 
in four quasi-doublets (degenerate pairs), a singlet, and two tunnel split doublets. This is the reason for 
the smaller amplitudes of the ground state pair, as they each consist of near 50:50 (c2 = 0.5) mixtures of 
the M = ±6 projections (one symmetric combination, the other antisymmetric). By contrast, the lowest 
excited quasi doublet consists of one state that is mostly M = -5 (with a small admixture of -2), and 
another state that is mostly M = +5 (with a small admixture of +2). Components that make up less than 
1% of the total composition have been omitted for clarity. For example, the ground states have 0.0196% 
contributions from M = ±3 and 0.00348% from M = 0. 
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Finally, Fig. 10 plots the zero applied field energies and compositions of the 2S + 1 = 13 

eigenstates associated with the ST = 6 ground state, deduced on the basis of the GSA Hamiltonian, 

with the parameters given in Table 1. The first obvious thing to note is the very small energy scale 

of < 3.5 cm-1 separating the (mostly) M = ±6 ground states from the highest lying eigenstate. If 

one naively associates this to a barrier against magnetization relaxation, Ueff, it is about an order 

of magnitude smaller than the effective barrier associated with non-tilted trigonal Mn3 SMMs 

(Ueff ~ 32 cm-1).3 However, it is also apparent that the eigenstates are strongly mixed in the present 

case. For example, the tunnel splitting (or QTM gap) associated with the M = ±6 ground doublet 

is 1.2 ´ 10-3 cm-1, which corresponds to a QTM rate of about 36 MHz, compared to about 400 kHz 

for the non-tilted case,7 i.e., a two orders of magnitude difference. Meanwhile, the next tunnel-

split pair has an associated gap of 0.69 cm-1 (or a tunneling rate of ~21 GHz). Though these tilting 

effects have a profound influence on the magnitude of the tunneling gaps, the strength of the 

exchange between neighboring ions is also extremely important in determining the transverse 

anisotropy. Closer inspection of the tunneling gaps provides an opportunity to test the agreement 

between the GSA and MS models. Diagonalization of Eq. (3) using the MS parameters in Table 1 

gives zero-field tunneling gaps of 7.7 ´ 10-3 cm-1 and 0.689 cm-1 within the M = ±6 and ±3 quasi-

doublets, respectively. These values are in fair agreement with those given above on the basis of 

the GSA model. The discrepancies most likely arise due to our neglect of the k = 6 terms in the 

mapping procedure described in Section V; consideration of 𝐵C' and 𝐵CC would require expanding 

Eq. (7) to 3rd order in the perturbation. Improvement in the mapping in such a case has been 

extensively demonstrated in analysis of the tunneling gaps in Fe3Cr.37 The crucial point here is that 

the large tunneling rates demonstrate that the effective barrier to magnetization relaxation is 
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essentially non-existent for this Mn3 molecule. Meanwhile, we note that large tunneling gaps have 

recently been shown to be important in the context of quantum technologies.40 

 
VI. CONCLUSIONS 

We present the results of detailed two-axis, angle-dependent high-field EPR studies of a single 

crystal of an unusual Mn'((( triangular nanomagnet displaying rigorous C3 symmetry. Unlike 

similar triangles studied in the past, the easy-axes of the individual MnIII ions in this particular 

molecule are tilted very close to the so-called ‘magic angle’ of qm = 54.7o. This combined with the 

trigonal symmetry results in a situation in which the 1st order spin-orbit anisotropy (quadratic in 

terms of spin operators, i.e., 𝑆+ ⋅ �⃖⃗� ⋅ 𝑆+) is almost completely suppressed. Consequently, the overall 

magneto-anisotropy is dominated by 2nd and higher-order trigonal spin-orbit interaction terms (4th 

and higher order in terms of spin operators). The angle-dependent EPR studies offer a powerful 

and direct means of visualizing these anisotropy terms, providing unique opportunities to study in-

depth how molecular geometry (i.e. symmetry) influences magnetic anisotropy. We employ 

theoretical irreducible tensor operator methods that improve significantly on previous numerical 

methods applied to trigonal Mn3 clusters in order to gain microscopic insights into the molecular 

anisotropy. We find that the easy-axis tilting leads to a dramatic compression of the effective 

energy barrier to magnetization reversal, thus accounting for the absence of single-molecule 

magnet behavior found in related Mn'((( systems. 
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APPENDIX: IRREDUCIBLE TENSOR OPERATOR METHODS 

In this Appendix, we derive the expressions given in Eqs. (8) and (9) using irreducible tensor 

operator (ITO) methods. Before going further, it is important to introduce some conventions for 

using ITOs as they apply to the spin Hamiltonian. Though the notation may appear convoluted at 

first sight, this transformation greatly simplifies the otherwise cumbersome algebraic steps 

necessary to compute equivalent operators.  

A general cartesian operator 𝑂X(𝑆), which is a function of spin operators 𝑆, can be expanded 

into ITOs as [34]: 

𝑂X(𝑆) = Q Q 𝑐ST𝑇XT
(S)(𝑆),

TU	VS…¨SS

 (A.1) 

 
Here, k denotes the rank of the spherical tensor, with its qth component running from –k to k. Note 

that the more commonly used Stevens operators30 representing the higher order ZFS terms in 

Eq. (2) have the indices denoting rank k and component q swapped, i.e., they are written 𝐵S
T𝑂XS

T . 

For compactness and ease of comparison with prior works, the proceeding derivations follow the 

convention used in [34] and [37] where a general tensor operator’s rank ‘k’ is in the superscript, 

while its degree ‘q’ is in the subscript, i.e., 𝑇XTS. 

When considering 𝐻;l in the expansion of the spin Hamiltonian of Eq. (7), we can rewrite 

one individual 𝑑 tensor product in the most general expansion: 

𝑆+f ∙ 𝑑fn ∙ 𝑆+n = 	 Q Q 𝑇XT
(S)∗/𝑑3𝑇XT

(S)(𝑆)
TU	VS…¨SSU^,l,-		

 (A.2) 
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with 
𝑐ST = (−1)T𝑇XVT

(S)/𝑑3 = 𝑇XT
(S)∗/𝑑3 (A.3) 

 
However, since 𝑑 is given by a traceless 3 ´ 3 symmetric tensor, we can greatly simplify the sum 

to only include ITOs of rank k = 2. This leaves only three terms in the summation originating from 

the non-zero contributions to the local 𝑑 anisotropy:41 

𝑇(-)/𝑑3 =
1
√6

¯3𝑑,, − /𝑑00 + 𝑑22 + 𝑑,,3° = ±2
3𝑑 

 
 

and, 

𝑇±-
(-)/𝑑3 =

1
2 [𝑑00 − 𝑑22 ± 𝑖

/𝑑02 + 𝑑20)	° = 𝑒 (A.4) 

 
In this representation, each spin site can be related to its neighbors by specifying Wigner Rotations 

in place of the Euler rotations, as required by the more familiar Cartesian representation. This is 

given by an expansion in terms of a linear combination of Wigner matrix elements (see appendix 

B in [41]): 

𝑇T
(S)(𝑑) = Q 𝐷;T�T

(S)(𝛼, 𝛽, 𝛾)𝑇T�
(S)(𝑑)

T�U	VS…¨S

 (A.5) 

 
from which, 𝐻;lcan be rewritten as: 

 
𝐻;l = 	Q Q 𝑇T

(S)∗/𝑑3𝑇XT
(S)(𝑠l)

TUVS…SS

+	𝑇T
(S)∗/𝑑3𝑇XT

(S)(𝑠-) + 𝑇T
(S)∗/𝑑3𝑇XT

(S)(𝑠') (A.6) 

 
where the indices 𝑠fUl,-,'	have been used to denote Wigner rotations for spin sites where 𝛼 =

0°, 120°, 240°, to preserve the C3 symmetry of the molecule. As an example, if we focus on one 

Mn site for an arbitrary tilt angle	𝛽, using the ‘zyz’ Euler rotation convention,30 we find for	𝛼 =

0, 𝛾 = 0, k = 2 and q = 0:  

 
𝑇TU^
(-) /𝑑3 = 𝐷;V-,^

(-) (0, 𝛽, 0)𝑇V-
(-)/𝑑3 + 𝐷;^,^

(-)(0, 𝛽, 0)𝑇(-)/𝑑3 +	𝐷;-,^
(-)(0, 𝛽, 0)𝑇-

(-)/𝑑3 (A.7) 
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=
𝑑
√6

(3cos-𝛽 − 1) + 𝑒±
3
2 sin

-𝛽 

 
We conveniently obtain this same expression for the Mn sites with 𝛼 = 120° and 𝛼 = 240° since 

𝐷;T�TU^
(SU-)(𝛼, 𝛽, 𝛾) is independent of 𝛼.  

Concerning projections to first order in perturbation, as briefly introduced in Eq. (5), the 

replacement theorem can be applied using the Wigner-Eckart formalism to re-express the ITOs as:  

𝑃��𝑇XT
(-)(𝑠)𝑃�� = Γ-(𝑠)𝑇XT

(-)(𝑆) (A.8) 

 
where the projection coefficient is given by a ratio of reduced matrix elements (given by Wigner 

3j symbols, and tabulated in the appendix of Waldmann and Güdel [34]), in which: 

Γ-(𝑠) =
y𝜏𝑆|{𝑇X (-)(𝑠){|𝜏𝑆}
y𝑆|{𝑇X (-){|𝑆}

 (A.9) 

 
This conveniently allows us to relate the effective GSA operators in the |𝑆𝑀⟩ basis to the local 

MS operators in the |𝜏𝑆𝑀⟩ basis that spans the full spin-dependent Hilbert space of the cluster. 

The expression for the second-order projection is a bit more cumbersome, and will only be restated 

here: 

𝑃��𝑇XT�
(S�)(𝑠l)𝑃����𝑇XT�

(S�)(𝑠-)𝑃�� = 	QΓS�S(𝑠l)ΓS�S
∗ (𝑠-)𝑑T�T�T

S�S�S

S

𝑇XT
(S)(𝑆) (A.10) 

 

where we again choose 𝑘l = 𝑘- =	2 for the MS operators (�̂�), with k restricted by 𝑞 = 𝑞l + 𝑞-. 

The 𝑑T�T�T
S�S�S  factors consist of products of 3j and 6j symbols that are once again tabulated in 

Waldmann and Güdel34 and do not need to be addressed here. The more general second-order 

projection coefficient is then given by:  

ΓS�,S(𝑠) =
y𝜏𝑆|{𝑇X (S�U-)(𝑠){|𝜏′′𝑆′′}

y𝑆|{𝑇X (S){|𝑆}
 (A.11) 
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which relates the multi-spin ‘�̂�’ operators of order 𝑘l = 2 to an effective giant spin ‘𝑆+’ operator of 

order k. 

Perturbation with ITOs 
 

From the above definitions, the perturbation to isotropic exchange can now be rewritten, somewhat 

compactly, in terms of ITOs:34 

𝐻;566 =Q(−1)TℎVT
l(S)𝑇XT

(S)(𝑆) −QQ
(−1)TℎVT

-(S)𝑇XT
(S)(𝑆)

Δ 	
S,T���

	
		T

 (A.12) 

 
In the proceeding sections we will explicitly expand the 1st and 2nd order perturbative terms in 

order to respectively obtain expressions for the 2nd and 4th order molecular (GSA) anisotropies. 

First Order in Perturbation 
 

The first order factor ℎT
l(S) in Eq. (A12) is given by the scalar product of the local 𝑑 tensors and 

the 1st order projection coefficients 

ℎT¹
l(S¹) =QΓS¹(𝑠f)𝑇T¹

(S¹)/𝑑3
ºI

 (A.13) 
 

Since most studies of SMMs are generally concerned with molecular ZFS of the form 𝐷𝑆+,-, we 

will focus on 𝑇TU^
(-) /𝑑3, which will give an expression that can specifically relate the local 

anisotropy to the 2nd order molecular GSA anisotropy. For a single site, this was derived in 

Eq. (A12). Then, for 𝐷;T�,^
(-) (0, 𝛽, 0) = 	𝐷;T�,^

(-) (120°, 𝛽, 0) = 𝐷;T�,^
(-) (240°, 𝛽, 0), as a function of tilt 

angle 𝛽, we find: 

ℎTU^
l(SU-) = 𝐷_»¼(𝛽) = 3ΓSU-(𝑠) ½

𝑑
2
(3cos-𝛽 − 1) +	

3
2 𝑒	sin

-𝛽¾ (A.14) 

 
where the projection factor described in Eq. (A9) has ΓSU-(𝑠) ≈ .0909 for s = 2 and S = 6 (see 

expressions in Table 11.9 of Boča [33]). 
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S-mixing in Second Order perturbation 
 

The second order factor ℎT
-(S) in Eq. (A12) is given by the product of local 𝑑 tensors [34]: 

ℎT
-(S) =QQQ ΓS¹S(𝑠¿)

º¹,ºÀ¿,Á

ΓSÀS
∗ (𝑠Á)

(−1)S¹VSÀ𝑐S¹SÀS
√2𝑘 + 1	���

 

× ¯𝑇(S¹)/𝑉º¹3⨂𝑇
(SÀ)/𝑉ºÀ3°T

(S)
 

((A.15) 

 
where the tensor product of two general ITOs is written as a sum over Clebsch-Gordan coefficients 

with the direct product of the individual tensor components: 

𝑇Å
(Æ) = 	 ¯𝑈(S�)⨂𝑉(S�)°Å

(Æ)
= Q⟨𝑘l𝑘-𝑞l𝑞-|𝐾𝑄⟩

T�T�

𝑈T�
(S�)𝑉T�

(S�) (A.16) 

 
in which the uppercase indices pick out the Kth and Qth components of the total U, V product. This 

permits the computation of each ESO 𝐵TS	coefficient, where the selection rules from the Clebsch-

Gordan coefficients determine which local tensor components contribute to the product, i.e., 	𝑞l +

𝑞- = 𝑄.  

As applied to Mn3, we now generate an expression for the coefficient of 𝑂XB' 

/= [𝑆+,	, 𝑆+¨' 	+ 𝑆+V']¨3 from the local d and e anisotropies in order to replicate the 3-fold behavior 

seen in Fig. 8(b). First working out the tensor product for K = 4 and Q = 3, the only non-zero terms 

contributing to the sum have 𝑞l + 𝑞- = 3. In terms of 3j symbols, for a single site, this yields: 

				𝑇'
(B) = ¯𝑇(-)/𝑑3⨂𝑇�(-)/𝑑3°'

B
 

(A.17) 
= 3(−1)' 	ÊË2 2 4

1 2 −3Ì	𝑇l
(-)/𝑑3𝑇-

�(-)/𝑑3		+ Ë2 2 4
2 1 −3Ì	𝑇-

(-)/𝑑3𝑇l
�(-)/𝑑3Í 

 
A subtle yet extremely important step requires that the tensor product be taken after applying the 

proper Wigner rotations. These rotations, which generate off-diagonal elements in the local 𝑑 

tensors, specifically give rise to the trigonal terms in the GSA Hamiltonian. For example, in the 



 33 

above expression, 𝑇l
(-)/𝑑3 only becomes nonzero after a rotation about the Euler angle 𝛽. The 

emergence of this off-diagonal term, which is required to produce a non-zero tensor product for 

𝑇'
(B), demonstrates a clear symmetry lowering of the Hamiltonian by introducing a 𝑑 tensor tilt of 

𝛽, and is solely responsible for producing the trigonal anisotropy terms in the GSA.  

Now, since 𝐷;T�,-
(-) (0, 𝛽, 0) ≠ 	𝐷;T�,-

(-) (120°, 𝛽, 0) ≠ 𝐷;T�,-
(-) (240°, 𝛽, 0), the calculation 

becomes significantly more time consuming. Fortunately, symbolic computation programs such 

as Mathematica42 make solving expressions like these much more convenient. When considering 

the sum over each spin site, the second order factor in Eq. (A15) becomes: 

ℎTU'
-(SUB) =Q

𝑐-,-,B
3

ÊΓ-,B(𝑠l)Γ-,B∗ (𝑠l)𝑇'
(B)(Mnl) + Γ-,B(𝑠-)Γ-,B∗ (𝑠-)𝑇'

(B)(Mn-)
���

+ Γ-,B(𝑠')Γ-,B∗ (𝑠')𝑇'
(B)(Mn')Í 

 

= −2QΓ-,B(𝑠)Γ-,B∗ (𝑠)𝑐-,-,B Ë
2 2 4
1 2 −3Ì ½

3
4
(2𝑑- + 𝑒-)cos𝛽sin'𝛽¾

���
 

(A.18) 

where we have simplified the expression by taking advantage of the fact that, in the present 

symmetry, the contributions to the sum over degenerate states within a given multiplet are equal, 

i.e., ∑ Γ-,B(𝑠l)Γ-,B∗ (𝑠l)	��� = ∑ Γ-,B(𝑠-)Γ-,B∗ (𝑠-)	��� = ∑ Γ-,B(𝑠')Γ-,B∗ (𝑠') 	≡ ∑ Γ-,B(𝑠)Γ-,B∗ (𝑠)������ . 

We can then directly relate this to the 4th order trigonal ESO pre-factor via Eq. (A12) as:  

 

𝐵B'(𝛽) = Q
3
2ΔΓ-,B

(𝑠)Γ-,B∗ (𝑠)𝑑l,-,'
-,-,B(2𝑑- + 𝑒-)cos𝛽sin'𝛽

������
 

 

(A.19) 

We find that this final expression is slightly different from the one derived for Fe3Cr,37 for which 

a simplifying assumption was made to drop the dependence on the Euler angle α from 𝑇l
(-)/𝑑3 and 

𝑇-
(-)/𝑑3 in the molecular frame. However, the two expressions are equivalent in the axial limit 

where the local e = 0. 
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