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Motivated by the recent experimental observation of anomalous magneto-transport properties near the Mott
quantum critical point (QCP) of pyrochlore iridates, we study the generic topological band structure near QCP
in the presence of magnetic field. We have found that the competition between different energy scales can
generate various topological semi-metal phases near QCP. Here the central role is played by the presence of a
quadratic band crossing (QBC) with four-fold degeneracy in the paramagnetic band structure. Due to the large
band degeneracy and strong spin-orbit coupling, the degenerate states at QBC can show an anisotropic Zeeman
effect as well as the conventional isotropic Zeeman effect. Through the competition between three different
magnetic energy scales including the exchange energy between Ir electrons and two Zeeman energies, various
topological semimetals can be generated near QCP. Moreover, we have shown that these three magnetic energy
scales can be controlled by modulating the magnetic multipole moment (MMM) of the cluster of spins in a
unit cell, which can couple to the intrinsic MMM of the degenerate states at QBC. We propose the general
topological band structure under magnetic field achievable near QCP, which would facilitate the experimental
discovery of novel topological semimetal states in pyrochlore iridates.

PACS numbers:

I. INTRODUCTION

Electron correlation and spin-orbit coupling are two
quintessential ingredients underlying vast emergent physi-
cal phenomena in condensed matters.1,2 In particular, when
these two energy scales are comparable to the electron band-
width, various correlated phases with novel topological prop-
erties are expected to appear in general.3–7 Pyrochlore iri-
dates with the chemical formula R2Ir2O7 (R: a rare earth
ion, see Fig. 1(a)) are a representative example of such cor-
related topological systems that can potentially host various
intriguing electronic states.1,2 In the paramagnetic metal (PM)
phase, it was theoretically predicted that these materials have a
quadratic band crossing (QBC) with doubly-degenerate hole-
like and electron-like bands touching at the Γ point.8 Recent
ARPES study on Pr2Ir2O7

9 finds electron dispersion which
conforms closely to this prediction. When a magnetic tran-
sition occurs below the temperature TN , a variety of inter-
esting electronic states possibly show up from the QBC. For
instance, an antiferromagnetic (AF) Weyl semimetal (WSM)
phase is theoretically predicted to exist between a PM and an
AF insulator (AFI) with all-in all-out (AIAO) type magnetic
ordering shown in Fig. 1(b,c).3,8,10–12

On the other hand, in reality, except the case of R=Pr where
PM phase persists down to the lowest temperature accessi-
ble, the WSM state only appears in a small window at the
boundary between PM and AFI phases [Fig. 2]. However,
by substituting R sites by the ions with larger radius or ap-
plying hydrostatic pressure, one can reduce TN systemati-
cally and approach the quantum critical point (QCP), around
which a semimetallic ground state with AF ordering may
be achievable.13 Interestingly, in systems close to the QCP
such as those with R=Nd or Pr, anomalous transport prop-
erties are observed such as anomalous Hall effects, metallic
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FIG. 1: (a) The lattice structure of pyrochlore iridates. (b) All-in all-
out (AIAO) magnetic ordering. (c) Distribution of Weyl points in the
Weyl semimetal related with AIAO ordering.

states at AIAO domain walls, magnetic field induced metal-
insulator transitions, etc.14–22 In particular, a recent study of
(Nd1−xPrx)2Ir2O7 under pressure in which TN has been sys-
tematically tuned to reach the QCP, has demonstrated unusual
magnetotransport properties near the QCP, which might be as-
sociated with topological semimetal phases emerging near the
QCP under magnetic field.13 The accumulated experimental
and theoretical results from preceding studies are summarized
in the schematic phase diagram shown in Fig. 2, implying that
applying magnetic field to the system located near the QCP
is a promising way to achieve various topological semimetals
with point or line nodes.

The main purpose of the present theoretical study is to pro-
vide a general theoretical framework to understand the mag-
netic field induced topological semimetals emerging near the
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FIG. 2: Schematic phase diagram near the quantum critical point
(QCP) in the space of Coulomb interaction U , temperature T , and
magnetic field h for given electron bandwidth. PM is a paramag-
netic metal, AFI(4/0) is an antiferromagnetic insulator with AIAO,
WSM(4/0) is Weyl semimetal with AIAO, and LSM(2/2) is a line-
node semimetal with 2-in-2-out ordering.

QCP of pyrochlore iridates. To address this issue, we start
from the PM phase with QBC and approach the QCP by in-
troducing AIAO ordering together with magnetic field. The
QBC at the Γ point can be described by the states carrying
the total angular momentum J = 3/2. Due to the large total
angular momentum J and strong spin-orbit coupling, the Zee-
man coupling shows a non-trivial feature; the Zeeman field ~H
can give rise to an unconventional anisotropic Zeeman effect
(∝ ~H · ~J3) as well as the usual isotropic Zeeman coupling
(∝ ~H · ~J). Moreover, an additional magnetic energy scale as-
sociated with the AIAO ordering exists. Since the exchange
energy associated with AIAO ordering and the two different
Zeeman energies are comparable near the QCP, the competi-
tion between them can bring about various novel topological
semimetal phases according to the low energy theory. In terms
of microscopic lattice degrees of freedom, we show that the
interplay between three different magnetic energy scales can
be compactly described in terms of magnetic multipole mo-
ments (MMM) of the cluster of four spins in a tetrahedron.
Magnetic field induced modulation of MMM of the unit cell
and its coupling to the intrinsic MMM of the degenerate states
at QBC, lie at the heart of emergent topological semimetals
near the QCP of pyrochlore iridates under magnetic field.

The paper is organized as follows. In Sec. II, we first in-
troduce the effective theory at Γ point, and describe topolog-
ical semimetals induced by AIAO ordering. Magnetic-field
induced topological semimetals are described by considering
Zeeman field as well as AIAO ordering in Sec. III. In Sec. IV,
we study the lattice model, and explain its relation with effec-
tive Hamiltonian analysis in terms of cluster magnetic multi-
pole moments (CMMM). At last, in Sec. V, we conclude.

II. QUADRATIC BAND CROSSING AND AIAO
ORDERING

The QBC of the PM state8,9,12,23 is shown in Fig. 3(a). Since
each eigenstate is doubly degenerate due to the time-reversal
and inversion symmetries, the QBC at Γ has four-fold degen-
eracy with the total angular momentum J = 3/2. The low en-
ergy physics near the QBC can be described by the so-called
Luttinger Hamiltonian24 given by

H0(~k) = ε0(~k) +

5∑
i=1

di(~k)Γi, (1)

where ε0(~k) = k2/2m and Γi is a 4×4 gamma matrix sat-
isfying the Clifford algebra {Γi,Γj} = 2δij (i, j = 1 ∼
5.). By defining ten additional Hermitian matrices as Γij =
[Γi,Γj ]/2i and the identity matrix, one can find a complete
set of sixteen Hermitian 4× 4 matrices. The detailed form of
the function d1∼5(~k) constrained by the cubic symmetry at Γ,
is shown in APPENDIX A.

When Ir AIAO ordering is developed below TN , the QBC
at Γ splits into four pairs of Weyl points (WPs) in which each
pair is aligned along either [111] or its three other symmetry-
related directions.12 Such an emerging WSM with eight WPs
can be described by adding HAIAO = −αΓ45 with α ∝
UmAIAO to Eq. (1) where U is the local Coulomb repulsion
andmAIAO represents the local magnetic moment of the AIAO
state. Since the separation between the WP pair on the [111]
axis is proportional to

√
|α|, when the α becomes bigger than

the critical value αc at which WP pairs hit the Brillouin zone
boundary and pair-annihilate, the system becomes a gapped
insulator. According to the previous theoretical study,8 such
a pair-creation and pair-annihilation processes can be com-
pleted only within one-percent variation of U/t ratio, where
t is the nearest neighbor hopping amplitude. Thus the WSM
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FIG. 3: (a) The band structure near the quadratic band crossing
(QBC). (b) The energy level splitting of J = 3/2 states at Γ point
due to isotropic and anisotropic Zeeman terms, respectively.
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FIG. 4: (a) Change of energy levels at Γ point when θ =
tan−1[β2/β1] varies, and the associated phase diagram. Here
we assume ~ = 1 and plot the energy per unit magnetic field
E/B. DWSM (LSM) denotes a double Weyl semimetal (a line-node
semimetal). (b) Distribution of point/line nodes in DWSM and LSM.

phase can occupy a very narrow region of the phase diagram,
which reflects the difficulty in approaching it in experiment.

III. TOPOLOGICAL SEMIMETALS INDUCED BY
ZEEMAN FIELD

On the other hand, when magnetic field is applied to the
semimetal with QBC, various topological semimetals can
emerge. The influence of the external Zeeman field ~H on
QBC can be described by

HB = −β1
~B · ~J − β2

~B · ~J3, (2)

where ~J = (Jx, Jy, Jz), ~J3 = (J3
x , J

3
y , J

3
z ), and ~B =

~B( ~H, ~M, ...) indicates the effective Zeeman field including
~H and the average magnetization ~M . Two constants β1 and
β2 measure the magnitude of the isotropic and anisotropic
Zeeman terms, respectively. The anisotropic Zeeman term
coupled with the cubic invariant ~J3 arises due to spin-orbit
coupling and the large total angular momentum J = 3/2.
Normally, the anisotropic Zeeman term, that has been known
as the q-term in the Luttinger Hamiltonian, is proportional to
spin-orbit coupling and makes a tiny contribution to Zeeman
splitting.25,26 However, in pyrochlore iridates, it can make a
significant contribution to the energy splitting at the Γ point

whose magnitude can even be controlled by modulating the
orientation of spins within a unit cell as explained below.

In general, the isotropic Zeeman term splits the degener-
ate eigenstates carrying different Jz , leading to equally spaced
energy levels at the Γ point as shown in Fig. 3(b). Thus in sys-
tems with β1 6= 0 and β2 = 0, Zeeman field ~H cannot make
a level crossing between the states with different Jz at the Γ
point. On the other hand, when the isotropic and anisotropic
Zeeman terms exist simultaneously, the energy ordering be-
tween states with different Jz can be rearranged depending on
the ratio β2/β1 = tan θ. Fig. 4(a) shows the evolution of en-
ergy levels at the Γ point as θ varies when ~H ‖ [001]. One can
clearly see the level crossing at several critical angles θc which
indicates topological phase transitions between different topo-
logical semimetals. As shown in Fig. 4(a), when ~H ‖ [001],
one can obtain either a double Weyl semimetal (DWSM) hav-
ing two WP with the monopole charge ±2 on the kz axis or
a line-node semimetal (LSM) having a circular nodal line on
the kz = 0 plane with two additional WP on the kz axis. On
the other hand, when ~H ‖ [111], since the residual symme-
try of the system is lower than the case with ~H ‖ [001], band
crossing at Γ can occur in a more limited situation, thus the
resulting topological phase diagram is simpler as detailed in
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FIG. 5: (a) General phase diagram under magnetic field along [001]
in the (θ, φ) plane obtained from the extended Luttinger model. Here
4P WSM indicates a WSM with four pairs of WPs whereas T1-2P
WSM (T2-2P WSM) denotes type-1 (type-2) WSM with two pairs
of WPs. The solid lines indicate the trajectory followed by the mean-
field lattice model when the spin orientation in a unit cell changes.
(b) Distribution of WPs in T1/T2-2P WSM.
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APPENDIX A.
When magnetic field is applied to real materials, both AIAO

ordering and two Zeeman terms exist simultaneously. Then
the most general low energy band structure can be captured by
the extended Luttinger modelHextended ≡ H0 +HAIAO +HB.
Since there are three competing energy scales α, β1, β2, one
can obtain the general phase diagram in the two-dimensional
(θ, φ) plane where the angular variable φ ≡ tan−1(B/α) is
introduced to measure the importance of the Zeeman term rel-
ative to the energy scale for the AIAO ordering. As shown
in Fig. 5(a), various novel topological semimetal phases can
arise by tuning θ and φ.

IV. LATTICE MODEL AND CLUSTER MAGNETIC
MULTIPOLE MOMENTS (CMMM)

To provide a microscopic picture for magnetic-field in-
duced topological semimetals in lattice systems, we study a
tight-binding Hamiltonian H = H0 + HU + HZ + Hfd,
where HU = U

∑
i ni↑ni↓ is the on-site Hubbard interaction,

HZ =
∑
i,s c
†
i,s

( ~H·~σss′ )
2 ci,s′ indicates the Zeeman coupling,

and Hfd denotes the exchange coupling between Ir and Nd
moments. ci,s (c†i,s) is the annihilation (creation) operator for
electrons carrying spin s =↑, ↓ on ith site, nis = c†i,sci,s is the
electron number opertor. Here it is assumed that each Ir ion
carries an effective spin 1/2 moment represented by the Pauli
matrix ~σ. The hopping process between Ir sites is described
by

H0 =
∑
s,s′

[
∑
〈ij〉

c†i,s(t1 + it2 ~dij · ~σss′)cj,s′

+
∑
〈〈ij〉〉

c†i,s(t
′
1 + i{t′2 ~Rij + t′3 ~Dij} · ~σss′)cj,s′ ], (3)

where t1 (t′1) denotes the spin-independent hopping ampli-
tude between nearest-neighbor (next-nearest-neighbor) sites,
and t2, t′2,3 indicate spin-dependent hopping amplitudes in-
cluding the oxygen mediated hopping amplitude toxy as well
as the direct hopping amplitudes between Ir ions.8,12 The
Hubbard interaction term is treated by a mean field theory
(HU ≈ HMF

U ) by introducing local order parameters ~mα ≡
1

2N

∑
k〈c†α,s(k)~σs,s′cα,s′(k)〉 where α = 1, 2, 3, 4 indicates

the four spins within a unit cell. For Hfd, Nd moments are
treated classically. (See APPENDIX D.)

Fig. 6(a) shows the band structure of PM obtained by solv-
ing H0. One can clearly see the presence of a QBC at the Γ
point that can be effectively described by the Luttinger Hamil-
tonian discussed before. To understand the nature of the four
degenerate states at the QBC carrying J = 3/2, we have de-
picted the relevant wave functions in Fig. 6(a). One intriguing
property of these degenerate eigenstates is that they intrinsi-
cally carry cluster magnetic multipole moments (CMMM) de-
fined below. Namely, the states with the angular momentum
Jz = ±3/2 carry cluster magnetic dipole moments whereas
the other two states with Jz = ±1/2 carry cluster magnetic
dipole and octupole moments. Due to this intrinsic CMMM,
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FIG. 6: (a) Description of the wave functions for the four degenerate
states at QBC. (b) Decomposition of a generic spin configuration of
a unit cell under H ‖ [001] into magnetic multipole components.
(c) Variation in the amplitudes of each multipolar components as the
spin structure in a unit cell is modulated from AI to 2I2O form under
H ‖ [001].

those four states can selectively couple to specific magnetic
ordering patterns of a magnetically ordered phase.

The MMM for a cluster of atoms are recently introduced
by Suzuki et al. in Ref.27. Analogous to the local multiple
moment of an atom,28 the rank-p MMM of a given cluster µ
is defined as Mµ

pq =
√

4π
2p+1

∑N
i=1 ~mi · ∇i(|Ri|pY ∗pq(θi, φi))

where q is the magnetic quantum number ranging from −p to
p, N is the number of atoms in a cluster, ~mi is the magnetic
moment vector at the i-th atom of the cluster, (Ri, θi, φi) is
the spherical coordinate of i-th atom, and Ypq is the spheri-
cal harmonics. By taking summation over all clusters in the
magnetic unit cell, the p-th order of CMMM can be obtained.

The CMMM of a tetrahedral unit cell can be analyzed fur-
ther as follows. Counting the three components of a spin sep-
arately, the twelve independent spin degrees of freedom in a
unit cell can be classified by using group theory. The resulting
symmetrized spin configuration with a fixed CMMM can be
taken as a basis to represent the general spin configuration in a
unit cell. For instance, when ~H ‖ [001], the most general con-
figuration of the four spins in a unit cell satisfying the lattice
symmetry C2z and σdT can be written as

|ψ〉[001] = aD|D〉+ aT1 |T1〉+ aA2 |A2〉, (4)

where |D〉, |T1〉, |A2〉 represent the basis states carrying clus-
ter magnetic dipole, T1-octupole, A2-octupole moments, re-
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spectively, and aD, aT1
, aA2

represent the relevant ampli-
tudes. (See Fig. 6(b).) Changing the spin orientations, aD,
aT1

, aA2
can be tuned continuously as shown in Fig. 6(c).

Now let us describe how the intrinsic CMMMs of the four
degenerate states at the QBC couple to the CMMM of a mag-
netically ordered phase. To understand the relation between
the CMMM of a lattice system and the three magnetic termsα,
β1, β2 of the extended Luttinger Hamiltonian, one can project
the effective Zeeman termHB = 1

2

∑
i,s
~Beff,i ·

[
c†i,s~σss′ci,s′

]
to the subspace spanned by the four degenerate states at QBC.
Here the local effective magnetic field ~Beff,i includes the influ-
ence of all interaction terms within the mean field theory, and
should be determined self-consistently for given ~H, U, Jfd,
and hopping parameters. By using the projection operator
P̂J =

∑
Jz
|Jz〉〈Jz| where |Jz〉 indicates of the four degener-

ate states at QBC with the angular momentum Jz ,

P̂JHBP̂J = MA2
Γ45 +

[
2

3
MD −

9

4
MT1

]
Jz +MT1

J3
z ,

(5)

for [001] field, where MA2
, MD, MT1

indicate the A2 oc-
tupole moment (or AIAO order parameter), the magnetic
dipole moment (or magnetization), the T1 octupole moments,
respectively. It is worth to note that MD and MT1

determine
the relative importance between the isotropic and anisotropic
Zeeman terms. Since the CMMMs determine the three mag-
netic terms α, β1, β2, one can expect that various topological
semimetals predicted by the extended Luttinger model can be
realized simply by changing the spin directions that controls
the CMMMs.

To demonstrate this idea, we have determined α, β1, β2 by
projecting the lattice model for various processes of chang-
ing spin orientations, and plotted the relevant trajectories in
Fig. 5(a). For instance, the red (blue) line in Fig. 5(a) de-
scribes the trajectory when the effective Zeeman field ~Beff,i
rotates the spins in a unit cell continuously from the AIAO
configuration to the collinear ferromagnetic (2-in 2-out) state.
Depending on how the spin orientation changes, the CMMM
of the unit cell and α, β1, β2 change differently, which results
in distinct trajectories and associated topological semimetals.

In real materials, the spin modulation pattern under mag-
netic field depends strongly on the microscopic parameters
determining ~Beff,i in self-consistent calculations. Fig. 7 shows
two phase diagrams in the (H,U) plane determined by self-
consistent mean field theory. Depending on whether Ir spins
are treated as an Ising spin or a Heisenberg spin, we obtain dif-
ferent phase diagrams including distinct topological semimet-
als. In both cases, however, the origin of emergent topologi-
cal semimetals can be understood based on Fig. 5(a). For in-
stance, the mean field Hamiltonian projected along the brown
(green) horizontal line in the left (right) figure in Fig. 7 gives
the brown (green) trajectory in Fig. 5(a), demonstrating the
origin of the relevant topological semimetals. This shows that
various emergent topological semimetals can be successfully
described by the QBC of the PM coupled to competing mag-
netic energy scales α, β1, β2 in the extended Luttinger model.

(a)

(b)

FIG. 7: Phase diagrams from self-consistent mean field theory when
Ir is treated as an Ising spin (a) or as a Heisenberg spin (b). The
horizontal brown (green) solid line in (a) ((b)) corresponds to the
brown (green) curve in Fig. 5(a). α, β1, and β2 of the relevant
effective Hamiltonian are calculated by using the projection matrix
in Eq. (5).

Up to now, we have considered only Nd, which is a Kramers
ion, for the description of fd-exchange coupling. How-
ever, the role of the non-Kramers ion Pr should be prop-
erly taken into account for the application of our theory to
(Nd1−xPrx)2Ir2O7 near the QCP. Due to the distinct symme-
try properties of Nd and Pr pseudo-spins, the form of fd-
exchange coupling is also quite different in two cases.29 For
instance, the in-plane components of the pseudospin opera-
tors are time-reversal invariant quadrupoles for Pr3+ whereas
they are time-reversal odd dipole-octupoles for Nd3+.30 As a
result, Pr in-plane spin components couple to Ir charge den-
sity instead of Ir spin density.31 (See APPENDIX D.) How-
ever, such a variation in the fd-exchange coupling can at most
modify the trajectory that the system follows under magnetic
field, which can be captured in the variation of α, β1, β2 in
the extended Luttinger Hamitonian. The global structure of
the phase diagram should remain invariant as summarized in
Fig. 5(a).

V. CONCLUSIONS

We have shown that magnetic field induced topological
semimetals near the QCP can be understood based on the band
structure near the Γ point. In systems located away from the
QCP, however, one need to consider accidental band cross-
ings away from the Γ point, which changes the total number
of WPs. For instance, the influence of band crossings at the L
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point, is shown in APPENDIX B.
Since the presence of QBC near the Fermi level is the key

ingredient for the field induced topological semimetals sum-
marized in Fig. 5(a), the same idea can be applied to a broad
class of materials having a similar low energy band struc-
ture, such as HgTe32 or GdPtBi.23 However, it is worth not-
ing that the non-coplanar magnetic structure of pyrochlore iri-
dates plays a critical role to enlarge the anisotropic Zeeman
term in the effective Hamiltonian because it is proportional to
the cluster magnetic octupole moment as shown in Eq. (5).
Since HgTe is a paramagnet and GdPtBi is a collinear antifer-
romagnet, the conventional linear Zeeman term should domi-
nate over the Luttinger q-term in both materials, and thus the
accessible topological semimetal phases are expected to be
more limited.

Since the Pr doping necessarily introduces at least weak
disorder effect in the system, although the quality of the py-
rochlore iridate samples synthesized recently is reasonably
high, we discuss about the influence of disorder on the phase
diagram in Fig. 5(a). Let us note that because the applied mag-
netic field lowers the crystalline symmetry, all the topological
semimetals shown in Fig. 5(a) develop small electron or hole
pockets with the nodal points or lines located away from the
Fermi level. As it is well known in conventional metals, the
weak disorder is an irrelevant perturbation, and thus its influ-
ence is negligible. Even if the Weyl points are accidentally
located at the Fermi level, weak disorder is still marginally ir-
relevant according to the recent renormalization group analy-
sis.35–38 Although the disorder effect in a nodal line semimetal
is more subtle,39 since the gap-closing points of a nodal line
generally do not appear simultaneously at the Fermi level and
additional small Fermi surfaces from Weyl points are present,
we expect that the weak disorder is still irrelevant in the NLS
phase as well. Therefore we believe that the physics we have
proposed remains valid even in the presence of weak disorder.

We conclude with discussing magnetic fluctuation effects
near the QCP.33,34 Poor screening of Coulomb interaction in
the semimetal with QBC is known to induce non-Fermi liq-
uid behavior and unusual magnetic quantum criticality asso-
ciated with AIAO ordering. In the presence of magnetic field,
however, broken cubic lattice symmetry allows the system to
develop electron or hole pockets near Fermi energy EF . In
fact, all the topological semimetals shown in Fig. 5(a) pos-
sess Fermi surface with nodal points or lines located near EF .
In this case, the magnetic transition of AIAO ordering is de-
scribed by the conventional Hertz-Millis theory coupled to
fermions with Fermi surface. To examine the magnetic field
induced crossover from non-Fermi liquid physics to conven-
tional Hertz-Millis type behavior and the influence of the bulk
topological property on magnetic quantum criticality would
be an interesting topic for future study.
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APPENDIX A. EFFECTIVE THEORY AT Γ POINT

1. Symmetry of Pyrochlore Iridates

Pyrochlore iridate R2Ir2O7 (R-227) comprises two inter-
twined pyrochlore lattices of R (rare-earth) and Ir ions. An
octahedron with oxygen ions surrounds each Ir ions. Each
pyrochlore lattice is composed of linked tetrahedra, in which
two adjacent tetrahedra are inversion-symmetric about the
linked point. Fig. 1(a) shows the structure of pyrochlore iri-
dates. A tetrahedron is the unit cell of pyrochlore lattice. The
structure of pyrochlore iridates is depicted in Fig. 1(a),

The point group of pyrochlore iridates is Td (tetrahedron),
which contains 5 equivalent classes: identity (I), 3-fold rota-
tions (C3), twofold rotations (C2), diagonal mirrors (σd), π/2
rotations followed by mirrors (S4). Including spin-orbit cou-
pling (SOC) in the system, we should utilize Td double group
in the argument. Td double group has 8 equivalent classes,
including identity (̄I), 3-fold rotations(C̄3), and π/2 rotations
followed by mirrors(S̄4) after 2π-rotation. Accordingly, the
number of Td double group representations is 8. Moreover,
P ≡ {P |T1/4,1/4,1/4} (space inversion and half-translation),
T (time-reversal), and Tr (FCC lattice translation) symme-
tries are preserved. The space group of pyrochlore iridates is
fd3̄m. Since we argue in momentum space, P ≡ P regardless
of eigenvalues.

2. Luttinger Hamiltonian

We begin with quadratic band crossing in the paramagnetic
semimetal phase of Pr-227.9 Since the magnetic ordering si-
multaneously occurs with metal-insulator transition, we infer
that magnetic ordering is the crucial source of band manip-
ulation. Thus, we can assume, in general, quadratic band
crossing appears for the paramagnetic semimetal phase of py-
rochlore iridates.

With T and P symmetry in the system, one needs at least
4×4 Hermitian matrices by Kramers degeneracy of each band.
According to group theory, we should use 4 × 4 Hermitian
matrices, since the largest dimension among the irreducible
representations (irreps) of Td double group is 4 (Γ8 represen-
tation).

We can bulid effective Hamiltonian by gathering the anti-
commuting matrices since such Hamiltonian gives only two
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distinct energy bands. The number of basis of the space of
4 × 4 Hermitian matrices is 16, but only 5 of them are anti-
commuting. Therefore, the effective Hamiltonian of quadratic
band crossing is

H0(~k) = ε0(~k) +

5∑
i=1

di(~k)Γi (S1)

where ε0(~k) = k2/2m, and Γi are 5 anti-commuting 4 ×
4 matrices, {Γi,Γj} = 2δij . The algebra is called SO(5)
Clifford algebra. Explicitly,

Γ1 =
1√
3
{Jy, Jz} = τzσy, Γ2 =

1√
3
{Jz, Jx} = τzσx

Γ3 =
1√
3
{Jx, Jy} = τy,Γ4 =

1√
3

(J2
x − J2

y ) = τx,

Γ5 =J2
z −

5

4
= τzσz, (S2)

where τi, σi are Pauli matrices, and Ji are spin-3/2 matrices.
Also, the coefficients are defined as

d1 =−
√

3akykz, d2 = −
√

3akzkx, d3 = −
√

3akxky,

d4 =−
√

3

2
b(k2

x − k2
y), d5 = −1

2
b(2k2

z − k2
x − k2

y), (S3)

where a, b are arbitrary constants.
The Hamiltonian is called Luttinger Hamiltonian.24 Since

we are only interested in the band crossings, we assume
particle-hole symmetry and isotropy, for convenience. That is,
we ignored the term ε0(~k) and let the coefficient a = b = 1,
Furthermore, we concentrate on the band crossing between
two middle bands, since we will assume the half-filling in the
lattice model.

3. AIAO order parameter

As neutron scattering experiment turned out, rare-earth or
Ir moments in pyrochlore iridates form all-in-all-out (AIAO)
order,11 in which every magnetic moment points either to or
from the center of the tetrahedron (Fig. 1(b)). Accordingly,
we should primarily include AIAO order parameter in the the-
ory. A pyrochlore lattice with AIAO order breaks T , σd, and
S4 symmetry, but preserves the combinations, σdT and S4T .

AIAO order parameter transforms as the Γ2 representation
of Td double group. Hence, we should add

HAIAO = −αΓ45, (S4)

where Γab = [Γa,Γb]/2i, and α is AIAO order parameter.
In presence of AIAO order only, the effective Hamiltonian

is

Heff,1 = H0 +HAIAO. (S5)

The eigenenergy is

Eη,ζ = η

√
k4 + α2 + 2αζ

√
d2

1 + d2
2 + d2

3 (S6)

where η, ζ = ±1. (η, ζ |α|α ) = (+1,−1) and (−1,−1)

cross at eight Weyl points, ~k =
√
|α|/3 (±1,±1,±1). Weyl

points stick on 3-fold rotation invariant([H,C3] = 0) axes,
[111], [11̄1̄], [1̄11̄], and [1̄1̄1], for any α 6= 0. According to the
condition C3

3 = −1, 3-fold rotation operator can have three
distinct eigenvalues, e±iπ/3 and −1, and two crossing bands
have different eigenvalues among them. For example, for the
band crossing along [111] direction, the eigenvalues of cross-
ing bands are e−iπ/3 and −1, respectively.

4. Effective field

Before arguing the topological phases under effective field,
we must note the remaining symmetries for each direction of
field.

If magnetic field is applied in [001] direction without any
magnetic order in the pyrochlore iridates, the symmetry op-
erations are identity I , twofold rotation C2z , twofold rota-
tion followed by time reversal C2xT,C2yT , and the mirror
symmetry about the plane including [001] followed by time-
reversal 2σd,001T , π/2 rotation followed by the mirror S4z ,
and inversion (P ). A combined symmetry, kz = 0 plane mir-
rorMz = C2zP also exist.Mz acts as mirror symmetry only
in momentum space, since P is inversion with half-translation
in real space. If we apply [001] direction field with AIAO or-
der of magnetic moment, there are only I , C2z , 2σd,001T , P ,
andMz .

If magnetic field is applied in [111] direction without any
magnetic order in the pyrochlore iridates, the symmetry oper-
ations are identity I , 3-fold rotation around [111] line C3,111,
mirrors through the plane including [111] followed by time-
reversal 3σd,111T , and inversion P . If we apply [111] di-
rection field with AIAO order of magnetic moment, still I ,
C3,111, 3σd,111T , and P are preserved.

The magnetic field transforms as Γ4 representation of Td
double group, so the following terms are allowed.

HB =− β1
~B · ~J1 − β2

~B · ~J3, (S7)

where ~B( ~H, ~M, ...) is the effective magnetic field, which is
the function of magnetic field ~H , and magnetization ~M , and
other order parameters which transforms as same as magnetic
field and magnetization.

Heff,2 = H0 +HB . (S8)

By diagonalizing Heff,2, we can observe topological phases
when AIAO order parameter is trivial.

Although Heff,2 is too complicated to obtain the energy
spectrum in an analytic way, we can acquire the energy spec-
trum along high-symmetry lines and on the mirror planes. Let
us consider [001] effective field first. Then, Eq. S7 becomes

HB,001 = −B(cos θJz + sin θJ3
z ), (S9)

where β1 = cos θ, β2 = sin θ. θ is the variable that controls
the relative magnitude of Zeeman and Luttinger q-term. Since
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there isC2z andMz = C2zP symmetry, we investigate along
kz-axis and kz = 0 plane.

Along kz-axis, the Hamiltonian becomes

H001 = d5(kz)Γ5 +HB,001. (S10)

because d1,2,3,4 = 0 when kx = ky = 0. Since the
Hamiltonian is already diagonalized on the basis of Jz =
±3/2,±1/2, the energy spectrum is just

E3/2 = k2
z −B(

3

2
cos θ +

27

8
sin θ)

E−3/2 = k2
z +B(

3

2
cos θ +

27

8
sin θ)

E1/2 = −k2
z −B(

1

2
cos θ +

1

8
sin θ)

E−1/2 = −k2
z +B(

1

2
cos θ +

1

8
sin θ). (S11)

According to the energy spectrum at Γ, the band crossings of
two middle bands will change as varying θ.

Defining a ≡ 3
2 cos θ + 27

8 sin θ and b ≡ 1
2 cos θ + 1

8 sin θ,
we can divide into 4 cases, where a and b is either positive or
negative, respectively. Note that µi are Pauli matrices, B is
positive, and θ ranges from 0 to 2π.

1. a > 0, b > 0

If θ < π−arctan 4 = θb1 or θ > 2π−arctan 4
9 = θb4,

then a > 0, b > 0. E3/2 and E−1/2 are two middle
bands, and cross at two points. Concentrating on two
crossing bands, we induce

H1,2×2 =
−a+ b

2
µ0 +

−a− b
2

µz + d3(~k)µy

+ d4(~k)µx + d5(~k)µz. (S12)

A pair of double Weyl points emerge according to the
d-wave nature of d3 and d4.

2. a < 0, b < 0

If π−arctan 4
9 = θb2 < θ < 2π−arctan 4 = θb3, then

a < 0, b < 0. E−3/2 and E1/2 are two middle bands,
and cross at two points. The two-band projected theory
is

H2,2×2 =
a− b

2
µ0 +

−a− b
2

µz + d3(~k)µy

+ d4(~k)µx − d5(~k)µz. (S13)

For the same reason as the first case, a couple of double
Weyl points appear.

3. a > 0, b < 0

When θb1 < θ < θb2, we have a > 0, b < 0. E3/2 and
E1/2 are two middle bands, and cross at two points.
Two crossing bands are written as

H3,2×2 =
−a− b

2
µ0 +

−a+ b

2
µz + d1(~k)µy

+ d2(~k)µx + d5(~k)µz. (S14)

In this case, d1 and d2 have p-wave nature, so a pair of
single Weyl points emerge.

4. a < 0, b > 0

If θb3 < θ < θb4, we have a < 0, b > 0. E−3/2 and
E−1/2 are two middle bands, and cross at two points.
Projecting on two crossing bands, we have

H4,2×2 =
a+ b

2
µ0 +

−a+ b

2
µz − d1(~k)µy

− d2(~k)µx − d5(~k)µz. (S15)

Likewise, there are a couple of single Weyl points.

To sum up, along kz-axis, θ determines the emergence of ei-
ther a pair of double Weyl or single Weyl points. All of them
stick at kz-axis by twofold rotation symmetryC2z , whose pos-
sible eigenvalues are ±i. The eigenvalues of twofold rotation
operator of crossing bands are equal for double Weyl, but op-
posite for single Weyl points. These points are topologically
protected− even though twofold rotation symmetry is broken,
Weyl points are not annihilated immediately.

Meanwhile, on kz = 0 plane, Hamiltonian becomes

Hkz=0(~k) =d3(~k)Γ3 + d4(~k)Γ4 + d5(~k)Γ5

+HB,001, (S16)

where ~k = (kx, ky, 0). The plane is invariant un-
der Mz = C2zP ; that is, M†zHkz=0(kx, ky, 0)Mz =
Hkz=0(−kx,−ky, 0) = Hkz=0(kx, ky, 0). Diagonalizing the
matrix, then we get the energy spectrum

Eη,ζ =η

√
d2

3 + d2
4 + [d5 − ζB(cos θ +

7

4
sin θ)]2

− ζB(
1

2
cos θ +

13

8
sin θ), (S17)

where η, ζ = ±1. −iζ is an eigenvalue of Mz . In order to
detect band crossings, let us define c ≡ ( 1

2 cos θ + 13
8 sin θ)

and d ≡ | cos θ+ 7
4 sin θ|. Since B and d are positive-definite,

we divide the case according to the sign of c.
To observe crossing points, we should consider two aspects,
Mz eigenvalue of each band and energy level at Γ. Two cross-
ing bands should have different eigenvalues ofMz , either −i
or +i. In addition, the lowest/highest part of the crossing band
which appears at Γ should be in the negative/positive energy
level, since energy increases/decreases monotonically when
departing from Γ.

1. When c > 0, there are the crossings between E1,1 and
E−1,−1 emerge only if c−d > 0, where∓(c−d) is the
Γ point energy of each band. Mz eigenvalue of E1,1

and E−1,−1 is −i and +i, respectively. Surprisingly,
the range of θ satisfying c − d > 0 is θb1 < θ < θb2,
which is the range of a > 0, b < 0.

2. If c < 0, there are the crossings between E1,−1 and
E−1,1 when c+d < 0, where±(c+d) is the Γ point en-
ergy of each band. Likewise,Mz eigenvalue of E1,−1

and E−1,1 is +i and −i, respectively. The range of θ
satisfying c+ d < 0 is θb3 < θ < θb4, which is consis-
tent with the range of a < 0, b > 0.
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FIG. S1: The role of AIAO order parameter, Zeeman term, and Lut-
tinger q-term in quadratic band crossing. Only with AIAO or Zee-
man term, we find no additional level crossing between 4 degenerate
eigenstates at Γ point. However, with both Zeeman and Luttinger
q-term, additional level crossing can occur.

We infer that the crossings on kz = 0 plane coexist with a
pair of single Weyl points on kz-axis, and are protected by
Mz symmetry.
Mz symmetry makes a line node form crossing on kz = 0

plane. For example, for c > 0 case, the crossing occurs when

k2
x + k2

y = 2

√
c2(4c− d)(c− d))

d2 − 4c2
(S18)

This is nothing but a circle. The term inside the square root
can only be positive only if c − d > 0. With a similar argu-
ment, we also have a line node for c < 0 case.

In short, with [001] effective field, we observe two available
crossings: i) A pair of double Weyl points along the kz-axis
(Double Weyl semimetal, DWSM), ii) A pair of single Weyl
points along kz-axis with a line node on kz = 0 plane (Line
node semimetal, LSM). Crossing points at kz-axis is topologi-
cally protected, while a line node on kz = 0 plane is protected
byMz symmetry. With only Zeeman term, we find no addi-
tional level crossing between 4 degenerate eigenstates, while
in the presence of Zeeman and Luttinger q-term, additional
level crossing can occur. (See in Fig. 3 and S1)

Next, with [111] effective field, the Hamiltonian is

HB,111 =− B√
3

[cos θ(Jx + Jy + Jz)

+ sin θ(J3
x + J3

y + J3
z )]. (S19)

Even on the high-symmetry line [111], notwithstanding, it is
too complicated to acquire the energy spectrum analytically.
The Hamiltonian cannot be diagonalized under the basis that
J111 = ± 3

2 ,±
1
2 , since (Jx+Jy +Jz) and (J3

x +J3
y +J3

z ) are
not commute. In spite of the complexity, we can still investi-
gate Γ point energy spectrum to acquire the nature of crossing

FIG. S2: The energy spectrum at Γ point as a function of θ =
tan−1 β2/β1 is drawn for [111] field. We suppose the angular mo-
mentum unit to be 1, and apply the unit effective Zeeman field like in
Fig. 4. The Hamiltonian is diagonalizable withC3,111 eigenstates in-
stead of J[111] eigenstates. As the top and bottom energy level share
C3,111 eigenvalue, they cannot cross as θ changes, unlike [001] field.

points between two middle bands on [111] line, where 3-fold
rotational symmetry is preserved.

In Fig. S2, four energy levels at Γ point has been drawn
against θ. At any θ, we can label the energy level at Γ with
eigenvalues of C3,111 = e

i 2π
3
√

3
(Sx+Sy+Sz), 3-fold rotation

around [111] line. Comparing C3,111 basis with the J[111]

eigenstates, we confirm that J[111] = ±1/2 corresponds to
two middle energy levels for every θ, and the other two en-
ergy levels are the linear combination of J[111] = ±3/2. From
C3

3,111 = −1, we observe that J[111] = ±1/2 have the eigen-
value of e∓iπ/3, and J[111] = ±3/2 states have eigenvalue
−1. Since the number of energy band is larger than the num-
ber of possible eigenvalues of C3,111, it is natural to have two
energy levels whose eigenvalues of C3,111 are identical. Fur-
thermore, since J[111] = ±3/2 have the same eigenvalue of
C3,111, the hybridization of J[111] = ±3/2 is inevitable.

We label the energy band as E−1,top, E−1,bot, E±1/2,
whose energy level at Γ is in Fig. S2. We consider 0 ≤
θ < π range primarily, since π ≤ θ < 2π will be simi-
lar. The band crossing occurs between E−1,top and E1/2 for
θ < π − arctan 4

13 ∼ 2.84309 = θc2, and between E−1,top

and E−1/2 otherwise. Meanwhile, E−1,top band changes its
component from J[111] = −3/2 to 3/2, when θ varies from 0
to π. Especially, J[111] = ±3/2 states are significantly mixed
near θc1 = π − 1

2 arctan
(

184
139

)
∼ 2.67968. The band cross-

ings between E−1,top and E1/2 are double Weyl nodes only
if θ = 0, since J[111] = ±3/2 becomes the eigenstates of
Hamiltonian. Otherwise, each double Weyl node is broken
into 4 single Weyl nodes. According to the conservation of
topological charge, one of 4 single Weyl node has the oppo-
site topological charge of the rest of single Weyl nodes.

To sum up, band crossings along [111] direction are double
Weyl points at θ = 0 where J[111] = − 3

2 ,
1
2 states cross, and

immediately breaks into single Weyl points as θ increases be-
cause of the hybridization of J[111] = ±3/2 states. In fact,
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observing crossing points numerically, one can locate 4 pairs
of single Weyl points including a pair on [111] axis. Similarly,
band crossings become double Weyl points at θ = π, because
J[111] = 3

2 ,−
1
2 cross.

So far, we suggest a various topological phases of py-
rochlore iridates only under effective field, by virtue of the
interplay between Zeeman and Luttinger q-term. For [001]
direction, Double Weyl semimetal (DWSM) and a line-node
semimetal (LSM) emerge. For [111] direction, DWSM and
4-pair Weyl semimetal (4P WSM) appear.

5. AIAO and effective field

In this section, we take both AIAO order parameter and ef-
fective field into account simultaneously.

Given large AIAO order parameter and weak effective field
strength, we draw trajectories of the crossing points through
the perturbation theory near each Weyl points. In addition,
we investigate the emergence of crossing points between two
middle bands by the perturbation theory near Γ, and establish
the phase diagram with two variables: θ, controling the ratio
between Zeeman and Luttinger q-term, φ, controling the ra-
tio between AIAO order parameter and effective field strength
(tanφ = B/α).

1. [001] direction

Let us begin from [001] direction. There are 8 Weyl points
if AIAO order exist, and all of them stick on 3-fold rotation
axis. Since [001] magnetic field breaks all of 3-fold rotation
symmetries, every Weyl points will move away from the rota-
tion axes. Given the mirror symmetry 2σd,001 and the topolog-
ical nature, Weyl points will travel on the mirror plane whose
normal vector is either [110] or [11̄0]. If Weyl points travel out
of the plane, each Weyl nodes should divide into two by mir-
ror symmetry, then Nielsen-Ninomiya Theorem is violated.

According to the symmetries, we can divide 8 Weyl
fermions into 2 classes: Class 1, 4 Weyl points included in
the mirror plane with [11̄0] normal vector, and Class 2, other
4 Weyl points included in the mirror plane with [110] normal
vectors.

If we choose one of Class 1 Weyl points at ~kC1,001 =√
α
3 (1, 1, 1), the Hamiltonian near the point ~k = ~kC1,001 + ~q

becomes

H001
C1 = H001

0,C1 +H001
mom,C1, (S20)

where

H001
0,C1 =− α√

3
(Γ1 + Γ2 + Γ3)− αΓ45. (S21)

H001
mom,C1 =−

√
α[(qy + qz)Γ1 + (qz + qx)Γ2

+ (qx + qy)Γ3 + (qx − qy)Γ4

+
1√
3

(2qz − qx − qy)Γ5], (S22)

up to the first order of ~q = (qx, qy, qz). In addition, we apply
the second-order degenerate perturbation theory on magnetic
field Hamiltonian (Eq. S9). We denote γ1 = B cos θ and
γ2 = B sin θ. Concentrating on two crossing bands, we obtain
the following effective model.

H001
proj,C1 = A0σ0 +A1σx +A2σy +A3σz, (S23)

where

A0 =

√
3

6
γ1 +

13
√

3

24
γ2

A1 =−
√
α

6
(−(2−

√
3)qx − (2 +

√
3)qy − 2qz)−

γ2
1

4
√

2α

− 9γ2
2

64
√

2α

A2 =−
√
α

6
((2 +

√
3)qx + (2−

√
3)qy + 2qz) +

γ2
1

4
√

2α

+
9γ2

2

64
√

2α

A3 =

√
α

3
(qx + qy − 2qz) +

√
3γ1

3
+

7
√

3γ2

120
.

Weyl points will exist when A1 = A2 = A3 = 0. The solu-
tions are

qx = qy =
−16α(4γ1 + 7γ2) +

√
3(16γ2

1 + 9γ2
2)

384α3/2
,

qz =
32α(4γ1 + 7γ2) +

√
3(16γ2

1 + 9γ2
2)

384α3/2
. (S24)

The rotation symmetryC2z and inversion P determine the tra-
jectory of other 3 Class 1 Weyl points.

Meanwhile, at one of Class 2 Weyl points ~kC2,001 =√
α
3 (−1, 1, 1), the Hamiltonian at ~k = ~kC2,001 + ~q is

H001
C2 = H001

0,C2 +H001
mom,C2. (S25)

where

H001
0,C2 =

α√
3

[−Γ1 + Γ2 + Γ3]− αΓ45 (S26)

H001
mom,C2 =−

√
α[(qy + qz)Γ1 + (qx − qz)Γ2

+ (qx − qy)Γ3 − (qx + qy)Γ4

+
1√
3

(2qz + qx − qy)Γ5], (S27)

up to the first order of ~q. By the same procedure as Class 1,
we obtain the following Hamiltonian.

H001
proj,C2 = B0σ0 +B1σx +B2σy +B3σ3, (S28)
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FIG. S3: (a) Under [001] magnetic field, the trajectories of Class 1
Weyl points on the mirror [11̄0] plane, and (b) Class 2 Weyl points
are drawn on the mirror [110] plane with colored lines. (γ1 = γ2).
The black solid line is a virtual boundary of Brillouin Zone to present
the trajectories of Weyl points in an obvious way.

where

B0 =−
√

3γ1

6
− 13

√
3γ2

24

B1 =−
√
α

6
(−(2 +

√
3)qx + (2−

√
3)qy + 2qz)

+ (
γ2

1

α

1

4
√

2
+
γ2

2

α

9

64
√

2
)

B2 =−
√
α

6
(−(2−

√
3)qx + (2 +

√
3)qy + 2qz)

+ (
γ2

1

α

1

4
√

2
+
γ2

2

α

9

64
√

2
)

B3 =−
√
α

3
(qx − qy + 2qz)− (γ1

√
3

3
+ γ2

7
√

3

12
).

Therefore, Weyl points are at

qx = − qy = −16α(4γ1 + 7γ2) +
√

3(16γ2
1 + 9γ2

2)

384α3/2
,

qz =
−32α(4γ1 + 7γ2) +

√
3(16γ2

1 + 9γ2
2)

384a3/2
. (S29)

Other 3 Class 2 Weyl points are determined by 3-fold rotation
and inversion symmetry. The result implies that Weyl points
can only move on the mirror plane [11̄0] or [110], and the di-
rection of trajectory of each Class is distinct. The trajectories
are drawn in Fig. S3.

From now on, we introduce two variables θ and φ. The ef-
fective theory at Γ point with AIAO order and [001] magnetic
field,

HΓ =HAIAO +HB,001

=− α(Γ45 + tanφ cos θJz + tanφ sin θJ3
z ), (S30)

We observe crossing points through perturbation near Γ point
and projection onto two bands. To complement the argument,
we use numerical method to observe crossing points through-
out k-space. We introduce a pedagogical scheme to observe
crossing points.

If we let γ = tanφ and θ = 2π
3 , then γ is the only variable.

The energy eigenvalues at Γ are

E1
± =

1

16
((4− 13

√
3)γ ± 2

√
64 + (163− 53

√
3)γ2),

E2
± =

1

16
((13
√

3− 4)γ ± 2

√
64 + (163− 53

√
3)γ2).

Jz = ±3/2,±1/2 are not eigenstates of this Hamiltonian
anymore. Since E1

+ and E2
− are degenerate when γ∗ ≈

1.8019, the energy level sequence changes from E1
− < E1

+ <
E2
− < E2

+ to E1
− < E2

− < E1
+ < E2

+ as γ increases. In fact,
the sequence exchange between E1

+ and E2
− at γ∗ cause the

change of the nature of crossing points of two middle bands.
We consider the Luttinger Hamiltonian (Eq. 1) as a pertur-

bation to describe the crossing near Γ. Then, we project the
perturbation Hamiltonian onto any a pair of bands. We can
establish 6 possible choices, and observe whether the bands
cross or not. Here, we denote E1(~k) to be E1

−, E2(~k) to be
E2
−, E3(~k) to be E1

+, E4(~k) to be E2
+, at Γ point. Only four

choices have crossing points− E1 & E2, E1 & E3, E2 & E4,
E3 & E4, and other choices are gapped.

The projected Hamiltonian has a form like

Hproj,Γ = G0σ0 +G1σ1 +G2σ2 +G3σ3, (S31)

and crossing points are at the solution of G1 = G2 = G3 =
0. For example, for E1 and E2, one may obtain a system of
equations

(i) kxkz = 0

(ii) kykz = 0

(iii) 128
√

3kxky + γ[8(−4 + 7
√

3)(k2
x + k2

y − 2k2
z)

+ (4− 13
√

3)η1] = 0,

where η1 =
√

64 + (163− 56
√

3)γ2. The solutions are

(i) kx = ±

√
257

1048
+

3
√

3

131
η

1/2
1 , ky = 0, kz = 0

(ii) ky = ±

√
257

1048
+

3
√

3

131
η

1/2
1 , kx = 0, kz = 0.

(iii) 128
√

3kxky + γ[8(−4 + 7
√

3)(k2
x + k2

y)]

= γ(−4 + 13
√

3)η1.

The solution (i) and (ii) are, in fact, consistent with the kx and
ky intersection of (iii), which forms a line node on kz = 0
plane. The line node changes its shape as varying γ − it is
hyperbolic if γ < 1.7055, a line if γ = 1.7055, and an ellipse
if γ > 1.7055.

One can obtain the solutions for other choices with the same
way. To sum up, we can classify the solutions into 5 groups.

1. Crossing between E1 and E2, at energy E∗ = − 1
8η1,

whose form is a line node on kz = 0 plane; the line node
changes from a hyperbola to a line and to an ellipse as
γ increases.
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FIG. S4: (a) Energy spectrums at Γ point is drawn by changing γ.
(b) The crossing energy is drawn by changing γ. We assume the an-
gular momentum unit to be 1, and apply the unit effective Zeeman
field. (c) A schematic diagram of 5 classes of crossings is shown
against γ. Each solution class can exist in the blue and gray-shaded
regions. The meaning of blue-shaded regions is the crossing between
two middle bands. For both figures, the phase diagrams are repre-
sented together.

2. Crossing between E1 and E3, at energy E∗∗ = − 1
16η2,

whose form is 2 pairs of Weyl points on [11̄0] plane,
existing only for γ < 0.5685.

3. Crossing between E2 and E4, at energy E∗∗∗ = 1
16η2,

whose form is 2 pairs of Weyl points on [110] plane,
existing for every γ.

4. Crossing between E3 and E4, at energy E∗∗∗∗ = 1
8η1,

whose form is a hyperbola on kz = 0 plane, only exist-
ing for γ < 1.7055.

5. Crossing between E3 and E4, at energy E∗∗∗∗ = 1
8η1,

whose form is a pair of Weyl points at kz axis, existing
for every γ.

where η2 = (13
√

3− 4)γ.
Although there are various crossings, we concentrate on

the crossings between two middle bands repeatedly. Accord-
ingly, we construct a phase diagram by such crossings. In Fig.
S4, 4-pair Weyl semimetal (4P WSM), Type-1 2-pair Weyl
semimetal (T1-2P WSM), and a line-node semimetal (LSM)

emerge. T1-2P WSM denotes the phase in which, Group 2
Weyl points in [11̄0] plane are annihilated while Group 3 Weyl
points in [110] plane remain. Remarkably, the phase transition
from 4P WSM to 2P WSM is attributed to the annihilation of
Weyl points, but the transition from 2P WSM to LSM is come
from the energy level sequence exchange between crossing
points.

Applying the approach into various θ and γ = tanφ, we
acquire a 2D phase diagram in Fig. 6. In the phase dia-
gram, in addition to 4P WSM, T1-2P WSM, and LSM, Type-
2 2-pair Weyl semimetal(T2-2P WSM) and Double Weyl
semimetal(DWSM) emerge. T2-2P WSM is the phase in
which Group 2 points remain while Group 3 points van-
ish. The phase transition from 2P WSM to DWSM emerges
from merging a pair of Weyl points with the same topological
charge at kz-axis.

In summary, the result implies that diverse topological
phases can arise by changing θ and φ, and which phase transi-
tion occurs depends heavily on the interplay between Zeeman
and Luttinger q-term. We turn out that for a certain range of θ
(θb1 < θ < θb2, θb3 < θ < θb4), LSM appears, while DWSM
emerges for the remaining range. For DWSM and LSM, not
only are the shape and positions of crossings different, but also
the way of phase transition is disparate. The phase transition
from 2P WSM to DWSM occurs by the combination of Weyl
points at high-symmetry line. while the transition from 2P
WSM to LSM is from the exchange of energy level sequence
at Γ point changes two middle bands.

FIG. S5: Under [111] effective field, the trajectories of Weyl points
are drawn in colored lines when Zeeman and Luttinger q-term are
equally contributed (β1 = β2). Class 1 Weyl point in a pink line is
never deviated from [111] axis, while Class 2 Weyl point in a blue
line moves away from the symmetry line, but still remains on the
mirror plane. There is no zone boundary in this model, yet it is drawn
in order to visualize the Weyl points effectively.
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2. [111] direction

Under [111] direction field, we begin to study the trajecto-
ries of 8 Weyl points under large AIAO order parameter and
small magnetic field. Since 3-fold rotation around [111] line
C3,111 is still preserved, 8 Weyl points will be divided into
2 classes again. Class 1 includes 2 Weyl points along [111]
line, while Class 2 does other 6 Weyl points. Class 1 points
will never be deviated from [111] line, and Class 2 points will
travel only on the mirror planes, according to the symmetries
and the topological nature of Weyl points.

For Class 1, let us choose ~kC1,111 =
√

α
3 (1, 1, 1). The

Hamiltonian near the Weyl points is just

H111
C1 = H001

C1 , (S32)

while the magnetic field Hamiltonian is Eq. S19.
After the same procedure as the analysis of [001] direction,

we have

H111
proj,C1 =A0σ0 +A1σx +A2σy +A3σz, (S33)

where

A0 =

√
3

2
β1 +

3

2

β2
1

α
+

13
√

3

8
m2 +

147

32

m2
2

α

A1 =− 3

2
√

2

β2
1

α
− 147

32
√

2

β2
2

α

−
√
α[
−(2−

√
3)qx − (2 +

√
3)qy − 2qz√

6
]

A2 =
3

2
√

2

β2
1

α
+

147

32
√

2

β2
2

α

−
√
α[

(2 +
√

3)qx + (2−
√

3)qy + 2qz√
6

]

A3 =

√
α(qx + qy − 2qz)√

3
. (S34)

Weyl points exist at the solutions of A1 = A2 = A3 = 0.

(qx, qy, qz) =

√
3

64

16β2
1 + 49β2

2

α3/2
(1, 1, 1). (S35)

According to the inversion symmetry, another Weyl point
in Class 1 moves to (qx, qy, qz) = −

√
3

64
16β2

1+49β2
2

α3/2 (1, 1, 1).
Class 1 Weyl points stick on [111] line.

On the other hand, if we choose one of Class 2 Weyl point,
~kC2,111 =

√
α
3 (1, 1,−1), the Hamiltonian is

H111
C2 = H111

0,C2 +H111
mom,C2, (S36)

where

H111
0,C2 =

α√
3

(Γ1 + Γ2 − Γ3)− αΓ45

H111
mom,C2 =−

√
α[(qz − qy)Γ1 + (qz − qx)Γ2

+ (qx + qy)Γ3 + (qx − qy)Γ4

+
1√
3

(−2qz − qx − qy)Γ5], (S37)

up to first order of ~q = ~k−~kC2,111. The magnetic field Hamil-
tonian is Eq. S19, again.

Given by the same procedure, the Class 2 Weyl point will
be at

qx = qy =
−16α(4β1 + 7β2) +

√
3(48β2

1 + 151β2
2)

192α3/2

qz =
−32α(4β1 + 7β2) +

√
3(48β2

1 + 395β2
2)

192α3/2
. (S38)

For other 5 Weyl points, C3,111 and P determine the trajec-
tories. Class 2 Weyl points are deviated away from the high-
symmetry axes due to the 3-fold rotational symmetry break-
ing, but the points cannot travel out of the mirror planes by
σd,111T symmetries. If Class 2 Weyl points move out of the
plane, Nielsen-Ninomiya Theorem is violated. The trajecto-
ries of both classes of Weyl points are drawn in Fig. S5.

Next, we investigate the crossing point by varying θ and φ.
The Hamiltonian is

H = H0 +HAIAO +HB,111. (S39)

According to the previous section, double Weyl points emerge
only if J[111] = ±3/2 are eigenstates of the Hamiltonian.
Finding the condition that J[111] eigenstates diagonalize the
Hamiltonian H , one can obtain a line for DWSM phase. In
Fig. S6, we represent a general phase diagram under [111]
direction of effective field.

In a nutshell, we observe a number of distinct topologi-
cal phases under effective field: DWSM, 4P WSM, T1/T2-
2P WSM, and LSM. The interplay between diverse magnetic
terms play an important role on the emergence of distinct
topological phases.

FIG. S6: A general 2D phase diagram under [111] direction effec-
tive field is drawn. A couple of topological phases, 4-pair Weyl
semimetal (4P WSM), Double Weyl semimetal (DWSM) can be ob-
served. Green line shows the projection of Hubbard interaction, from
AI to FM to 3O1I.
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APPENDIX B. EFFECTIVE THEORY AT L POINT

According to previous research,12 if AIAO order param-
eter is developed, pyrochlore iridates become the insulating
phase. In order to observe topological phases near the insulat-
ing phase, we should study the effective theory near L point.
L points have lower symmetry than Γ point − only T , P , C3,
and some of σd are preserved.

1. General Hamiltonian at L point

By the inversion symmetry P at L point, energy eigenstates
at L point must have either one of P eigenvalues, ±1 (P 2 =
1). We choose two eigenstates with distinct eigenvalues. If we
take P = σz , the 2-band Hamiltonian at L point will be

HL = ∆σz. (S40)

Let us define the local z-direction be along the 3-fold rotation
axis, and local y-direction be in the mirror plane. Near L
point, the most general Hamiltonian which is invariant under
P symmetry up to second order of momentum ~q = ~k − ~kL is

H1(~q) =A1(~q)σx +B1(~q)σy + (C1(~q) +D1(~q))σz. (S41)

such that

A1(~q) = a1qx + a2qy + a3qz

B1(~q) = b1qx + b2qy + b3qz

C1(~q) = ∆ +
q2
x

2mx
+

q2
y

2my
+

q2
z

2mz

D1(~q) = c1qxqy + c2qxqz + c3qyqz.

Next, we impose σdT symmetry upon this Hamiltonian. Con-
sidering that σdT is anti-unitary, (σdT )2 = 1, and ∆σz is in-
variant under the symmetry, one can choose σdT = K (com-
plex conjugate). The general Hamiltonian near L point under
P and σdT is

H2(~q) =A2(~q)σx +B2(~q)σy + (C2(~q) +D2(~q))σz. (S42)

where

A2(~q) = a1qx

B2(~q) = b2qy + b3qz

C2(~q) = ∆ +
q2
x

2mx
+

q2
y

2my
+

q2
z

2mz

D2(~q) = c3qyqz

Finally, we add up 3-fold rotation symmetry about local z-
axis, C3 = ei

2π
3 σz . The general Hamiltonian under L point

under P , σdT , and C3;

H3(~q) =a(qxσx + qyσy)

+ (∆ +
q2
x + q2

y

2mxy
+

q2
z

2mz
)σz (S43)

H2 is the most general Hamiltonian with P and σdT , while
H3 is the most general Hamiltonian with P , σdT , and C3.

We can establish the general Hamiltonian with effective
field up to first order under P and σdT , as well.

H2B(~q, ~B) = A2Bσx +B2Bσy + C2Bσz, (S44)

where

A2B =qx(d1By + d2Bz) +Bx(d3qy + d4qz)

B2B =By(e1qy + e2qz) +Bz(e3qy + e4qz)

C2B =f1By + f2Bz.

Adding C3 symmetry, one can find out the Hamiltonian with
magnetic field.

H3B(~q, ~B) = gBz(qxσx + qyσy) + f2Bzσz. (S45)

2. [111] direction

Here, we begin with the phase of [111] direction of effec-
tive field since we can understand the phase of [001] direction
through the argument in this section.

We divide all of 4 L points in Brillouin zone into 2 classes
− Class 1 L point is an L point on [111]-axis, while Class 2
L points are other three. Without magnetic field, the Hamilto-
nian is just Eq. S43 for every L point. We obtain the position
of Weyl point as

qx = qy = 0, qz = ±
√
−2mz∆

A pair of Weyl points exist along local z-axis only if mz∆ <
0.

If we apply the magnetic field on the system, every symme-
try of Class 1 L point remains preserved.

HL,C1
111 =H3 +H3B = a′(qxσx + qyσy)

+ (∆′ +
q2
x + q2

y

2mxy
+

q2
z

2mz
)σz (S46)

where

a′ =a+ gBz, ∆′ = ∆ + f2Bz.

Since the form of Eq. S46 is the same as Eq. S43, the positions
of Weyl points are just (qx, qy, qz) = (0, 0,±

√
−2mz∆′).

That is, Weyl points can only move along local z-axis, which
corresponds to global [111] line. Furthermore, if −mz∆

′ =
0, two Weyl points meet at the origin, and if −mz∆

′ > 0,
the pair of Weyl points are annihilated. If mz > 0, then the
condition for the gapless state is ∆′ = ∆ + f2Bz < 0.

At Class 2 L points, C3 symmetry is broken.

HL,C2
111 =H2 +H2B

=A′2(~q)σx +B′2(~q)σy + (C ′2(~q) +D′2(~q))σz (S47)
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FIG. S7: The possible phase diagrams near insulating phase of py-
rochlore iridates under [111] direction of effective field are shown.
The blue lines are where the Class 1 L points become gapless, while
the orange lines are where the Class 2 L points become gapless. The
slope of each line is (a) f2 = 0.1, f ′2 = −0.3, (b) f2 = −0.3, f ′2 =
0.1, (c) f2 = −0.1, f ′2 = −0.3, (d) f2 = −0.3, f ′2 = −0.1, (e)
f2 = 0.3, f ′2 = 0.1, and (f) f2 = 0.1, f ′2 = 0.3.

where

A2(~q) =qx(a1 + d1By + d2Bz) = a′1qx

B2(~q) =qy(b2 + e1By + e3Bz) + qz(b3 + e2By + e4Bz)

=b′2qy + b′3qz

C2(~q) =(∆ + f1By + f2Bz) +
q2
x

2mx
+

q2
y

2my
+

q2
z

2mz

=∆′′ +
q2
x

2mx
+

q2
y

2my
+

q2
z

2mz

D2(~q) =c3qyqz (S48)

Note that Bx = 0 here, since the magnetic field direction is
in kx = 0 plane for Class 2 L points. Without magnetic field,
we should obtain H3B again, so that b2 = a1, b3 = c3 = 0,
and mx = my = mxy . The Hamiltonian Eq. S47 is just the
renormalization of some variables in Eq. S42. Weyl points

will exist at

qx =0, qy = ±b
′
3

b′2

√
−∆′′(

b′23
2mxyb′22

+
1

2mz
),

qz =±

√
−∆′′(

b′23
2mxyb′22

+
1

2mz
)

A pair of Weyl points exist only if −∆′′(
b′23

2mxyb′22
+ 1

2mz
) ≡

−∆′′X > 0, and the pair annihilation occurs at origin if ∆′′ =
0. If we assume X > 0, Weyl points exist when ∆′′ < 0.
Near Class 2L points, Weyl points can move off from the high
symmetry line and travel through local yz mirror plane. The
result is consistent with the trajectory in Γ effective theory of
Sec. APPENDIX A 5 2.

In summary, we have two equations to obtain phase transi-
tions.

∆ + f2B = 0, ∆ + f ′2B = 0,

Usually, f2 and f ′2 does not have to be equal to each other. In
Fig. S7, we represent all possible forms of phase diagram by

FIG. S8: The possible phase diagrams near Weyl semimetal-
Insulating phase transition under [001] direction field are shown. The
blue lines are where the Class 1 L points become gapless, while the
orange lines are where the Class 2 L points become gapless. The
slope of each line is (a) f ′1 = 0.2, f ′2 = 0.2,(b) f ′1 = 0.1, f ′2 =
−0.3, (c) f ′1 = 0.1, f ′2 = 0.3, (d) f ′1 = −0.2, f ′2 = 0.2, (e)
f ′1 = −0.1, f ′2 = −0.3, (f) f ′1 = −0.1, f ′2 = 0.3.
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changing f2 and f ′2. One can observe 4-pair Weyl semimetal
(4P WSM), 3-pair Weyl semimetal (3P WSM), 1-pair Weyl
semimetal (1P WSM) and trivial insulator (INS). Which topo-
logical semimetal emerge depends on the sequence of Weyl
point annihilation. If Weyl points are annihilated at Class 1
L point first, we can observe 3-pair Weyl semimetal, while if
Weyl points are annihilated at Class 2 L points first, we can
observe 1-pair Weyl semimetal.

3. [001] direction

Under [001] direction of effective field, we divide 4 L point
into into 2 classes again− a pair of L points in [11̄0] plane are
Class 1, and another pair of L points in [110] plane are Class
2. Since 3-fold rotational symmetries are broken while 2σdT
remains, both classes are just the same as Class 2 Weyl points
of [111] case. Again, we set local z-axis along 3-fold rotation
axis, and local y-axis inside the mirror plane. Recalling Eq.
S47 and the solutions, we confront two following equations as
well.

∆ + f ′1B = 0, ∆ + f ′2B = 0

By controlling f ′1 and f ′2, we draw several forms of phase di-
agrams in Fig. S8.

In the phase diagram, we observe Type I and II 2-pair Weyl
semimetal. T1-2P WSM denotes the semimetal without Weyl
points near Class 1 L points, while T2-2P WSM denotes that
without Weyl points near Class 2 L points. The sequence of
Weyl point annihilation determines topological semimetallic
phase. If Class 1/2 Weyl points are annihilated initially, then
T1/2-2P WSM appears.

In summary, we can observe the emergent topological
phases like 3P WSM, T1/2-2P WSM, and 1P WSM near in-
sulating phase.

FIG. S9: Two clusters in pyrochlore iridates are shown. They are
related by nonsymmorphic symmetry {P |T1/4,1/4,1/4}.

APPENDIX C. CLUSTER MAGNETIC MULTIPOLE IN
PYROCHLORE IRIDATES

1. Cluster Magnetic Multipoles

Suppose we have a piece of magnetic matter localized in
the real space. Then, Ampere-Maxwell’s law becomes

∇2 ~A = µ0
~J (S49)

outside the matter, under Coulomb gauge (∇ · ~A = 0). By
Green’s theorem, we obtain the general solution as

~A =

∞∑
p=0

p∑
q=−p

1

rp+1
~Zpq(θ, φ)Mpq, (S50)

where

~Zpq =− i

p
~L[

√
4π

2p+ 1
Ypq(θ, φ)],

Mpq =

√
4π

2p+ 1

∫
d3r′ ∇′[r′pY ∗pq(θ′, φ′)] · ~M(~r′), (S51)

such that ~L is angular momentum, Ypq(θ, φ) is spherical har-
monics, and ~M(~r′) is the magnetization density defined by
~J(~r′) = c∇ × ~M(~r′). This process is called multipole ex-
pansion, and Mpq is called magnetic multipole. In general,
we can express any configurations of magnetic matter into the
series of multipoles.28

Applying the same argument in the lattice, we can de-
fine cluster magnetic multipole moment (CMMM).27 An atom
cluster is defined as a group of atoms connected by point
group operators within a magnetic unit cell. CMMM at a-
th cluster in the magnetic unit cell is simply defined as same
as Eq. S51,

Ma
pq =

√
4π

2p+ 1

Na∑
i=1

∇
[
rpi Y

∗
pq(θi, φi)

]
· ~mi, (S52)

where ~mi is the magnetic moment at i-th site, and Na is the
number of atoms in a-th cluster. This is a spherical tensor of
rank p. If p = 1, 2, and 3, then we can acquire the dipoles,
quadrupoles, and octupoles of the cluster, respectively. The
contribution of the magnetic unit cell on CMMM is just the
summation over every cluster in the cell,

Mpq =
Nu

N c

1

V

N∑
a=1

Ma
pq. (S53)

where Nu is the number of atoms of the magnetic unit cell,
N c is the total number of atoms in every cluster, N is the
number of clusters, V is the volume of the magnetic unit cell.

2. CMMM in Pyrochlore Iridates

If we consider the magnetic order of the wavevector ~q = 0,
an magnetic unit cell is just the same as a unit cell and an
atomic cluster. We assume the length of unit cell edge is 1.
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(c) Octupole
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FIG. S10: Each symmetrized CMMM in TABLE S1 is depicted in the first cluster of pyrochlore iridates with its group representation. The
configuration of T 1

x , T
1
y , T

1
z are just the same as that of Qyz, Qzx, Qxy . Due to the inversion symmetry, quadrupole will be cancelled by the

second cluster.

There are two clusters, which are related by nonsymmor-
phic symmetry operation {P |T1/4,1/4,1/4} (See. Fig. S9). In
a cluster, the number of degree of freedom is twelve, since
there are 3 moment directions and 4 atomic sites. Accord-
ingly, we expect that dipoles, quadrupoles, and octupoles ap-

pear in the cluster, since the number of CMMM components
is fifteen up to octupoles. We denote α = x, y, z component
of the magnetic moment of i-th site as miα. Then, using Eq.
S52, the cluster dipoles are

M11̄ =
1√
2

[m1x + im1y +m2x + im2y +m3x + im3y +m4x + im4y],

M10 =m1z +m2z +m3z +m4z,

M11 =
1√
2

[−m1x + im1y −m2x + im2y −m3x + im3y −m4x + im4y]. (S54)

The cluster quadrupoles for a cluster exist, but the to-
tal cluster quadrupoles are all zero, since the system is
inversion-symmetric while quadrarupoles aren’t (Mpq =

(−1)p+1Mpq). Each cluster can have quadrupole moments;
for example, Cluster 1 (Fig. S9a) has

M
(1)

22̄
=

√
3

2
[e−i

3π
4 (m1x + im1y) + ei

3π
4 (m2x + im2y) + e−i

π
4 (m3x + im3y) + ei

π
4 (m4x + im4y)],

M
(1)

21̄
=

√
3

2
[

1√
2

(−m1x − im1y +m2x + im2y +m3x + im3y −m4x − im4y) + e−i
3π
4 m1z + ei

3π
4 m2z + e−i

π
4 m3z + ei

π
4 m4z],

M
(1)
20 =

1

2
[m1x +m1y − 2m1z +m2x −m2y + 2m2z −m3x +m3y + 2m3z −m4x −m4y − 2m4z],

M
(1)
21 =

√
3

2
[

1√
2

(m1x − im1y −m2x + im2y −m3x + im3y +m4x − im4y) + e−i
π
4 m1z + ei

π
4 m2z + e−i

3π
4 m3z + ei

3π
4 m4z],
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M
(1)
22 =

√
3

2
[ei

3π
4 (m1x − im1y) + e−i

3π
4 (m2x − im2y) + ei

π
4 (m3x − im3y) + e−i

π
4 (m4x − im4y)]. (S55)

and these are cancelled out by the quadrupole moments of Cluster 2. By the way, the cluster octupoles are

M33̄ =
3
√

5

8
i[m1x + im1y −m2x − im2y −m3x − im3y +m4x + im4y]

M32̄ =

√
15

4
[ei

π
4 (m1x −m2y +m3y −m4x) + ei

3π
4 (m1y +m2x −m3x −m4y) +

i√
2

(m1z −m2z −m3z +m4z)],

M31̄ =

√
3

8
[−i(m1x −m2x −m3x +m4x)− (m1y −m2y −m3y +m4y) + 4

√
2{eiπ4 (m1z −m4z) + ei

3π
4 (m2z −m3z)}],

M30 =
3

4
[−m1x −m1y +m2x −m2y −m3x +m3y +m4x +m4y],

M31 =

√
3

8
[−i(m1x −m2x −m3x +m4x) + (m1y −m2y −m3y +m4y) + 4

√
2{ei 3π

4 (m1z −m4z) + ei
π
4 (m2z −m3z)}],

M32 =

√
15

4
[e−i

π
4 (m1x −m2y +m3y −m4x) + e−i

3π
4 (m1y +m2x −m3x −m4y)− i√

2
(m1z −m2z −m3z +m4z)],

M33 =
3
√

5

8
i[m1x − im1y −m2x + im2y −m3x + im3y +m4x − im4y]. (S56)

3. Classification of CMMM by Irreducible Representations

Multipole moments can be classified by irreducible repre-
sentations (irreps) of symmetry group.27,28,40–43 We can clas-
sify the CMMM in the same way.

Applying projection operators for CMMMs,44 we classify
CMMM by irreps. Symmetrized CMMM can be considered
as order parameters, since symmetrized CMMM represent the
degree of symmetry breaking. In TABLE S1 and Fig. S10,
we show symmetrized CMMM as the linear combination of
CMMM and as a configuration of the magnetic moments in
the lattice.

In order to analyze the symmetry properties of J = 3/2
states at quadratic band crossing, let us concentrate only on
the Cluster 1. Since there are 12 degrees of freedom in Cluster
1, we have 12 independent symmetrized CMMMs. However,
up to octupole, there should be 15 (3+5+7) order parameters.
In fact, 3 octupolar symmetrized CMMMs T 1

x , T
1
y , T

1
z corre-

sponds to the symmetrized quadrupoles Qyz, Qzx.Qxy . Thus,
the number of independent CMMMs are just as same as the
number of degrees of freedom.

However, in the presence of inversion symmetry,
quadrupole must vanish due to its oddness under inver-
sion, then only dipoles and octupoles can exist in pyrochlore
iridates. We clearly prove the statement by adding the
configuration of Cluster 2 to that of Cluster 1. For Cluster 2,
the orientation of magnetic moment at each site is opposite to
that in Cluster 1 only in the quadrupole order.

APPENDIX D. THE LATTICE MODEL

1. Phase diagrams

The tight-binding model Hamiltonian is HTB = H0 +
HU +HZ .8 First,

H0 =
∑
〈ij〉

c†i (t1 + it2dij · ~σ)cj

+
∑
〈〈ij〉〉

c†i (t
′
1 + i[t′2Rij + t′3Dij] · ~σ)cj , (S57)

where it describes the nearest and next-nearest neighbor hop-
ping. Note that the hopping vectors are defined as

dij =2Aij ×Bij , Aij =
1

2
(bi + bj)− c,

Bij =bj − bi, Rij = Bik ×Bkj ,

Dij =dik × dkj (S58)

where bi is the position of i-th atom in the unit cell, c is the
position of the center of the unit cell. The hopping parameters
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Multipole Irrep CMMM
Dipole T1 (Γ4) Nx ≡ M11̄−M11√

2

Ny ≡ M11̄+M11√
2i

Nz ≡M10

Quadrupole E (Γ3) Q3z2−r2 ≡M20

Qx2−y2 ≡ 1√
2
(M22 +M22̄)

T1 (Γ4) Qyz ≡ − i√
2
(M21 +M21̄)

Qzx ≡ 1√
2
(−M21 +M21̄)

Qxy ≡ i√
2
(M22 −M22̄)

Octupole A2 (Γ2) Txyz ≡ i√
2
(M32 −M32̄)

T1 (Γ4) T 1
x ≡ 1

4
[
√

5(−M33 +M33̄)−
√

3(−M31 +M31̄)]

T 1
y ≡ i

4
[
√

5(M33 +M33̄) +
√

3(M31 +M31̄)]
T 1
z ≡M30

T2 (Γ5) T 2
x ≡ 1

4
[
√

5(M31 −M31̄) +
√

3(M33 −M33̄)]

T 2
y ≡ −i4 [

√
5(M31 +M31̄)−

√
3(M33 +M33̄)]

T 2
z ≡ 1√

2
(M32 +M32̄)

TABLE S1: CMMM are classified into the irreps of Td group. The table is very similar to CMMMs in the reference.27 We show two kinds of
group representation in the second column; T1, E, A2, T2 are for Td single group, and Γi are for double group.

are defined as

t1 =
130

243
toxy +

17

324
tσ −

79

243
tπ

t2 =
28

243
toxy +

15

243
tσ −

40

243
tπ

t′1 =
233

2916
t′σ −

407

2187
t′π

t′2 =
1

1458
t′σ +

220

2187
t′π

t′3 =
17

324
t′σ +

460

2187
t′π.

where t′σ,π = αtσ,π .
Second, the Hubbard repulsion Hamiltonian HU is

HU = U
∑
Ri

nRi↑nRi↓, (S59)

where nRis is the number operator of iridium electrons whose
effective angular momentum is 1/2. We apply Hartree-Fock
approximation to this Hubbard repulsion term.

HMF
U = − U(

∑
Ri

2〈~mR,i〉 · ~mR,i − 〈~mR,i〉2),

~mR,i =
1

2N

∑
α,β=↑,↓

c†Riασα,βcRiβ . (S60)

where N is the total number of unit cells in the lattice.
Finally, we have Zeeman coupling for Ir electrons, whose

effective angular momentum is 1/2.

HZ = −1

2

∑
Ris

c†Ris(
~H · ~σss′)cRis′ . (S61)

We can add an additional interaction into this Hamiltonian,
which couples rare-earth f -electrons to iridium d-electrons.20

Since f -electrons also have spins, we should consider Zeeman
effect for f -electrons. The Hamiltonian is H ′ = H +Hfd +
H ′z , where

Hfd = Jfd
∑
〈iJ〉

∑
µ,ν=x,y,z

ΛµνiJ σ
µ
i τ

ν
J ,

H ′z = −
∑
I

γ( ~H · ~aI)τzI . (S62)

Here, Jfd is the coupling constant, τµI are the rare-earth f-
electron spins which are Ising-like along local [111] direction,
γ is f-electron g-factor, and ΛµνiJ are defined20 as

ΛµνiJ =

〈[Gx1~aJ +Gx2~aJ×̄(~diJ×̄~diJ)] · êµ, (ν = x)

Gy~aJ × (~diJ×̄~diJ) · êµ, (ν = y)

[Gz1~aJ +Gz2~aJ×̄(~diJ×̄~diJ)] · êµ, (ν = z)

 .
for Nd3+, which is a Kramers ion. Here, i, j are for irid-
ium site while I, J are for rare-earth site. However, for Pr3+,
which is a non-Kramers ion,

ΛµνiJ =

〈 0, (ν = x)
0, (ν = y)

[Gz1~aJ +Gz2~aJ×̄(~diJ×̄~diJ)] · êµ, (ν = z)

 .
Furthermore, Pr in-plane components can couple to the charge
density of Ir electrons.31

We obtain the ground state energy band and magnetic mo-
ment configuration through self-consistent mean-field theory
under various Hubbard strength U and magnetic field strength
H for Nd2Ir2O7. Then, we investigate crossing points within
Brillouin zone to determine topological phases, and exhibit
the general phase diagrams with different parameters in Fig. 7
and S11.
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FIG. S11: General phase diagrams from self-consistent mean-field
theory. (a) tσ = −0.8, α = 0.08, Jfd = 0, [001] field. Heisenberg
Ir spin. (b) tσ = −0.8, α = 0.08, Jfd = 0, [001] field. Ising Ir spin.
(c) tσ = −1.1, α = 0.02, Jfd = 1, [111] field. Heisenberg Ir spin.

2. Projection of the Effective Zeeman Field onto the Effective
Theory

We can consider Hubbard repulsion, fd-exchange, and the
magnetic field altogether in the effective field which is applied

for each iridium spin. Then the interaction Hamiltonian is just
an effective Zeeman term,

HB =HMF
U +Hfd +HZ

=
1

2

∑
i

~Beff,i · [c†i,s~σss′ci,s′ ] + const., (S63)

where

1

2
Bµeff,i = −U

2
〈σµi 〉+ Jfd

∑
J,ν

ΛµνiJ τ
ν
J −

1

2
Hµ. (S64)

Since the magnetic moment has the same symmetric prop-
erties as effective field, we can define symmetrized CMMMs
in terms of effective field instead of magnetic moments. That
is, the magnetic moments in Eq. S54, S55, S56 are just re-
placed with ~Beff,i. After then, let us define some order param-
eters with effective field based symmetrized CMMMs. AIAO
order parameter is defined as

MA2 =
1

8

∑
i

~Beff,i · ~ai =
1

2
√

15
Txyz, (S65)

such that ~ai is the unit vector directing from the i-th site to the
center of tetrahedron. This changes as Γ2 representation of Td
double group. The magnetization is defined as

MD,µ =
1

8

∑
i

Beff,iµ =
1

8
Nµ, (S66)

where µ = x, y, z. 2I2O order parameter is defined by T1

octupole (T 1
x , T

1
y , T

1
z ),

MT1,x =
1

12
(Beff,1y +Beff,1z −Beff,2y −Beff,2z −Beff,3y +Beff,3z +Beff,4y −Beff,4z) = −1

9
T 1
x

MT1,y =
1

12
(Beff,1x +Beff,1z −Beff,2x +Beff,2z −Beff,3x −Beff,3z +Beff,4x −Beff,4z) = −1

9
T 1
y

MT1,z =
1

12
(Beff,1x +Beff,1y −Beff,2x +Beff,2y +Beff,3x −Beff,3y −Beff,4x −Beff,4y) = −1

9
T 1
z . (S67)

Those order parameters commonly appear for both [001] and
[111] direction field.

For the projection of the lattice model, we find Jz eigen-
states from taking fourfold degenerate eigenstates of H0 at Γ

point (Fig. 6(a)). Jz eigenstates {|ψjz 〉} are

|ψ3/2〉 =
1

2
(ei

3π
4 , ei

π
4 , e−i

3π
4 , e−i

π
4 , 0, 0, 0, 0)T

|ψ1/2〉 =
1√
6

(−i, i, i,−i, −1 + i

2
,

1 + i

2
,
−1− i

2
,

1− i
2

)T
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|ψ−1/2〉 =
1√
6

(
−1− i

2
,

1− i
2

,
−1 + i

2
,

1 + i

2
,−i, i, i,−i)T

|ψ−3/2〉 =
1

2
(0, 0, 0, 0, e−i

3π
4 , e−i

π
4 , ei

3π
4 , ei

π
4 )T (S68)

Then, the projection matrix is just P =
∑
jz
|ψjz 〉〈ψjz |.

We have total 12 degrees of freedom (4 site× 3 directions),
but we can reduce the number of parameter into 4 by sym-
metry. Considering C2z and σdT , the symmetries under [001]
magnetic field and AIAO order, we have in general,

~Beff,1 =(Beff,1x, Beff,1x, Beff,1z)

~Beff,2 =(Beff,2x,−Beff,2x, Beff,2z)

~Beff,3 =(−Beff,2x, Beff,2x, Beff,2z)

~Beff,4 =(−Beff,1x,−Beff,1x, Beff,1z) (S69)

Under the magnetic moment configuration, the order parame-
ters are

MA2
=

1

8
√

3
(4Beff,1x + 2Beff,1z + 4Beff,2x − 2Beff,2z)

MD,z =
1

4
(Beff,1z +Beff,2z)

MT1,z =
1

3
(Beff,1x −Beff,2x). (S70)

We can now express the projection of the effective Zeeman
term as

P †HBP =(MA2Γ45 + (
2

3
MD,z −

9

4
MT1,z)Jz −MT1,zJ

3
z ).

(S71)

On the other hand, if we consider C3,[111] and σd,[111]T ,
the symmetries under [111] magnetic field and AIAO order,

we can reduce the number of parameter into 3 by symmetry.

~Beff,1 =(Beff,1x, Beff,1x, Beff,1x)

~Beff,2 =(Beff,2x, Beff,2y, Beff,2y)

~Beff,3 =(Beff,2y, Beff,2x, Beff,2y)

~Beff,4 =(Beff,2y, Beff,2y, Beff,2x) (S72)

In this configuration, the order parameters are

MA2
=

√
3

8
(Beff,1x +Beff,2x − 2Beff,2y)

MD,x =MD,y = MD,z =
1

8
(Beff,1x +Beff,2x + 2Beff,2y)

MT1,x =MT1,y = MT1,z =
1

6
(Beff,1x −Beff,2x) (S73)

The projection of the effective Zeeman term under [111] field
is

P †HBP =(MA2
Γ45 + (

2

3
~MD −

9

4
~MT1

) · ~J

− ~MT1
· ~J3). (S74)

For both cases, we obtain θ and φ,

θ = arctan
MT1,z

2
3MD,z − 9

4MT1,z

φ = arctan
2
3MD,z − 9

4MT1,z

MA2
cos θ

. (S75)
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