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A three step model for high harmonic generation from impurities in solids is developed. The
process is found to be similar to high harmonic generation in atomic and molecular gases with the
main difference coming from the non-parabolic nature of the bands. This opens a new avenue for
strong field atomic and molecular physics in the condensed matter phase. As a first application, our
conceptual study demonstrates the feasibility of tomographic measurement of impurity orbitals.

I. INTRODUCTION

Strong field and attosecond science in atomic and molec-
ular physics has made great strides over the past 20
years1,2. Strong laser-atom interaction takes place in a
three step process; first the weakest bound electron is
ionized, followed by laser driven evolution in the contin-
uum, and finally it recollides/rescatters with its parent
ion1,3. It has been found that both tunneling and recolli-
sion processes contain a great deal of information about
the parent system’s structure and dynamics.

Angular resolved tunnel ionization spectroscopy4,5 re-
veals the orbital angular structure of the highest occupied
molecular orbital.

When the electron recollides with its parent ion, re-
combination and rescattering take place. Recombination
results in high harmonic generation (HHG) — the emis-
sion of coherent XUV radiation. HHG has been used to
time resolve chemical reactions and to tomographically
measure the wavefunction of simple molecules6–11.

Rescattering12 results in nonsequential double ioniza-
tion, above threshold ionization, and laser induced elec-
tron diffraction13–16; these processes have structural in-
formation encoded and are also promising candidates for
time resolved imaging of molecular reactions.

Recent experiments with mid-infrared17–20 and THz
pump sources21–23 have demonstrated HHG in solids.
Theory has identified two mechanisms24,25; (i) intraband
HHG due to the non-parabolic nature of bands18 was
found to be dominant in dielectrics; (ii) interband HHG
dominates in semiconductors and is created in a three
step process similar to atomic and molecular HHG26.
This similarity has established a connection between at-
tosecond physics in atoms/molecules and in the con-
densed matter phase.

Our analysis further deepens the links between strong
field physics in the gas and condensed matter phases.
Recently, HHG involving solid state systems with impu-
rities has been considered27,28. In Ref. 27, a semicon-
ductor material was doped by ion implantation to alter
the band structure of the material; this ultimately lead
to enhanced harmonic emission under a mid-IR field.
Here we will consider harmonic emission directly from
the impurity under a THz driving field. We develop
quantum equations of motion and a three step model

for this process. First, a free electron/hole is created
in the conduction/valence band by tunnel ionization of
a donor/acceptor impurity. Second, the electron/hole is
accelerated by the laser field. In a third step a harmonic
photon is emitted upon recollision and recombination
with the parent impurity. Figure 1 depicts a schematic
representation for HHG from shallow impurities in one
dimension. In Fig. 1(a) we have the periodic potential
of the unperturbed solid (blue) plus a Coulomb potential
from an impurity (red). The shaded curve represents the
ground state of the shallow impurity; this ground state
extends over many lattice cites. The three-step model
described above is shown in the real and reciprocal space
in Figs. 1(b) and 1(c), respectively, for the system inter-
acting with a strong laser field.
Besides differences in the continuum evolution due to

the non-parabolic nature of bands, the process is found to
be identical to HHG in gases. As a consequence, many
of the above processes can be adapted from the gas to

FIG. 1. (a) Periodic potential of the unperturbed bulk solid
(blue) plus the impurity potential (red); the shalloe impurity
ground state that extends over many lattice cites is repre-
sented by the shaded curve. (b) Space representation of the
three-step model for HHG from an impurity. (c) Reciprocal
space representation of the three-step model for HHG from
an impurity.
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the condensed matter phase. This opens a new research
direction for atomic and molecular strong field processes.

As a first application, we study the potential of apply-
ing molecular HHG tomography9–11 to impurities. To-
mographic reconstruction of the impurity ground state is
demonstrated in a 1D model system. The impurity dipole
moment is found to be the dominant factor in determin-
ing the magnitude of the harmonic signal as a function of
harmonic order; ionization and propagation which have
to be factored out in molecular tomography play a lesser
role here. This indicates a substantial facilitation due
to the potential for direct reconstruction of the impurity
ground state from the harmonic spectrum.

Our results create a link between strong field physics
and solotronics — solitary impurity electronics; for a re-
view see Ref. 29. Solitary impurities are important build-
ing blocks for quantum technology — as qubits for quan-
tum computing and as single photon and non-classical
photon sources for quantum sensing and communication.
Further, with increasing miniaturization, the device char-
acteristics of MOSFET transistors is strongly influenced
by scattering off single impurities. All of the above appli-
cations require detailed knowledge about the wavefunc-
tion of impurity and environment. Currently, the most
powerful method to image the wavefunction of single im-
purities is scanning tunneling microscopy close to suit-
ably cleaved surfaces. Our results reveal that strong field
methods can offer complementary capacities. Among
other things they provide an all-optical way to measure
dipole moment and wavefunctions of impurity ensembles
independent of surfaces; single impurity imaging will be
challenging due to the low quantum yield of HHG. Be-
yond that they open the path to spatio-temporal imag-
ing of wavefunction dynamics in impurities, impurity
molecules and arrays29 via optical pump probe experi-
ments.

The manuscript is structured as follows. In section
II we introduce the microscopic theory for an impurity
doped solid interacting with a strong laser field. We
first introduce our quantum mechanical model (section
IIA) and then derive an approximate expression for the
impurity ground state (section II B). The equations of
motion for solution of the time-dependent Schrödinger
equation are derived in section II C; here we also produce
an expression for the transition dipole between impurity
ground state and conduction band. Section II is ended
with a derivation of the semiclassical equations (section
IID). In section III we present the result from our nu-
merical calculations. In section III A we solve our equa-
tions of motion for a one-dimensional model system of a
solid doped with an impurity and look at the harmonic
spectrum and perform the semiclassical analysis. In sec-
tion III B we demonstrate a method for tomographic re-
construction of the impurity ground state. Finally, in
section III C we discuss dimensionality considerations for
tomographic reconstruction.

II. THEORETICAL FRAMEWORK

A. Quantum mechanical model

Our one-body analysis builds on, and extends, the
theoretical work by Adams30 and by Luttinger and
Kohn31,32. To achieve this we use the following model:
an impurity with potential U(x) is imbedded in a solid
and is coupled to a laser field F(t) via the dipole coupling
term x ·F(t). The resulting time-dependent Schrödinger
equation is given by

i∂tΨ(x, t) = (Hi − x · F(t))Ψ(x, t), (1)

where Hi = H0 + U(x) and H0 = 1
2p

2 + v(x) refers
to the Hamiltonian of the solid without impurity with
v(x) being the periodic lattice potential. Atomic units,
e = ~ = me = 1, are used throughout unless other-
wise indicated. The eigenvalue equation of the field free
Hamiltonian Hi is given by

Hiφ(x, t) = εφ(x, t). (2)

In the absence of the impurity the eigenfunctions Φm,k

fulfil H0Φm,k = Em(k)Φm,k with m the band index and
Em(k) the band eigenenergies. Further, the eigenfunc-
tions are given by,

Φm,k(x) =
1√
V
um,k(x)e

ik·x, (3)

where um,k is the Bloch function that is periodic with
the lattice and V the volume of the solid. The unit cell
is defined by basis vectors al (l = 1, 2, 3) and volume
υ; Rn =

∑
l nlal is a lattice vector that connects two

identical sites in the lattice. The crystal momentum k

extends over the first Brillouin zone (BZ) defined as the
Wigner-Seitz cell of the reciprocal lattice whose primitive
vectors bl are determined through bl ·aj = 2πδlj ; we de-
note the magnitude of the reciprocal lattice vector bl as
bl = |bl| . The vectors of the reciprocal lattice are given
by Kn =

∑
l nlbl. The eigenfunctions are orthonormal-

ized according to,
∫

V

Φ∗
m′,k′Φm,kdx = δmm′δ(k− k′). (4)

By defining V = Nυ with N the number of atomic
unit cells, we obtain from the orthonormality relation∫
v
|um,k|2dx = υ.
Shallow donor (acceptor) impurities split into an elec-

tron (hole) and a positively (negatively) charged residual
ion; the electron (hole) moves in the lowest conduction
(highest valence) band and has bound states in the field
of the residual ion with energies closely below (above)
the bottom (top) of the conduction (valence) band. As a
result, we drop the band index m and confine our treat-
ment to a single band with eigenfunctions Φk which fulfil
H0Φk = E(k)Φk with E(k) the band eigenenergies. Fur-
ther, we consider a single impurity level (the impurity
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ground state) with eigenenergy ε0 and eigenfunction φ0;
here Eq. (2) reads,

Hiφ0(x) = ε0φ0(x). (5)

As this is a first conceptual study we have limited our-
selves to only the most fundamental process and confined
our system to the ground state only. Additional complex-
ity can be added to the model by including excited states
of the impurity potential.

B. Derivation of the ground state for a shallow

impurity

Equation (5) is solved by expanding the eigenstate φ0

in terms of Bloch states,

φ0(x) =

∫

BZ

b0(k)Φk(x)dk. (6)

Inserting Eq. (6) into Eq. (5), multiplying the result by
Φ∗

k′(x) and integrating over the spatial coordinate yields,

(
E(k) − ε0

)
b0(k) +

∫

BZ

Ũ(k,k′)b0(k
′)dk′ = 0 (7)

with

Ũ(k,k′) =

∫

V

u∗
k
(x)uk′(x)U(x)ei(k

′−k)·xdx, (8)

where integration if performed over the crystal volume
V . By noting that uk is periodic with the unit cell, the
Bloch functions in Eq. (8) can be expanded in a Fourier
series,

u∗
k
(x)uk′(x) =

1√
υ

∑

n

M
(n)
k,k′e

−iKn·x (9)

with

M
(n)
k,k′ =

1√
υ

∫

υ

u∗
k
(x)uk′(x)eiKn ·xdx. (10)

As a result, we obtain for the Coulomb matrix element

Ũ(k,k′) =
∑

n

M
(n)
k,k′

∫

υ

U(x)ei(k
′−k−Kn)·xdx (11)

By inserting the series expansion (9) into the orthonor-
mality relation for the Bloch eigenfunction (4) we obtain
the relation

1√
υ

∫

υ

M
(0)
k,k′e

i(k−k
′)·xdx = δ(k − k′). (12)

Note that expansion terms with n 6= 0 result in δ(k −
k′ − Kn) = 0, as k,k′ are from the first BZ. Equation
(12) yields

M
(0)
k,k′ =

√
υ

(2π)3
. (13)

For a soft potential whose main components corre-
spond to wavelengths that are much smaller than the
lattice spacing, |k − k′| ≪ bl the lowest order Fourier
term dominates and we obtain30,31

Ũ(k− k′) ≈
√
υ

(2π)3

∫

υ

U(x)ei(k
′−k)·xdx. (14)

where we have written Ũ(k,k′) as Ũ(k− k′) to indicate

that the argument in Ũ of our approximate expression
above depends only on the difference k − k′. Note that
close to the Coulomb singularity this assumption is vio-
lated and higher order Fourier terms need to be included.
Inserting Eq. (14) in Eq. (7) yields

(E(k)− ε0) b0(k) +

∫

BZ

Ũ(k− k′)b0(k
′)dk′ = 0. (15)

For the sake of simplicity we focus here on direct
bandgap materials; however the theory can be easily gen-
eralized to indirect semiconductors following the treat-
ment in Refs. 31 and 32. By invoking again the assump-
tion that the potential is soft and couples only compo-
nents |k−k′| ≪ bl, we can further simplify Eq. (15). The
bound states extend over many unit cells corresponding
to a narrow band of crystal momenta b(k) centered about
the Γ-point (k = 0). In real space this corresponds to a
slowly varying modulation that is superimposed onto the
Bloch eigenfunction,

B0(x) =

∫

BZ

b0(k) exp(ik · x)dk. (16)

As a result of the narrow width of b(k) the conduction
band can be Taylor expanded which yields

E(k) ≈ Eg +
∑

i,j

1

2
βijkikj , (17)

where i, j = x, y, z and βij = ∂ki∂kjE is the inverse mass
tensor that arises from the quadratic expansion of the
band energy E(k) about the Γ-point (k = 0), where the
band energy E(k = 0) = Eg is minimum. For the sake
of simplicity we confine our analysis to direct bandgap
materials; a generalization to indirect bands can be done
by following the treatment in Ref. 32.
Using Eqs. (16) and (17), in Eq. (15) we obtain an

atomic-like Schrödinger equation for the impurity eigen-
states


1

2

∑

i,j

βij∇i∇j − U(x) + (ε0 − Eg)



B0(x) = 0. (18)

Diagonalization of Eq. (18) yields ground state wave-
function B0(x) and b0(k) in k-space. Its eigenenergy ε0
determines the ionization potential as ε0−Eg. The com-
plete impurity ground state is determined by inserting
b0(k) into Eq. (6) which results in

φ0(x) =

∫

BZ

b0(k)Φk(x)dk ≈ Φk=0(x)B0(x). (19)
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In the last step we have used Φk(x) ≈ uk=0(x) exp(ik·x),
a result from k · p perturbation theory.

C. Solution of the time-dependent Schrödinger

equation

Solution of the time-dependent Schrödinger equation
(1) in the presence of a strong laser field is developed
along the lines of strong field atomic physics3,35. The
wavefunction is split into a bound state part and a band
contribution, by using the Ansatz

Ψ(x, t) = φ0(x) +

∫

BZ

a(k, t)Φk(x)dk. (20)

where the integral runs over the first BZ. We assume, in
the spirit of the strong field approximation3, that field
induced ionization is weak enough so that the ground
state population remains unaffected. This amounts to
neglecting the dynamic Stark shift of the impurity ground
state.
Inserting Eq. (20) into Eq. (1) and multiplying the

resulting equation with the functional 〈Φk′(x)| we obtain

i
d

dt
a(k, t) = (E(k) − ε0 + iF(t) · ∇k) a(k, t)

+

∫

BZ

U(k− k′)a(k′, t)dk′ + id0(k) · F(t), (21)

where the transition dipole moment between impurity
ground state and conduction band is,

d0(k) =

∫

V

Φ∗
k′(x)xφ0(x)dx. (22)

Equation (21) is similar to the equation of atomic strong-
field physics3. Around the Γ-point, where the effective
mass approximation is valid, Eq. (21) becomes identical
with the equation for atomic gases. We note, however,
that in Eq. (21) the full band is used and not the effective
mass approximated band in Eq. (17).
Here we have again employed the assumptions used

for the derivation of the impurity potential matrix ele-
ment (14) where a soft impurity potential is assumed for
which large momentum scattering |k| > |bl| is negligi-
ble. In terms of dynamical processes, these assumptions
amount to neglecting large angle scattering events of the
order of or larger than the inverse lattice vectors, which
occur when a slow electron comes close to the Coulomb
singularity and undergoes scattering. Further the result-
ing intraband dipole matrix element is only well defined
when written as25

∫

V

Φ∗
k′(x)xΦk(x)dx = −i∇k + dc(k), (23)

where

dc = −i

∫

V

Φk′(x)∇kΦk(x)dx. (24)

We assume here inversion symmetric materials for which
dc = 0. As long as impurity ground state and conduction
band wavefunction vary slowly compared to the Bloch
functions, the dipole moment between impurity ground
state and conduction band is given by,

d0(k) ≈
1

(2π)3

∫

V

xB0(x)e
−ik·xdx. (25)

Here we have applied again Eq. (13) to approximately
eliminate the product of Bloch functions. We find that
the dipole moment is proportional to the Fourier trans-
form of the atom-like part of the impurity ground state,
just as in the atomic strong field model. Finally, agree-
ment with atomic strong field physics becomes complete,
when the quadratic mass approximation is applied to Eq.
(21)3,35.
In the strong field limit, the Coulomb potential in Eq.

(21) is neglected. For impurities additional justification
comes from the fact that photoionization cross sections
are well described by replacing the Coulomb with delta-
function potentials33. Integration of the resulting Eq.
(21) and inserting the result into the the second term
of Eq. (6) yields the time dependent evolution of the
electron wavefunction in the conduction band as

a(k, t)=

∫ t

−∞
dt′d0(κt′)·F(t′)e

∫
t′

−∞
i
(
ε0−E(κt′′ )+

i
T2

)
dt′′

(26)

where κt′ = k − A(t) + A(t′) with vector potential de-
termined by F = −dA/dt; further, a phenomenological
dephasing time T2 has been added.
Finally, high harmonic generation is determined by the

current

j(t) =
d

dt

∫

V

x|Ψ(x, t)|2dx

=
d

dt

∫

BZ

a(k, t)d∗
0(k)dk +

∫

BZ

(
a∗(k′, t)a(k, t)

× 1

i

∫

V

Φ∗
k′(x)∇Φk(x)dx

)
dk′dk+ c.c.

(27)

The second term in Eq. (27), corresponding to the
intraband current, comes as a result of changing the
Schrödinger picture to the Heisenberg picture, using
dx/dt = p and then converting back to the Schrödinger
picture. Further simplification can be made using the
relation,

1

i

∫

V

Φ∗
k′(x)∇Φk(x)dx = ∇kE(k)δ(k − k′) (28)

with v(k) = ∇kE(k) the band velocity36. We then ob-
tain

j(t) = ji(t) + jra(t), (29)
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where

ji(t) =
d

dt

∫

BZ

a(k, t)d∗
0(k)dk + c.c. (30)

is the current due to the polarization buildup between
band electron and impurity, and

jra(t) =

∫

BZ

|a(k, t)|2v(k) + c.c. (31)

is the intraband current arising from the laser driven mo-
tion of the electron in the band; this contribution comes
from the non-parabolicity of the band and is not present
in HHG from atomic gases.

D. Semicalssical model for impurity high-harmonic

generation

The high harmonic electric fields are determined by the
polarization buildup between band and impurity ground
state resulting in a current

j̃i(ω) = iω

∫

BZ

d3kd∗
0(k)

∫ ∞

−∞
dte−iωt

∫ t

−∞
dt′d0(κt′)·F(t′)

× e

(
iS(k,t′,t)− 1

T2
(t−t′)

)
dt′′ + c.c. (32)

where S(k, t′, t) =
∫ t

t′

(
ε0 − E(κt′′)

)
dt′′.

The three integrals in Eq. (32) can be solved analyt-
ically by the saddle point method3. The saddle point
equations are determined by,

∇kS =

∫ t

t′
v(κt′′)dt

′′ = x(t) − x(t′) = 0 (33a)

dS

dt′
= E(k−A(t) +A(t′))− ε0 = 0 (33b)

dS

dt
= E(k) − ε0 = ω. (33c)

In Eq. (33a), the band velocity is given by v(k) = ∇kE.
This equation states that HHG can take place only when
the electron, born at time t′ into the band, returns to the
parent impurity at t. Equation (33b) states that electrons
are born with zero momentum at time t′, k = A(t =
t′)−A(t′) = 0. At the time of recombination t the elec-
tron crystal momentum is given by k(t′, t) = A(t)−A(t′).
The finite impurity gap energy results in a complex birth
time, which is responsible for tunnel ionization. Finally,
Eq. (33c) represents conservation of energy — the elec-
tron recombines to the ground state and emits a photon
ω with energy equal E(k(t′, t))−ε0. Again, at moderate
laser intensities, for which the effective mass approxima-
tion applies, the saddle point equations for atom and
impurity become identical.
After saddle point integration we obtain for the har-

monic intensity

∣∣j̃i(ω)
∣∣2=

∣∣∣∣∣
∑

t′

√
w(t′)d∗

0(k)α(t
′, t)e

∫
t
t′

(
iS− 1

T2

)
dt′′

∣∣∣∣∣

2

, (34)

where S = ε0+ω−E
(
k(t′′, t)

)
, w(t′) is the ionization rate

and t′(t(ω)) and t(ω) are birth and recombination times
resulting in the generation of a harmonic with frequency
ω. For an isotropic lattice the ionization rate is deter-
mined by the ADK tunnel ionization rate of atoms4 with
the electron mass replaced by the effective mass. Further,
the dipole moment represents the recombination ampli-
tude; the remaining term α in the pre-exponential is the
propagation amplitude accounting for quantum diffusion
and dephasing; this depends on the band specifics. For
isotropic materials in the effective massm approximation
α ∝ m exp(−(t− t′)/T2)(t− t′)−3/2. The main difference
between HHG from impurities and atoms arises from the
finite, non-parabolic, anisotropic nature of bands.

III. RESULTS AND DISCUSSION

In the remaining part we use the above formalism to
investigate HHG and the tomographic reconstruction of
the impurity ground state wavefunction from harmonic
spectra.

A. Numerical details

For the analysis of HHG tomography of impurities we
use a 1D model system for a direct band gap semicon-
ductor. The periodic lattice potential is composed of
lattice cells of width a = 9.45 a.u. = 5 Å and well depth
v0 = 0.55 a.u. = 15 eV. The lattice cells are separated by
a mollifier function37; the lattice cell centered at x = 0 is
given by,

v(x) =





v0e
− (x+a/2)2

σ2
−(x+a/2)2 − v0 for − a

2 ≤ x < −a
2 + σ

v0e
− (x−a/2)2

σ2
−(x−a/2)2 − v0 for a

2 − σ < x ≤ a
2

−v0 otherwise

(35)

where σ represents the extension of the mollifier. Each
cell is represented on a space grid of 40 points giving a
grid spacing of ∆x = 0.236. We use 400 cells to the left
and right of the central cell for a total of 801 cells. The
Coulomb potential is centered over the central cell and is
given by,

U(x) =
−1

ǫ
√
x2 + s2

, (36)

where s is the softening parameter and ǫ is the dielectric
constant. For our model we use s = 25 a.u. and ǫ = 5 a.u.
The Hamiltonian is diagonalized using periodic bound-

ary conditions in both the presence and absence of the
Coulomb potential. In the absence of the Coulomb po-
tential we obtain the Bloch functions Φk(x); the energy
gap between the highest valence band and lowest conduc-
tion band at the Γ−point is approximately 4 eV. When
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FIG. 2. (a) Structure of the conduction band obtained from
diagonalization of the Hamiltonian. (b) Dipole moment cal-
culated using Eq. (25).

the Coulomb potential is present we obtain the impu-
rity ground state; for this system the impurity ground
state lies at an energy of 106.4meV below the Γ−point
of the conduction band. Figure 2(a) shows the calcu-
lated conduction band versus the crystal momentum k.
In Fig. 2(b) the dipole moment calculated from Eq. (25)
is shown.

The system is irradiated by a laser field with vector
potential A(t) = −(F0/ω0)f(t) sin(ω0t) with peak field
strength F0 and center frequency ω0. The peak field
strength is F0 = 1 × 10−4a.u. which corresponds to a
peak intensity of I0 = 3.5 × 108W/cm

2
in the material.

For the center frequency we use ω0 = 9.1×10−4 a.u.; this
corresponds to a wavelength of λ0 = 50µm. The pulse
has a Gaussian envelope f(t) with a FWHM of 12T0;
here T0 = 2π/ω0 = 166 fs. The time dynamics of the
system are determined from Eq. (26) with T2 = 50 fs.
The dephasing time T2 is chosen such that it is similar
to dephasing times in semiconductors38–40.

The parameters of our laser pulse and model system
result in a result in a minimum n = 5 photon transition
from impurity ground state to the conduction band using
a pulse with an intensity of the order of 108W/cm

2
. For

comparison ZnO has a Γ−point energy of 3.3 eV between
the highest valence and lowest conduction band; doping
with impurities such as H, Ga, Al and In leads to impu-
rity donor states in the range 46−73meV41. For a similar
n = 5 photon transition, such a system would require a
laser pulse with central wavelength ∼ 100µm with inten-
sity ∼ 100MW/cm

2
which is achievable42. By contrast

ZnSe has a bandgap of 2.8 eV with a donor level 1.2 eV
below the bottom of the conduction band when doped
with V43. Thus, the parameters chosen here give a rea-
sonable approximation to a semiconductor with shallow
donor impurity levels.

B. Tomographic reconstruction of the impurity

groundstate

Figure 3(a) shows the generated harmonics versus
birth (red) and recombination (blue) times from the semi-
classical trajectories obtained from numerical solution of
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FIG. 3. (a) Birth time t′ (red) and return times t (blue)
from the semiclassical trajectories versus harmonic order. (b)

Ionization rate w ∝ exp
(

− 2

3

√
m(2(Eg−ε0))

3/2/F (t′)
)

versus

harmonic order. (c) Propagation effects α2 ∝ exp
(

− 2(t −

t′)/T2

)

/(t−t′) versus harmonic order. (d) Magnitude squared
of the dipole moment as a function of harmonic order (blue);
the product of the three pre-exponential terms in Eq. (34)
represented by blue lines in (b)-(d) is plotted for the short
(red dots) and long (green squares) trajectory branches; the
magnitude is adapted to match the dipole moment. In (a)
- (c) the shaded regions indicate the contributions from long
trajectories.

Eqs. (33). There are two sets of solutions per optical
cycle, a short and a long trajectory. The long trajectory
contributions are indicated by the shaded regions in Fig.
3. Figures 3(b)-(d) examine the behavior of each of the
pre-exponential terms in Eq. (34). Figures 3(b) and 3(c)
present the ionization rate and propagation term, respec-
tively. For ionization we have used the dominant atomic
tunneling exponent3,35. Figure 3(d) shows |d0(ω)|2 ob-
tained from the diagonalization of the Hamiltonian (blue
line), where k has been replaced with ω by virtue of rela-
tion (33c). We find that |d0(ω)|2 decreases by about six
orders of magnitude with increasing harmonic order. The
rapid drop comes from the fact that the ground state ex-
tends over many unit cells and therewith populates only
a small fraction of the BZ. In Fig. 3(d) we also plot
the product of all three terms, where long and short tra-
jectories are indicated by red dots and green squares,
respectively. The short trajectories are dominant and a
comparison with |d0(ω)|2 shows that the dipole moment
determines the form of the harmonic spectrum over most
of its range; this is confirmed in Fig. 4.

In Fig. 4 the harmonic intensity |j̃|2 (blue) is plotted,
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FIG. 4. Scaling comparison of the harmonic spectrum (blue)
to the dipole (red, dashed); the dipole has been shifted down
in order to compare with the spectrum. The harmonics in the
shaded region are those whose energy is below Eg − ε0.

including both the impurity and intraband contributions.
We note that the harmonics above the impurity ioniza-
tion potential are dominated by the impurity term (see
Appendix). The strength of the above impurity gap har-
monics drops rapidly until around the cut-off near the
71st harmonic. This behavior is consistent with the de-
crease of |d0(ω)|2 (dashed) indicating that, of the three
pre-exponential terms in Eq. (34), the dipole has the
strongest influence on the shape of the harmonic spec-
trum. Consequently, using relation (33c) to connect har-
monic order and k, we can reconstruct d0(k) from the
magnitude of the harmonic spectrum. This is feasible,
as the atom-like dipole moment is purely real/imaginary.
For a complex dipole moment the phase of the harmonics
must be considered, as in reference 44.

To reconstruct the impurity ground state we take the
inverse Fourier transform of d0(k) and divide it by x to
obtain B0(x). In a 3D experiment one would rotate the
crystal and reconstruct the total wavefunction from 1D
snapshots. Figure 5 shows the results of the tomographic
reconstruction. The reconstructed wavefunction (red)
matches the impurity ground state well throughout the
central region but deviates from the true wavefunction at
the tails. This agrees with the fact that the difference be-
tween harmonic intensity and dipole scaling in Fig. 4 is
biggest for small crystal momenta corresponding to slow
wavefunction variations in real space. Further the small
oscillations in the harmonic spectrum in Fig. 4 do not
appear to cause a substantial error in the reconstruction;
they result from interference between harmonics gener-
ated in positive and negative half-cycles as a consequence
of the phase term in Eq. (34).

x (a.u.)

|B
0
(x

)|

11 unit cells

−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

FIG. 5. Comparison between the impurity ground state (blue,
shaded) and the reconstructed ground state (red). The region
between the vertical dashed lines represents 11 unit cells.

C. Dimensionality considerations for tomographic

reconstruction

In our semiclassical model the the ionization rate w(t′)
and the propagation term that accounts for quantum
spreading and dephasing α(t′, t), are given by,

w(t′) ∝ e−
2
3

√
m(2E0)

3/2/F (t′) (37a)

α(t′, t)2 ∝ e−2(t−t′)/T2

(t− t′)D
(37b)

where E0 = Eg − ε0 is the impurity ionization poten-
tial, D ∈ {1, 2, 3} is the dimension and t′ and t are the
birth and recombination times, respectively. The effec-
tive mass along the direction longitudinal to the laser
polarization is given by m. In Eq. (37b) the term
(t − t′)−D accounts for the quantum spreading and the

term e−2(t−t′)/T2 accounts for the effect of dephasing.
Both terms have the strongest effect on the long tra-
jectories as (t − t′) will be greatest for this trajectory
branch.
The exponential scaling of the ionization rate only

depends on the longitudinal components of the system
along the direction of laser polarization; the transverse
components only appear in the pre-exponential factor.
As such, the dimensionality of the system is not expected
to have a significant effect on the form of the ionization
rate. Contrastingly, the quantum diffusion contribution
(t− t′)−D to the propagation term in Eq. (37b) will ex-
hibit greater spreading for a three-dimensional system as
opposed to a one-dimensional system.
Figure 6 shows the effect the dimension will have on the

product w(t′)|d0(k(t′, t))|2α(t′, t)2 in Eq. (34). Figure
6(a) shows this product for the one-dimensional system;
this is a reproduction of Fig. 3(d). Figure 6(b) shows
the product with D = 3. The three-dimensional plot dis-
plays two main difference from the one-dimensional case.
First, the separation between the long and short trajec-
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FIG. 6. Magnitude squared of the dipole moment as a func-
tion of harmonic order (blue); the product of the three pre-
exponential terms in Eq. (10) of the main manuscript is plot-
ted for the short (red dots) and long (green squares) trajec-
tory branches for (a) the one-dimensional system and (b) a
three-dimensional system. The magnitude of the semiclassical
curves is adapted to match the dipole moment.

tory branches is greater in three dimensions than in one
dimension. This occurs because spreading can occur in
all three directions in the three-dimensional case. Sec-
ondly, because the spreading term is more pronounced in
three-dimensions, the semiclassical curve deviates more
from the behaviour of the dipole. This suggests that,
for three-dimensional systems, it may be necessary to
account for quantum diffusion before reconstructing the
wavefunction. Accounting for quantum diffusion should
be achievable in a straightforwardmanner using Eq. (34).
For each birth and recombination time pair, α(t′, t) can
be calculated. This (t′, t) pair corresponds to a particular
harmonic and thus, we have the mapping α(t′, t) → α(ω).
The α(ω) term can then be factored out of the harmonic
spectrum, removing the effect of quantum diffusion for
harmonic with frequency ω.
A more sophisticated reconstruction scheme could also

remove the effects stemming from ionization. As a re-
sult of the complexity in calculating ionization rates in
solids45–49, the ionization rate could be measured by
transient absorption spectroscopy50 and then factored
out of the harmonic spectrum in a similar manner to
that described for removing the effects of quantum dif-
fusion. Furthermore, the dipole moment extracted from
Eq. (34) or from numerical analysis can be improved
on by using optimization techniques, similar to the one
used recently for all optical band gap measurements51.
Finally, for non-centrosymmetric materials the phase of
the dipole is also important52, facilitating the need for
the phase of the harmonics to be measured for proper
reconstruction.

IV. CONCLUSION

Here we have presented the microscopic theoretical un-
derpinning for exploring strong field physics in impuri-
ties. Our work makes a first step toward adapting tech-
nology developed for atomic and molecular gases to solid
state impurities. In contrast to gases, absorption will

limit the material depth from which photons and elec-
trons can be detected; as a result, propagation effects
are expected to be less significant. Whether experimen-
tal tomographic reconstruction is as straightforward as
found here remains to be seen. How dominant the dipole
moment is in determining harmonic spectra will depend
on various factors, such as dephasing time, material di-
mension and parameters. Further, it has been demon-
strated that for HHG to be viable, coherent buildup due
to phase matching and field propagation effects should be
considered53. To study these effects it would be neces-
sary to couple the present theory to Maxwell’s equations.
This is beyond the scope of the current work and will be
considered in a followup work.
Finally, it needs to be discussed that our theoret-

ical approach has been developed for shallow impuri-
ties. Deep impurities are more complex, as their wave-
function changes substantially over a unit cell. This
results in a strong mixing between impurity and sur-
rounding lattice wavefunction components. The resulting
many-body effects, such as coupling to quasi-particles,
need to be addressed with more sophisticated theoretical
approaches29. They will dominantly enter in the dipole
moment and therewith in recombination; ionization will
be influenced to a lesser extent, as the dipole moment
enters in the pre-exponent. Propagation will only be al-
tered close to the impurity, where the impurity potential
yields higher-order corrections to the strong field approx-
imation. As a result, our simple approach will present a
reasonable starting point to develop strong field impurity
physics in this more complex limit.

Appendix: Impurity versus intraband harmonics

The HHG spectrum in Fig. 4 of the main manuscript
contains contributions from both the intraband and im-
purity terms. Figure 7 compares the individual con-
tributions of each of these terms. The individual har-
monic spectra are calculated by taking the absolute value
squared of the Fourier transform of Eqs. (30) and (31).
The harmonics generated by the impurity term are rep-
resented by the blue line and those generated by the in-
traband current are represented by the green line. In the
above band gap range — harmonics with n ≥ 5 — the
spectrum is dominated by the impurity term by approx-
imately 3 to 6 orders of magnitude, depending on the
harmonic. The only exception is harmonic 5 where the
impurity and intraband terms are comparable. In the
below band gap regions, the impurity harmonics are the
dominant signal. The red, dashed line in the figure rep-
resent the dipole moment which scales similarly to the
impurity harmonic signal.
We note here that the density of impurities will have

an effect on the intensities of the impurity and intra-
band harmonics. In our one-dimensional calculations we
have an impurity density of approximately 10−3 impu-
rities per lattice cite. In three dimensions this density
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FIG. 7. The impurity (blue) and intraband (green) harmonic
spectra. The red, dashed line represents the dipole moment.
The shaded area indicates the below impurity ionization po-
tential region. The dipole has been shifted on the y-axis to
compare with the shape of the harmonic spectra.

would be approximately 10−9 and will likely result in a
decrease of impurity harmonics relative to the intraband
spectrum. In our one dimensional calculations the im-
purity harmonics range from 3 to 6 orders-of-magnitude
above the intraband harmonics. As a result, a relative

impurity density of around 10−6 corresponding to an im-
purity density of approximately 1016cm−3 should be suf-
ficient to still observe stronger impurity harmonics.
Further, there is another parameter that determines

the strength of impurity versus intraband HHG, which is
the laser intensity. For the intraband harmonics to de-
velop, the electron must explore a significant portion of
the nonlinear part of the band. Due to the low field inten-
sities used here, the electron explores only about a third
of the Brillouin zone and does not experience the full
nonlinear portion of the conduction band, resulting in a
reduction of the intensity of intraband harmonics. When
the electron only explores a limited region of the Bril-
louin zone near the Γ−point, the intensity of the intra-
band harmonics decreases with harmonic order at a rate
much larger than the impurity harmonics. The above
discussion highlights the need for careful consideration
when determining doping rates and laser parameters.
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