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Abstract 

 
Continuing uncertainty in the high-pressure melt curves of bcc transition metals has 

spawned renewed research interest in the phase diagrams of these materials, with 

tantalum becoming an important prototype.  The present paper extends the quantum-

based investigation of high-T,P polymorphism and melt in Ta that was begun in Paper I 

[Phys. Rev. B 86, 224104 (2012)] on five candidate cubic and hexagonal structures (bcc, 

A15, fcc, hcp and hex-w) to here treat four promising orthorhombic structures (Pnma, 

Fddd, Pmma and a-U).  Using DFT-based MGPT multi-ion potentials that allow accurate 

MD simulations of large systems, we showed in Paper I that the mechanically unstable 

fcc, hcp and hex-w structures can only be stabilized at high-T,P by large anharmonic 

vibrational effects, requiring systems of ~ 500 atoms to produce size-independent melt 

curves and reliable calculations of thermodynamic stability.  This reversed a previous 

small-cell quantum-simulation prediction of a high-T,P hex-w phase.  Subsequent DFT 

calculations have now suggested a more energetically favorable and mechanically stable 

Pnma structure, which again small-cell quantum simulations predict could be a high-T,P 

phase.  Our present MGPT total-energy and phonon calculations show that not only 

Pnma, but all four orthorhombic structures considered here, are similarly energetically 

favorable, and that Fddd in addition to Pnma is mechanically stable up to 420 GPa.  

MGPT-MD simulations further reveal spontaneous temperature-induced Pnma  bcc 

and Fddd  bcc transformations at modest temperatures, peaking at ~ 1450 K near 100 

GPa.  At high temperatures near melt, we find T-dependent  and  axial ratios 

and large stabilizing anharmonicity present in all four orthorhombic structures.  The 
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anharmonicity drives significantly larger melt size effects, requiring systems of ~ 1000–

4000 atoms to produce converged melt curves for reliable predictions of relative 

thermodynamic stability.  In the large-cell limit, with ~ 40,000 solid-phase atoms and 

accurate two-phase MGPT-MD melt simulation, we find that Pnma, Fddd and a-U have 

melt temperatures that are equal to bcc over small pressure ranges in the vicinity of 100 

GPa, but that the orthorhombic melt temperatures never exceed bcc up to 420 GPa.  This 

finding suggests that Pnma, Fddd and a-U remain highly competitive metastable phases 

that could co-exist with bcc and possibly be observed experimentally.  Finally, to add 

additional insight into our results we have constructed global Helmholtz free energies for 

the A15, Pnma and Fddd phases of Ta, complementing previous free energies obtained 

for the bcc, fcc, and liquid phases. 
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I. INTRODUCTION 
 
The long-standing controversy in bcc transition metals between “flat” static melt curves 

obtained from early laser-heated diamond-anvil-cell (DAC) measurements [1-3] and 

“steep” dynamic melt curves inferred from dynamic isobaric [4-7] and shock [8-11] 

measurements has renewed research interest in the high-temperature (T), high-pressure 

(P) phase diagrams of these materials, with tantalum (Ta) emerging as an important 

specific example that has attracted considerable recent attention [12-21].  In 2010, 

Burakovsky et al. [12] used small-cell (< 150 atoms) quantum molecular dynamics 

(QMD) melt simulations, based on first-principles density functional theory (DFT) [22] 

and Z-melt methodology [23], to predict a hexagonal omega (hex-w) phase in Ta at high 

temperature above 70 GPa.  Shortly thereafter, in Paper I of this series [13], we examined 

possible high-T,P polymorphism in five cubic and hexagonal phases of Ta with 

complementary DFT-based MGPT (model generalized pseudopotential theory) multi-ion 

interatomic potentials [13,14], which allow accurate treatment of much larger system 

sizes in MGPT-MD simulations.  We found significant melt size effects for all non-bcc 

phases studied, requiring a minimum of ~ 500 atoms in the solid to simulate a reliable 

bulk melt curve for these phases.  While in the small-cell limit we confirmed the QMD, 

Z-melt hex-w prediction, we found that in the large-cell limit, with accurate two-phase 

MGPT-MD simulations and ~ 40,000 atoms in the solid, that bcc produces the highest 

melt temperatures at all pressures to 420 GPa and hence is thermodynamically the most 

stable of the phases considered. 

 
We also showed in Paper I that the corresponding high-T mechanical stability of hex-w is 

unexpectedly complex, with a bifurcation in its mechanical behavior as a function of 

 ratio that impacts the metastability of this structure.  Both DFT and MGPT quasi-

harmonic phonon calculations show that at  the hex-w structure has imaginary 

phonon frequencies at pressures up to at least 420 GPa, and hence is mechanically 

unstable at low temperature for all pressures of interest.  At high temperature, however, 

large anharmonic vibrational effects occur that can aid in producing mechanical stability 

and hence bulk metastability.  For low values of , such metastability is indeed 

realized in MGPT-MD simulations, although at a large free-energy cost that keeps the 
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hex-w melt curve far below that of bcc.  For larger, and more normal, values of 

, on the other hand, the high-T mechanical stability, as measured in MD 

simulations by the calculated stress tensor, is poor and a partial transformation to bcc 

occurs.  The transformation to bcc is incomplete because of the hex-w boundary 

conditions imposed by the MD simulations, so the physical inference is that the hex-w 

structure remains mechanically unstable in the high-T,  regime.  This 

conclusion is now supported by the recent DFT self-consistent phonon calculations of 

Yao and Klug [15] and of Liu et al. [16].  Such calculations impart a T-dependence to the 

phonon frequencies and thereby capture at least part of the anharmonic vibrational effects 

at high temperature.  These authors find that imaginary phonon frequencies, and hence 

mechanical instability, persist in the hex-w structure at high-T,P conditions up to 400 

GPa and 6000 K, and up to 300 GPa and 7000 K, respectively. 

 
At the same time, there have been continuing experimental indications [17,18] of a 

possible bcc to hex-w phase transition in strongly shocked Ta and Ta-W alloys.  

Previously, Hsiung and Lassila [24] had found evidence of hex-w in recovered Ta and 

Ta-W samples that had been shocked to 145 GPa.  In more recent shock experiments at 

only 30 GPa, however, Hsiung [17] found that hex-w was absent in recovered Ta and Ta-

5%W samples, and was only present in a Ta-10%W alloy.  In new laser-driven shock 

experiments on Ta at 70 GPa, Lu et al. [18] have reported both in situ and sample 

recovery evidence for hex-w, suggesting a threshold shock pressure in the range 30-70 

GPa for this phenomenon to occur in the elemental material.  In any case, a clear 

quantum-based explanation for the phenomenon is still lacking, and in light of the above 

discussion, any such explanation must at the very least be environmentally dependent and 

involve dynamic nonequilibrium and other factors well removed from the equilibrium 

phase diagram itself for pure Ta. 

 
Consequently, current theoretical research attention on the equilibrium phase diagram in 

Ta has now turned away from cubic and hexagonal structures, such as hex-w, and 

towards the possibility of lower-energy orthorhombic phases occurring at high-T,P 

conditions.  This interest follows recent DFT [15,16] and small-cell QMD [19] 
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indications of a possible high-T,P Pnma phase in Ta.  In contrast to hex-w, DFT quasi-

harmonic phonon calculations by Yao and Klug [15] and Liu et al. [16] on Pnma have 

produced all real phonon frequencies to 400 GPa and 250 GPa, respectively, and hence 

low-temperature mechanical stability at the pressures of interest.  Using small-cell (64 

atom) DFT-based metadynamics simulations, Yao and Klug further studied a possible 

high-T,P bcc to Pnma phase transition, and elaborated a plausible Burgers-like transition 

path between the two structures.  Subsequently, Burakovsky et al. [19] used ~ 500-atom 

QMD, Z-melt simulations on Pnma Ta to predict a bcc to Pnma transition at high 

temperature above 200 GPa. 

 
In the present work, we have now extended our MGPT Ta polymorphism studies reported 

in Paper I to four promising candidate orthorhombic structures: Pnma, Fddd, Pmma and 

Cmcm.  All of these structures are either observed phases in heavy metals or have been 

predicted to be competitive phases in bcc transition metals.  As a whole, we find these 

orthorhombic phases to be highly competitive with bcc in Ta at high-T,P conditions, with 

each structure exhibiting good to excellent mechanical stability in this regime.  But at the 

same time, these structures exhibit very large anharmonic effects at high temperature that 

drive significantly larger melt size effects than we found in the cubic and hexagonal 

structures.  These size effects, which now range up to ~ 1000–4000 atoms, depending on 

the melt method and simulation cell shape, again can significantly alter phase predictions, 

calling into question the above DFT and QMD predictions on Pnma. 

 
In Fig. 1 we update our baseline starting point with the best current experimental and 

theoretical knowledge about high-pressure bcc melting in Ta.  In particular, there have 

been two improved laser-heated DAC measurements of bcc melting [20,21] that yield 

significantly higher melt temperatures as a function of pressure than in the earlier 

experiments [1,2].  In the new experiments, both Dewaele et al. [20] and Karandikar and 

Boehler [21] have identified and addressed the important issues of chemical 

contamination in the DAC and resulting chemical reactions with the Ta sample.  These 

workers differ, however, in their approaches to the melt-temperature measurement itself, 

with Dewaele et al. finding higher melt temperatures, but with large error bars.  The new 

DAC melt data are compared with the best available DFT-based bcc melt curves and with  
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FIG. 1.  High-pressure bcc melting in Ta, as obtained from MGPT free energies [14], 

QMD simulations [12], and DFT-TPT calculations [25], and compared with experimental 

data from both historical [1,2] and new [20,21] DAC measurements (solid circles with 

error bars [20] and solid diamonds [21]), and with data from isobaric [5] and shock [8,11] 

measurements. 

 

previous static and dynamic data for Ta.  The three theoretical melt curves displayed in 

Fig. 1 derive from the accurate MGPT free energies of Moriarty and Haskins [14], from 

the QMD, Z-melt simulations of Burakovsky et al. [12], and from the DFT-based 

thermodynamic-perturbation-theory (TPT) calculations of Taioli et al. [25].  The MGPT 

and QMD melt curves closely agree with each other up to pressures of ~ 250 GPa, as well 

as with the initial low-pressure melting slope obtained from isobaric expansion data [5].  

The MGPT and DFT-TPT melt curves agree well with each other above ~ 180 GPa and 

with the shock melting point near 300 GPa [8,11].  In the DAC pressure regime below 

about 135 GPa, the DFT-TPT melt curve is closest to the new DAC data and within the 
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error bars of the Dewaele et al. results [20].  In all of the DAC measurements to date no 

other solid phase than bcc has ever been reported. 

 
The outline of the present paper is as follows.  In Sec. II we briefly review our theoretical 

and computational methods, with special attention given to the complicating features that 

the more complex orthorhombic structures present to MGPT-MD melt simulations.  In all 

MGPT calculations considered here we use the same high-quality Ta6.8x multi-ion 

potentials employed in Paper I and in Ref. [14].  We find, however, that the simplified Z-

melt method, while useful for comparisons and providing lower bounds on melt size 

effects, does not produce reliable converged melt curves for any of the orthorhombic 

structures considered.  Consequently, most of our present melt simulations are carried out 

with the more accurate two-phase method previously discussed in Paper I.  In Sec. III we 

consider the low-temperature structural and mechanical stability of our four candidate 

orthorhombic structures, including the interesting possibility of spontaneous temperature-

induced transitions to bcc for the Pnma and Fddd phases.  In Sec. IV we then address 

high-temperature mechanical stability and melt in the same candidate structures, 

including large anharmonic energies and melt size effects, and the calculation of accurate 

large-cell two-phase melt curves for comparison with bcc in each case.  In Sec. V we 

calculate additional global free energies for the A15, Pnma and Fddd phases, 

complementing previous free energies obtained in Paper I for the bcc, fcc and liquid 

phases, and providing additional insight into our results.  Finally, in Sec. VI we 

summarize all of our Ta polymorphism results to date and draw conclusions. 
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II. THEORETICAL and COMPUTATIONAL METHODS 

 
In this section we briefly review relevant aspects of our theoretical and computational 

methods used in the remainder of this paper, including the origin and application of 

MGPT interatomic potentials, the two-phase melt method and its application to complex 

orthorhombic structures, and the calculation of global free energies. 

 
A. MGPT interatomic potentials 

 
Within DFT quantum mechanics, generalized pseudopotential theory (GPT) provides a 

first-principles approach to quantum-based interatomic potentials in transition metals 

[26].  The simplified model GPT or MGPT [27] used here is derived from the GPT 

through a series of systematic approximations applicable to mid-period transition metals 

with nearly half-filled d bands, and permits efficient large-scale atomistic simulations 

with full quantum mechanical realism, including the inherently long-ranged nature of the 

interatomic interactions.  In both the GPT and MGPT applied to a bulk transition metal at 

atomic volume , the real-space total-energy functional takes the form 

 

  ,         (1) 

 
where  denotes the variable N ion positions in the metal, and the prime on each 

summation sign denotes the exclusion of all self-interaction terms from the summation.  

The leading volume term in Eq. (1), , as well as the two-ion radial-force pair potential 

, and the three- and four-ion angular-force potentials,  and , depend explicitly on 

the atomic volume , but are structure independent and transferable to all bulk ion 

configurations, either ordered or disordered.  The specific refined Ta6.8x MGPT 

potentials used in both Paper I and in the present paper are most completely described in 

Ref. [14].  Extensive tests of the Ta6.8x potentials for cubic and hexagonal structures as 

well as the liquid are discussed in Ref. [14], as well as in Paper I.  Additional tests on the 

present orthorhombic structures are discussed in Sec. III. 
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As in Paper I, we apply the Ta6.8x potentials in all calculations using the efficient matrix 

representation of MGPT [28], as implemented in the parallel molecular dynamics code 

ddcMD [29] and in the open-source MD code LAMMPS [30].  The Ta6.8x potentials 

themselves are available as part of the USER-MGPT package included in LAMMPS.  

The advanced MGPT capability of temperature-dependent potentials [31], which allows 

direct treatment of electron temperature in MD simulations, is not believed to be 

important for wide-band 5d metals like Ta and has not been used in constructing the 

present Ta6.8x potentials, which neglect electron-thermal effects entirely.  In this regard, 

electron-thermal contributions have been shown to affect the bcc melt curve in Ta by less 

than 5% [14,32].  The small neglected electron-thermal contributions in Ta can be 

included after the fact, if desired, in the global free energy of a given phase, as described 

below in Sec. IIC. 

 
B. Two-phase and Z-method melt simulations for orthorhombic structures 

 
Our primary dynamic two-phase melt method [13,31], as applied in the ddcMD code, is a 

refined and robust version of the solid-liquid coexistence method of Morris et al. [33].  

As in other modern and equivalent coexistence melt methods (e.g., Hernandez et al. 

[34]), our approach replaces constant-volume coexistence in the Morris et al. method 

with the desired thermodynamic condition of constant-pressure coexistence.  In normal 

melting metals like Ta, of course, there is an increase in volume upon melting that is not 

accounted for in the Morris et al. method, but is correctly treated in our constant-pressure 

two-phase method.  In our approach, equilibrated solid and liquid subcells of equal size 

and shape, and maintained at equal constant pressure, are placed in contact, and the 

movement of the solid-liquid interface is monitored with a sensitive order parameter as a 

function of pressure for a trial melt temperature .  The equilibrium melting pressure 

 is achieved when the solid-liquid interface remains stationary and neither the 

solid nor the liquid phase is growing at the expense of the other.  Additional technical 

details on our two-phase melt method are given in Paper I.  The method has been 

extensively tested and successfully applied to complex d- and f-electron metals described 

by quantum-mechanical forces, including Ta [13,14], Mo [31] and U [35,36]. 

 

Tm

Pm(Tm )
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Also in this regard, it is well known that the accuracy of two-phase melt methods 

increases with cell size, and that significant cell sizes are needed to apply the method 

reliably.  Indeed, Morris et al. already discussed these issues in their original paper [33].  

Even to melt weakly anharmonic fcc Al with short-range empirical forces, Morris et al. 

found it necessary to use a shape-corrected solid subcell of at least 512 atoms, and 

considered subcells as large as 32,768 atoms.  Today the use of large cell sizes in two-

phase melting simulations for metals is really quite common [13,14,34,37,38] whether or 

not strong anharmonic effects are present.  As in Paper I, we consider here solid-phase 

cells as large as  ~ 40,000 atoms. 

 
The two-phase Ta melt curves treated in Paper I involved only cubic and hexagonal 

structures, whose lattice vectors and MD subcells are explicitly dependent on the volume 

, and for the hexagonal structures on an additional  ratio.  The present 

orthorhombic structures and MD subcells, however, depend on three parameters:  plus 

 and  axial ratios.  In addition, the  and  ratios are significantly 

temperature dependent and cannot be determined from  alone.  The temperature-

dependent nature of the orthorhombic structures thus presents a challenge to the 

determination of the melt curve, as the correct melt temperature would need to be known 

a priori before melt assessment.  We, therefore, have adopted an iterative approach to 

melt determination.  Starting guesses for the structure and subcell shape are evaluated at a 

corresponding bcc melt volume  using an optimization procedure discussed in Sec. 

IV.  After determining the melt temperature  at this volume, the shape of the subcell is 

optimized at these conditions, and a new melt curve is determined from the corrected 

structure.  This procedure can be iterated until convergence, though we have found in 

practice that a single iteration correctly predicts the melt curve to high precision. 

 
A limited number of MGPT-MD Z-method melt calculations on the Pnma structure also 

have been carried out in this work for the purposes of examining size effects and making 

direct comparison with the QMD Z-melt calculations of Burakovsky et al. [19].  These 

additional Z-melt calculations have been performed with the LAMMPS code and take 

into account the above considerations for the  and  axial ratios, but were 

otherwise performed as described in Paper I.  In this regard, it should also be emphasized 
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that our implementation of the Z-method melting is entirely static, unlike the more 

common dynamic versions of the Z method [12,19,23].  This is an important distinction 

in the present context, because our static Z method eliminates the overheating and 

hysteresis present in dynamic Z methods as sources of melt size effects.  Thus the 

primary origin of melt size effects in out Z-melt simulations is the same as in our two-

phase melt simulations: anharmonic vibrational effects needed to stabilize otherwise 

unstable solid phases at high temperature. 

 
C. Global free energies 

 
The basic thermodynamic functions of wide-band 5d transition metals like Ta are well 

described by the conventional weak-coupling model, in which the Helmholtz free energy 

 can be calculated as a sum of cold , ion-thermal, and electron-thermal 

contributions: 

 
  .                                                             (2) 

 
The cold energy  can be accurately evaluated with MGPT Ta6.8x potentials via Eq. (1) 

for all other solid structures of interest.  The ion-thermal free-energy component  in 

Eq. (2) can also be evaluated entirely from the Ta6.8x potentials, although this is only 

straightforward for solid structures that are mechanically stable at low temperature, such 

as bcc, where standard quasiharmonic lattice dynamics (QHLD) can be applied and 

 can be built up from a zero-temperature starting point.  In this case,  

can be directly obtained as a function of volume and temperature by smoothly joining 

QHLD free energies with efficient reversible-scaling MD (RSMD) calculation of high-

temperature anharmonic free-energy contributions [14].  The final small electron-thermal 

free-energy component  in Eq. (2) embodies the remaining effects of temperature on 

the structure and occupation of the electronic states of the system.  A useful high-

temperature treatment of  has previously been developed for Ta from 

configuration-averaged, finite-temperature DFT calculations in the bcc and liquid phases, 

using atomic configurations obtained from MGPT-MD simulations [32].  To lowest order 

it was found that at high temperature 

Atot (T = 0)
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  ,                                                                                          (3) 

 
where  is independent of structure.  This baseline scheme was used successfully in 

Ref. [14] to determine very accurate free energies for the bcc phase of Ta.  We use this 

scheme here to obtain an additional global free energy for the metastable A15 phase in 

Sec. V. 

 
For the liquid and for other solid phases of Ta that are either mechanically unstable at low 

temperature or undergo T-induced phase transitions at intermediate temperatures,  

must first be established independently along an appropriate finite-temperature reference 

curve.  In the liquid, this can be accomplished very accurately by making a precise 

thermodynamic integration from a known reference system along a chosen high-

temperature isotherm.  One can then use RSMD simulations to extend  

downward in temperature from that reference point, as described in Ref. [14].  For each 

remaining solid phase, one can then combine  for the liquid with a simulated two-

phase melt curve to obtain  along the solidus melt line for that phase.  One can then 

similarly use RSMD simulations to extend  upward and downward in 

temperature from the reference melt line, as discussed in Ref. [14] for the metastable fcc 

phase.  We here apply this technique to calculate global free energies for the 

orthorhombic Pnma and Fddd phases in Sec. V. 

  

Ael (Ω,T ) = − 1
2
α (Ω)T 2

α (Ω)

Aion

Atot (Ω,T )

Aion

Aion
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III. LOW-T STRUCTURAL and MECHANICAL STABILITY of ORTHORHOMBIC 

PHASES 

 
In this section we first discuss and visualize the structural details of our four candidate 

orthorhombic phases: Pnma, Fddd, Pmma, and Cmcm.  We then consider the relative 

 structural phase stability, as measured by relaxed total-energy calculations, and the 

corresponding mechanical stability, as measured by the calculated quasiharmonic phonon 

spectra, of each of these phases as a function of volume over the pressure range of 

interest up to 420 GPa.  We also discuss the interesting phenomenon of T-induced phase 

transitions at moderate temperatures in the cases of Pnma and Fddd, as uncovered by 

MGPT-MD simulations. 

 
A. Description of candidate structures 

 
Orthorhombic structures are common in heavy metals.  Observed orthorhombic phases 

also often appear in close proximity to a high-temperature bcc melting phase [39], and 

there usually exists an “easy” transition path between the orthorhombic structure and bcc, 

as elaborated for Pnma by Yao and Klug [15]. 

 
The Pnma space group is the observed high-pressure structure of Am-IV between about 

17 and 100 GPa [40], and also the observed structure of Ca-VI above 158 GPa [41].  

Pnma is a simple orthorhombic structure with four atoms per primitive cell, located on 

equivalent sites and defined by two internal structural parameters denoted as x and z.  In 

terms of lattice constants a, b and c, the lattice vectors  and basis vectors  of 

Pnma are 

 

                    .                                         (4) 

 
Of course, as is always the case for any structure, the basis vectors may be chosen in 

multiple equivalent ways. 

T = 0

(A) (b)

A1 = (a,0,0)
A2 = (0,b,0)
A3 = (0,0,c)

b1 = (a / 2 − x,b / 4, z − c / 2)
b2 = (−x,b / 4,−z)
b3 = (x,−b / 4, z)
b4 = (x − a / 2,−b / 4,c / 2 − z)
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The Fddd space group is the observed high-temperature structure of g-Pu near 600-700 K 

[39], and also the observed high-pressure structure of Am-III between about 10 and 17 

GPa [40].  Fddd is a face-centered orthorhombic structure with two atoms per primitive 

cell located on equivalent sites, with lattice and basis vectors 

 

                    .                                      (5) 

 
Note that the Fddd structure is completely symmetric with respect to the a, b and c axes. 

These axes may be assigned in different ways, so quoted  and  axial ratios 

depend on the assignment made.  Also, it is often convenient to treat Fddd in an 

equivalent but larger simple orthorhombic unit cell with eight atoms per cell.  This is 

done here for both the phonon spectrum and in all MGPT-MD simulations. 

 
The Pmma space group is a close cousin of Pnma.  This structure was previously found 

to be a competitive with bcc in a genetic algorithm search for Mo [42].  Pmma is a simple 

orthorhombic structure with four atoms per primitive cell, located on two inequivalent 

sites defined by an internal structural parameter denoted as z.  The lattice and basis 

vectors are 

 

                    .                                                       (6) 

 
The atom sites defined by  and  are equivalent, as are the sites defined by  and 

.  For  all four sites become equivalent. 

 
The Cmcm space group is the observed room-temperature structure of a-U [39].  Cmcm 

is a base-centered orthorhombic structure with two atoms per primitive cell, located on 

inequivalent sites defined by an internal structural parameter denoted as y.  The lattice 

and basis vectors are 

A1 = (0,b / 2,c / 2)
A2 = (a / 2,0,c / 2)
A3 = (a / 2,b / 2,0)

b1 = (a / 8,b / 8,c / 8)
b2 = (−a / 8,−b / 8,−c / 8)

c / a b / a

A1 = (a,0,0)
A2 = (0,b,0)
A3 = (0,0,c)

b1 = (a / 2,b / 2,c / 2)
b2 = (a / 4,0,−z)
b3 = (0,b / 2,c / 2)
b4 = (−a / 4,0, z)

b1 b3 b2

b4 z = 0
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                    .                                                  (7) 

 
In MGPT-MD simulations, it is convenient to treat Cmcm or a-U in an equivalent but 

larger simple orthorhombic unit cell with four atoms per cell.  Also, because a-U is the 

more commonly used terminology for the Cmcm structure, we will use this terminology 

in the remainder of this paper. 

 
The detailed arrangement of atoms in each of our four orthorhombic structures for 

compressed Ta is illustrated in Fig. 2.  The important  and  axial ratios, which 

define our simple-orthorhombic simulation cells, are both volume and temperature 

dependent.  The behavior of these parameters at both low and high temperature is 

discussed in Sec. IVA.  The remaining internal structural parameters are automatically 

relaxed in MGPT-MD simulations, and we need only establish  starting values of 

these parameters from total-energy minimization, which we consider in the next section. 

 
B.  structural phase stability 

 
To examine low-temperature structural phase stability in our four candidate orthorhombic 

structures, we have calculated optimized MGPT total energies for these structures at 

 via Eq. (1).  In each case  has been minimized as a function of atomic volume 

 with respect to the  and  axial ratios and all internal structural parameters.  

These results are plotted as total energy differences relative to bcc, , per atom 

in Fig. 3(a).  Also shown for reference in Fig. 3(a) is the corresponding result for the hex-

w structure from Paper I.  As a group, the orthorhombic relative total energies are rather 

tightly clustered and significantly lower in energy than hex-w.  The Fddd structure has 

the lowest total energy of the orthorhombic phases considered down to a volume near 70 

a.u., corresponding to pressure of about 300 GPa.  At lower volumes and higher pressures  
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FIG. 2. The four orthorhombic structures of Ta explored in this work, as obtained at 

conditions of  and  a.u..  The displayed cells are shown normal to the three 

lattice vectors , , and .  The dark atoms compose a particular choice of atomic 

basis entirely within the cell, while the translucent atoms are periodic images.  (a) Pnma; 

(b) Fddd; (c) Pmma; and (d) a-U (Cmcm). 

 

Pmma becomes the lowest-energy structure.  In this regard, note that both the Pmma and 

a-U energies peak just above 70 a.u. before turning downward at lower volumes.  In the 

case of Pmma at least, this behavior appears to be closely linked to the behavior of its 

internal z parameter, which is shown in Fig. 4.  Unlike the internal structural parameters 

for Pnma and a-U, which are nearly constant over the entire volume range in Fig. 3(a), 

for Pmma below 83 a.u., its z parameter suddenly and rapidly decreases from a value of 

about 0.1 above 83 a.u. to zero at 67 a.u.  At this point, all four of the atom sites in the 

Pmma structure become equivalent. 
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FIG. 3.  Optimized MGPT hexagonal and orthorhombic total energies and enthalpies per 

atom at  relative to bcc.  (a) hex-w, a-U, Pmma, Pnma, and Fddd relative total 

energies vs. volume, where  denotes the observed bcc equilibrium volume; (b) hex-w 

and Pnma relative total enthalpies vs. pressure, together with the corresponding DFT 

results of Yao and Klug [15]. 

 

One can also convert total energy as a function of volume to total enthalpy as a function 

of pressure, .  We do this here for the hex-w and Pnma structures for 

direct comparison with the DFT calculations of Yao and Klug [15].  This comparison is 

made in Fig. 3(b), in units of enthalpy relative to bcc per atom.  At low pressures the 

MGPT and DFT results agree very well.  Above about 250 GPa, the MGPT relative 

enthalpies trend somewhat below the DFT values, but the agreement remains reasonable 

up to the maximum  pressure treated here of 420 GPa. 

 
C. Quasiharmonic phonons and Debye temperatures 

 
As discussed in Paper I and in agreement with first-principles DFT calculations [12,43], 

MGPT Ta is both mechanically and thermodynamically stable in the bcc phase at  

over the present pressure range, which extends up to 420 GPa, with real quasiharmonic  
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FIG. 4.  Optimized internal parameters for the Pnma, a-U, and Pmma orthorhombic 

structures at , as used in Fig. 3 for the MGPT total energies and enthalpies. 

 

phonons frequencies calculated throughout the Brillouin zone (BZ) at all volumes.  

Similarly, the cubic A15 structure was found to be mechanically stable over the same 

pressure range with real MGPT quasiharmonic phonon spectra calculated at the same 

volumes.  A representative A15 result is plotted here in Fig. 5(a) at  a.u. near 

ambient pressure, a result that qualitatively agrees with the recent DFT calculation of Yao 

and Klug [15].  In contrast, the other structures considered in Paper I, fcc, hcp, and hex-

w, were all found to be mechanically unstable at pressures up to at least 420 GPa, with 

one or more imaginary phonon branches calculated in each case at all volumes.  MGPT 

phonon spectra for fcc and hcp were plotted in Fig. 6 of Paper I, while a similar result for 

hex-w is displayed here in Fig. 5(b).  The latter result also qualitatively agrees with the 

recent DFT calculations of both Yao and Klug [15] and Liu et al. [16]. 

 
In contrast to Pnma and Fddd, both Pmma and a-U are here predicted to be mechanically 

unstable up to 420 GPa, with one or more imaginary phonon branches calculated at all 

volumes in each structure.  Interestingly, however, under compression the number of  

0.0

0.1

0.2

0.3

0.4

60 80 100 120 140 160

Atomic volume (a.u.)

St
ru

ct
ur

al
 p

ar
am

et
er

s
y - α-U
z - Pmma

z - Pnma
x - Pnma

Ta

T = 0

Ω = 121.6



 19 

 
FIG. 5.  Representative MGPT quasiharmomic phonon spectra for the A15 and hex-w 

structures in Ta, as calculated near ambient pressure at  a.u.  Real phonon 

branches are shown as solid lines at positive frequencies.  Imaginary phonon branches are 

displayed as dashed lines at negative frequencies.  (a) A15; (b) hex-w. 

 

phonon frequencies calculated to be imaginary steadily decreases with increasing 

pressure.  The trend suggests that at some higher pressure above 420 GPa both Pmma and 

a-U will eventually become mechanically stable.  This trend toward high-pressure 

mechanical stability is consistent with the downward trending Pmma and a-U structural-

energy differences with bcc seen in Fig. 3(a) below  a.u. 

 
We have now likewise calculated MGPT quasiharmonic phonon spectra for the four 

present candidate orthorhombic structures over the 0–420 GPa pressure range of interest.  

Representative results calculated at  a.u. near ambient pressure are shown in 

Fig. 6.  As in the case of bcc and A15, we find the Pnma and Fddd structures to be 

mechanically stable over the entire pressure range, with all real phonon frequencies 

calculated throughout the simple-orthorhombic BZ at all volumes.  In the case of Pnma, 

these results qualitatively agree with the DFT calculations of Yao and Klug to 400 GPa 

[15] and Liu et al. to 250 GPa [16].  In the case of Fddd, a new mechanically stable phase 

of Ta is predicted.  As we have indicated above, it is convenient here to treat face-

centered orthorhombic Fddd in an exactly equivalent simple orthorhombic structure, both  
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FIG. 6.  Representative MGPT quasiharmomic phonon spectra for the present four 

candidate orthorhombic structures in Ta, as calculated near ambient pressure at 

 a.u.  Real phonon branches are shown as solid lines at positive frequencies.  

Imaginary phonon branches are displayed as dashed lines at negative frequencies.  (a) 

Pnma; (b) Fddd, here represented as an equivalent simple orthorhombic structure with 8 

atoms per unit cell; (c) Pmma; and (d) a-U. 

 

in the calculation of  phonons, as in Fig. 6(b), and in subsequent finite-T MD 

simulations discussed below. 

 
For the four structures we have predicted to be mechanically stable at  below 420 

GPa in pressure, namely, bcc, A15, Pnma, and Fddd, we have also calculated MGPT 

Debye temperatures as a function of volume.  As we have previously done in Ta [14], we 

define the Debye temperature  here as a measure of the average phonon 
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frequency at volume  by the relation 

 

  ,                                                                                              (8) 

 
where  is the zero-point vibrational energy 

 

  ,                                                                                     (9) 

 
with  a frequency of the  phonon branch at wavevector  in the first BZ.  

Converting volume to pressure at , we have plotted  as function of pressure in 

Fig. 7 for the four mechanically stable structures.  All four curves are clearly very similar 

in both shape and magnitude, with bcc having the highest Debye temperature and Fddd 

the lowest at all pressures, but with  for Fddd nearly the same as that for Pnma.  

We find that the Fddd and Pnma Debye temperatures are only 3-8% below that of bcc up 

to 420 GPa. 

 
D. Spontaneous temperature-induced transitions to bcc for Fddd and Pnma 

 
At low temperatures, one can readily confirm the mechanical stability of the Fddd and 

Pnma orthorhombic phases at all volumes of interest though MGPT-MD simulation.  

Using constant-volume, simple-orthorhombic simulation cells with 512 atoms, these 

structures exhibit very harmonic lattice vibrations with a thermal energy  close to 

.  At the same time, it is clear from Fig. 3(a) that at low temperature there is a large 

free-energy difference between the metastable Fddd or Pnma structures and the ground- 

state bcc structure at all volumes.  This free-energy difference results in a large 

thermodynamic potential favoring bcc, a potential that ranges in magnitude from about 8 

mRy near ambient pressure to roughly 26 mRy at 420 GPa.  Consequently, in MGPT-MD 

simulations at a given temperature and volume, the Fddd and Pnma structures are 

vibrating harmonically in relatively shallow potentials energy wells separated by a low-

lying energy barrier from a much deeper bcc potential energy well.  Therefore, if the  
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FIG. 7.  Calculated MGPT Debye temperatures for the four mechanically stable 

structures found in Ta up to 420 GPa at zero temperature. 

 

energy barrier for the given orthorhombic structure is not too high, as we confirm below 

for Fddd and Pnma, then at some temperature it may be possible to surmount the barrier 

and transform to the bcc structure. 

 
Such spontaneous temperature-induced  and  phase transitions 

are indeed observed in MGPT-MD simulations on Ta.  Starting at 100 K and slowly 

increasing the equilibrated temperature at fixed volume, these transitions are quite 

dramatically revealed in the behavior of the normalized thermal energy  

of the given orthorhombic structure.  This is illustrated in Fig. 8 for Fddd and Pnma Ta 

simulated at a compressed volume of 82.9 a.u., corresponding to about 154 GPa in 

pressure at zero temperature.  The bcc nature of the final transformed state is readily 

confirmed by simultaneously monitoring the radial and angular distribution functions at 

each equilibrated temperature.  Also, as shown in Fig. 8(a) for Fddd Ta, there is only a 

small size dependence in the predicted transition temperature beyond a system size of  
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FIG. 8.  Normalized thermal energy  as a function of equilibrated 

temperature in the mechanically stable orthorhombic phases of Ta, as obtained from 

MGPT-MD simulations at  a.u., corresponding to a  pressure of 154 GPa.  

The sharp drop in  indicates a temperature-induced phase transition to bcc.  (a) 

Fddd for 512 and 4096 atoms; (b) Pnma for 512 atoms. 

 

512 atoms.  The absence of any large size dependence here directly reflects the harmonic 

nature of the Fddd and Pnma lattice vibrations below 1500 K in Ta. 

 
The predicted temperature-induced  and  transitions occur at 

all volumes of interest, with transition temperatures ranging from just over 100 K at high 

pressure above 400 GPa to 1250-1450 K in the 80-150 GPa pressure range, as shown in 

Fig. 9.  Interestingly, the latter peaks in transition temperature turn out to be precursors to 

the melting behavior we find for Fddd and Pnma, which will be discussed in Sec. IV.  

This connection is especially noteworthy because of the very different character of the 

mechanical stability of these structures at low and high temperature.  In sharp contrast to 

the low-temperature regime, where mechanical stability is fully commensurate with 

harmonic lattice vibration, with an absence of anharmonic vibration and large size effects 

on phase transitions, mechanical stability at high temperature in Fddd and Pnma is 

strongly influenced by anharmonic vibration, leading to large size effects in the melting.  

Indeed, it is only the large anharmonic effects at high temperature that allow all of the  
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FIG. 9.  Predicted  and  phase-transition temperatures in Ta vs. 

pressure, as obtained from MGPT-MD simulations with 512 atoms. 

 

orthorhombic structures considered here to be created and maintained in equilibrium 

prior to melting.  On the other hand, the fact that the Fddd and Pnma structures can’t be 

so maintained at intermediate temperatures without a phase transition to bcc thwarts the 

construction of global free energies in these phases based on a  reference state, as 

discussed in Sec. V. 

 
Additional insight into the present  and  phase transitions can 

be obtained from the constant-volume energy landscapes that connect the Pnma and Fddd 

structures to bcc.  Representative MGPT energy landscapes at  a.u., 

corresponding to a pressure of 1.1 GPa in Fig. 9, are displayed in Fig. 10.  In terms of 

such energy landscapes, the microscopic mechanism allowing the transformation between 

the Pnma and bcc structures has been examined in the work of Yao and Klug [15].  The 

transformation path can be described by two independent path variables, which are given 

most simply in terms of the bcc crystal structure.  The first variable is a homogeneous 

deformation of the (110) planes, and the second is a shearing of every other (110) plane  
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FIG. 10. MGPT energy landscapes for the constant volume transformation between the 

orthorhombic phases and the bcc phase at  a.u. in terms of the homogeneous 

deformation and shearing of the (110) planes of bcc at 0 K.  (a) Pnma; (b) Fddd. 

 

in the [1-10] direction.  The Pnma-bcc energy landscape in this shearing-deformation 

configuration space, as given in Fig. 10(a), shows that the transformation energy barrier 

relative to bcc is 9.6 mRy and occurs at 75% deformation and 70% shearing.  In contrast, 

the energy barrier relative to Pnma is just 1.4 mRy, consistent with the modest calculated 

 transformation temperature of 850 K shown in Fig. 9. 

 
In a similar manner, the transformation between the bcc and Fddd structures can also be 

described in terms of the homogeneous deformation and shearing of the (110) planes of 

the bcc structure.  The homogeneous deformation is again applied to the (110) planes, 

while shearing consists of moving every other pair of two consecutive (110) planes in the 

[10-1] direction.  The Fddd-bcc energy landscape in shearing-deformation configuration 

space, as given in Fig. 10(b), shows that the transformation barrier relative bcc is 11 mRy 

and occurs at 70% shearing and 70% deformation.  The energy barrier relative to Fddd is 

then 3.3 mRy, which is qualitatively consistent with the higher calculated  

transformation temperature of 1050 K at 1.1 GPa shown in Fig. 9. 
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IV. HIGH-  MECHANICAL STABILITY and MELT of ORTHORHOMBIC PHASES 
 

In this section, we consider the high-T,P dependence of the structure, mechanical and 

thermodynamic stability, and melt curves of the orthorhombic phases of Ta.  The high-

temperature structure is assessed on the basis of in situ determination of the volume-

dependent  and  axial ratios near .  The corresponding high-T mechanical 

stability of a given phase is assessed from the criterion established in Paper I, which is 

based on the equality of the normal components of the stress tensor.  The relative 

thermodynamic stability of the orthorhombic phases is determined from their melt curves, 

which are computed as a function of pressure up to 420 GPa.  We highlight the 

prevalence of anharmonic-driven size effects on the melt curves of these phases, size 

effects which are qualitatively similar, but larger in magnitude, than those found in Paper 

I for other anharmonic phases of Ta.  We then determine final converged melt curves for 

each orthorhombic structure using large-cell, size-effect-free two-phase MGPT-MD 

simulations and comment on possible polymorphism. 

 
A. Temperature and volume dependence of  and  
 
The phases of Ta examined in Paper I had cell shapes that could be considered fixed and 

independent of temperature.  In contrast, the orthorhombic phases treated here have  

and  axial ratios, as well as internal coordinates, which can vary throughout the 

temperature and volume space considered.  To determine the melts of these phases 

accurately, the temperature-dependent shape of the unit cell must be resolved, and we 

have accomplished that task here at  for each melting volume considered.  As 

indicated above in connection with Fig. 3, the corresponding  primitive cells are 

determined by simply minimizing the total energy as a function of volume.  At , 

however, one must minimize the local free energy with respect  and  under the 

conditions of constant volume and high temperature.  Here, we do this by performing 

short MGPT-MD simulations at a given volume and temperature to obtain an average 

stress tensor.  The cell is adjusted iteratively until the normal stresses from the calculated 

stress tensor are equivalent.  In this way, the temperature-dependent cell shape at  

is mapped out across volume space. 
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The volume dependence of the  and  axial ratios for the Pnma and Fddd 

structures at both low and high temperature is shown in Fig. 11.  At , where both 

structures are mechanically stable, the  ratio of Pnma, as given in Fig. 11(a), is 

relatively constant with respect to volume, while the  ratio of Fddd, as given in Fig. 

11(b), increases with increasing volume.  These trends are relatively unchanged at 

.  The primary influence of temperature in both cases is to increase the magnitude 

of , with the exception of Fddd at low volumes below 85 a.u. (corresponding to 

pressures above 135 GPa).  At , the  ratio shows a slight decrease with 

increasing volume in Pnma, as given in Fig. 11(c), and a slight increase with volume in 

Fddd, as given in Fig. 11(d).  Along the melt curve, the  ratio in Pnma becomes less 

sensitive to volume, though that of the Fddd structure maintains its  behavior to 

increase with increasing volume.  As with the  ratio, the  ratio is generally larger 

at  than at . 

 
The corresponding volume dependence of the  and  axial ratios in the Pmma and 

a-U structures at low and high temperature is given in Fig. 12.  At , where both 

structures are mechanically unstable, the  ratio of Pmma, as shown in Fig. 12(a), is 

relatively constant, while that of a-U, as shown in Fig. 12(b), decreases with increasing 

volume.  At , the  ratio for both of these systems is relatively constant and 

smaller compared to the  values.  At , the  ratio of both Pmma, as given 

in Fig. 12(c), and a-U, as given in Fig. 12(d), exhibit a convex, parabolic behavior with 

respect to volume increase, and in both cases display a maxima between 100-120 a.u.  

Along the melt curve, the  ratio of both phases becomes insensitive to volume.  Also, 

unlike the  ratio, the  ratio of both structures increases with rising temperature. 

 
Overall, the influence of volume on the  and  ratios of the orthorhombic phases 

near the melting temperature is weak.  The only structure that appreciably changes as a 

function of volume is Fddd, though the largest changes across the examined volume 

range occur for the  ratio and are on the order of 6%.  The weak volume dependence  
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FIG. 11.  Volume dependence of the  and  axial ratios for the Pnma and Fddd 

structures in Ta, as calculated at  from MGPT total-energy minimization, and at 

 from free-energy minimization using MGPT-MD simulations with supercells 

composed of simple-orthorhombic unit cells, containing 4000-8000 atoms.  

(a)  for Pnma; (b)  for Fddd; (c)  for Pnma; (d)  for Fddd. 

 

actually simplifies the determination of the melt curve in the Pnma, Pmma, and a-U 

structures by allowing us to treat the shape of the orthorhombic unit cell as constant near 

the melt temperature. 

 
B. Mechanical stability near melt 

 
Testing of mechanical stability in MD simulations can be accomplished through in situ 

calculation of the stress tensor .  A signature of mechanical stability in a dynamical 

system is equivalent diagonal, or normal,  components (i.e., ), and 

negligible off-diagonal, or shear,  components.  As was done in Paper I, in our present 

MGPT-MD simulations we quantify the first of these conditions with the parameter , 

which describes the deviation of the normal stresses from the pressure: 
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FIG. 12.  Volume dependence of the  and  ratios for the Pmma and a-U 

structures of Ta at  and , calculated as in Fig. 11.  (a)  for Pmma; (b) 

 for a-U; (c)  for Pmma; (d)  for a-U. 

 

  ,                                                                           (10) 

 
where pressure is related to the stress tensor through .  The 

second condition can be represented by the deviation of the shear stresses from zero, but 

this measure is often negligible at high temperature, leading to our consideration of  

as the primary measure of mechanical stability. 

 
In our studies in Paper I, we found an approximate dividing line of  between 

good to excellent mechanical stability, , on the one hand, and fair to poor 

mechanical stability, , on the other hand, with the latter implying the onset of 

mechanical instability.  The present calculated values of , as given in Fig. 13, indicate 

that the orthorhombic structures here mostly exhibit excellent mechanical stability near 

 across the 64 to 135 a.u. atomic volume range.  The primary exceptions to this 

trend are the Pnma and Fddd structures at large volume, which show sharp upticks in  

with increasing volume.  This behavior is especially marked in Fddd above 110 a.u., 
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FIG. 13.  Volume dependence of the mechanical stability parameter  at the melt 

temperature for the Fddd, Pnma, Pmma, and a-U orthorhombic structures of Ta, as 

obtained from MGPT-MD simulations using  supercells (4000-8000 atoms). 

 

corresponding to pressures below about 40 GPa, where  is an order of magnitude 

larger than that of the other calculated values.  The increase in  for Pnma , on the 

other hand, only begins near 120 a.u., corresponding to pressures below 15 GPa, and is 

not as dramatic as that for Fddd, though at volumes larger then 130 a.u. the increase in 

the Pnma values of  will likely continue.  Although the rapid increase in  for the 

Fddd and Pnma structures foreshadows the onset of high-temperature mechanical 

instability, this behavior occurs at sufficiently low pressures that it does not significantly 

impact our calculation of the high-pressure melt curve in either case. 

 
The physics of the decreasing mechanical stability of both Pnma and Fddd at large values 

of atomic volume could be related to the mid-temperature thermodynamic instability of 

these structures noted in Figs. 8 and 9.  These phases were shown to transform to bcc at 
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relatively higher temperatures when the pressure is low.  At temperatures beyond the 

transition temperature to bcc, the Pnma and Fddd orthorhombic structures only gradually 

regain metastability, as high-T anharmonic effects arise and grow.  The low-pressure 

orthorhombic to bcc transition is closer in temperature to the melt than that at high 

pressure, so the anharmonic effects that help stabilize both Pnma and Fddd near melt 

may not be fully in play at the lowest pressures. 

 
C. Large anharmonic thermal energies and melt size effects 

 
One can address the degree of vibrational anharmonicity in a given phase directly in our 

MGPT-MD simulations.  The phonon-phonon interactions near melt that fully stabilize 

phases with either soft or imaginary quasiharmonic phonons can be characterized at high-

 conditions by the apparent amount of anharmonicity displayed in appropriate 

thermodynamic functions.  Specifically, we can define a simple but useful percentage 

measure of anharmonicity in a given phase, , by the relation 

 
  ,                                                                (11) 

 
where  is the thermal energy of the system in that phase, with  the total 

internal energy.  In the quasiharmonic limit at high temperature with , 

 and . 

 
The calculated values of  near the melt temperature are similar and large, in the range 

10-25%, for all the present orthorhombic structures, as shown in Fig. 14.  With increasing 

volume, the anharmonic energy decreases for the Fddd and Pnma structures and 

increases for the Pmma and a-U structures.  At the largest volumes, the Fddd and Pnma 

structures have the lowest values of  near 10%.  This is qualitatively consistent with 

their trend toward decreasing mechanical stability at large volume, as discussed above in 

connection with Fig. 13.  At the same time, in comparison to the cubic and hexagonal 

structures investigated in Paper I, the orthorhombic structures examined here are 

significantly more anharmonic, with the exception of the hex-w  structure  for low values 

of , which has comparable anharmonicity. 
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FIG. 14.  Dependence of the anharmonic thermal energy  on volume at  for the 

Pnma, Fddd, Pmma, and a-U orthorhombic phases of Ta, as obtained from MGPT-MD 

simulations on  supercells (4000-8000 atoms). 

 

Both a low  total internal energy and high vibrational anharmonicity and are key 

factors that help make a given structure thermodynamically competitive at high 

temperature.  As was shown in Paper I, the bcc and A15 structures of Ta are only weakly 

anharmonic at melt (with  and , respectively), but have the lowest and 

next lowest  internal energies, which establishes their intrinsic advantage.  In 

contrast, the fcc and hcp phases were found in Paper I to be significantly anharmonic 

(with  at melt), but at the same time, with very high  internal 

energies.  The mechanically stable hex-w structure with  was found to be the 

most anharmonic of the cubic and hexagonal structures considered in Paper I, with values 

of  at melt, but also with a very large  total internal energy.  As we 

have noted in Fig. 3, the  total energies of the present orthorhombic structures 
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relative to bcc are much smaller than those for hex-w.  Thus with relatively low  

internal energies and high vibrational anharmonicity, the orthorhombic structures become 

very promising candidates for polymorphism in Ta. 

 
In addition to the large magnitude of the high-temperature anharmonic energy possessed 

by hex-w and the orthorhombic phases of Ta, one can also anticipate a large spatial extent 

of the anharmonic effects needed to stabilize these structures near melt.  Quantum 

mechanics tells us that the interatomic forces in metals are long ranged, and this is 

especially so in complex transition metals like Ta with its strong multi-ion interactions 

driven by the d electrons.  This long-range behavior is fully captured by our quantum-

mechanical multi-ion MGPT potentials.  Unlike the case in semiconductors and 

insulators, where the interaction range is much shorter and anharmonic effects are often 

linked to short-range optical vibrational modes, anharmonic effects in metals are linked 

to very long-range acoustic vibrational modes.  This can be appreciated by looking at the 

quasiharmonic phonon spectra for hex-w in Fig. 5(b) and for Pnma and the other 

orthorhombic structures in Fig. 6.  In all cases there are prominent soft and/or imaginary 

vibrational modes in acoustic branches.  Thus at high temperature the anharmonic 

vibrational effects that stabilize these structures must have a strong long-ranged acoustic 

component.  This acoustic component is necessarily collective in nature and could easily 

involve many hundreds or even a few thousands of atoms.  Thus large melt size effects 

extending to a similar number of atoms are physically reasonable and not even surprising 

for the strongly anharmonic phases in Ta. 

 
In Paper I, we showed that the large anharmonicity of the hex-w structure was indeed 

closely associated with a size-dependent melt curve.  This in turn leads to the erroneous 

prediction of the thermodynamic stabilization of hex-w with respect to bcc when small 

simulation cells are used in Z-method melt calculations.  However, for sufficiently large 

simulation cells this prediction is reversed.  In particular, for the hex-w structure with 

, the MGPT-MD Z-method melting becomes size independent with a uniform 

 supercell containing 648 atoms.  In direct comparison, our calculated MGPT-

T = 0
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MD Z-melt curve for the present Pnma structure becomes size independent with a 

uniform  simple orthorhombic cell containing 1372 atoms. 

 
In the case of the Pnma structure, the threshold for size-independent Z-method melting 

can be reduced somewhat by using a shape-corrected simulation cell that accounts for the 

small  ratio (0.52-0.54) by keeping the supercell edges of similar length.  The use of 

such a shaped-corrected supercell also appears to have been done by Burakovsky et al. in 

their QMD Z-melt study [19].  In our present MGPT-MD Z-melt size-effect studies on 

Pnma, we have considered shape-corrected simulation cells ranging from  (448 

atoms) to  (3584) atoms.  Our results indicate that Z-melt size effects become 

negligible starting with a  (900 atoms) supercell, at which point the calculated 

Pnma melt curve lies entirely below that of bcc, as shown in Fig. 15(a).  In sharp 

contrast, for the two smallest cells we have examined,  (448 atoms) and 

 (512 atoms), the Pnma melt curve crosses above that of bcc at about 290 GPa 

and 350 GPa, respectively, as also shown in Fig. 15(a).  The latter behavior is 

qualitatively consistent with the QMD Z-melt simulation result of Burakovsky et al. [19], 

displayed in Fig. 15(b), where the Pnma melt curve crosses above bcc at about 200 GPa.  

The exact size and shape of the QMD simulation cell was not stated in Ref. 19, but was 

only characterized there as a simulation on the order of 500 atoms. 

 
As we have elaborated in detail in Paper I, the simplified and efficient Z-melt method is 

useful to obtain qualitative trends and approximate lower-bound estimates of melt size 

effects, but the absolute accuracy of the converged melt curves obtained is often 

inadequate for the reliable prediction of relative phase stability.  In the present context, 

we know from Paper I that the MGPT-MD Z-melt curve for bcc shown in Fig. 15(a) lies 

about 200 K too high in temperature, while, as we now demonstrate with accurate two-

phase simulations, the converged Pnma Z-melt curve is some 500–1000 K too low.  At 

the same time, reliable use of our two-phase melt method for the present orthorhombic 

structures generally requires larger simulation cells because of the need to achieve full 

thermodynamic equilibrium in the melting process.  The smallest uniform cell for Pnma 

that can be used in our two-phase melt procedure is a  simple orthorhombic cell 

containing 864 atoms, which is the approximate cell size for which mechanical stability  
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FIG. 15.  Size dependence of the Pnma melt curve of Ta, compared to the converged bcc 

melt curve, as obtained by Z-method melt simulations.  (a) Present MGPT-MD melt 

results from 448-, 512- and 900-atom Pnma simulations, using shape-corrected , 

 and  simulation cells, respectively; (b) Previous QMD melt results 

from ~ 500-atom Pnma simulation of Burakovsky et al. [19]. 

 

of Pnma is achieved.  As illustrated in Fig. 16, the use of this sized cell produces a Pnma 

melt curve that crosses above the bcc melt curve between 50-100 GPa, and is thus 

qualitatively similar to the ~ 500 atom Z-melt results given in Fig. 15.  Increasing the 

Pnma cell size above  lowers the high-pressure melt curve until one reaches full 

thermodynamic equilibrium and convergence with a much larger  cell, 

corresponding to 4000 atoms.  The converged Pnma curve then lies entirely at or below 

that of bcc all the way up to 420 GPa, as also shown in Fig. 16, but indeed is much closer 

to the bcc melt curve than for the Z-melt result shown in Fig. 15(a).  It is possible that the 

two-phase convergence of the melt curve could be obtained with a 30-40% smaller 

shape-corrected cell, but this issue has not been pursued since only an upper bound is 

needed here.  The size effects displayed in Figs. 15 and 16 support the general conclusion 

that anharmonic effects strongly impact melt for the present orthorhombic structures, 

requiring solid-phase simulation cells of up to 4000 atoms to achieve an accurate size-

independent melt curve.  To ensure full convergence in the final orthorhombic melt 

curves, we have, in fact, used even much larger solid-phase supercells containing on the  
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FIG. 16.  Size dependence of the Pnma melt curve of Ta, as obtained by the present two-

phase MGPT-MD 864- and 4000–atom melt simulations, using uniform  and 

 simulation subcells, respectively.  The 864-atom simulation represents the 

approximate minimum solid cell size for which mechanical stability of Pnma is achieved, 

but not as yet full thermodynamic equilibrium, which is only first achieved in the 4000-

atom cell. 

 

order of 40,000 atoms in the two-phase MGPT-MD melt simulations, as described in the 

next section. 

 

D. Large-cell melt curves and comparison with bcc 

 
To establish the relative thermodynamic stability of the orthorhombic phases of Ta 

compared to bcc as accurately as possible, we have computed final MGPT-MD two-

phase melt curves using very large supercells.  To ensure that the melt curves have no 

anomalous size effects, for the Pnma, Pmma, and a-U structures we have used a solid-

phase  simple orthorhombic supercell, with a 4-atom basis and 42,592 total 
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atoms.  For the Fddd structure, on the other hand, where , we have used 

instead an alternate  simple orthorhombic supercell to better accommodate 

the unit cell shape, with an 8-atom basis and 40,960 total atoms.  The ~ 40,000-atom cell 

size was shown in Paper I to lead to highly converged melt curves for the cubic and 

hexagonal structures, including for the highly anharmonic hex-w structure.  While the 

melt curve of the baseline bcc structure is size independent beyond 250 atoms, for 

consistency in the comparisons shown below in Figs. 17 and 18, we have used a 

 simple cubic cell for bcc, with a 2-atom basis and 39,366 total atoms, as 

was done in Paper I. 

 
The high-pressure melt curves for the Pnma and Fddd structures to 420 GPa, with 

comparison to bcc, are given in Figs. 17(a) and 17(b), respectively.  The melts of these 

two orthorhombic phases were found to be generally well behaved except at pressures 

below 50 GPa, where a significant degree of fluctuation was observed in the order 

parameter used in the two-phase method to determine melt.  This effect can likely be 

attributed to the loss of full mechanical stability noted in Fig. 13 for these phases at the 

low-P melting temperatures.  The Pnma melt curve is seen to lie below that of bcc across 

most of the examined pressure range, except at around 90 GPa.  At this pressure the 

Pnma melt curve touches the bcc melt curve.  The Pnma melt curve does not overtake 

bcc at this point, but instead exhibits a change in slope and remains about 150-450 K 

below the bcc melt curve for pressures greater than 150 GPa.  Similarly, the Fddd melt is 

below the bcc melt across the majority of the pressure range.  However, in the interval 

100-150 GPa, the melt temperatures of Fddd match those of bcc.  After this point, the 

melt curve of Fddd also exhibits a decrease in slope and remains roughly 250 K below 

that of bcc for pressures greater than 200 GPa. 

 
The corresponding large-cell melt curves for the Pmma and a-U structures are given in 

Figs. 18(a) and 18(b), respectively, for pressures up to 420 GPa.  The Pmma melt is seen 

to lie below that of bcc across the entire pressure range.  Unlike the Pnma and Fddd 

phases, the melt curve of Pmma does not touch the bcc melt curve at any point, with the 

melt temperature some 500-1000 K below that of bcc above 100 GPa.  The melt curve of 

a-U is much closer to bcc, but also lies below it across most of the pressure range.  Like  
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FIG. 17.  High-pressure melt curves for the Pnma and Fddd Ta orthorhombic phases 

compared with that of bcc, as obtained from MGPT-MD two-phase simulations using 

large supercells.  (a) Pnma; (b) Fddd. 

 

the Pnma and Fddd melt curves, the a-U curve touches the bcc curve around 90 GPa.  

After this point, the melt curve of a-U exhibits a decrease in slope and remains 150-350 

K below bcc for pressures greater than 150 GPa. 

 

To confirm the reliability of our two-phase orthorhombic melt curves, we have also done 

a detailed error analysis on the results.  In our two-phase method, a melt pressure  on 

the melting curve is calculated for a chosen melt temperature .  Specifically, for each 

input , the corresponding  here has been determined from an ensemble of two-

phase simulations that span a small atomic volume range of the solid.  The evolution of 

each of these trial systems was tracked via a short-range order parameter that is discussed 

in Paper I.  During the course of each two-phase simulation, an increasing order 

parameter indicates crystallization of the liquid, and a decreasing order parameter 

indicates melt of the crystal.  The exact melting volume and pressure was determined by 

interpolating between the smallest volume that showed crystallization and the largest 

volume that showed melt.  The error in the melt pressure was then determined by the 

pressure difference at these volumes.  In this regard, a 0.5 a.u. volume spacing was used  
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FIG. 18.  High-pressure melt curves for the Pmma and a-U Ta orthorhombic phases 

compared with that of bcc, as obtained from MGPT-MD two-phase simulations using 

large  supercells.  (a) Pmma; (b) a-U. 

 

in this process to determine the melt pressure .  The maximum pressure error along the 

melt curve can then be gauged by the pressure change resulting from changing the melt 

volume by the spacing value.  The maximum pressure error so obtained from an average 

over the four orthorhombic phases studied here ranges from about 1 GPa at 3000 K near 

ambient pressure, to 2 GPa at 6000 K near 100 GPa in pressure, to 6 GPa at 9000 K near 

250-300 GPa in pressure, to 8 GPa at 11,000-12000 K near 400 GPa in pressure.  At 100 

GPa and above, this error corresponds to about 2% of the computed melt pressure, which 

ensures that the noted differences in melt behavior among the four orthorhombic phases 

are statistically significant.  Corresponding maximum temperature errors are calculated to 

be 30 K at ambient pressure, 63 K at 110 GPa, 99 K at 250 GPa and 163 K at 400 GPa. 

 
Compared to the previous anharmonic cubic and hexagonal Ta phases examined in Paper 

I, the melt temperatures of three of the four orthorhombic structures studied here are 

considerably closer to bcc over a wide pressure range.  The  hex-w melt was 

shown in Paper I to be some 6000 K below the bcc melt, while the hcp and fcc melt 

temperatures were found to be on the order of 1000 K below bcc.  For the Pnma, Fddd, 
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and a-U orthorhombic structures, on the other hand, high-pressure melt temperature 

differences with bcc are everywhere less that 500 K, indicating a much greater degree of 

thermodynamic stability.  Moreover, the convergence of the Pnma, Fddd, and a-U melt 

with the bcc melt around 90-150 GPa suggests that these phases could possibly coexist 

with bcc inside that pressure range, even if they never become the thermodynamically 

favored structures. 
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V. GLOBAL FREE ENERGIES of SELECTED STRUCTURES 

 
Finally, in this section we consider the construction of total Helmholtz free energies 

 for the mechanically stable A15, Pnma, and Fddd phases of Ta, using the 

RSMD methodology developed in Ref. [14] and there applied to the bcc, fcc, and liquid 

phases of Ta.  In the case of the A15 structure, it is possible to obtain the free energy 

starting from a  reference state, in an analogous manner to that used in Ref. [14] for 

the bcc structure.  In the cases of Pnma and Fddd, on the other hand, the spontaneous 

 and  phase transitions at low and intermediate temperatures 

does not allow the required RSMD temperature integrations from  to the vicinity of 

melt.  In these latter cases, we have found it possible to use instead a  reference 

state based on the corresponding two-phase melt data, in the same manner used in Ref. 

[14] for the mechanically unstable fcc structure. 

 
A. A15 with  reference 

 
For the A15 structure we have proceeded directly from Eq. (2) and calculated  

in terms of its cold, ion-thermal, and electron-thermal components.  As in the case of the 

bcc structure, the ion-thermal component has been obtained in turn as sum of separate, 

but well-defined quasiharmonic and anharmonic contributions: 

 
  .                                                                      (12) 

 
The former contribution has been directly calculated from MGPT quasiharmonic phonon 

frequencies  of the A15 crystal structure using the standard expression 

 

  ,                                              (13) 

 
where the sum is over all wave vectors  and phonon branches  in the first Brillouin 

zone (BZ) of the simple-cubic reciprocal lattice.  With 8 atoms per primitive cell in the 

A15 structure, there are 24 phonon branches at each  point, and we find that the sum in 
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Eq. (13) is well converged at all volumes and temperatures with only 56  points in the 

irreducible (1/48th) wedge of the simple-cubic BZ.  In this manner,  for the 

A15 structure has been evaluated as a function of volume and temperature over the full 

29-volume mesh defined in Ref. [14], which ranges between  and , 

where . 

 
The corresponding anharmonic contribution to the A15 ion-thermal free energy has been 

calculated from the following RSMD expression derived in Ref. [14]: 

 

  ,                                (14) 

 
where  is obtained from single MGPT-RSMD simulations along selected 

isochores via Eq. (13) of Ref. [14].  Here, as done for the bcc structure in Ref. [14], each 

simulation has been started from a chosen volume-dependent reference temperature 

 and carried though the estimated melt temperature at that volume.  For 

the A15 structure, the RSMD simulations of  have been performed in small 

cells of 216 atoms along eight isochores spaced in intervals of .  Also as done 

for the bcc structure in Ref. [14], each simulated isochore has been smoothly fit with a 

five-term polynomial of the form 

 
  ,                                               (15) 

 
where the  are volume-dependent coefficients.  The smooth values of  so obtained 

have then been extended to the full 29-volume mesh by numerical interpolation.  The 

A15 values of  so calculated are generally small, but larger than those of bcc, ranging 

in magnitude from 5–12 mRy near melt, as compared with only 1–5 mRy for bcc. 

 
Total free energies for the A15 structure have been assembled both with and without the 

small additional electron-thermal component , and then combined with the liquid free 

energy calculated in Ref. [14] to obtain free-energy-based A15 melt curves.  As shown in  
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FIG. 19.  Predicted aspects of MGPT A15 melting.  (a) Free-energy vs. two-phase melt 

curve in the  limit; (b) Low-pressure A15 vs bcc melt curves obtained with full 

free energies and in the quasiharmonic (QH) limit with . 

 

Fig. 19(a) in the  limit, the free-energy A15 melt curve is in good agreement with 

that obtained in Paper I from direct two-phase simulation.  As expected, the impact of  

on A15 melting is small, lowering the melt temperatures by 3% or less, as previously 

found for the bcc and fcc structures [14,32].  Full free-energy melt curves for bcc and 

A15 are compared at pressures below 80 GPa in Fig. 19(b).  In agreement with 

experimental observation [44], A15 is predicted to be metastable, with a melt curve close 

to but everywhere below that of bcc.  Interestingly, however, and as also shown in Fig. 

19(b), removing the anharmonic component  from the solid free energy in each case 

significantly raises the bcc and A15 melt temperatures and reverses the ordering of the 

melt curves at low pressure.  That is, in the quasiharmonic limit with , we 

predict A15 to be the melting phase of Ta below 40 GPa.  This shows the importance of 

even small anharmonic effects to the high-temperature phase diagram. 

 
One further point should also be mentioned in connection with Fig. 19(a).  Although the 

two-phase melt curve used for comparison with the free-energy result in that figure is for 

the large 39,304 solid subcell considered in Paper I, this has been done for convenience 
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only.  Because A15 is only weakly anharmonic, we have subsequently been able to verify 

that the A15 two-phase melt curve is already converged with a much smaller 512-atom 

solid subcell, which is then more consistent with the 216-atom solid subcell used in the 

anharmonic free-energy calculation. 

 
B. Pnma and Fddd with  reference 

 
For the Pnma and Fddd structures, the large-cell two-phase melt calculations discussed in  

Sec. IV(d) can be combined with the previously determined free energy of the liquid 

from Ref. [14] to establish a reference free energy along the solidus melt line in the 

 limit.  From the two-phase melt calculations for each structure, we have first 

extracted and fit the melt temperature  and pressure  as a function of the solidus 

volume  in the general forms 

 
                                                                                     (16) 

 
and 

 
 ,                                                                              (17) 

 
where the  and  are the fitting constants and where  within the 

restricted volume range . 

 
Along the melt line, the melt temperature , melt pressure , and Gibbs free energy, 

, of the liquid and the solid must be equal, so the Helmholtz free energy of 

the orthorhombic solid along the solidus melt line can be calculated as 

 
  .                                                       (18) 

 
For given values of , , and the solidus volume  on the melt curve, the 

corresponding liquidus volume  and free energy  can be obtained via 

interpolation on the liquid equation of state (calculated in the  limit).  With 
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 and , Eq. (18) can be used directly to establish the reference free energy 

for the orthorhombic solid, 

 
  ,                                             (19) 

 
that is needed in the RSMD simulations.  In this regard, the above RMSD expression (14) 

is replaced by 

 

  .            (20) 

 
One can then simulate  and apply Eq. (20) both upward in temperature from 

 to the desired maximum  and downward in temperature from  to 

an allowable minimum .  Once  is thereby calculated for the volumes 

and temperatures of interest, the electron-thermal component  can finally be 

added to it to establish a total free energy and equation of state for the orthorhombic 

phase in question. 

 
For the Pnma and Fddd structures, we have performed MGPT-RSMD simulations to 

higher and lower temperature along seven isochores contained within the restricted 

volume range of Eqs. (16) and (17), in increments of .  The simulations to 

higher temperature were carried out in each case from  to  K, while 

those to lower temperature were performed from  to .  The ion-thermal free-

energy data so obtained for the Pnma and Fddd solids were then fit respectively with an 

analytic form analogous to Eq. (48) of Ref. [14] for the liquid: 

 

  ,                   (21) 

 
where , the  are volume-dependent coefficients, and .  

The values of  so calculated were then extended to a fine 25-volume mesh with 

 by numerical interpolation. 

Tref = Tm Ω =Ωsol

Aion
sol (Ω,Tref ) = Aion

sol (Ω,Tm ) = Asol (Ωsol,Tm )− E0 (Ωsol )

Aion
sol (Ω,T ) = T

Tm
[E0 (Ω)+ Aion

sol (Ω,Tm )+Wion (Ω,T )]−
3
2
kBT ln

T
Tm

− E0 (Ω)

Wion (Ω,T )

T = Tm T = Tmax T = Tm

T = Tmin Aion
sol (Ω,T )

Ael (Ω,T )

Δx = 0.04

Tm Tmax = 17,500

Tm  ∼ 0.5Tm

Aion
sol (Ω,T ) = B0τ − B1τ lnτ + B2τ (τ −1)+ B3τ (τ

2 −1)+ B4τ (τ
3 −1)

+B5τ (τ
4 −1)+ B6τ (τ

5 −1)

τ = T /Tmax Bn B0 (Ω) = Aion
sol (Ω,Tmax )

Aion
sol

Δx = 0.01
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FIG. 20.  Calculated MGPT orthorhombic free-energy melt curves in Ta compared with 

corresponding input two-phase melt data in the  limit.  (a) Pnma ; (b) Fddd. 

 

To test the numerical accuracy and self-consistency of our calculations of  for 

Pnma and Fddd, the total free energy in the  limit for each solid was obtained by 

adding the appropriate cold energy .  These results were then used together with 

the established liquid free energy to perform Helmholtz free-energy calculations of the 

Pnma and Fddd melt curves.  The  free-energy melt curves so calculated are 

compared with the input two-phase melt data in Fig. 20.  The agreement is seen to be 

generally good for both Pnma and Fddd.  As a final step, we have added the electron-

thermal contribution  to form total Pnma and Fddd free energies at the same 

level of approximation as obtained for the bcc, fcc and A15 structures.  As expected, the 

impact of  on the Pnma and Fddd melt curves was found to be small, lowering the 

calculated melt temperatures by 3% or less at all pressures, as was also the case for bcc, 

fcc and A15. 
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VI. SUMMARY and CONCLUSIONS 

 
In this paper we have extended the quantum-based MGPT studies begun in Paper I of 

possible high-T,P polymorphism in the phase diagram of Ta to include four promising 

orthorhombic structures: Pnma, Fddd, Pmma and Cmcm or a-U, in addition to the cubic 

bcc, fcc and A15 structures and the hexagonal hcp and w structures treated in Paper I.  

Thus, including the liquid, a total of ten phases have been studied.  For the nine solid 

phases treated, both low- and high-temperature mechanical and thermodynamic stability 

have been addressed in detail at high pressures up to 420 GPa.  A summary of some the 

main results obtained here and in Paper I is given in Table I. 

 
In the low-T solid, mechanical stability has been determined on the basis of calculated 

 quasiharmonic phonons, with the bcc, A15, Pnma and Fddd structures predicted to 

be stable from ambient conditions to 420 GPa in pressure, with similar pressure-

dependent Debye temperatures calculated for all four phases.  The fcc, hcp, hex-w, Pmma 

and a-U structures were found to be mechanically unstable at all volumes over the same 

pressure range.  Corresponding structural and thermodynamic stability has been 

determined by relaxed  total-energy calculations, with bcc producing the lowest 

total energy at all pressures, and with A15, Fddd and Pnma, respectively, being the 

structures next lowest in total energy.  Upon heating in constant-volume MGPT-MD 

simulations, the Fddd and Pnma structures were found to undergo temperature-induced 

phase transitions to bcc at all volumes, with transition temperatures in the range 150-1450 

K.  The transition temperatures attain peak values for these structures in the pressure 

range 80-150 GPa. 

 
In the high-T solid, accurate results on the mechanical and thermodynamic stability have 

been determined on the basis of large-cell MGPT-MD simulations.  Large anharmonic 

effects have been found over the pressure range 0-420 GPa in all structures, with the 

exception of bcc and A15.  In the cases of fcc, hcp, hex-w, Pmma and a-U, this large 

anharmonicity is the principle driving force that mechanically stabilizes these structures 

at high temperature.  For hex-w, however, high-T mechanical stability is sensitive to the  

T = 0

T = 0
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TABLE I.  Summary of the MGPT predicted low- and high-temperature mechanical and 

thermodynamic stability of nine solid crystal structures in Ta to 420 GPa. 

Solid 
phase 

Low-T 
mechanical 
stability 

Low-T 
thermodynamic 
stability 

T-induced 
solid-solid 
phase 
transition 

High-T 
mechanical 
stability 

High-T 
thermodynamic 
stability 

bcc yes yes no yes yes 

fcc no no ¾ yes no 

hcp no no ¾ yes no 

A15 yes no no yes no; metastable  

(~ 0-80 GPa) 

hex-w no no ¾  

only 

no 

Pnma yes no to bcc yes co-exist w. bcc 

(~ 90 GPa) 

Fddd yes no to bcc yes co-exist w. bcc 

(~ 90-140 GPa) 

Pmma no no ¾ yes no 

a-U no no ¾ yes co-exist w. bcc 

(~ 90 GPa) 

 

 axial ratio and only occurs for .  For , hex-w remains 

mechanically unstable and partially transforms to bcc. 

 
The large anharmonic effects found in our candidate structures at high temperature also 

give rise to important melt size effects, which can strongly impact any predictions of 

thermodynamic phase stability on the basis of relative melt curves.  In Paper I, we found 

for the cubic and hexagonal phases of Ta that solid-phase MD cells needed to be at least 

~ 500 atoms to produce accurate melt curves.  This finding reversed the small-cell (< 150 

atom) QMD prediction [12] of a thermodynamically stable hex-w phase.  Here we have 

shown for the orthorhombic phases that the solid-phase MD cell needs to be significantly 

larger and at least ~ 1000–4000 atoms to avoid melt size effects.  This reverses the recent 

c / a < 0.54

c / a c / a < 0.54 c / a > 0.54
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small-cell (64 atom) DFT metadynamics [15] and (~ 500 atom) QMD [19] predictions of 

a thermodynamically stable Pnma phase. 

 
In Paper I and the present paper, we have determined accurate high-T thermodynamic 

stability using large-cell two-phase MGPT-MD melt simulations with solid-phase cell 

sizes of ~ 40,000 atoms and total cell sizes of ~ 80,000 atoms.  For the fcc, hcp, A15, 

hex-w and Pmma structures, our calculated melt curves all clearly lie below that of bcc, 

supporting bcc thermodynamic stability.  In the case of A15, the calculated melt curve 

begins to closely approach the bcc melt curve below 80 GPa, consistent with the 

observed metastability of the A15 phase at ambient pressure [44].  For the remaining 

Fddd, Pnma and a-U structures, our two-phase melt curves all touch (but do not cross 

above) the bcc melt curve in the vicinity of 100 GPa, suggesting that these phases could 

co-exist with bcc in this vicinity, and possibly be observed experimentally. 

 
Finally, we have here calculated MGPT global free energies for the A15, Pnma and Fddd 

phases of Ta to complement those determined for the bcc, fcc and liquid phases in Ref. 

[14].  Free-energy based melt curves calculated for the bcc, fcc, A15, Pnma and Fddd 

structures are all consistent with our large-cell, two-phase results.  In addition, analysis of 

the A15 free-energy components show directly that it is the small, but larger than bcc, 

anharmonic free energy in A15 that prevents this structure from becoming the 

thermodynamically stable phase at low pressure.  In the quasiharmonic limit, without 

anharmonic effects, A15 is predicted to be the stable high-T phase of Ta below about 40 

GPa. 
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