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We report a density-matrix renormalization group study of the lightly doped t-J model on a
4-leg cylinder with doped hole concentrations per site δ = 5% ∼ 12.5%. By keeping an unusually
large number of states and long system sizes, we are able to accurately document the interplay
between superconductivity, spin and charge-density-wave orders. The long-distance behavior is
consistent with that of a Luther-Emery liquid with a spin-gap and power-law charge-density-wave
and superconducting correlations. This is the widest t-J or Hubbard system in which power-law
superconducting correlations have been established.

The Hubbard model, and the closely related t-J model,
play central roles in the theory of highly correlated elec-
tronic systems.1–18 Enormous effort has been devoted to
studying the properties of these models at intermediate
couplings. No general theoretically controlled methods
exist for this class of problem.19,20 However, it is possi-
ble to obtain essentially exact results on long but moder-
ately narrow cylinders using density matrix renormaliza-
tion group (DMRG) method.21 Cylinders have the local
lattice geometry of the two-dimensional (2D) system, and
can be extrapolated to infinite length, i.e. the thermody-
namic limit can be taken in one direction. Thus, one can
hope to obtain insight into the nature of the 2D problem
from these solutions.

In this paper, we report extensive DMRG studies of
the 4-leg t-J cylinder, keeping a large number of states
so that subtle long-distance correlations can be reliably
studied. In addition to the hope that they may shed light
on the 2D problem, there are two other reasons to en-
gage in such studies. Firstly, there is interesting physics
of multicomponent one-dimensional (1D) systems that
can be directly explored without undue speculation - the
only extrapolations are to the limits of zero truncation
error and infinite system length. Secondly, these systems
can be used to benchmark less clearly justified but more
widely applicable computational methods.

Principal Findings: We have studied the equal-
time superconducting (SC), charge-density-wave (CDW)
and spin-density-wave (SDW) correlations for a range of
doped hole concentrations, δ = 5% ∼ 12.5%, and for
a characteristic value of t/J = 3. We have obtained
similar, but less extensive results for other values of t/J .
Thought of as a 1D system, we find that the ground-state
is always in a Luther-Emery (LE) phase22 characterized
by a finite spin-gap, exponential decay of spin correla-
tions, and CDW and SC correlations that fall at long dis-
tances as cos(Qr+θ) r−Kc and r−Ksc respectively, where
the CDW wave-vector Q = 4πδ. An ordered state with
this value of Q has wave-length λ = 1/2δ, and so half a
doped hole per unit cell corresponding to what is referred
to as “half-filled” stripes. This is consistent with recent
study of t-t′-U Hubbard model on 4-leg cylinders.23

Moreover, within numerical uncertainty, as theoreti-
cally expected of a LE liquid, KcKsc = 1 (Fig.3) and
the central charge, c, extracted from the scaling of the
entanglement entropy, is c = 1 (inset of Fig.6). The SC
and CDW correlations are invariant with respect to the
C4 symmetry of rotations about the axis of the cylinder.
The SC correlations have a “d-wave-like” form factor in
that the sign of the pair-field is opposite on bonds per-
pendicular to and along the cylinder (Y-directed and X-
directed bonds). However, this is not a statement of sym-
metry, and indeed there is an almost equal in strength
admixture of an “extended s-wave” component with the
consequence that the pair-field amplitude on Y-bonds is
two orders of magnitude larger than on X-bonds. (See
Fig.2)

For all the dopings studied, Ksc < 2 and Kc < 2, which
(assuming the usual emergent Lorentz invariance) implies
that both the corresponding susceptibilities diverge as
T → 0, as T−(2−Ksc) and T−(2−Kc) respectively. As far
as we know, this is the first demonstration of power-law
SC correlations on such a wide t-J or Hubbard cylinder.
As shown in Fig.3, Ksc is an increasing function of δ and
Kc a decreasing function, so that the SC susceptibility is
more divergent for δ < 0.1 and the CDW is more diver-
gent for δ > 0.1.

In a previous study16, we explored the same model
over a wider range of parameters in which the primary
focus was to explore the extent to which the nature of
the ground-state depends on “microscopic details.” For
the special case on which we focus here, these earlier re-
sults are generally consistent with our present results.
However, the longer system sizes and the larger number
of states used in the present study increase our ability
to distinguish exponential-decay correlations, power-law
(quasi-long-range) and true long-range order. In partic-
ular, what was previously tentatively identified as SC
with a long but finite correlation length, we now identify
as quasi-long-ranged SC order, albeit with exactly the
previously determined form factor.

Model and Method: We study the hole-doped t-J
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FIG. 1: (Color online) (a) Charge density profile n(x) at dop-
ing levels δ = 8.33% and δ = 12.5% on a Lx = 96 cylinder.
The open squares and circles denote numerical data, while the
red lines are fits to n(x) = Acdw cos(Qx+θ)+n0, where Acdw
and Q are the CDW amplitude and ordering wave-vector, re-
spectively. Note that only the central-half region with rung
indices Lx

4
< x ≤ 3Lx

4
are shown and used in the fitting to

minimize the boundary effect. The red ovals label the “ref-
erence site” chosen to calculate the SC correlation in Eq.(3).
(b) Finite-size scaling of Acdw as a function of Lx and δ in a
double-logarithmic plot.

model on the square lattice defined by the Hamiltonian

H = −t
∑
〈ij〉σ

(
ĉ+iσ ĉjσ + h.c.

)
+ J

∑
〈ij〉

(
~Si · ~Sj −

n̂in̂j
4

)
,(1)

where ĉ+iσ (ĉiσ) is the electron creation (annihilation) op-

erator on site i = (xi, yi) with spin σ, ~Si is the spin oper-
ator and n̂i =

∑
σ ĉ

+
iσ ĉiσ is the electron number operator,

〈ij〉 denotes nearest-neighbor (NN) sites and the Hilbert
space is constrained by the no-double occupancy con-
dition n̂i ≤ 1. The parameters t and J are the electron
hopping integral and the spin superexchange interactions
between NN sites. We take the lattice geometry to be
cylindrical and a lattice spacing of unity. Thus, unless
stated otherwise, we take periodic boundary conditions
in the ŷ = (0, 1) direction and open in the x̂ = (1, 0)
direction, although for comparison we also consider the
case of anti-periodic boundary conditions corresponding
to a half-quantum of flux threaded along the cylinder.
Here, we focus on cylinders with circumference Ly = 4
and length Lx. There are N = Lx × Ly lattice sites and
Ne ≤ N electrons. The concentration of “doped holes”
is defined as δ = Nh

N , where Nh = N −Ne.
For the present study, we focus on the lightly doped

case at doping levels δ = 5% ∼ 12.5% on cylinders with
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FIG. 2: (Color online) Finite-size scaling of superconducting
correlation Φyy(Lx
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) as a function of Lx and doping level δ in a

double-logarithmic plot. The solid lines are fits to Φyy(Lx
2

) ∼
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)−Ksc . Inset: Φyy and -Φxy on a Lx = 128 cylinder.
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FIG. 3: (Color online) Luttinger exponents Kc, Ksc and their
product KcKsc, as a function of δ. The filled symbols repre-
sent the extracted values from the fits in Fig.1(b) and Fig.2.
The lines are guides to eyes.

length up to Lx = 128. We set J = 1 as the energy unit
and report results for t = 3. We keep the total magne-
tization fixed at zero and perform around 60 sweeps and
keep up to m = 15000 states in each DMRG block with
a typical truncation error ε . 1×10−7. This leads to ex-
cellent convergence for our results when extrapolated to
m = ∞ limit. In all cases, but especially when comput-
ing SC correlations, it proves essential to keep very large
m and to analyze the m → ∞ seriously, and in some
cases, it is necessary to go to system sizes much longer
than Lx = 48 in order to observe the correlations that
arise in the Lx →∞ limit. Further numerical details are
presented in the Supplemental Material32.
Theoretical expectations: In a LE liquid phase,

there is a single gapless spinless bosonic mode with lin-
ear dispersion (emergent Lorentz symmetry) - i.e. it is
asymptotically equivalent to a 1+1 dimensional confor-
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mal field theory (CFT) with c = 1. At long-distances the
density-density correlation oscillates with a well-defined
wave-vector Q and decays with a power-law given by the
Luttinger exponent Kc, while the dual SC correlation
exhibits non-oscillatory power-law decay with exponent
Ksc = 1/Kc. Because there is a spin-gap, spin corre-
lations fall exponentially with a finite correlation length
ξs, but one can still identify a wave-vector Qsdw which
characterizes the oscillations of the SDW correlations.

These properties can be extracted in various ways from
numerical data. Because the CDW is pinned by the
cylinder ends, an effective method to study the CDW
correlations is to compute the charge density modula-
tions in the middle region of a finite cylinder, 〈n̂i〉 ≈
(1 − δ) + Acdw(Lx) cos(Qxi + θ) for xi near Lx/2. The
SC correlation is determined from the long distance be-
havior of the SC correlator Φα,β(x) defined in Eq.(3).
The expectation is that the decay of these quantities is
governed by the appropriate exponents,

Acdw(Lx) ∝ L−Kc/2
x and Φαβ(x) ∝ |x|−Ksc , (2)

where the second relation applies for displacements along
the cylinder 1� |x| � Lx. Similarly, Qsdw and ξsdw can
be extracted from the long-distance behavior of the spin-
spin correlation.

CDW correlations: To describe the charge density
properties of the system, we define the local rung den-

sity operator as n̂(x) = 1
Ly

∑Ly

y=1 n̂(x, y) and its expec-

tation value as n(x) = 〈n̂(x)〉. Fig.1 shows n(x) in a
central portion of cylinders with Lx = 96 for δ = 8.33%
and δ = 12.5%. Here, a stripe pattern with wavelength
λ = 1/2δ is found, i.e. λ = 4 for δ = 12.5%, consis-
tent with previous studies.16,24. Similar behavior (not
shown) is found at other doping levels. Fig.1(b) shows
examples of finite-size scaling of Acdw as a function of
Lx. In the double-logarithmic plot, our results for all
doping levels are approximately linear, which suggests
that Acdw(Lx) decays with a power-law and vanishes as
Lx →∞. The exponent Kc, which is shown in Fig.3, was
obtained by fitting the data points using Eq.(2). Kc can
also be obtained directly from the decay of the density-
density correlation near the cylinder ends (see Supple-
mental Material32).
Superconducting correlation: Since the ground

state of the system with even an number of doped holes
is always found to have spin 0, we will focus on spin-
singlet pairing. A diagnostic of SC order is the pair-field
correlator defined as

Φαβ(x) =
1

Ly

Ly∑
y=1

〈∆†α(x0, y)∆β(x0 + x, y)〉. (3)

Here the spin-singlet pair-field creation operator is

∆†α(x, y) = 1√
2
[c†(x,y),↑c

†
(x,y)+α,↓−c

†
(x,y),↓c

†
(x,y)+α,↑], where

bond orientations are designated α = x̂, ŷ, (x0, y) is the
reference bond indicated by the red oval shown in Fig.1,
and x is the displacement in the x̂ = (1, 0) direction.
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FIG. 4: (Color online) Finite-size scaling of the spin-spin cor-
relation F (Lx

2
) as a function of Lx at δ = 0% to 12.5% in

the semi-logarithemic plot. The inset shows the correlation
length ξs obtained from fits (solid lines) to data in the main

panel using F (Lx
2

) ∝ e−Lx/2ξs .

Fig.2 shows the finite-size scaling of Φyy(Lx

2 ) at dif-
ferent doping levels. It decays with a power-law, whose
exponent Ksc, plotted in Fig.3, was obtained by fitting
the results using Eq.(2). Therefore, we can conclude that
the lightly doped t-J model on Ly = 4 cylinders has
quasi-long-range SC correlation. It is worth noting that
Ksc decreases with decreasing δ tending to saturate at
Ksc = 0.5, while Kc increases and tends to saturate at
Kc = 2 as δ → 0. Both tendencies are consistent with
theoretical prediction.25

Spin-spin correlation: To describe the magnetic
properties of the ground state, we have also calculated
the spin-spin correlation functions defined as

F (x) =
1

Ly

Ly∑
y=1

|〈~Sx0,y · ~Sx0+x,y〉|. (4)

Here ~Sx,y denotes the spin operator on site i = (x, y).
(x0, y) is the reference site indicated by the red oval
shown in Fig.1, and x is the displacement in the x̂ = (1, 0)
direction. As we did for Acdw and Φyy, we first ex-

trapolate F (Lx

2 ) to the limit m = ∞, and then ana-
lyze the functional dependence of the result on Lx. As
shown in Fig.4, F (Lx

2 ) decays exponentially with Lx, i.e.,

F (Lx

2 ) ∝ e−Lx/2ξs . The corresponding correlation length
is ξs = 4 ∼ 5 lattice spacings. We conclude that the
spin correlations are short-ranged and consequently that
there is a spin-gap.
Anti-periodic boundary condition: We have also

considered cylinders with anti-periodic boundary condi-
tion (ABC) in the ŷ direction in order to test the extent
to which our results are representative of the 2D limit.
As shown in Fig.5 and previous studies16, the influence
of changing boundary condition around the cylinder is
significant. For example, the ground state of short cylin-
ders with length Lx ≤ 48, e.g., the Lx = 32 cylinder in
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FIG. 5: (Color online) The charge density profile n(x) at
δ = 12.5% and ABC in the ŷ direction for Lx = 32 and
Lx = 160 cylinders.

Fig.5, forms charge stripes of wavelength λ = 1
δ , which

are completely filled with holes. However, this turns out
to be a finite-size effect; the bulk of longer cylinders with
length Lx ≥ 64 exhibits half-filled stripes with wave-
length λ = 1/2δ, which is the same as the charge stripes
of cylinders with periodic boundary conditions. Exam-
ples of the charge density distribution of cylinders with
ABC in the ŷ direction are given in Fig.5 for δ = 12.5%.
The ABC apparently affects the balance between filled
and half-filled charge stripes; the former are stabilized in
a finite region close to the open boundaries of the cylin-
der, while half-filled stripes are robust in the bulk.

Central charge: A key feature of the LE liquid is that
it has a single gapless mode, i.e. it is expected to exhibit
central charge c = 1. The central charge can be obtained
by calculating the von Neumann entropy S = −Trρlnρ,
where ρ is the reduced density matrix of a subsystem
with length l. For critical systems in 1+1 dimensions, it
has been established26 that S(l) = c

6 ln(l) + c̃ for open
systems, where c is the central charge of the CFT and
c̃ denotes a model dependent constant. For finite cylin-
ders with length Lx, we can fix l = Lx

2 to extract the

central charge c. Fig.6 shows S(Lx

2 ) at different doping
levels δ. The inset shows the fitted central charge c as
a function of δ. Although the extracted value of central
charge c is slightly larger than c = 1, we suspect that this
is within the uncertainty of the calculation. The result
is roughly consistent with one gapless charge mode with
c = 1, which thus provides additional evidence for the
presence of a LE liquid in the doped t-J model.

Summary and Discussion: The presence of power-
law superconducting correlations with Ksc < 2 on 4-leg
cylinders is an encouraging piece of evidence of the pos-
sible existence of a high temperature superconducting
phase in 2D. The Q = 4πδ CDW correlations are remi-
niscent of the experimentally observed “half-filled” CDW
order that has been observed in previous DMRG stud-
ies of t-J models,12 in DQMC studies of the Hubbard
model at elevated temperatures,17,18 and experimentally
in several cuprates. The spin correlation length (shown
in Fig.4) decreases monotonically with increasing δ from
ξs ' 6.5 for δ = 0 to ξs ' 4 for δ = 12.5%.
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FIG. 6: (Color online) Von Neumann entanglement entropy S
with δ = 8.33%, 10% and 12.5%. Inset: The extracted central
charge c as a function of δ. Dashed line marks c = 1.

It is still unclear how the interplay between SC and
CDW order should be expected to evolve with increasing
cylinder circumference Ly. This uncertainty is exacer-
bated by the large number of nearly degenerate ground-
state phases that were found previously16 to be stabilized
by relatively small changes in the microscopic parame-
ters of the model. The subtlety of the interplay between
multiple phases is illustrated by changing the boundary
conditions on the electronic wave-functions from periodic
to anti-periodic. As shown in Fig.5, on shorter cylinders
(e.g. Lx = 32), a distinct CDW state with Q = 2πδ is
stabilized. This state is reminiscent of the “filled” stripes
found in Hartree-Fock calculations27–29 (where it is ac-
companied by long-range SDW order) and using various
approximate methods14 used in studies of the 2D Hub-
bard model.33 In the present case, we find that while even
for much longer flux-pierced cylinders, while the filled
stripe state is observable locally for a finite region near
the ends of the cylinders, far from the ends the CDW
correlations have the same Q = 4πδ ordering vector as in
the fluxless cylinder.

One big question is the fate of the magnetic cor-
relations in the 2D limit. For δ = 0, on theoreti-
cal grounds30,31 we know that ξs should diverge with
Ly → ∞ since the ground-state of the spin-1/2 Heisen-
berg model is magnetically ordered in 2D. The shorter
correlation lengths of the doped systems suggests, but
does not establish, that long-range antiferromagnetic or-
der is unlikely to persist in 2D for even relatively modest
values of δ.
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