
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classical phase diagram of the stuffed honeycomb lattice
Jyotisman Sahoo, Dmitrii Kochkov, Bryan K. Clark, and Rebecca Flint

Phys. Rev. B 98, 134419 — Published 11 October 2018
DOI: 10.1103/PhysRevB.98.134419

http://dx.doi.org/10.1103/PhysRevB.98.134419
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We investigate the classical phase diagram of the stuffed honeycomb Heisenberg lattice, which
consists of a honeycomb lattice with a superimposed triangular lattice formed by sites at the center
of each hexagon. This lattice encompasses and interpolates between the honeycomb, triangular
and dice lattices, preserving the hexagonal symmetry while expanding the phase space for potential
spin liquids. We use a combination of iterative minimization, classical Monte Carlo and analytical
techniques to determine the complete ground state phase diagram. It is quite rich, with a variety of
non-coplanar and non-collinear phases not found in the previously studied limits. In particular, our
analysis reveals the triangular lattice critical point to be a multicritical point with two new phases
vanishing via second order transitions at the critical point. We analyze these phases within linear
spin wave theory and discuss consequences for the S = 1/2 spin liquid.

I. INTRODUCTION

Realizing spin liquids, highly correlated and topolog-
ical magnetic phases that host fractional excitations, is
a key goal in correlated materials research1–3. While
there are now several good spin liquid candidates, par-
ticularly on the kagomé lattice4–7, we are far from re-
alizing the full spectrum of possible spin liquids. The
search for new spin liquid materials is often frustrated
by the narrow range of parameter space occupied by
those spin liquid phases in realistic models. As in-
creasing magnetic frustration stabilizes spin liquids,
one possible way to find new or more stable spin liquids
is to couple together two different frustrated lattices.
This paper studies the classical phase diagram of one
such lattice, the stuffed honeycomb lattice, which cou-
ples a honeycomb lattice to its dual triangular lattice.

Generically, coupled lattices have rich phase di-
agrams even at the classical level; for example,
the related windmill lattice showcases intriguing
Z6 order by disorder, with a critical phase and
Berezinskii-Kosterlitz-Thouless transitions at finite
temperatures8–11. Due to their non-Bravais nature,
these lattices can generically host non-coplanar phases
with nontrivial spin chirality; in the classical limit, this
chirality can lead to Berry phases and anomalous Hall
effects in metallic magnets12, and in the quantum limit
can lead to chiral spin liquids13,14, as found near the
cuboc phase in the kagomé lattice15–20.

In this paper, we discuss the classical phase diagram
of the stuffed honeycomb lattice Heisenberg model, a
two-dimensional model that combines the honeycomb
and triangular lattices by adding a spin to the center
of each hexagon of a honeycomb lattice. We consider
nearest (J1) and next-nearest (J2H) neighbor couplings
on the honeycomb lattice, and nearest neighbor (JT )
couplings on the centered triangular lattice, as well as
a nearest-neighbor coupling of the two lattices, J ′, as

J1
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C

FIG. 1: Stuffed honeycomb lattice model. This model
contains three sublattices, A (red) and B (blue) on the
honeycomb sites, and C (green) on the triangular sites. J1
(solid, black) is the nearest-neighbor coupling between
honeycomb sites, while J ′ (dashed, purple) is the coupling
between honeycomb and C sites. All three sublattices
have next-nearest neighbor J2’s that we take to be
identical (dotted, blue). The lattice vectors a1 and a2, as
well as the basis vectors δδδB and δδδC are shown.

shown in Fig. 1. For simplicity, we define a single
second neighbor coupling, J2 ≡ JT = J2H ; the re-
lated windmill lattice instead takes J2H = 08. This
model then interpolates from the honeycomb lattice
at J ′ = 0 to the triangular lattice for J ′ = J1, both
of which potentially host narrow spin liquid regions,
and out to the dice lattice for J ′ = ∞, all the while
maintaining the hexagonal symmetry, in contrast to
the usual anisotropic triangular lattices21–25. As such,
this model provides the perfect playground to explore
the potential existing spin liquids on the honeycomb26

and triangular lattice27,28 limits by enlarging their pos-
sible phase space into another dimension.

In this paper, we focus on the classical phase dia-
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gram, which includes several non-coplanar phases, and
the transitions between them. Perhaps the most in-
teresting result is that the weakly first order transi-
tion between 120◦ and collinear orders as a function
of J2/J1 on the triangular lattice is revealed to be a
multi-critical point between four phases, with two new
second order lines joining at that point. Here, we see
the origin of the strong fluctuations that give rise to
the spin liquid in the S = 1/2 model.

The classical triangular lattice forms 120◦ order for
J2/J1 < 1/8, and collinear order for J2/J1 > 1/8,
with a weak first-order transition between the two. For
S = 1/2, this transition broadens into a spin-liquid re-
gion extending from .06 < J2/J1 < .1627–29. While the
existence of this spin liquid region is well-established,
the nature of the spin liquid is not. The spin liq-
uid may be gapless30–32, and small perturbations of
many types seem to lead to different spin liquids, from
gapped27,28,32,33 to nematic28 to chiral32,34,35.

The classical honeycomb lattice is bipartite for J2 =
0, forming a Néel phase that gives way to a planar spi-
ral phase for J2/J1 > 1/6. Quantum fluctuations en-
hance the Néel phase, and it extends to J2/J1 = .2 for
S = 1/2, while the spiral phase is destroyed in favor of a
plaquette valence bond solid phase (VBS)26,36–39. The
region near J2/J1 = .2− .25 may form a spin liquid26,
or may be a deconfined critical point between the Néel
and VBS phases36,38,40. The potential spin liquid has
been proposed to be either a gapped Z2 “sublattice-
pairing state”37,41, or a Z2 d+ id Dirac spin liquid42.

This model was initially introduced to attempt to
explain the magnetic behavior of the cluster magnet
LiZn2Mo3O8

43–45. This material consists of a triangu-
lar lattice of Mo3O13 molecular clusters, each of which
hosts a single, isotropic S = 1/2. Above 100K, all spins
are visible in the Curie-Weiss susceptibility, while be-
low 100K, two-thirds of the spins vanish. This disap-
pearance led to the proposal of a spontaneous breaking
of the lattice symmetry such that a VBS or spin liq-
uid forms on an emergent honeycomb lattice, with the
leftover one-third of the spins located in the centers of
the hexagons46. The remaining third of these spins do
not order down to the lowest temperatures. The origi-
nal paper proposed octahedral cluster rotations as the
mechanism for symmetry breaking, although ordering
in the LiZn2 layer may be a more likely mechanism47.
An alternate theoretical proposal of plaquette charge
ordering on a 1/6th-filled breathing kagomé lattice
extended Hubbard model exists48–50, which also re-
quires an enlargement of the unit cell. Neither of these
proposed enlargements has been seen51, although the
breathing kagomé lattice structure is found in the re-
lated Li2In1−xScxMo3O8 materials52.

Another class of possible materials realizations are
spin chain materials like RbFeBr3, which form quasi-
1D spin chains arranged in the basal plane as a stuffed

honeycomb lattice53; these spins are XY-like, and are
thought to form a partially disordered antiferromag-
netic phase, with one-third of the spin chains disor-
dered in the basal plane. This model has been stud-
ied for XY54,55 and Heisenberg56–59 spins with nearest-
neighbor J1 and J ′ exchange.

Engineering this lattice is another potential path,
either by intercalcating extra spins into exist-
ing inorganic honeycomb lattice materials like the
oxalates60–62, or more straightforwardly by forming a
triangular tri-layer with ABC stacking. The C sub-
lattice forms the center layer, with J2 couplings in
plane, and J ′ couplings to nearest neighbors in the
A and B layers above and below. The nearest neigh-
bor couplings between the outer A and B layers are
J1. Here, the generically somewhat artificial condition
that JT = J2H ≡ J2 is natural, if the three sublattices
are otherwise identical. Some fine-tuning would be re-
quired to obtain J1 ∼ J ′, as generically J1 will be the
smallest coupling.

The organization of the paper is as follows. The
model is introduced in Sec. II, methods are discussed in
Sec. III, and the full classical phase diagram is shown
in Sec. IV. The various phases are discussed in sections
V to VII. Given the importance of the multicritical
point around the triangular limit, we introduce the two
off-axis non-collinear phases in a separate section, Sec.
VIII, and discuss the effect of fluctuations. Finally,
we briefly summarize in Sec. IX and suggest future
directions.

II. MODEL

The stuffed honeycomb lattice is shown in Fig.1. It is
a non-Bravais lattice with space group symmetry p6m.
The hexagonal lattice vectors are,

a1 =

(
3

2
,

√
3

2

)
; a2 =

(
3

2
,−
√

3

2

)
, (1)

where we take the nearest-neighbor distance between
sites to be one. Two sites (A,B) are on the honey-
comb lattice, while the C sites sit in the center of the
hexagons; the basis vectors are,

δδδA = (0, 0); δδδB = (
1

2
√

3
,

1

2
); δδδC = (

1√
3
, 0). (2)

We consider Heisenberg spins with three different
antiferromagnetic exchange interactions,

H = J1

∑
〈i,j〉

~SAi · ~SBj +J ′
∑
〈i,j〉
η=A,B

~Sηi · ~S
C
j +J2

∑
〈〈i,j〉〉

η=A,B,C

~Sηi · ~S
η
j (3)

J1 and J ′ both correspond to nearest-neighbor (NN)
interactions. While J1 couples the A and B sublat-
tices, J ′ couples the C sublattice with both A and B
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FIG. 2: Classical ground state phase diagram as a function of J2/J1 versus J ′/J1. This phase diagram interpolates
between the honeycomb limit (far left) to the triangular limit (middle) and beyond. Thick dotted lines separating the
phases indicate a first order phase transition while solid lines imply a continuous transition. Details of each phase are
given in the following sections: Néel*, spiral*, triple conical (TC) and “triangle of triangles” (TT) are described in
Section V; the double conical phases, DC I and DC II are described in Section VII; the spiral, collinear, interpolating and
ferrimagnetic phases are described in Section VI; and the non-collinear phases I and II are discussed in Section VIII.

sublattices. J2 is the next-nearest-neighbor (NNN) in-
teraction, which couples spins in the same sublattice;
we take J2 on the honeycomb (AA,BB) and central
spins (CC) to be identical for simplicity; although this
identity is not required by symmetry, it is present in
the triangular tri-layer.

There are three limits of particular interest: J1 = J ′

gives the J1 − J2 triangular lattice; J ′ = 0 yields a
J1 − J2 honeycomb lattice completely decoupled from
a nearest-neighbor (here, J2) triangular lattice; and
finally J1 = 0 gives the J1 − J2 dice lattice, perhaps
best known as the dual to the kagomé lattice.

III. METHODS

While obtaining the ground state phase diagram for
a Bravais lattice may be done by assuming a single Q
planar spiral variational ansatz, and minimizing J(Q),
non-Bravais lattices are generically more complicated
and require a combination of numerical and analytical
techniques. Our goal is to obtain a variational ansatz
for each phase, and to then find phase boundaries by

comparing energies. As ansatz can be arbitrarily com-
plicated, we first use iterative minimization to find the
ground state configuration numerically at each point in
the phase diagram, and then develop the corresponding
variational ansatz that matches or beats the iterative
minimization ground state energies.

Iterative minimization is a numerical technique that
begins with a random spin configuration on a finite size
lattice with periodic boundary conditions. At each step
in the algorithm, a spin is chosen randomly and aligned
with the exchange field due to its neighbors. This ex-
change field can be seen by rewriting the Hamiltonian,

H =
∑
i

Hi, where Hi = ~Si · (−
1

2

∑
j

Jij ~Sj). (4)

The spin, ~Si will then be set to,

~Si →
∑
j Jij

~Sj

||
∑
j Jij

~Sj ||2
. (5)

The algorithm is run until the energy converges. In
order to avoid finite size effects, and also to check that
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we avoid local minima, we ran the algorithm on lattices
of all sizes from 4x4 to 30x30 unit cells, taking the
minimum energy of these.

We then used a variety of variational ansatz, each of
which treats the classical spins as unit-vectors, setting
S = 1. Most of the phases fit into two classes of ansatz:
a 3Q ansatz we describe here, and a double conical
ansatz described in section VII. When these two classes
of ansatz failed, we developed new variational ansatze
by examining the spin configurations given by itera-
tive minimization. If our variational ansatz correctly
describes the ground state, its energy is less than or
equal to the minimum iterative minimization energy.
In principle, this process could miss states with unit
cells larger than 30x30; here, we would expect the iter-
ative minimization spin configurations to locally resem-
ble the correct ground state, with topological defects
or lock-in to nearby commensurate wave-vectors. We
have visually spot checked that the iterative minimiza-
tion spin configurations locally match the configura-
tions obtained from the variational ansatz.

The 3Q ansatz allows each of the three sublattices
to be treated independently. We define the sublattice

spin, ~Sη(Ri), where Ri denotes a Bravais lattice site
and η labels the sublattice. The most general form of
this vector describes a conical spiral,

~Sη(Ri) = [cos θ cos(Q·Ri), cos θ sin(Q·Ri), sin θ], (6)

with the conical axis along the ẑ direction and conical
angle θ. The perpendicular spin components are de-
termined by a planar spiral with ordering wave-vector
Q. Both θ and Q are variational parameters. We then
require two sets of Euler angles to relate the three sub-
lattices. The A sublattice is chosen to be oriented as
above, with the B axes rotated by Euler angles (α, β, γ)
and the C sublattice rotated by (α′, β′, γ′). Typically,
most of these parameters are not needed to describe
a phase; most phases are planar, with θη = 0 and
α = α′ = 0, β = β′ = 0. Once the relevant param-
eters are determined, and the classical energy mini-
mized with respect to these parameters, the nature of
the phases, and location and nature of the phase tran-
sitions can be determined. In particular, we can de-
termine the first or second order nature of a phase
transition by examining the derivatives of the ener-
gies at the phase boundaries. More complicated varia-
tional ansatz, like the double conical spiral and twelve-
sublattice ansatze are described in the sections for each
phase.

IV. CLASSICAL PHASE DIAGRAM

In this paper, we solve the classical, S →∞ limit of
this lattice for all values of J ′/J1 and 0 < J2/J1 < 1.2;
no new phases appear beyond this upper limit. We

show the phase diagram in two different figures in or-
der to capture the relevant limits. In Fig. 2, we plot
the phase diagram as J2/J1 versus J ′/J1 in order to
capture the interpolation from honeycomb to triangu-
lar lattice and beyond. In Fig. 3, we instead plot the
phase diagram as a function of J2/J

′ versus J1/J
′ in

order to capture the evolution from the triangular to
the dice limit.

FIG. 3: Classical ground state phase diagram as a
function of J2/J

′ and J1/J
′; this phase diagram

interpolates between the triangular (far left) and dice
limits (far right). Dotted lines indicate a first order phase
transition, while solid lines imply a continuous transition.
Details of each phase are given in the following sections:
the double conical phase, DC I is described in Section VII;
the spiral, collinear, interpolating and ferrimagnetic
phases are described in Section VI; and non-collinear
phase I is discussed in Section VIII.

First and second order transitions are indicated by
dashed and solid lines, respectively. There are sev-
eral multi-critical points. We note that these naively
seem to disobey the Gibbs phase rule, wherein we ex-
pect only three unrelated phases to meet at any given
multicritical point in a two-dimensional phase diagram.
However, this constraint can be avoided when two or
more of the phases are really different limits of the
same ansatz. For example, the collinear phase is a spe-
cial case of non-collinear I and II, as well as double
conical I and II; the Néel* phase is a special case of the
spiral* phase; and the ferrimagnetic phase is a special
case of both the interpolating and spiral phases. These
phases do, however, break different symmetries and are
truly distinct.
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V. PHASES NEAR THE HONEYCOMB AXIS

The classical ground state phase diagram of the hon-
eycomb lattice itself is well known, with a Néel phase
for J2/J1 < 1/6 and a spiral phase for J2/J1 > 1/6.
For J ′ = 0, the central spins form 120◦ order on the C
sublattice linked by J2. The small J2/J1 phases are un-
affected by J ′, but at larger J2/J1, the spiral is highly
unstable. With a small J ′/J1, the spiral phase dis-
torts into one of three non-coplanar phases: the triple
conical and triangle of triangles phases discussed be-
low, which require many sublattices to describe, and a
double conical phase, DC II discussed in section VII B.
This complexity suggests the fundamental instability
of the spiral phase of the honeycomb lattice, and in-
deed that phase does not survive to S = 1/2, replaced
by a VBS36,37.

A. Néel* Phase

For 0 < J2/J1 <
1
6 , the honeycomb spins (AB) or-

der in the conventional Néel configuration while the C
sublattice forms 120o order, as shown in Fig. 4. In
the classical, T = 0 limit, the C spins are completely
decoupled from the AB spins, even for finite J ′; we use
the * suffix to indicate that the AB and C spins are
decoupled, with the AB spins in their honeycomb limit
phase, and the C spins forming 120◦ order. Thermal
and quantum fluctuations will drive this phase into a
coplanar order where one of the three C spin axes aligns
with one of the AB spin axes. This six-fold degeneracy
leads to a Z6 order driven by order by disorder8,9. The
classical energy for this phase is

ENéel[J2] = −3 + 9/2J2, (7)

where for simplicity we set J1 = 1 here, and in much
of the rest of the paper. The spins are parametrized as

~SA = [0, 0, 1]; ~SB = [0, 0,−1]

~SC(Ri) = [cos(Qtri ·Ri), 0, sin(Qtri ·Ri)], (8)

where Qtri = ( 2π
3 ,

2π
3
√

3
) is the 120o ordering vector.

(a)

0

(b)

FIG. 5: Spiral* phase: (a) There is an incommensurate
coplanar spiral ordering on the A and B sublattices with
Qsp being a function of J2 only. The decoupled C spins
have a 120o order. (b) Qx(Qy) plotted as a function of J2.
For J2/J1 ≤ 1/6, Qsp limits to a constant value, and the
Néel* phase is a special case of the spiral phase. Note that
all parameters of this phase are independent of J ′.

FIG. 4: Néel* phase. The A(red) and B(blue) spins are
Néel ordered while the decoupled C (green) spins form
120o order. This particular arrangement is one of the six
favored by thermal and quantum fluctuations.

B. Spiral* phase

For 1
6 < J2 . 0.225 and small J ′, the honeycomb

spins (AB) are driven into an incommensurate copla-
nar spiral order as shown in Fig. 5a. The C sub-
lattice remains decoupled and 120o ordered even for
finite J ′, due to the cancellation of the overall ex-
change field at the C sites. In order to distinguish
this phase from the planar spiral on all three sublat-
tices, we call this phase spiral*, where * again indicates
that the AB and C spins are decoupled. Quantum and
thermal fluctuations again force the sublattices to be
coplanar63–65. The spin configuration is given by the
variational ansatz,

~SA(Ri) = [cos(Qsp ·Ri), 0, sin(Qsp ·Ri)]

~SB(Ri) = [cos(Qsp ·Ri + γ), 0, sin(Qsp ·Ri + γ)]

~SC(Ri) = [cos(Qtri ·Ri), 0, sin(Qtri ·Ri)]. (9)

Here, the variational parameters are the spiral ordering
wave-vector, Qsp and the angle between the A and B
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spins in the same unit cell, γ. The variational energy
of this phase is,

Espiral[Qsp, γ, J2]

=
J2

2

[
− 3 + 4 cos{Qsp · (a1 − a2)}+ 4 cos(Qsp · a2)

+ 4 cos(Qsp · a2)
]

+
1

2

[
2(1 + cos{Qsp · (a1 − a2)}

+ cos{Qsp · a1}) cos(γ)− 2(sin{Qsp · (a1 − a2)}

+ sin{Qsp · a1}) sin(γ)
]
.

(10)

Only the first term −3J2/2 comes from the C spins.
Minimization of this function shows that Qsp and γ
are independent of J ′, as indeed is the entire energy of
this phase. We are also only finding one of a classically
degenerate manifold of Qsp, which cause this phase to
be strongly affected by quantum fluctuations66. The J2

dependence of Qsp is shown in Fig. 5b; note that for
J2/J1 = 1/6, Qsp → (0, 0), and thus the Néel* phase is
a special case of the spiral* phase, and the transition
between the two is second order. For J2/J1 > 1/2,
the spiral* phase is again the lowest energy phase; it
persists out to J2/J1 =∞, where Qsp limits to Qtri.

C. Triple conical phase

For J2/J1 & 0.225 and J ′/J1 > 0, the spiral*
phase distorts into a “triple conical” phase. While for
J2/J1 < .22, the AB spirals are flat and decoupled
from the C spins, with larger J2 these spirals begin
to wave out of the plane in order to couple to the C
spins and take advantage of the J ′ exchange coupling.
The C spins are only slightly distorted from their 120◦

order, and now align such that their ordering plane is
perpendicular to the initial AB ordering plane. The
case for small J ′/J1 is shown in Fig. 6 (a), where we
plot all of the spins obtained in iterative minimization
with a common origin. As J ′/J1 increases, the AB spi-
rals wave more and more out of the plane, and the C
spins form three cones around the original 120◦ axes,
as shown for Fig. 6 (b, c). Note that one of these
conical axes is in the AB plane, and that cone flattens
out with larger J ′ to better align with the AB spins.
This phase is quite complicated, and we were unfor-
tunately unable to find a variational parameterization
for it. The phase boundaries were determined by com-
paring iterative minimization energies to the analytical
energies of the surrounding phases, and the spin config-
uration of each phase point was checked to ensure that
no additional phases were present. While the transi-
tion from the spiral to the triple conical phase appears
to be smooth, it may instead be weakly first order;
our data could not resolve this difference. Due to its

(a) J ′/J1 = 0.05 (b) J ′/J1 = 0.075 (c) J ′/J1 = 0.1

FIG. 6: Spin configurations in the triple conical phase
plotted using a common origin plot, with A, B, C spins
shown in red, blue, green, respectively. Three
representative configurations are plotted for J2/J1 = .3,
with increasing J ′/J1. While the configuration in (a) is
very close to the spiral* phase, the AB spirals wave out of
the plane with increasing J ′, and the C spins distort into
cones around the original 120◦ axes.

non-coplanar nature, this phase is unlikely to survive
substantial quantum fluctuations. For sufficiently large
J ′, this phase undergoes a first order phase transition
to the DC II double conical phase.

D. Triangle of triangles phase

Right in the middle of the triple conical phase, there
is wedge of another unusual non-coplanar phase that
almost touches the J ′ = 0 axis at J2/J1 ∼ 0.29. This
phase is best described as consisting of “triangles of
triangles” on the A and B sublattices, as shown in
Fig. 7a; it cannot be simply described using ordering
wave-vectors. Here, on some subset of the hexagons,
all three A (B) spins will be ferromagnetically aligned
with each other, with a relative angle, γ between the
coplanar A and B spins. These hexagons are then ar-
ranged as if they were single spins forming 120◦ order.
There are five types of C spin sites: three sites located
within the different types of ferromagnetic hexagons,

C
(1,2,3)
3 , and two sites located in the two different types

of intermediate hexagons, C1 and C2. C1, C2 and the

average of C
(1,2,3)
3 form 120◦ order in a plane perpen-

dicular to the AB spins. The C3 spins have a conical
structure. The actual variational parameterization is
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slightly more complicated,

~S∆1
A = [1, 0, 0]

~S∆2
A = [−1/2, 0,

√
3/2]

~S∆3
A = [−1/2, 0,−

√
3/2]

~S∆1
B = [cos(γ), 0, sin(γ)]

~S∆2
B = [cos(γ + 2π/3), 0, sin(γ + 2π/3)]

~S∆3
B = [cos(γ + 4π/3), 0, sin(γ + 4π/3)]

~SC1
= [cos(η), sin(η), 0]

~SC2 = [cos(η + λ), sin(η + λ), 0]

~SC1
3

= [cos(η + θ + λ+ ν), sin(η + θ + λ+ ν), 0]

~SC2
3

=
[1

4
(3 cos(η − θ + λ+ ν) + cos(η + θ + λ+ ν)),

1

4
(3 sin(η − θ + λ+ ν) + sin(η + θ + λ+ ν)),

−
√

3

2
sin(θ)

]
~SC3

3
=
[1

4
(3 cos(η − θ + λ+ ν) + cos(η + θ + λ+ ν)),

1

4
(3 sin(η − θ + λ+ ν) + sin(η + θ + λ+ ν)),

−
√

3

2
sin(θ)

]
(11)

where S∆i
A,B describes the A,B spins on the three types

of ferromagnetic hexagons, as shown in Fig.7a. There
are five variational parameters: γ is the angle between
the A and B spins on a given ferromagnetic hexagon;
θ is the conical angle for the C3 spins; λ is the angle
between C1 and C2; ν is the angle between C2 and the
axis of the C3 cone; and η is the angle by which C1 is
rotated with respect to the projection of S∆1

A onto the
C1, C2, C3 plane. The variational energy is,

ETT [J2, J
′, θ, λ, η, ν, γ] =

1

2

{
3 cos γ + 2J2 cosλ

+ 4J2 cos θ cos
λ

2
cos

(
λ

2
+ ν

)
− sin γ

[√
3 + J ′ sin θ (1 + sin[η + λ+ ν])

]} (12)

This phase is sandwiched in the middle of the triple
conical phase, separated by what we believe must be
first order transitions. While in Fig. 2, it appears to
touch the J ′ = 0 axis, the spiral* phase does extend
for a small, but finite J ′.

(a) (b)

FIG. 7: The triangle of triangles phase exists in a wedge
near the honeycomb axis. The unit cell is shown in (a)
with A, B, C spins in red, blue and green respectively.
The triangle of triangles feature is particularly emphasized
by the solid blue and red triangles on the three distinct
types of ferromagnetic hexagons. (b) While the AB spins
lie in a plane, the C spins are oriented out of the plane;
their orientations are shown via a common origin plot.
These plots are for J2/J1 = 0.275 and J ′/J1 = 0.15.

VI. PHASES ON THE TRIANGULAR AND
J2 = 0 AXES

Next, we turn to the phases on the triangular axis
(J ′ = J1), and discuss their evolution off-axis; we
will additionally discuss the J2 = 0 axis phases, as
these have substantial overlap with the triangular axis
phases. On the triangular axis, there are only two
phases for J2/J1 < 1, the 120◦ phase for J2/J1 < 1/8,
which evolves smoothly off axis, and the collinear phase
for 1 > J2/J1 > 1/8, which remains unchanged off-
axis. Beyond J2/J1 = 1, there is a planar spiral phase
that evolves smoothly to three independent triangular
lattices for J1 = 0, and extends out to the dice lattice
limit.

On the J2 = 0 line, a single phase interpolates from

the Néel order of the honeycomb limit (~SA = −~SB)
to the 120◦ order of the triangular limit, and out to

a ferrimagnetic limit at J ′ = 2J1 (~SA = ~SB = −~SC).
Beyond J ′ = 2J1, this ferrimagnetic phase does not
evolve further, and is the ground state out to the dice
limit.



8

A. Interpolating phase

(a) (b) Néel

(c) 120o (d) Ferri

FIG. 8: The interpolating phase occupies the entire
J2 = 0 axis out to J2/J1 = 2, and is described by a single
spin orientation on each sublattice. (a) depicts the angle
between the sublattice spins, while (b)-(c)-(d) highlight
the three key limits for (b) J ′ = 0 (Néel order on the
honeycomb), (c) J ′ = J1 (120◦ order) and (d) J ′ > 2J1
(the ferrimagnetic order of the dice lattice).

The interpolating phase extends along the J2 = 0
axis, interpolating between Néel order on the honey-
comb lattice (J ′ = 0) to 120◦ order on the triangular
lattice (J ′ = J1) to ferrimagnetic order (J ′ = 2J1). It
can be captured by a simple variational ansatz where
each sublattice is ferromagnetic within itself, and the
interpolating is captured by the angles γ and γ′ be-
tween the AB and AC sublattices, as shown in Fig. 8.
These angles are,

γ = 2 cos−1 J
′

2
; γ′ = γ/2 + π. (13)

For J ′ = 0, γ = π captures the Néel order on the hon-
eycomb lattice. In contrast to the Néel* phase, where
the C spins form 120◦ order, they are ferromagnetic
here. For J ′ = 0, the relative angle is free, but we
choose γ′ = 3π/2, for consistency with the finite J ′

results; see Fig. 8b. Note that this phase generically
has a net moment, except at the 120◦ point, as shown
in Fig. 9. As J ′ increases, γ smoothly trends towards
zero and γ′ trends towards π, reaching that point at
J ′/J1 = 2. The classical energy has a simple analytic

0.5 1.0 1.5 2.0
J'/J1

0.2

0.4

0.6

0.8

1.0

|M|

FIG. 9: Magnetization of the interpolating phase as a
function of J ′/J1. We plot the magnitude of the net
moment per unit cell in units of S. The moment is
maximal for J ′ = 0, and again for J ′ = 2J1, only
vanishing on the triangular lattice for J ′ = J1.

form and is given by:

Eint[J2, J
′] =[9J2 −

3

2
(2 + J ′2)]. (14)

B. Ferrimagnetic phase

At J ′/J1 = 2, the interpolating phase become fully
ferrimagnetic and maximizes the gain from J ′ bonds,
with the AB sublattices ferromagnetically aligned, and
the C spins anti-aligned to both, as shown in Fig. 8d.
The moment per spin is S/3. This phase extends out
to the dice lattice limit, and has the classical energy,

Eferri[J2, J
′] = 3 + 9J2 − 6J ′. (15)

The ferrimagnetic phase is a limit of the interpolating
phase, much as the Néel* phase is a limit of the spiral*
phase; being collinear it has a higher symmetry than
the interpolating phase, and is a distinct phase.

C. Collinear phase

The bulk of the phase diagram is occupied by the
collinear phase, and many of its neighboring phases
borrow some of its features. Fig. 10 shows the typical
collinear arrangement that gives this phase its name,
where all of the spins align ferromagnetically along one
of the three triangular axes, and alternate antiferro-
magnetically along the other two; this phase therefore
breaks the six-fold rotational symmetry and allows a
Z3 nematic order parameter, as we discuss further in
the related non-collinear phases. However, this phase is
only one of a set of classical ground states, which may
be more generically described by a four-sublattice ar-
rangement around a rhombus, where the sum of spins,
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~SA + ~SB + ~SC + ~SD = 0. This four-sublattice arrange-
ment can be taken on the triangular lattice, as shown
in Fig. 10, or may be taken on each of our three sublat-
tices individually, where the same four spins must be
taken for each of the A,B,C sublattices. The Hamilto-
nian, (3) can be rewritten as,

H =
J1 + 2J ′ + 3J2

4

[
(~SA + ~SB + ~SC + ~SD)2 − 4S2

]
,

(16)
with the overall classical energy,

Ecoll[J2, J
′] = −1− 3J2 − 2J ′. (17)

There is thus a continuous manifold of classical ground
states, including non-coplanar phases like those where
the four spins point along the vertices of a tetrahedra.
One particular such state has a non-zero uniform scalar

chirality, κ = ~Si · (~Sj × ~Sk) around each triangle67,68.
However, quantum and thermal fluctuations select the
collinear states via order by disorder69. This particular
state can also be captured by a single Q, here given for
each of our three sublattices, Qcoll = (2π/3, 0), with

~S(Ri) = [cos(Qcoll ·Ri), 0, sin(Qcoll ·Ri)]. (18)

AB

C D

FIG. 10: The collinear phase consists of ferromagnetic
stripes along one triangular axis (here, the x̂ axis), and
antiferromagnetic stripes along the other two axes. This
particular arrangement is selected via order by disorder.
More generally, it is a four sublattice phase labeled by the
sites ABCD in the figure, with ~SA + ~SB + ~SC + ~SD = 0
the only ground state condition.

D. Spiral phase

In the triangular limit, at J2 > J1, the collinear state
gives way to a planar spiral phase that encompasses
most of the large J2 region; it extends for J ′ < J1 down
to meet the honeycomb spiral* phase, where only the
AB spins spiral, and out to the dice lattice limit. Here,
each of the three sublattices forms a planar spiral, with
the same ordering wave-vector QA = QB = QC , and

(a)

0.0

C
ol
li
ne
ar

(b)

FIG. 11: In the spiral phase, all three sublattices spiral
with a generically incommensurate wave-vector, Qsp that
is a function of both J2/J

′ and J1/J
′. (a) shows the real

space ordering for J2/J
′ = 0.3 and J1/J

′ = 0.1. (b) shows
(Qx, Qy) as a function of J2 for J1 = 0.1; the plateau in
Qx begins at the transition to the collinear phase, while
Qy becomes non-zero when the spiral phase is reentered.

relative angles γ and γ′ between AB and AC sublat-
tices, as before. This wave-vector is Qcoll at the bound-
ary with the collinear phase, and Q = (0, 0) at the
boundary with the ferrimagnetic phase; it asymptotes
smoothly to Qtri for large J2. Indeed the phase can
be described by three variational parameters: ξ, the
fraction Q = ξQtri of the triangular lattice ordering
vector, γ and γ′. All three parameters depend on both
J2/J

′ and J1/J
′. This planar spiral connects smoothly

with the planar spiral on the triangular lattice axis for
J2/J1 > 1, however the honeycomb spiral* is distinct
until Qsp → Qtri, as the C spins always have Qtri.
As the ferrimagnetic and collinear phases are special
cases of the spiral, the transition between them and
the spiral is second order, as seen in Fig. 11b.

VII. DOUBLE CONICAL PHASES

At intermediate J ′, there are two distinct “double
conical” phases, where one or more sublattices can be
described variationally by a double conical structure.
Here, one wave-vector Q1 controls the in-plane order-
ing perpendicular to the conical axis, while another,
Q2 controls the out-of-plane ordering. The spins on a
single sublattice are parameterized by the unit vector,

~S(θ,Q1,Q2,Ri) = [sin θ cosQ1 ·Ri,

sin θ sinQ1 ·Ri, cos θ cosQ2 ·Ri],
(19)

where θ is the conical angle, and the conical axis is Ŝz.

See Fig. 12a for an example. As ~S must be a unit vec-
tor, cosQ2 ·Ri = ±1, which limits the possible values
of Q2 to different collinear configurations; we always
find Qcoll = (2π/3, 0). Q1 is not so limited and can be
incommensurate. Different sublattices may have non-
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trivial relative cone orientations, in which case the rel-
ative angles will also be variational parameters.

A. Double conical phase I

The first double conical phase, DC I occurs twice in
the phase diagram: in a wedge between the spiral*,
triple conical, triangle of triangles and the collinear
phases, shown in Fig. 2, and in a wedge for J ′ > J1

between the spiral, non-collinear I and collinear phases,
shown in Fig. 3.

All three sublattices form double cones, with θB =
π − θA, and θC distinct; all three sublattices share
the same Q’s. The out-of-plane components form a
collinear structure, Q2 = Qcoll, while the in-plane
Q1 = (Q1x, 0) = ξQcoll is generally incommensurate.
The classical energy is,

EDCI [ξ, θA, θC , γ, γ
′, J2, J

′] = − cos2 θA

+ [2 cos γ + cos(γ − πξ)] sin2 θA

+ J2

[
−2 cos2 θA − cos2 θC

+(1 + 2 cosπξ)(2 sin2 θA + sin2 θC)
]

+ J ′ [−2 cos θA cos θC + {2 cos(γ − γ′) + cos γ′

+2 cos(γ′ − πξ) + cos(γ − γ′ + πξ)} sin θA sin θC ]

(20)

1. J ′ < J1 occurrence

Here we discuss its first appearance; the DC I phase
occurs for larger J ′ beyond J2/J1 = 1/6, above the
spiral phase; an example is shown in Fig. 12a.

The conical angles vary strongly with both param-
eters, as is shown in Fig. 12b, with θC � θA.
As the border to the collinear phase is approached,
θA, θC → 0, indicating that the collinear phase is a
special case of DC I; as such, the transition is second
order. The transitions to other neighboring phases are
all first order.

2. J ′ > J1 occurrence

The second appearance is near the dice lattice limit,
between the spiral and collinear phases. As J1/J

′ in-
creases, the planar spiral phase continuously tilts out
of the plane to form a recurrence of the double coni-
cal DC I phase. In contrast to the small J ′ version,
here the conical angles θA and θC have similar orders
of magnitude, as shown in Fig. 12a. Otherwise, the
two phases are quite similar. Again, the in-plane Q1

is generically incommensurate, and is smoothly con-
nected to Qsp across the second order phase boundary

(a)

(b)

FIG. 12: Double conical I for J ′ < J1. (a) This phase
consists of double conical spirals on each of the A, B and
C sublattices, with conical angles θA, θB = π − θA and
θC � θA. The AB and C spins are shown in common
origin plots on the left and right, respectively. The
ordering wave-vectors are generally incommensurate in
the plane, Q1, although here we plot the special
commensurate case where Q1 = ξQcoll with ξ = 2/5. The
corresponding J2/J1 and J ′/J1 values are 0.198 and
0.29575 respectively. There is a small angle, η between the
A,B spins, as well as a small angle ηC between the A and
C spins (not shown). Note: as θC is very small, we plot a
conical angle of 10θC for clarity. (b) DC I parameters as
functions of J2/J1 and J ′/J1. The variation of the conical
angles θAB (yellow) and θC (blue) is shown from the
boundary of DC I shared with the non-collinear II phase
to the critical J2 beyond which it becomes collinear.

separating the planar spiral and DCI phases. Note that
we have a multicritical point with three second order
lines where DC I, spiral and ferrimagnetic phases all
join along with a first order line between DC I and the
non-collinear I phase.

B. Double conical phase II

Sandwiched between the triple conical, spiral*, spiral
and collinear phases is a second double conical phase,
double conical II. The A and B spins remain in a
collinear structure, with Qcoll = (2π/3, 0), while the
C spins form a double conical spiral, as shown in Fig.
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(a)

(b)

FIG. 13: The dice lattice version of DC I. (a) The AB
and C spins are shown in common origin plots on the left
and right, respectively. Each sublattice forms a double
conical spiral with conical angles θA, θB = π − θA and θC
respectively. Here, Q1 takes the special commensurate
value, ξQcoll with ξ = 2/5, which occurs for J1/J

′ = .4
and J2/J

′ = .24. (b) The variation of the double conical I
parameters as a function of J2 for two values of J1/J

′

values is shown. The conical angles, θAB (yellow) and θC
(blue) are plotted from the boundary of DC I and
non-collinear II out to the critical J2 beyond which it
becomes collinear.

14, with the conical axis collinear with the AB spins.
This double conical spiral has a single free parameter,
the conical angle, θC , while Q1 = Qtri = ( 2π

3 ,
2π√

3
) and

Q2 = Qcoll are all fixed. The classical energy for this
phase is,

EDCII [J2, J
′, θC ] = −1+

13J2

4
−2J ′ cos θC−

J2

4
cos 2θC

(21)
This phase smoothly evolves into the collinear phase,
as θC → 0, but all other phase boundaries are first
order. While the wedge of DC II appears to touch the
honeycomb axis, as with the triangle of triangles phase,
it merely approaches closely.

C

C

C

(a) (b)

FIG. 14: Double Conical II: The A and B sublattices are
each in a collinear configuration, while the C sublattice
forms a double conical structure, with the conical axis
oriented along the A/B spins. (a) shows the real space
lattice configuration. (b) shows the double conical
structure of the C spins in a common-origin plot, where
Q1 = Qtri and Q2 = Qcoll. The conical angle θC is a
function of both J2 and J ′.

VIII. NON-COLLINEAR PHASES

Just off of the triangular lattice axis near the tri-
angular lattice critical point, we find two interesting
phases whose width vanishes as the critical point is
approached, as seen in Fig. 2. These are each sepa-
rated from the collinear phase by second order transi-
tion lines, and share a number of common characteris-
tics. As the fluctuations of these phases may strongly
influence the spin liquid found on the triangular axis,
we study these phases and their fluctuations in more
detail. In particular, both phases have a Z3 nematic
order parameter, and a free classical angle that allows
them to be non-coplanar in principle, although order
by disorder naturally selects the coplanar configura-
tion.

Both non-collinear phases are most generally de-
scribed in a twelve-sublattice basis, where each of the
three A, B and C sublattices has four sublattices; these
four sublattices are the same ABCD sublattices from
the collinear phase, although the collinear condition
is of course not satisfied. These are shown in Fig.
15, where the AB spins are labeled with (1,2,3,4) and
the C spins with (α, β, γ, δ). Generically these A,B,C
spins all sit on different cones forming pairs of spins,
as shown in Fig. 16 and Fig. 18.

A. Non-collinear phase I

For J ′ > J1, the four A and B spin configurations
overlap, and exist on a cone with fixed angle θA = θB ,
while the C spins are on an inverted cone with angle
θC 6= θA; these spin configurations are shown on a com-
mon origin plot in Fig. 16. This phase generically has
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FIG. 15: The sublattice configuration of the non-collinear
phases. Each non-collinear phase has a 12 sublattice
structure, wherein each of the A,B, and C sublattices has
four different spin configurations, arranged as shown in
the figure, where the AB and C sublattices are labeled
with numbers and greek letters respectively.

 

 

FIG. 16: Non-collinear phase I consists of spins on two
cones: one for the AB spins (up, with conical angle θA)
and one for the C spins (inverted, with θC). The spin
components perpendicular to the conical axis form
opposing pairs, (1,3) and (2,4); (α, γ) and (β, δ).

a net moment along the common conical axis, which
is zero on the triangular axis, and increases smoothly
with increasing J ′, as shown in Fig. 17b. The AB spin
components perpendicular to the conical axis form op-

posing pairs, (~S1, ~S3) and (~S2, ~S4) with a free angle
η between the two pairs. Similarly, the perpendicular

C spin components form pairs, (~Sα, ~Sγ) and (~Sβ , ~Sδ),
separated by the same free classical angle. The AB

spins are,

~S1 = [sin θA, 0, cos θA]

~S2 = [sin θA cos η, sin θA sin η, cos θA]

~S3 = [− sin θA, 0, cos θA]

~S4 = [− sin θA cos η,− sin θA sin η, cos θA],

(22)

while the C spins are,

~Sα = [sin θC , 0,− cos θC ]

~Sβ = [sin θC cos η, sin θC sin η,− cos θC ]

~Sγ = [− sin θC , 0,− cos θC ]

~Sδ = [− sin θC cos η,− sin θC sin η,− cos θC ]

(23)

These spins are arranged as shown in Fig. 15. The
resulting classical energy is given by

Enc1[J2,J
′] = (1 + 2J2)(1 + 2 cos 2θA)

+ J2(1 + 2 cos 2θC)

− 2J ′(sin θA sin θC + 3 cos θA cos θC), (24)

where θA and θC are variational parameters, and the
energy is independent of η. The variation of the conical
angles for both non-collinear phases along a particular
parametric path J2(J ′) is shown in Fig. 17a.

In section VIII C, we shall show that order by dis-
order selects η = 0, favoring the coplanar spin config-
uration, as expected. Nevertheless, the relatively low
energy competing states may affect the nature of the
spin liquid. In particular, the non-coplanar configura-
tions will generically have nonzero scalar spin chirality,
defined on a triangle of spins (1,2,3),

κ∆ = ~S1 · ~S2 × ~S3. (25)

In Fig. 19a, we show the pattern of striped spin chi-
rality for the nearest-neighbor triangles, with η 6= 0.
There are four chiralities ±κ1,2, given by,

κ1 = sin η sin θA sin(θA − θC)

κ2 = sin η sin 2θA sin θC , (26)

which lead to two types of hexagons, with positive and
negative chiralities arranged in a striped pattern. Note
that there is no uniform chirality.

In addition, we also see that this magnetic order
breaks the three-fold lattice rotational symmetry by
developing a Z3 nematic bond order parameter,

N =
1

N

∑
i

〈~Si·~Si+a1
〉+〈~Si·~Si+a2

〉e 2πi
3 +〈~Si·~Si+a2−a1

〉e 4πi
3 ,

(27)
where i sums over all spins, in all sublattices and N is
the total number of sites. As this Z3 order parameter
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FIG. 17: (a) Variation of conical angles for the
non-collinear phases along a path J ′ = α,
J2 = 3

20
(α− 1)θ(α− 1) + 1

8
(shown in inset). The C spins

are planar for α < 1, with θC = π/2; θC then decreases
with increasing α as the spins tilt down into an
increasingly narrowing cone. The AB spins are similarly
planar exactly at α = 1, with decreasing conical angles
away from the triangular axis in both phases. (b)
Ferromagnetic moment in the non-collinear phases. The
inset at the left corner shows the path with the same
parametrization as before, along which the variation of
the moment is plotted. The path and the x axis are also
color matched to further elucidate this fact.

breaks a discrete symmetry, it can, and will develop at
finite temperatures before the magnetic ordering sets
in. This finite temperature phase transition also oc-
curs in the neighboring collinear phase, and is not fun-
damentally different here. Essentially, in the ground
state, spins along one of the three lattice directions are
ferromagnetically aligned: for η = 0, this is the x̂ direc-

tion which connects ~S1 to ~S2, and ~S3 to ~S4. The par-
ticular direction of such correlations is selected at this
nematic transition, even though the spins themselves
do not order until T = 0; this is a Z3 bond order.

 

 

 
 A

B

C

FIG. 18: Non-collinear II is similar to non-collinear I, but
here, the A and B cones are inverted with respect to one
another and the C spins lie in the plane. This phase has
the same classical free angle η between pairs of spins.

B. Non-collinear phase II

For J ′ < J1, the B sublattice cone flips, with θB =
π−θA and consequentially, the C spins become planar,
as shown in Fig. 18, with θC = π/2. There is no
longer any net moment. Otherwise, the structure of
this phase is identical, with the same pairs of spins on
each sublattice with a free classical angle η between
them. The classical energy is,

Enc2[J2, J
′] =J2(1+4 cos 2θA)−2 cos2 θA−2J ′ sin θA−1

where θA = sin−1

[
J ′

8J2 − 2

]
(28)

There is still a striped pattern of chirality for nonzero η,
as shown in Fig. 19b; here, the form of the chiralities
given in eqn. (26) is identical, with θC = π/2 and
some sign changes due to the inversion of the B cone,
as indicated in the figure. Again, there is no uniform
chirality, and this phase also possesses an identical Z3

nematic order.

C. Spin wave calculations and order by disorder

In this section, we consider the effect of both quan-
tum and thermal fluctuations on the two non-collinear
phases. These two phases behave quite similarly, and
so we mostly focus on non-collinear I. First, we de-
velop the linear spin-wave theory for the non-collinear
phases with η = 0. We also run classical Monte Carlo
to show that thermal fluctuations select the coplanar
state. While there is no magnetic order at finite tem-
peratures, there is a nematic phase transition where
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(a) Chirality for non-collinear I
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(b) Chirality for non-collinear II

FIG. 19: (a) For η 6= 0, non-collinear I has a striped
pattern of chirality, as shown by the four values of
chirality (±κ1,2) on nearest-neighbor triangles, indicated
with four colors. Each hexagon has a distinct sign of
chirality, which is arranged in a collinear pattern. (b)
Non-collinear II similarly has a striped pattern of
chirality, with κ1 corresponding to θC = π/2 in eqn. 26
while the zero chirality comes from the antiparallel
orientation of spins A1 and B3 and also A2 and B4 as
shown in fig.18. The flipping of the signs of κ1 is also due
to the opposite orientation of the A and B cones.

the stripes of ferromagnetic spins choose to run along
one of the three lattice directions.

1. Spin wave theory

In this section, we give the details of our linear spin-
wave calculation for η = 0. In this simplified case,

two sets of spins are equivalent: ~S1 = ~S2, ~S3 = ~S4,
~Sα = ~Sβ , and ~Sγ = ~Sδ, and so we can use six sublat-
tices, instead of twelve. As we have six sublattices, we
require six Holstein-Primakoff (HP) bosons. We define
a local triad of orthonormal vectors for each sublat-
tice; these triads are related by rotations in the conical
space defined by the angles θA(θC) (Figs. 16 and 18)

M

X

M

X

(a) New and old Brillouin zones.

Γ M X Γ

Γ M X Γ

(b) Spin wave dispersion.

FIG. 20: Spin wave dispersion for non-collinear phase I for
η = 0, which is selected via order by disorder. (a) shows
both the original hexagonal Brillouin zone with the three
sublattices, and the new rectangular Brillouin zone for
this six site unit cell. As this six site unit cell derives from
the collinear phase, there are linear modes at each of the
M points of the original Brillouin zone: one at the
reciprocal lattice vectors of the new Brillouin zone (Qcoll,
indicated by red circles) and two at the corners (indicated
by red squares). (b) shows the spin wave dispersion. In
total, there are three Goldstone modes, as expected for
noncollinear orders. There is also a quadratic mode at Γ
associated with the accidental classical degeneracy in η
that will be gapped out by 1/S corrections69.

for these non-collinear phases. A given spin operator
can be expressed as

~Sm =
∑
i

S̃m,iti,m (29)

where the ‘tilde’ on the spin components emphasizes
the fact that these are defined in the local basis t and
m is a sublattice index. The local bases are defined as,

ti,m = R(θm)ei, (30)
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with e = (ex, ey, ez) and R the appropriate rotation

matrix; for example, for ~S1, we have

R =

 cos θm 0 sin θm
0 1 0

− sin θm 0 cos θm

 . (31)

The spin components are then Fourier transformed via

S̃m,i(r) =
1√
N

∑
q

S̃m,i(q)eiq·r (32)

The Hamiltonian in Fourier space then becomes,

H =J1

∑
i,m,n,

δδδAB ,q,q
′

S̃Am,i(q)S̃Bn,i(q
′)ti,mti,ne

i(q+q′).reiq
′.δδδAB

+ J2

∑
i,m,n,η
δδδ2,q,q

′

S̃ηm,i(q)S̃ηn,i(q
′)ti,mti,ne

i(q+q′).reiq
′.δδδ2

+ J ′
∑

i,m,n,η′

δδδC ,q,q
′

S̃η
′

m,i(q)S̃Cn,i(q
′)ti,mti,ne

i(q+q′).reiq
′.δδδC

(33)

where i = (x, y, z); m, n run over the sublattice in-
dices: {1, 2} for AB and {α, β} for C; δδδAB , δδδ2 and δδδC
represent the nearest neighbors of type J1, the second
nearest neighbors and the nearest neighbors of type
J ′, respectively. Finally, η labels the original sublat-
tice indices: A, B and C, while η′ only includes A and
B.

We then use a HP representation in real space

S̃+
m(r) =

√
2S − b†m(r)bm(r)bm(r)

S̃−m(r) = b†m(r)

√
2S − b†m(r)bm(r)

S̃zm(r) = S − b†m(r)bm(r), (34)

expand for S � 1 and Fourier transform,

S̃xm[q] =

√
S

2
(b†m[−q] + bm[q]) +O

(
1

S2

)
S̃ym[q] = i

√
S

2
(b†m[−q]− bm[q]) +O

(
1

S2

)
S̃zm[q] =

∑
k

−b†m[k − q]bm[q]/
√
N +

√
NSδq,0,(35)

where N is the number of sites. This representation is
then substituted into the above Hamiltonian, and the
O(S) terms extracted. The resulting quadratic Hamil-
tonian is then diagonalized via a Bogoliubov transfor-
mation. This transformation is most straightforwardly
done by doubling the size of the matrix using the basis,

X[q] = (b1[q], b2[q], . . . , b6[q], b†1[−q], . . . , b†6[−q]). (36)

The form of the Hamiltonian in the Fourier space is,

H =
∑
q

X†[q]H(q)X[q], (37)

where H(q) =

(
F [q] G[q]
G∗[−q] F ∗[−q]

)
F [q] defines the coefficients of terms of the form
b†m[q]bn[q], while G[q] collects coefficients of terms like
b†m[q]b†n[−q]. Due to the large size of the magnetic
unit cell, we do this extraction with the aid of a non-
commutative algebra package in Mathematica70. The
Bogoliubov transformation is then done by diagonaliz-
ing gH instead of H, where g is the 12x12 matrix,

g =

(
16 0
0 −16

)
. (38)

The eigenvalues of gH(q) give us six bands with dis-
persion ±ωqλ, λ = 1, . . . 6. In order to calculate the
critical spin, we also need the transformation matrix
to convert between the original bosons and the emer-
gent spin waves. These satisfy,

T gT † = g

T −1gHT = gD, (39)

where the first condition ensures bosonic commutation
relations are always satisfied, and the second condition
ensures that T diagonalizes gH to obtain the diagonal
matrix gD of ωqλ. If there are degenerate eigenvalues,
one must be more careful71, but these transformation
matrices can still be obtained.

A representative spin wave dispersion for non-
collinear I is shown in Fig. 20, plotted in the new rect-
angular Brillouin zone from Γ to M = (π/

√
3a, π/a)

to X = (0, π/a). There are six distinct bands, with
four zero modes: one linear and one quadratic mode at
the Γ point and two linear modes at the corner of the
Brillouin zone, M . The three linear modes are Gold-
stone modes associated with the complete breaking of
the SO(3) continuous symmetry by non-collinear or-
der. The quadratic mode is a zero mode associated
with the classical degeneracy in η; as this degeneracy
is lifted with 1/S corrections, this is an “accidental”
classical degeneracy. Such a mode is also found in the
collinear phase69, and is an artifact of the O(S) ex-
pansion; further 1/S corrections are expected to gap it
out.

2. Critical spin

We can examine the reduction of the ordered mo-
ment due to quantum and thermal fluctuations for
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η = 0. This reduction is given by,

δS =
1

6N

∑
r,m

〈
b†m(r)bm(r)

〉
=

1

6N

∑
q,m

〈
b†m[q]bm[q]

〉
.

(40)

As these are the original bosons, b, we use the trans-
formation matrices, T to rewrite,

δS =
1

2

(
1

6N

∑
q

∑
n

[T †T ]nn − 1

)
(41)

When δS ≥ S, the ordered moment 〈S〉 is completely
suppressed, and we define the critical spin, Sc = δS
that separates magnetic order for S > Sc from an un-
known quantum disordered phase. In Fig. 21, we plot
the critical spin along a path that traverses both non-
collinear phases. There is a sizable region near the
triangular limit where Sc > 1/2, and a quantum dis-
ordered phase is expected, at least in linear spin wave
theory. Thus we expect the spin liquid found surround-
ing the triangular lattice critical point to extend into
a substantial region away from the triangular limit.
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FIG. 21: Critical spin for the non-collinear phases, along
the parametric path defined in Fig. 17b and shown in the
inset. There is a substantial region around the triangular
lattice critical point where Sc > 1/2 and we naively
expect a quantum disordered state in this region, as is
found on the triangular lattice line.

3. Finite temperatures: order by disorder and nematicity

We next turn to a classical Monte Carlo analysis at
finite temperature, where we see that thermal fluctua-
tions select the coplanar value, η = 0 of the free angle,
and also see that a nematic order parameter develops at
a finite temperature. In order to evaluate η straightfor-
wardly, we consider only the nematic order parameter

for the AB sublattices,

Nab =
3

2N

∑
i∈AB

〈~Si · ~Si+a1
〉+ 〈~Si · ~Si+a2

〉e 2πi
3

+ 〈~Si · ~Si+a2−a1
〉e 4πi

3 , (42)

where i now sums over only the AB spins, and N is the
total number of sites. Here, 〈· · · 〉 is the usual thermal
average.

We focus on a single point in the middle of the non-
collinear I phase, (J2/J1 = 0.28, J ′/J1 = 1.6), but
expect the results to be generic to both phases. We
use a lattice of 10 × 10 unit cells at a temperature
Tmin = 10−2. To avoid problems with equilibration,
we use parallel tempering with 3200 replicas with a
temperature schedule such that replica i has temper-
ature Tmin(1.01)i. As the data will contain snapshots
with all three values of the nematic order parameter,
we calculate the Monte Carlo average of its modulus
squared, 〈|Nab|2〉. In the thermodynamic limit, this
quantity is zero above the nematic transition, and at
T = 0 becomes,

〈|Nab|2〉(T = 0) =
1

2
(5 + 3 cos 2η) sin4 θA. (43)

For this point, θA = 1.144 rad, and for η = 0,
〈|Nab|2〉 → 2.747 as T approaches zero. 〈|Nab|2〉 is
shown as a function of temperature in Fig. 22, where
it turns on at TN = J1/4 and clearly limits to 2.747 as
T → 0.

0.00 0.25 0.50 0.75 1.00
T
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1
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3

|
ab

|2

FIG. 22: 〈|Nab|2〉 as a function of temperature for a lattice
of 10× 10 unit cells at J2/J1 = 0.28, J ′/J1 = 1.6. The
nematic phase transition is seen at TN = J1/4, with some
broadening due to the finite system size. As T → 0, the
〈|Nab|2〉 approaches the line 4 sin4 θA = 2.747, indicating
that the coplanar, η = 0 classical angle is selected.

As expected, thermal fluctuations force both non-
collinear phases to be coplanar. In addition, while
thermal fluctuations immediately melt the continuous
magnetic order parameter, the nematic order parame-
ter survives. One might expect such a nematic order
to also survive when quantum fluctuations melt these
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phases into a quantum spin liquid, and some signa-
tures of such a nematic spin liquid have been seen on
the triangular lattice limit27,28,72.

IX. CONCLUSION

We have established the complete ground state clas-
sical phase diagram of the stuffed honeycomb lattice,
which interpolates between the known honeycomb, tri-
angular and dice lattice limits. We find a wide variety
of non-collinear and even non-coplanar phases, and re-
veal the transition between 120◦ and collinear order on
the triangular lattice to be a multicritical point where
four phases intersect. We have examined the structure
and fluctuations of the two additional phases, and pro-
pose that the triangular lattice spin liquid extends into
a substantial region in the stuffed honeycomb phase di-
agram. Future work will address the possible existence

and nature of this spin liquid region.
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