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 12 

Heat in phononic crystals (PnCs) are carried by phonons, which can behave 13 

coherently (wave-like) or incoherently (particle-like) depending on the modes, 14 

temperature, and length scales. By comparing the measured thermal conductivity of 15 

PnCs with theories, recent works suggest that thermal conductivity of PnCs can be 16 

explained by only considering surface and boundary scattering, which not only 17 

backscatter phonons but also break their coherence. The logic here is that since average 18 

phonon wavelength at room temperature is only a few nanometers, the roughness at the 19 

surfaces and boundaries make the scattering diffusive (break the phase coherence of 20 

phonons), and thus only very long wavelength (low frequency) phonons with negligible 21 

contribute to total thermal conductivity remain coherent. Here, we theoretically show 22 

that in a thin film and PnCs, the low-frequency coherent phonons could significantly 23 

contribute to thermal conductivity when assuming three-phonon scattering model for 24 

intrinsic scattering because of their extremely large density of states that resulted from 25 

the low dimensional nature of those phonons. Yet, further analysis shows the 26 

contribution of the low frequency coherent phonons are still negligible at a temperature 27 

range from 130 K-300 K due to Akhiezer mechanism, which can properly answer the 28 
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question that why the thermal conductivity of PnCs can be explained by only 29 

considering scattering of incoherent phonons at these temperatures. 30 

 31 

Ⅰ. INTRODUCTION 32 

Phononic crystals (PnCs) with specifically designed periodic structures are meant to 33 

manipulate propagation of phonons using coherent effect (that is phase is preserved). 34 

In such a case, phonons follow the dispersion relation of PnCs, whose branches are 35 

folded with band gaps, which reduces group velocity, and hence results in reduction of 36 

thermal conductivity [1]. Benefit of manipulating thermal conductivity of PnCs using 37 

coherent effect is that it has smaller influence on electrons. Therefore, they are regarded 38 

as attractive candidate for enhancing figure of merit of thermoelectric materials.  39 

The promising prospect of controlling phonons by using the coherent effect in 40 

periodic structures has triggered many experimental measurements of the thermal 41 

conductivity for PnCs. Most popular class of PnCs is silicon thin films with periodic 42 

holes as they can be fabricated by conventional microfabrication technique. However, 43 

their thermal conductivity of PnC can be attributed to phonon coherent effect only for 44 

temperatures below 10 K [2,3], and recent theoretical works have confirmed that 45 

thermal conductivity of PnC seen at room temperature in some of the early works can 46 

be explained by only considering scattering of incoherent phonons (i.e. phonons lose 47 

phase and follow the dispersion relation of bulk crystals instead of the dispersion 48 

relation of PnCs), that is to say that coherent phonons have negligible contributions to 49 

the thermal conductivity of PnCs at room temperature [4,5].  50 

A possible theoretical explanation for the negligible contribution of coherent 51 

phonons is that the coherent transport requires atomically smooth boundary surfaces, 52 

and absence of impurities and defects [6-9], which can only be realized in limited 53 

structures such as superlattices [10,11]. As results, in PnCs, coherence of thermal 54 

phonons, whose wavelengths are only a few nanometers at room temperature, is lost 55 
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when scattered by nanoscale roughness and disorders. Therefore, room temperature 56 

coherent transport only occurs for long-wave-length or low frequency phonons (<200 57 

GHz [3,8]) with large relaxation time, but their small density of states makes the 58 

contribution to thermal conductivity negligible. The logic of the above explanation is 59 

true for bulk crystals but fails in the case of usual PnCs that take forms of films because 60 

these low frequency coherent phonons have extremely large density of states owing to 61 

the low dimensional nature of the PnCs [12,13], which will lead to the result that even 62 

very low frequency coherent phonons could significantly contribute to thermal 63 

conductivity when only considering three-phonon scattering mechanism for evaluating 64 

intrinsic phonon relaxation time (here, intrinsic relaxation time is referred as the 65 

lifetime due to phonon-phonon interaction [14]), as will be discussed later. That is to 66 

say thermal conductivity of PnC cannot be explained by a boundary scattering of 67 

incoherent phonons if only considering three phonon scattering. Therefore, the reason 68 

for the negligible contribution of coherent phonons remain unclear.  69 

In fact, the large contribution of low frequency coherent phonons suggests that more 70 

detailed discussion should be given to their relaxation time. Indeed, for low frequency 71 

phonons at room temperature, the consideration of only three-phonon scattering 72 

mechanism is not sufficient. Experimental measurements and theoretical works have 73 

shown that relaxation time of low frequency phonons (sound waves) is dominated by 74 

Akhiezer damping rather than three-phonon scattering mechanism (Landau-Rumer 75 

theory) in a variety of bulk materials [14-19]. The mechanism of Akhiezer damping is 76 

a coupling of strain of sound waves and thermal phonons: sound wave strain disturb the 77 

local occupation of thermal phonons whose frequencies depend on strain, and the 78 

thermal phonons then collide with one another, returning the system to local thermal 79 

equilibrium as energy is removed from the sound waves [15]. Such mechanism should 80 

also affect relaxation process of coherent phonons in PnCs, which have frequencies 81 

within sub-terahertz range, and are basically sound waves. Since the original work of 82 

Akhiezer, the mechanism of Akhiezer was found to be important for the absorption of 83 

sound waves, as well as for energy dissipation in mechanical nanoresonators [20,21], 84 
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however, few studies have noticed its importance in the field of heat conduction.  85 

In this work, we show that Akhiezer mechanism plays an important role in heat 86 

conduction for low dimensional materials like PnCs. We theoretically illustrate that 87 

Akhiezer mechanism significantly reduces contribution of coherent phonons to thermal 88 

conductivity of PnCs at the temperature regime from 130 K-300 K to the extent that it 89 

becomes intrinsically small even when there is no roughness, thus, properly answered 90 

the question that why the thermal conductivity of PnC can be explained by only 91 

considering scattering of incoherent phonons. 92 

Ⅱ. THEORY FOR THERMAL CONDUCTIVITY OF COHERENT 93 

AND INCOHERENT PHONONS  94 

The total thermal conductivity κTotal of thin film and PnCs includes contributions of 95 

both coherent (κcoh) and incoherent phonons (κinc), which is expresses as [22]:  96 

𝜅"#$%&(𝜔)) = 𝜅,#-(𝜔)) + 𝜅/0,(𝜔))                                     (1) 97 

where ωs is the upper frequency bound of the coherent regime, in other words, the 98 

switching frequency between the coherent and incoherent regimes.  99 

We calculate the contribution from incoherent phonons (κinc) of thin film and PnCs 100 

based on the kinetic theory, which is expressed as: 101 

𝜅/0,(𝜔)) = ∫ 𝐶(𝜔)𝐷45&6(𝜔)𝑣45&6(𝜔)𝑙(𝜔)𝑑𝜔
:
;<

                          (2) 102 

where ω is the frequency; C(ω), Dbulk(ω), vbulk(ω) denote the frequency dependent heat 103 

capacity, bulk density of states and group velocity, respectively. l(ω) is the effective 104 

mean free path of incoherent phonons obtained by Mento Carlo ray tracing method [23]. 105 

Similarly, contribution of coherent phonons to thermal conductivity (κcoh) of thin film 106 

and PnCs is calculated by:  107 
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𝜅,#-(𝜔)) = ∫ 𝐶(𝜔)𝐷(𝜔)𝑣=(𝜔)>𝜏(𝜔)𝑑𝜔
;<
@                              (3) 108 

where D(ω), vg(ω)=∂ω/∂q and τ(ω) denote the frequency dependent density of states, 109 

group velocity, and relaxation time for coherent phonons in thin film and PnC, 110 

respectively.  111 

The parameters C(ω), D(ω) and vg(ω) in Eq. (3) can be calculated from phonon 112 

dispersions of thin film and PnCs, which is obtained by solving the continuum-based 113 

elastic wave equation using finite element method (FEM) [13]: 114 

𝜇∇>𝑢 + (𝜇 + 𝜆)∇(∇ ∙ 𝑢) = −𝜌𝜔>𝑢                                    (4) 115 

where u is the displacement vector, ρ = 2329 kg m-3 is the mass density of silicon crystal, 116 

λ = 69.3 and µ = 81.3 GPa are the Láme parameters of silicon crystal. 117 

As discussed in Section I, relaxation of coherent phonons is expected to take two 118 

forms: three-phonon scattering mechanism (Landau-Rumer theory) and Akhiezer 119 

damping. Relaxation time due to three-phonon scattering mechanism is approximated 120 

by Klemens model, which is widely used and validated [24,25]:   121 

𝜏HIJ = 𝐵𝑇𝜔>                                                    (5) 122 

where T is the temperature, and B is a constant often quantified empirically.  123 

It should be noted that Landau-Rumer theory is also based on the concept of three-124 

phonon scattering, however, it only includes sound-phonon-phonon interactions. Here, 125 

we use three-phonon scattering model instead as it also includes sound-sound-sound 126 

and sound-sound-phonon interactions, which is a more accurate description. On the 127 

other hand, the relaxation time of Akhiezer damping is modeled using the expression 128 

derived by Maris [17]: 129 

𝜏MIJ =
NO"
PQR

∙ ;
RSTU(〈WR〉I〈W〉R)
JY;RSTU

R                                           (6) 130 

where Cv is the specific heat capacity per volume, γ is Gununeizen parameter, v is 131 
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phonon phase velocity, and τph is the averaged relaxation time of thermal phonons.  132 

Here, we include the mechanisms of both three-phonon scattering and Akhiezer 133 

damping into phonon relaxation time τ by using Matthiessen’s rule as [14,16]: 134 

 𝜏IJ = 𝜏HIJ + 𝜏MIJ                                                 (7) 135 

Equation (6) shows that phonon relaxation time first yields a quadratic frequency 136 

dependence for the lower frequencies, with a factor almost three orders of magnitude 137 

smaller than the three-phonon scattering, and in the high-frequency limit of the 138 

Akhiezer model (around tens of GHz), the lifetime is independent of frequency, and 139 

becomes constant [14]. This and Eq. (7) indicate that the relaxation time of phonons 140 

first follows Akhiezer model and then transits to three-phonon scattering when phonon 141 

frequency becomes higher. The transition frequency between three-phonon scattering 142 

and Akhiezer’s damping is expected to happen around several hundred GHz, which was 143 

first experimentally observed by Hasson and Many [19]. The transition zone of the two 144 

scenarios was observed by Maznev et al. at room temperature [14].  145 

Ⅲ. CONHERENT HEAT CONDUCTION 146 

A. Structures, Dispersion Relation and Group velocity 147 

We considered a 2D silicon thin film with periodic cylindrical holes, which is the 148 

most frequently studied representative PnC [3] (Fig. 1(a)). The height t, width w, and 149 

hole diameter d of the PnC are set to 150 nm, 100 nm, and 80 nm, respectively. A folded 150 

dispersion relation in the frequency range of 0-160 GHz (Fig. 1(b)) is obtained by 151 

solving Eq. (4) with 2D periodic boundary conditions. It is shown that the folded 152 

dispersion curves become flatter as frequency increases, which indicates reduction in 153 

group velocity (Fig. 1(c)). Further, although the frequency-dependent profile of group 154 

velocity is scattered, when smoothed by averaging the group velocities for each 155 

frequency, the profile in the range between 80 and 160 GHz shows a clear power law 156 

frequency dependence. An exponent of -1.41 is obtained by fitting a power law to the 157 
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data in this frequency range. The fitting curve was then extrapolated to obtain average 158 

group velocity in higher frequency regimes. Note that the extrapolation is needed 159 

because the computational load to calculate full dispersion relations of higher frequency 160 

phonons would become too large. The validity of the extrapolation was confirmed by 161 

calculating tens of branches of dispersion around given frequencies within 1THz, and 162 

the average group velocities around given frequencies were confirmed to agree with the 163 

fitting curve. With the same approach as for PnC, we also obtained group velocity of 164 

thin film with the same thickness (150 nm), and only average group velocity is plotted 165 

(Fig. 1(c)). It is shown that the average group velocity of thin film is larger than that of 166 

the PnC because periodic structures in PnC cause larger bandgaps, which reduces group 167 

velocity.  168 

B. Temperature Dependent Phonon Relaxation Time 169 

Firstly, to show the validity of the calculation, we obtained phonon relaxation time 170 

of bulk silicon crystals from first principles-based lattice dynamic calculation, which 171 

agrees with experimental data at a temperature range of 130 K-300 K (Fig. 2(a)). The 172 

maximum difference between our calculation and experimental data is 25%. It is clear 173 

that, for a given temperature, phonon relaxation time deviates from the three-phonon 174 

scattering scenario, and transit to the Akhiezer damping scenario when phonon 175 

frequency becomes GHz. As a result, relaxation time of low frequency phonons is 176 

reduced by 3 orders. It should be noted that the transition between the two scenarios 177 

has been investigated only at room temperature for Si and GaAs-AlAs superlattice [14]. 178 

Here, in Fig. 2(a), by comparing experiment data with our calculation, we observed that 179 

the transition is take place at ~200 GHz for 200 K-300 K, and ~100 GHz for 130 K. 180 

Now that the calculation is validated, we obtained relaxation time of acoustic 181 

branches (<12 GHz) for PnCs, as plotted in Fig. 2 (b), taking the case of 300 K as an 182 

example. It is shown that the trend of the relaxation time for the longitudinal mode of 183 

PnCs agrees with that of bulk crystals, however, the magnitude is smaller due to the 184 

folding effect, which yields phonon bandgaps and reduces phase velocity v. Other 185 
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acoustic branches show similar characteristics. For optical phonons, instead of 186 

replacing phase velocity v in Eq. (6) by group velocity vg, as in the work of E. Chavez-187 

Angel et al. [26], we approximated v by the average phase velocity of all acoustic 188 

branches considering that optical branches are folded acoustic ones. One can observe 189 

that phonon relaxation time transits to that of three-phonon scattering as frequency 190 

increases, which indicates that three-phonon scattering mechanism dominant phonon 191 

decay process for high frequency phonons. Similar relaxation time transition also 192 

happens for the 2D thin film, the difference is that average relaxation time of thin film 193 

is larger than that of PnC due to a larger phase velocity v, which resulted from smaller 194 

bandgaps in dispersions relations of thin film. 195 

C. Influence of Akhiezer Damping on Thermal Conductivity of Coherent 196 

Phonons 197 

Next, we discuss how much the transition from three-phonon scattering to Akhiezer 198 

damping can affect thermal conductivity of both bulk crystals, thin films and PnCs. We 199 

first verified that such transition has negligible effect on the total thermal conductivity 200 

of bulk crystals when temperature is below 300 K. As for thin films and PnCs, here we 201 

assume the switching frequency ωs as 0.2 THz, i.e. the coherent regime is 0-0.2 THz, 202 

and leave the discussion of frequency dependence on the coherent regime for later, as 203 

it does not affect the discussions here. It should be noted that the coherent regime is not 204 

taken randomly, but matches with the case that the thin film and PnC have a 2-nm 205 

surface roughness [3,8], which is the average value of the most frequently measured 206 

roughness in experiment (1 nm-3 nm). The method for determining the coherent regime 207 

by roughness is discussed in the Appendix. The κinc is obtained by Monte Carlo 208 

raytracing calculation, in which boundary scattering of incoherent phonons is included. 209 

In case of coherent phonons behaving as waves, the boundary effect is included as the 210 

folded dispersion of coherent phonons (Fig. 1), which are formed when the phonons 211 

are reflected without dephasing at the periodic boundaries. 212 

A comparison of thermal conductivity of thin film and PnC with two different 213 
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relaxation time τ models (with and without Akhiezer) for 130 K and 300 K is shown in 214 

Fig. 3. Firstly, we discuss the results when there is only three phonon scattering. In this 215 

case, κcoh of thin film within 0-0.2 THz is 5 Wm-1K-1 at 300 K and 17.8 Wm-1K-1 at 130 216 

K, which contributes about 7.4% and 15.2% of κTotal for 300 K and 130 K, respectively 217 

(Fig. 3(a)). The proportion of κcoh in κTotal becomes even larger for PnCs due to larger 218 

density of states, which will be shown in the later discussion. At 300 K, κcoh of PnC is 219 

9.5 Wm-1K-1, which contributes 53% of κTotal for PnC. At lower temperature of 130 K, 220 

κcoh of PnC reaches 33.3 Wm-1K-1, and contributes to 81.1% of κTotal for PnC. If this is 221 

the case, the total thermal conductivity of PnCs cannot be explained by scattering of 222 

incoherent phonons, which is not the actual situation of previous theoretical and 223 

experimental results [3-5]. As discussed in Section I and Ⅲ(B), for low frequency 224 

phonons, only considering three phonon scattering is not enough, Akhiezer damping 225 

should be considered as a key issue for relaxation process of these phonons, and it can 226 

be included in phonon relation time using Eq. (5) and Eq. (6). For the case that Akhiezer 227 

is considered, κcoh of both thin film and PnC is smaller than 0.5 Wm-1K-1 for 300 K and 228 

130 K, and the proportion of κcoh in κTotal is less than 1%, which indicates that κcoh is 229 

negligible in both thin film and PnC for 130 K-300 K (Fig. 3(b)), and that κTotal is almost 230 

dominant by the incoherent part κinc. The implication here is that, for low dimensional 231 

materials like thin film and PnCs, it is important to take Akhiezer damping into account 232 

to accurately evaluate relaxation time of low frequency phonons, otherwise, their 233 

contributions to thermal conductivity can be hugely overestimated by only considering 234 

three-phonon scattering. 235 

                   D. Phonon Density of States 236 

From Section Ⅲ (C), we see that Akhiezer damping does not influence total thermal 237 

conductivity of bulk silicon crystal but has large influence on thermal conductivity of 238 

PnCs. The reason lies in density of states, D(ω) (Fig. 4). In bulk crystal, D(ω) is 239 

proportional to ω2, which indicates that D(ω) of low frequency phonons is very small. 240 

Therefore, even relaxation time of these phonons is overestimated by only considering 241 

the ω-2-dependent three-phonon scattering, their contributions to the total thermal 242 
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conductivity of bulk silicon crystal is still negligible, in other words, we do not need to 243 

consider Akhiezer damping effect on the thermal conductivity of bulk crystal below 244 

300 K.  245 

However, in PnCs, D(ω) transits from 3D, 2D to 1D as frequency decreases due to 246 

coherent effect, and accordingly, the frequency dependence of D(ω) changes from ω-2, 247 

ω-1 to ω0. As a result, D(ω) of low frequency phonons in thin film and PnC is much 248 

larger than D(ω) in bulk crystals, which leads to a significant overestimation of κcoh in 249 

thin film and PnCs when only considering the ω-2-dependent three-phonon scattering 250 

for intrinsic relaxation time. We also noticed that, in the case that without Ahkiezer 251 

damping, κcoh for PnC is larger than κcoh of thin film (Fig. 3(a)), even phonon group 252 

velocity is larger for thin film (Fig. 1). This is because D(ω) of acoustic phonon (< 12 253 

GHz) in PnCs is four times larger than D(ω) of acoustic phonon in thin film, which 254 

would lead to severer overestimation κcoh for PnC. 255 

The conclusion for Section Ⅲ is that, although the existence of a 2-nm surface 256 

roughness makes the coherent regimes very small (0-0.2 THz), density of states of the 257 

low frequency coherent phonons is much larger than that of bulk silicon crystals, 258 

therefore, these phonons have large potential to contribute to thermal conductivity when 259 

only three phonon scattering is considered. However, when Akhiezer mechanism is 260 

involved, relaxation time of these phonons is hugely reduced, as a result, the proportion 261 

of κcoh in κTotal for both thin film and PnC is negligible (<1%), that is why the total 262 

thermal conductivity of thin film and PnC, κTotal can be explained by only considering 263 

the contributions of incoherent phonons κinc. 264 

 Current result is consistent with the recent experimental and theorertical works on 265 

thin film PnCs [3][4][5]. They have successfully reproduced the experimental results 266 

with Monte Carlo calculations by ignoring the contribution of sub-THz phonon to 267 

thermal conductivity. The fact the calculation could reproduce the experiments means 268 

that the Akhiezer damping has suppressed the phonon relaxation time, and that the 269 

works are consistent with our work. Although the actual geometry of our PnC and these 270 
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works are different, the above discussion on the dimension and contribution of sub-THz 271 

phonon contribution should be applicable to PnC with thickness and holes on the order 272 

of 100 nm. 273 

Ⅳ. SWITCHING-FREQUENCY DEPENDENT CONHERENT 274 

AND INCONHERENT HEAT CONDUCTION  275 

So far, our discussion has been based on the assumption that the roughness of the 276 

thin film and PnC is 2 nm, and the switching frequency 𝜔s is 𝜔0 (=0.2 THz). However, 277 

the 𝜔s can change when roughness on the surface is modified. Therefore, in what 278 

follows, we consider 𝜔s as a variable to investigate contributions of coherent phonons 279 

to thermal conductivity. Note that this also helps gain understanding of the case with 280 

no roughness, which is the theoretical upper limit of contribution of coherent phonons. 281 

Nevertheless, we can determine the maximum value of 𝜔s using the criterion that MPF 282 

of bulk phonons should be at least larger than several periods of periodic structures in 283 

PnCs (here, it is 100 nm). The reason is that coherent length should be smaller than 284 

MFP bulk phonons, and MFP are required to be sufficient long such that they can cross 285 

several periodicities, thereby creating many secondary waves to achieve interference 286 

effect, which results in the folded dispersion relation of PnCs [6]. The minimum number 287 

of periodicity is two (that is phonon passes though the PnC and then be reflected back), 288 

which gives the upper bound of 𝜔s.    289 

If ωs<𝜔0, κcoh within 0-ωs can be directly calculated by Eq. (3) with their full 290 

dispersion relations, whereas if ωs>𝜔0, contributions of coherent phonons from 𝜔0 to 291 

𝜔s is estimated by the averaging method due to a lack of information in full dispersion 292 

relation. In the averaging method, we approximate the phonon group velocity and 293 

density of states in Eq. (1) with the averaged group velocity obtained by the fitting 294 

curve (Fig. 1(c)), and bulk phonon density of states (Fig. 4), respectively. The latter 295 

approximation is based on the observation that density of states of PnCs and bulk crystal 296 

are roughly the same for frequencies above 𝜔0 (Fig. 4). Then, the switching-frequency 297 
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dependent κcoh(ωs) of PnCs or thinfilm can be expressed as:  298 

𝜅,#-(𝜔)) = 𝜅@ + ∫ 𝐶(𝜔)𝐷45&6(𝜔)𝑣%Q(𝜔)>𝜏(𝜔)𝑑𝜔
;<
;Z

	                     (8)                        299 

where κ0 is the contribution of coherent phonons with frequencies between 0 and 𝜔0, 300 

and the second term represents contribution of coherent phonons with frequencies 301 

between 𝜔0 and 𝜔s, where vav(ω) is the averaged group velocity and Dbulk(ω) is the bulk 302 

phonon density of states.                                    303 

For thin film and PnC at 300 K (Fig. 5(a) and Fig. 5(c)), the maximum coherent 304 

regime is determined as 0-3.0 THz. We found that κcoh of both thin film and PnC are 305 

negligible when compared to κinc even ωs reaches its maximum (3 THz). The results 306 

indicate that κcoh contributes a very small proportion of κTotal for both thin film and at 307 

300 K, even there is no roughness effect. This is because of two reasons: one is that 308 

Akhiezer damping significantly reduces relaxation time of phonons in the Akhiezer 309 

regime (<0.2 THz for 300 K, Fig. 3(b)), and the other is that the group velocity of 310 

phonons in three-phonon-scattering regime (0.2 THz-3.0 THz, Fig. 3(b)) is small due 311 

to phonon bandgaps that are caused by the folding effect. As a result, contributions of 312 

phonons within the whole coherent regime are limited.  313 

As temperature decreases to 130 K (Fig. 5(b) and Fig. 5(d)), the maximum value of 314 

ωs increased to 4 THz, and Akhiezer damping is weakened due to a reduction in thermal 315 

phonons population. Therefore, relaxation time of coherent phonons increases (Fig. 2), 316 

however, Ahkiezer damping still has strong influence on κcoh of thin film and PnC. For 317 

the PnC at 130 K, the maximum value of κcoh is only 0.1 Wm-1K-1. In thin film, the 318 

value of κcoh is larger when comparing with κcoh for PnC, and can contribute to 5.8 Wm-319 

1K-1 when ωs reaches to its maximum (4 THz). This is because group velocity of three-320 

phonon scattering regime (0.1 THz -4 THz for 130 K) is larger than that of PnC (Fig. 321 

1). However, the proportion of κcoh in κTotal is still small (<8%). We also noticed that for 322 

both thin film and PnC, sub-THz phonons contributes to the most part of κcoh, and 323 

above-THz coherent phonons does not contribute much to κcoh due to their small group 324 
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velocity and relaxation time (Fig. 1(c) and Fig. 2).  325 

Taking the most extremely case (no roughness) as an example, a comparison of 326 

thermal conductivity of thin film and PnC with two different relaxation time τ models 327 

at 130 K and 300 K is shown in Fig. 6. The discussion here is similar with Section 328 

Ⅲ(C). The coherent part, κcoh can contribute a large part of κTotal when without 329 

considering Akhiezer damping. In thin film, κcoh can contribute about 11.2% and 28% 330 

of κTotal for 300 K and 130 K, respectively. For PnC, contributions of κcoh can even reach 331 

to 56% at 300 K and 85% of κTotal. However, Akhiezer damping can reduced the 332 

proportion to less than 2% for PnC at both 300 K and 130 K, and for thin film, the 333 

proportion is less than 2% at 300 K and around 8% at 130 K. The value of the 334 

proportions here is a litter larger than that in Section Ⅲ(C), however, it is still small. 335 

Therefore, we can conclude that the coherent phonons contribution κcoh to the total 336 

thermal conductivity κTotal for both thin film and PnC is very small even there is no 337 

roughness, or the κTotal for both thin film and PnC can be explained by the contributions 338 

of incoherent phonons. 339 

Finally, it should be noted that currently our calculation here cannot deal with the 340 

cases for temperatures that below 130 K. The reason is that Ahkiezer mechanism, as 341 

original developed, only valid at high temperatures, however, up to date, the exact valid 342 

temperature regime is not known. We can extend our calculation to 130 K because the 343 

experimental measurements match with theoretical calculations (Fig. 2). More 344 

experimental measurements are still need below 130 K. On the other hand, the equation 345 

for Ahkiezer damping (Eq. (6)) includes average phonon relation time of bulk silicon 346 

crystal (τph), which is often obtained by single phonon relaxation time approximation. 347 

However, the single phonon relaxation time approximation for the Boltzmann equation 348 

may not valid at lower temperatures. We hope that lower temperature measurements 349 

and deeper theoretical analysis for phonon relaxation time in both bulk and 350 

nanostructured materials will become available soon. 351 

   352 
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Ⅴ. CONCLUSIONS 353 

In conclusion, we show that average group velocity of high frequency coherent 354 

phonons in thin film and PnC can be approximated by the exponential function 𝜔-β 355 

(β=0.66 and 1.41 for our thin film and PnC samples, respectively), which indicates that 356 

high frequency phonons has smaller group velocities, and thus contribute less to thermal 357 

conductivity. Then, we show that low frequency coherent phonons in low dimension 358 

materials like PnCs have extremely large density of states due to the low dimension 359 

nature, which could significantly contribute to thermal conductivity when only 360 

considering three phonon scattering. However, by comparing experiment data with our 361 

calculation, we show that Akhiezer damping is dominant and should be considered 362 

when dealing with relation time of low frequency phonons (<200 GHz for 200 K-300 363 

K, and <100 GHz for 130 K). Because of Akhiezer damping, coherent phonons 364 

contribution is reduced to the extent that their contribution to total thermal conductivity 365 

of thin film and PnC at 130 K-300 K becomes very small (<8%), even there is no surface 366 

roughness, that is why the total thermal conductivity of thin film and PnC can be 367 

explained by only considering the incoherent phonons contributions.  368 

 369 

APPENDIX 370 

In this section, we evaluate switching frequency ωs as a function of roughness 371 

according to the work of M. R. Wagner et al [8]:  372 

𝜔) =
>\]<
^
_I`a(b)

Jc\d
                                                 (9) 373 

where R is the roughness size (including surface roughness, hole wall roughness, lattice 374 

site displacement, disorder etc.); P is the specularity, here we use P=0.3 to define the 375 

boundary of coherent and incoherent regimes, i.e. the ωs; Vs is the longitudinal sound 376 

velocity as 8433 m/s [8].  377 
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Switching frequency as a function of roughness size R is shown in Fig. 7, from which 378 

we can obtain 0.2 THz for ωs when R=2 nm. In the works of M. R. Wagner et al, P=0.5, 379 

here we use 0.3 just for a more conservative estimation.  380 
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Figures  433 

 434 

Fig. 1 (a) Schematic of two-dimensional silicon phononic crystal (PnC). t=150 nm, 435 

w=100 nm and d=80 nm denotes the height, width, and hole diameter of the PnC, 436 

respectively. (b) phonon dispersion relation of PnC along G-X. (c) frequency-dependent 437 

group velocity of PnCs and thin film phonons.  438 

  439 

Frequency, ω/2π [GHz]

b

c

(a)  Phononic Crystals

W
av

e 
N

um
be

r, 
ka
x/π

 [-
]

0

0.2

1

0 50 150100

0.4

0.6

0.8
G

ro
up

 v
el

oc
ity

, v
g [

m
/s]

100

102

104

Frequency, ω/2π [GHz]
100 101 103102

101

103

Average group velocity (PnC)
Group velocity (PnC)

Fitting curve, vg∝ω-β, β=1.41 (PnC)

t

d w

Average group velocity (Thinfilm)
Fitting curve, vg∝ω-β, β=0.66 (Thinfilm)



18 
 

 440 

Fig. 2 (a) Frequency and temperature dependent phonon relaxation time for bulk silicon 441 

crystals. The dashed lines are calculated results for longitudinal modes (LA) at different 442 

temperatures. Experimental data are measured results for LA modes and are taken from 443 

the references [15,27-29] (b) Frequency-dependent relaxation time of thin film and 444 

PnCs at 300 K, and a comparison with bulk phonon relaxation time for LA modes and 445 

modes in Full Brillion zone (FB). The boundary of Akhiezer and 3-phonon scattering 446 

regimes at 300 K is around 200 GHz. Note that “3-phonon scattering+Akhiezer” in Fig. 447 

2 means the relaxation time calculated using Eq. (7) 448 

  449 

Frequency, ω/2π [GHz]
100 101 102 103 104

10-10

10-12

10-8

10-6
Re

la
xa

tio
n 

tim
e ,

 τ 
[s

]

3-phonon 
scattering+Akhiezer (LA)

(a) Bulk

3-phonon 
scattering

Exp. 300 K
Exp. 250 K
Exp. 200 K
Exp. 130 K

Cal. 300 K
Cal. 250 K
Cal. 200 K
Cal. 130 K

10-1 100 101 102 103 104

10-10

10-4

10-12

10-8

10-6

Re
la

xa
tio

n 
tim

e ,
 τ 

[s
]

Average τ for PnC 

Exp. (Bulk, LA)

Frequency, ω/2π [GHz]

Akhiezer
3-phonon 
scattering

Cal. (Bulk, LA)

PnCs (LA)
τ of PnC

(b) PnC

Cal. (Bulk, FB)

Average τ for thin film 



19 
 

 450 

Fig. 3 A comparison of thermal conductivity of thin film and PnC with two different 451 

relaxation time τ models at 130 K and 300 K for a 2-nm roughness. (a) τ model: only 452 

three-phonon scattering; (b) τ model: three-phonon scattering and Akhiezer damping. 453 

Coherent regime is determined as 0-0.2 THz for 300 K and 130 K when there is a 2-nm 454 

roughness. 455 
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 457 

Fig. 4 Frequency-dependent density of states D(ω) of thin film and PnCs, and a 458 

comparison with density of states of bulk silicon crystals 459 
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      461 

Fig. 5 Contributions of coherent and incoherent phonons to total thermal conductivity 462 

of thin film and PnCs as a function of switching frequency at 300 K and 130 K. The 463 

maximum coherent regime is determined as 0-3 THz at 300 K, and 0-4 THz at 130 K. 464 
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 466 

Fig. 6 A comparison of thermal conductivity of thin film and PnC with two different 467 

relaxation time τ models at 130 K and 300 K for the most idea case (no roughness). (a) 468 

τ model: only three-phonon scattering; (b) τ model: three-phonon scattering and 469 

Akhiezer damping. Coherent regime is respectively determined as 0-3 THz and 0-4 470 

THz for 300 K and 130 K when there is no roughness.  471 
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 472 

Fig. 7 Switching frequency as a function of roughness size R (surface roughness, hole 473 

wall roughness, lattice site displacement, hole disorder etc.) for selected specularity 474 

parameters P=0.3. 475 
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