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Flatbands feature the distortion-free storage of compact localized states of tailorable shape. Their
reliable storage sojourn is, however, limited by disorder potentials, which generically cause uncon-
trolled coupling into dispersive bands. We find that, while detuning flatband states from band
intersections suppresses their direct decay into dispersive bands, disorder-induced state distortion
causes a delayed, dephasing-mediated decay, lifting the static nature of flatband states and setting
a finite lifetime for the reliable storage sojourn. We exemplify this generic, disorder-induced decay
mechanism at the cross-stitch lattice. Our analysis, which applies platform-independently, relies on
the time-resolved treatment of disorder-averaged quantum systems with quantum master equations.

I. INTRODUCTION

Flatbands, which may emerge as a consequence of
symmetries or finetuning in certain tight-binding Hamil-
tonians, are characterized by a completely dispersion-
less single-particle energy spectrum, i.e., the band’s en-
ergy E(p) is independent of the Bloch state momen-
tum p. Predicted several decades ago1,2, they have re-
cently become experimentally accessible in artificial lat-
tice systems, ranging from electronic3–9, to atomic10–12

and photonic13–25.

Remarkably, flat bands feature the existence of “com-
pact localized states”, free of any dynamical evolution
and with tailorable shape, the latter by judiciously su-
perposing the entirely degenerate Bloch states. Notably,
these localized flatband states are even supported by a
perfectly periodic lattice, whereas in standard dispersive
bands localization usually emerges as a consequence of
defects or disorder. Due to this localizability and absence
of dispersive distortion, flatband states offer themselves
as a means to store states and preserve information26,27.

The presence of disorder, however, may limit the static
storage of flatbands states. This is because a disorder po-
tential, even if small, gives in general rise to spatially re-
solved phase fluctuations. While these may appear incon-
spicuous and initially irrelevant from the lattice perspec-
tive, they distort the wave packet in momentum space.
In the vicinity of band intersections, this may eventually
result in an uncontrolled coupling into dispersive bands
(Fig. 1), thus limiting the reliable storage sojourn, and ul-
timately resulting in the state’s diffusive delocalization.
In this sense, in flatband scenarios the reasoning is re-
versed: While localized in the perfectly periodic case,
disorder, mediated by the coupling to a dispersive band,
delocalizes flatband states.

In this article, we study how disorder potentials in-
duce the evolution of 1D flatband states in the pres-
ence of intersecting dispersive bands. This complements
other studies on the impact of perturbations in flatband
scenarios26,28–37, e.g., describing the flatband-modified
propagation in dispersive bands. We identify and char-
acterize a generic, disorder-induced decay mechanism
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FIG. 1. Cross-stitch lattice as paradigmatic flatband model.
(a) It consists of two parallel sublattices, each unit cell |j〉
containing two sites |a〉 and |b〉 (yellow area). All neighboring
sites are interconnected, i.e., hopping can occur within or by
switching the sublattice. (b) The model exhibits two bands,
one flat (FB) and one dispersive (DB). The intracell hopping
tab controls their energetic relation. While an ideal flat band
allows the distortion-free storage of compact localized states
of tailorable shape, a disorder potential causes distortion and,
in the vicinity of intersections (yellow areas), to a coupling
into the dispersive band, limiting the state’s reliable storage
sojourn in the flat band.

for flatband states, lifting their static nature and caus-
ing their effective diffusion, despite the absence of a ki-
netic term. We find that their (in)stability is controlled
by the interplay of direct decay near intersections and
dephasing-mediated state distortion. We demonstrate
our findings with the cross-stitch lattice, which exhibits
exactly one flat and one dispersive band (Fig. 1) and
therefore serves as a paradigmatic model system. Generic
features, however, hold also in other (1D) flatband sce-
narios with band intersections, platform-independently.
Our analysis relies on the treatment of disorder-averaged
quantum systems with quantum master equations38–43.

II. SINGLE-INTERSECTION
APPROXIMATION

To motivate our ansatz Hamiltonian (2), we derive it
now from the quasi-onedimensional cross-stitch lattice,
which is composed of two parallel sublattices |a〉 and |b〉
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with intra- and interlattice nearest neighbor hopping, see
Fig. 1. The Hamiltonian (in absence of a potential) reads

(e.g.,44) Ĥ =

−J
∑
j∈Z

{
(|j〉〈j + 1|+ |j〉〈j − 1|)⊗ (12 + |a〉〈b|+ |b〉〈a|)

+ tab|j〉〈j| ⊗ (|a〉〈b|+ |b〉〈a|)
}
, (1)

exhibiting two bands, one flat, Ef = Jtab, and one dis-
persive, Ed(k) = −4J cos(k) − Jtab, with hopping con-
stant J and intracell hopping participation tab. The
bands intersect twice if |tab| < 2, which we assume from
now on. States in a symmetric superposition of the two
sublattices reside in the dispersive band |d〉, while an-
tisymmetric superpositions reside in the flat band |f〉,
|f〉 = (|a〉−|b〉)/

√
2 and |d〉 = (|a〉+|b〉)/

√
2. The Hamil-

tonian (1) then reads Ĥ = −J(4 cos[p̂a/~] + tab)|d〉〈d|+
tabJ |f〉〈f|, with lattice constant a.

As the vicinities of the intersections dominate the de-
cay of flatband states [Fig. 1(b)], we hereafter linearize
the dispersive band at the intersection p1 closest to the
flatband state. Below, we will reintroduce the second in-
tersection. Without loss of generality, we assume Ef = 0.
Moreover, we assume that the flatband state extends over
at least a few unit cells, legitimating the continuum limit.
The Hamiltonian (1) is then approximated by

Ĥ = v(p̂− p1)⊗ |d〉〈d|, (2)

with [x̂, p̂] = i~, and the velocity v the dispersive-band
slope at the intersection.

In a perfect implementation of (1) (or (2), respec-
tively), a state residing in the flat band would not evolve.
More realistically, however, one should consider at least
small potential variations, e.g., due to impurities or stray
fields. A general disorder potential in the cross-stitch
model is written (again in the continuum limit)

V̂ε = V a
ε (x̂)⊗ |a〉〈a|+ V b

ε (x̂)⊗ |b〉〈b|, (3)

where ε labels different disorder realizations and can
be discrete, continuous and/or a multi-index (for conve-
nience, we write integrals throughout). We assume that

the disorder potential vanishes on average,
∫

dε pεV̂ε = 0
(pε denotes the probability distribution over the disorder

realizations), i.e., the full Hamiltonian is Ĥε = Ĥ + V̂ε

with the average Hamiltonian Ĥ as in (2). Moreover,
we assume that the disorder potential is weak, such that
only dispersive band states in the vicinity of the inter-
section, where the linear band approximation is valid,
become accessible.

The two sublattices |a〉 and |b〉 in general exhibit differ-
ing, but correlated disorder potentials V a

ε (x) and V b
ε (x).

Assuming homogeneous disorder, we define the intra- and

inter-sublattice correlations

Cσσ′(x− x′) ≡
∫

dε pεV
σ
ε (x)V σ

′

ε (x′)

=

∫
dq eiq(x−x

′)/~Gσσ′(q), (4)

with σ, σ′ ∈ {a,b}, and Gσσ′(q) describing the disorder-
induced scattering. The intersublattice disorder correla-
tions strongly influence the disorder-induced band cou-
pling. Indeed, rewriting the disorder potential44, V̂ε =
V +
ε (x̂)⊗ 12 + V −ε (x̂)⊗ σ̂x, with σ̂x ≡ |f〉〈d|+ |d〉〈f| and
V ±ε (x) = 1

2

[
V a
ε (x)± V b

ε (x)
]
, reveals that the interband

coupling, mediated by V −ε (x), vanishes if V a
ε (x) = V b

ε (x).
For simplicity, we assume that the intrasublattice cor-

relations are the same on both sublattices, Gσσ′(q) =
Gσ−σ′(q) (for convenience, we replace a → 1/2 and
b→ −1/2, i.e., (σ − σ′) ∈ {−1, 0, 1}). We then define

Gσ−σ′(q) =
∑

β∈{−1,0,1}

eiπβ(σ−σ′)G̃β(q), (5)

with [G−1(q) = G1(q)] G̃0(q) = 1
2 [G0(q) + G1(q)] and

G̃1(q) = G̃−1(q) = 1
4 [G0(q) − G1(q)]. Finally, as they

originate from the same disorder potentials, we require
that the intersublattice and the intrasublattice correla-
tions have the same form, generically modified by a factor
−1 ≤ δ ≤ 1:

Cab(x) = δ Caa(x) = δ Cbb(x). (6)

This yields G̃0(q) = G0(q)(1 + δ)/2 and G̃1(q) =
G0(q)(1−δ)/2. Note that δ = +1 (δ = −1) describes per-
fectly correlated (anticorrelated) sublattice potentials,
while intermediate δ values can, e.g., result from their
weighted combination, corresponding to several disorder
sources, some causing correlated, some anticorrelated,
disorder potentials on the sublattices. We remark that, if
the intrasublattice correlations differ, Eq. (6) does in gen-
eral not hold. While such generalization is feasible within
our framework, no additional insights would emerge.

Note that (2) is not limited to the cross-stitch lat-
tice, but serves as a generic, linearized model of any
flatband-dispersive band intersection. In general, |a〉
and |b〉 then correspond to unspecified internal states
of the unit cell, with (|f〉, |d〉)T = U(|a〉, |b〉)T . For
our discussion, it suffices to focus on disorder potentials
V̂ε = V intra

ε (x̂)⊗12 +V inter
ε (x̂)⊗ σ̂x, as in the cross-stitch

model; σ̂y and σ̂z contributions could, however, easily be
included. Disorder-induced modifications of the kinetic
term (2) are also neglected here. For clarity, we continue
to discuss the cross-stitch lattice.

III. DISORDER-AVERAGED TIME
EVOLUTION

We now describe the time evolution of the disorder-
averaged quantum state ρ(t) =

∫
dε pε ρε(t), where
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ρε(t) = e−iĤεt/~ρ0e
iĤεt/~. This is achieved with a

quantum master equation perturbative in the disorder
potential40,41. Using (4) and (5), one obtains the time-
local, translation-covariant master equation ∂tρ(t)

=− i

~
[Ĥeff(t), ρ(t)] (7a)

+
∑

α∈{±1}

2α

~2

∫ ∞
−∞

dq
∑

β∈{−1,0,1}

G̃β(q)

∫ t

0

dt′L
(
L̂

(α)
q,β(t′), ρ(t)

)
,

where L(L̂, ρ) = L̂ρL̂† − 1
2 L̂
†L̂ρ − 1

2ρL̂
†L̂. The effective

Hamiltonian Ĥeff(t) = Ĥ†eff(t) and the Lindblad opera-

tors L̂
(α)
q,β(t) are given by Ĥeff(t)

= Ĥ − i

2~

∫ ∞
−∞

dq
∑

β∈{−1,0,1}

G̃β(q)

∫ t

0

dt′ [V̂q,β ,
ˆ̃V−q,−β(t′)],

L̂
(α)
q,β(t) =

1

2

[
V̂q,β + α ˆ̃Vq,β(t)

]
, (7b)

where ˆ̃Vq,β(t) = e−iĤt/~ V̂q,β e
iĤt/~ and V̂q,β = eiqx̂/~ ⊗

ei(π/2)βσ̂x . With Ĥ = v(p̂− p1)⊗ |d〉〈d| [cf. Eq. (2)], we

then have ˆ̃Vq,β=0(t) = eiqx̂/~ ⊗
(
|f〉〈f|+ e−ivtq/~|d〉〈d|

)
,

ˆ̃Vq,β=1(t) = ie−ivt(p̂−p1)/~eiqx̂/~ ⊗ |d〉〈f| +

ieiqx̂/~eivt(p̂−p1)/~ ⊗ |f〉〈d|, and ˆ̃Vq,β=−1(t) = − ˆ̃Vq,β=1(t).

The master equation (7) describes the disorder-
perturbed evolution of the full two-band quantum state.
In the following, we focus on the flatband component
ρf ≡ 〈f|ρ|f〉. Projecting (7) onto |f〉, we obtain (ρd =
〈d|ρ|d〉)

∂tρf =
2t

~2

∫ ∞
−∞

dq G̃0(q)
{
eiqx̂/~ρfe

−iqx̂/~ − ρf

}
(8a)

− 2

~2

∫ ∞
−∞

dq G̃1(q)

∫ t

0

dt′
{
eivt

′q/~e−ivt
′(p̂−p1)/~ρf

− eiqx̂/~ρde
−ivt′(p̂−p1)/~e−iqx̂/~ + h.c.

}
. (8b)

For the dispersive band component ρd, one derives a
similar evolution equation, with intraband dynamics as
in41. We remark that Eq. (8) is not equivalent to Fermi’s
golden rule, which, while delivering asymptotic transition
rates, remains ignorant about the intermediate dynamics.

Equation (8), which holds for arbitrary correlations
and initial states, presents the basis for our analysis of the
decay of the flatband states. It exhibits two components:
A trace-preserving part (8a) describing the disorder-
induced dephasing in the flatband channel, which causes
a loss of coherence of the disorder-averaged state, along
with a broadening momentum distribution. The second
contribution (8b) captures the coupling into the disper-
sive band. As we show, the interplay between these two
contributions ultimately limits the stability of flatband
states.

IV. DECAY INTO THE DISPERSIVE BAND

We first analyze the coupling of the flat into the dis-
persive band. We thus neglect for now the intrachannel
dephasing (8a), corresponding to perfectly anticorrelated
sublattice potentials, δ = −1 in (6) (we discuss the decay,
however, for general δ). Moreover, we assume that the
dispersive-band state component is negligible, ρd ≈ 0.
This is justified, because we consider the reliable stor-
age sojourn of initial flatband states, i.e., before a sig-
nificant dispersive-band component emerges. Also, any
dispersive-band component propagates with velocity v,
i.e., feedback into the flatband generally occurs remote
from the initial flatband state location.

Equation (8) can then be rewritten in momentum
representation (ρf(p) = 〈p|ρf |p〉), ∂tρf(p) = −Γt(p −
p1) ρf(p), with the momentum-dependent decay rate

Γt(p) =
4

~2

∫ ∞
−∞

dq G̃1(q) t sinc

[
vt(q − p)

~

]
. (9)

The solution reads ρf(p) = ρf,0(p) e−Γt(p−p1), with

Γt(p) =
∫ t

0
dt′Γt′(p) = 2

~
∫∞
−∞dq G̃1(q) t2 sinc2

[
vt(q−p)

2~

]
.

Assuming a finite correlation length ` further simplifies
the decay in the limit |v|t� `:

Γt(p) =
πt

~|v|
(1− δ)G0(p). (10)

We thus find a momentum-dependent decay of flatband
states into the dispersive band, determined by the state’s
relative location w.r.t. the intersection, the transport ve-
locity v at the intersection, and the disorder character-
istics. As previously anticipated, this decay is absent if
δ = 1, i.e., if the disorder potentials on the two sublat-
tices are identical.

In the (unrealistic) limit of vanishing correlations,
Caa(x) = Cbb(x) = C0 δ(x), we obtain G0(p) = C0

2π~ ,
i.e., the decay happens homogeneously, irrespectively
of the flatband state’s position w.r.t. the intersection.

With Gaussian correlations, Caa(x) = C0 e
−(x/`)2 , we

obtain G0(p) = C0`
2
√
π~ exp

[
− 1

4

(
p`
~

)2
]
, i.e., (10) implies

an exponential suppression of the decay for momenta
(p − p1) � ~/`. We remark that, in the short period
before t ≈ `/|v|, the exact rate (9) describes a transi-
tional stage with decay spanning over a wider range of
momenta; the impact of this stage is, however, generi-
cally small.

If the flatband state is (partly or fully) on resonance
with the intersection, it rapidly begins to decay and
spread in the dispersive channel, which, through back-
coupling, results in spatial diffusion in the flatband chan-
nel. The momentum-dependent decay for finite `, on the
other hand, suggests to store (sufficiently momentum-
localized) states remotely (in momentum) from the inter-
section, in order to suppress their decay into the disper-
sive channel. However, as we show next, disorder-induced
dephasing limits the temporal success of this strategy.
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V. DEPHASING-MEDIATED DECAY

To assess the disorder-induced dephasing, we now ne-
glect the dispersive-band coupling (8b), describing per-
fectly correlated sublattice potentials, δ = 1 (again, we
keep δ general in the discussion). The remaining equation
(8) is solved in position representation: 〈x|ρf(t)|x′〉 =

〈x|ρf,0|x′〉e−F t(x−x′), with

F t(x) =
t2

~2

∫ ∞
−∞

dq G̃0(q)
{

1− cos
[qx
~

]}
. (11)

For Gaussian correlations, and with (6), we then obtain

F t(x) = t2(1+δ)C0

2~2 (1−exp[−(x/`)2]), i.e., the off-diagonal
elements decay exponentially, causing a purity loss, while
the diagonal elements remain unaffected.

More importantly, however, the dephasing comes with
a distortion and broadening of the momentum distribu-
tion, as seen from the momentum variance, 〈(∆p̂)2〉(t) =

〈(∆p̂)2〉0 + t2

~2

∫∞
−∞dq q2G̃0(q), which, for Gaussian cor-

relations, reads 〈(∆p̂)2〉(t) = 〈(∆p̂)2〉0 + (1+δ)C0

`2 t2, i.e.,
within our approximation, the momentum width in-
creases linearly in time; the distribution in position space,
however, remains unaffected.

In the general case, −1 < δ < 1, we must consider
both decay and dephasing. Moreover, we now include
the contribution of the second intersection at p2 = −p1.
Recast in terms of the momentum distribution, Eq. (8)
then reads

∂tρf(p) =−
∑
j=1,2

Γ
(j)
t (p− pj) ρf(p) (12)

+
2t

~2

∫ ∞
−∞

dq G̃0(q) {ρf(p− q)− ρf(p)} ,

where Γ
(j)
t (p) as in (9) (with v2 = −v1). Note that the

dephasing contribution manifests nonlocally here. More-
over, we remark that (12) applies, similarly to (2), also
to other 1D flatband-intersection scenarios, possibly gen-
eralized to more than two intersections.

Based on our previous discussion, we should expect
that, even if the initial state (p0 = 〈p̂〉) is safely (i.e.,
decay-protected) located at (p0 − pj) � ~/` with mo-
mentum width 〈(∆p̂)2〉0 � (p0 − pj)2, due to disorder-
induced momentum broadening, the wavepacket exten-
sion reaches the intersection region of enhanced decay
into the dispersive band, terminating the time span τ of
the decay-protected sojourn. From the variance growth
we estimate

τ /
(p0 − p1)`√
C0(1 + δ)

, (13)

with p1 the nearest intersection. In this sense, the pres-
ence of disorder introduces a lifetime for the reliable state
storage in the flatband.

VI. NUMERICAL TEST

Figure 2 displays the time evolution for: the initial flat-
band state (i) partially overlapping with one intersection
or (ii) residing in between the two intersections. In both
cases we compare the numerically exact evolution in the
cross-stitch model (N = 100 unit cells, periodic bound-
ary conditions, averaged over K = 200 realizations) with
our analytical prediction (12). We use Gaussian correla-
tions [the integral in (9) can then be solved analytically]
with W = 0.5J (C0 = W 2/12), ` = 6a, and δ = 0. The
intracell hoppings are (i) tab = 1.0 and (ii) tab = 0.6,
along with the intersections (i) p1,2 = ±2.09 ~/a and (ii)
p1,2 = ±1.88 ~/a, and the velocities (i) v = ±3.46 aJ/~
and (ii) v = ±3.82 aJ/~. The initial flatband state is

Gaussian, ψ0(x) ∝ e−(x−x0)2/(2σ2
x)+ip0x, centered around

x0 = 50a with σ2
x = 12a2, and (i) p0 = 1.26 ~/a and (ii)

p0 = 0.
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FIG. 2. Disorder-induced decay of flatband states in the cross-
stitch lattice. We compare the numerically exact evolution
(black solid, E) with our prediction (12) (red dash-dotted,
P). Depending on whether the initial state (blue dashed) is
(a)/(i) resonant with or (b)/(ii) detuned from the intersection
[green dotted, for Gaussian correlations], the initial flatband
state decays (c)/(i) steadily from the beginning, or (c)/(ii) not
before the tails reach the intersections [t = 20 ~/J in (b) and
(c)]. While the overall decay into the dispersive band rapidly
slows down [black dashed in (c), EFT=exact full trace], the
flatband component exhibits ongoing diffusion [EPT=exact
partial trace], resulting in the state’s delocalization in (d).
Depending on the state’s relative position w.r.t. the intersec-
tions and their transport velocities, this diffusion is symmetric
[red dashed, (ii) at t = 20 ~/J ], or directional [green dotted,
(i) at t = 10~/J , and black solid, (i) at t = 20 ~/J ].

We find good agreement between our theory, within its
range of validity, and the numerically exact results. In
case (i) there is, due to the partial overlap of the initial
state with the intersection, from the beginning a steady
decay into the dispersive band. As anticipated, with a
detuned initial state in (ii), the decay is delayed and sets
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in only after τexp ≈ 20 ~/J . This delayed decay would be
absent if δ = −1, i.e., without intrachannel dephasing. In
graphene, where J ≈ 2.8 eV and 1D flatbands can, e.g.,
be found at the edges45, the resulting lifetime estimate
would, for above parameters, be τ ≈ 5 × 10−15 s. In 1D
Lieb lattices of coupled micropillars20, with J ≈ 0.1 meV,
one would obtain τ ≈ 10−10 s. Note that (13) overesti-
mates the lifetime, τ ≈ 80 ~/J , as it is based on the
variance, while the decay is sensitive to the tails reaching
the intersections.

We remark that, in the numerical experiments, we
measure the decay of the flatband state by taking the par-
tial trace over the approximate carrier [x0−8a, x0+8a] of
the initial state in position space (yellow area in Fig. 2d).
This is because, due to backcoupling (not modeled by
our theory), the dispersive-band state partly reenters the
flatband, however, due to propagation, remotely, this way
contributing to the diffusive delocalization of the flatband
state. The difference between partial and full trace then
measures the fraction fed back into the flat band outside
the carrier. We find a rapid slowdown of the overall de-
cay into the dispersive channel, along with an ongoing
diffusion of the flatband component, as predicted. The
remaining deviations between our analytical predictions
and our numerical results are explained by immediate
partial feedback into the flat band before leaving the car-
rier, by reentering the carrier due to our finite, periodic
lattice, by higher orders in V̂ε, and by discreteness effects.
Note that the partial trace sets in slightly below 1, due
to the neglected initial-state fraction outside the carrier.

VII. CONCLUSIONS

We specified a generic, disorder-induced decay mecha-
nism in the interplay between flat and intersecting disper-
sive bands. We find that detuning flatband states from
intersections delays their decay, limited by dephasing-
mediated momentum diffusion. Backcoupling from the
dispersive into the flat band eventually causes (poten-
tially directional, i.e., “chiral”) spatial diffusion of the

flatband component. In this sense, disorder, while inef-
fective in isolated flatbands, when mediated by dispersive
channels, delocalizes flatband states.

Whereas we exemplify our findings with the cross-
stitch model, our theory holds for a wide range of
1D flatband scenarios with dispersive-band intersections,
platform-independently. If intersections are absent (in
the cross-stitch model, if |tab| ≥ 2), however, the iden-
tified mechanism is expected to be suppressed. Beyond
their fundamental interest, we expect that our results
are relevant, for instance, for the prospect of utilizing
flatbands for state/information storage.

We stress that, in experimental implementations,
depending on the platform, other factors, e.g.,
environmentally-induced decoherence and/or many-
particle effects, can affect the evolution of the flat-
band states, possibly further reducing their stability.
In this sense, the identified mechanism may serve as
a baseline estimate on the stability of flatband states.
Near-future experimental confirmations in existing plat-
forms are conceivable6–8,10–21. Generalizing the theory
to 2D/3D, and including the evolution of dispersive-band
components, could further illuminate the interplay of flat
and dispersive bands. We expect that, in 2D or 3D, a
similar mechanism prevails, i.e., the detuning from the
closest dispersive-band intersection delays the onset of
the diffusion process.
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P. Öhberg, E. Andersson, and R. R. Thomson, “Obser-
vation of a localized flat-band state in a photonic Lieb
lattice,” Phys. Rev. Lett. 114, 245504 (2015).

15 R. A. Vicencio, C. Cantillano, L. Morales-Inostroza,
B. Real, C. Mej́ıa-Cortés, S. Weimann, A. Szameit, and
M. I. Molina, “Observation of localized states in Lieb pho-
tonic lattices,” Phys. Rev. Lett. 114, 245503 (2015).

16 S. Kajiwara, Y. Urade, Y. Nakata, T. Nakanishi, and
M. Kitano, “Observation of a nonradiative flat band for
spoof surface plasmons in a metallic Lieb lattice,” Phys.
Rev. B 93, 075126 (2016).

17 D. Guzmán-Silva, C. Mej́ıa-Cortés, M. A. Bandres, M. C.
Rechtsman, S. Weimann, S. Nolte, M. Segev, A. Szameit,
and R. A. Vicencio, “Experimental observation of bulk and
edge transport in photonic Lieb lattices,” New J. Phys. 16,
063061 (2014).

18 S. Xia, Y. Hu, D. Song, Y. Zong, L. Tang, and Z. Chen,
“Demonstration of flat-band image transmission in opti-
cally induced Lieb photonic lattices,” Opt. Lett. 41, 1435–
1438 (2016).

19 Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su,
Y. Li, and Z. Chen, “Observation of localized flat-band
states in Kagome photonic lattices,” Opt. Express 24,
8877–8885 (2016).

20 F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin,
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