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Abstract

A 2D J-resolved magic-angle spinning Nuclear Magnetic Resonance (NMR) spectrum of silica

glass at 29Si natural abundance levels, 4.7%, was measured using the Shifted-Echo Phase Incre-

mented Echo Train Acquisition (SE-PIETA) pulse sequence. At 29Si natural abundance levels the

JSi-O-Si couplings splittings appear as overlapping doublet patterns arising from isolated 29Si-O-29Si

linkages. The experimental 2D J-resolved spectrum is analyzed to obtain a bi-variate probability

distribution correlating the central Si-O-Si angle of a Q4–Q4 linkage to its mean Si-O-Si angle (seven

angles) using relationships between 29Si isotropic chemical shifts and geminal JSi-O-Si coupling of a

Q4–Q4 to its local structure. To obtain a self-consistent bi-variate probability distribution it was

necessary to introduce an additional dependence of the 29Si chemical shift of a Q4 on mean Si-O

distance as well as mean Si-O-Si angle. The implication of this necessary modification is a positive

correlation between Si-O-Si angle and Si-O distance in the silica glass, consistent with recent 17O

NMR measurements on ambient and densified silica glasses but running opposite to the trend gen-

erally found in crystalline silica polymorphs. From the analysis of the 29Si 2D J-resolved spectrum

we determine a Si-O-Si bond angle distribution in silica glass as having a mean at 147.8◦, a mode

at 147◦ and a standard deviation of 10.7◦. Our statistical model for analyzing the experimental

29Si 2D J-resolved spectrum also indicates that the individual Si-O-Si bond angle distributions are

relatively uncorrelated.
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I. INTRODUCTION

Glass structure is a difficult thing to characterize. Any structural model of glass is

necessarily statistical in nature, that is, the individual atomic positions cannot be known.

When constructing structural models of glasses the most commonly used prior information

comes from the static structure factors obtained from diffraction measurements1,2, whose

Fourier transform is the pair (2-body) correlation function of the material. Unfortunately,

in the case of a glass this one-dimensional statistical distribution is smooth and provides few

structural constraints3. While techniques like Reverse Monte Carlo4 and recent variants5,6

rely solely on experimental information, the unfortunate truth is that the information content

of most experimental measurements on glass structure is low. Recently devised hybrid

methods attempt to incorporate additional prior information from classical and ab initio

potentials. The challenges with this approach, however, is in finding accurate potentials

that are transferable to structural studies of glasses when they are trained on crystalline

databases3,7.

Here we focus on the experimental side of the problem by attempting to increase the in-

formation content of measurements through the use of more sophisticated multi-dimensional

nuclear magnetic resonance (NMR) spectroscopy measurements and spectral analysis. We

illustrate this approach in the case of the archetypical network-forming glass, vitreous SiO2.

In the majority of NMR studies of network forming glasses, where spectra contain a num-

ber of resolved “resonances,” spectroscopists focus almost entirely on using NMR spectra to

identify and quantify populations of polyhedral units, and polyhedral linkages8. This coarse-

grain analysis has generated tremendous insight into the structure of glass over the last 30

years, yet it falls short in exploring the full range of noteworthy structural distributions. By

using the term “coarse-grain analysis” and referring to “resonances” in quotes, we are high-

lighting the fact that these resolved “resonances” are inhomogeneously broadened, that is,

inside each “resonance” is a mix of homogeneous resonances from numerous structurally dis-

tinct sites. The shape of these inhomogeneous “resonances” contains a wealth of structural

information, and it is two mappings: (1) from NMR line shape to probability distribution

of NMR parameters, and (2) from NMR parameters distribution to probability distribution

of structure parameters that lie at the heart of more refined structural assignments of glass

NMR spectra. We refer to such a quantitative spectral analysis that produces a probability
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distribution for glass structure parameters as a “fine-grain” analysis,

One of the first attempts to perform a fine-grain analysis of an inhomogeneous NMR line

shape from a glass was in 1984 by Dupree and Pettifer9 on the 29Si magic-angle spinning

(MAS) spectrum of silica glass. Using then-recently established correlations between 29Si

isotropic chemical shift and the mean Si-O-Si angle of a tetrahedron, Dupree and Pettifer

inverted the MAS line shape of a Q4 resonance into the Si-O-Si angle distribution of silica.

While a direct inversion of the 29Si MAS spectrum of silica glass yields the distribution of

mean Si-O-Si angles of the Q4 sites, the individual Si-O-Si bond-angle distribution can be

obtained in a more sophisticated analysis with the assumption that the four Si-O-Si angles

on each Q4 are statistically independent9–11. Unfortunately, in more compositionally diverse

silicate glasses the correlation between 29Si isotropic chemical shift and the mean Si-O-Si

angle becomes strongly influenced by the identity of the next nearest neighbor polyhedral

units and modifier cations, and the line shape inversion is no longer as simple. These caveats

aside, the Dupree and Pettifer study pointed the way towards more systematic inversions of

glass spectra.

While NMR spectroscopy of glasses generally suffers the same malady of overlapping

resonances as other spectroscopies, NMR has a distinct advantage of not being limited to

one spectroscopic dimension. In 1992 Farnan et al12 used dynamic-angle spinning13–16 (DAS)

NMR to measure the isotropic 17O NMR line shape of the bridging oxygen in a potassium

tetrasilicate glass. Although there is no simple mapping between the 17O isotropic shift and

Si-O-Si angle, they showed that the correlated anisotropic line shapes from the full 2D DAS

spectrum can be used to extract mean quadrupolar coupling parameters for each correlated

part of the inhomogeneous isotropic line shape. The quadrupolar asymmetry parameter, for

which correlations to Si-O-Si angle were known, was then used to invert the isotropic line

shape into the mean Si-O-Si angle distribution of the potassium tetrasilicate glass.

Since the work of Farnan et al12 considerable progress has been made in determining

more precise relationships between the 17O nuclear quadrupolar coupling parameters of the

inter-tetrahedral bridging oxygen and its first coordination sphere structure17–27. A par-

ticular advantage of 17O 2D DAS is that it can now determine the bivariate distribution

of Si-O distances and Si-O-Si angles. In the case of silica this advance was significant be-

cause it revealed a strong positive correlation, i.e., Si-O distance increasing with increasing

Si-O-Si angle28,29. This correlation runs counter to conventional wisdom of a negative corre-
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lation in silicate glass structure. Further evidence of this positive correlation could impact

our understanding of the role of configuration entropy in stabilizing certain silicate glass

structures30.

In this work we develop a new approach for determining the bi-variate probability dis-

tribution correlating the central Si-O-Si angle of a Q4–Q4 linkage to its mean Si-O-Si angle

(seven angles) using relationships between 29Si isotropic chemical shifts and geminal JSi-O-Si

coupling of a Q4–Q4 to its local structure. While J couplings are a powerful probe of struc-

ture in liquid-state NMR spectroscopy, they have seen limited use in solid-state NMR stud-

ies. This is because (1) the J-splittings are often tiny compared to line widths in solid-state

magic-angle spinning (MAS) NMR and, therefore, difficult to detect, and (2) our under-

standing of the relationships between J couplings and local structure had lagged behind

other NMR probes of structure, such as chemical shifts and nuclear quadrupole couplings.

An important advance in solving the first problem occurred in 2012 with the development

of a new NMR method called Phase-Incremented Echo Train Acquisition (PIETA), which

not only removes the inhomogeneous broadenings obscuring J splittings in MAS spectra

but also is a method for rapid and sensitive measurement of a 2D J-resolved spectrum31.

More recently, Srivastava et al.32 have addressed the second problem in discovering a ro-

bust relationship for converting a geminal 2JSi-O-Si coupling into an inter-tetrahedral Si-O-Si

angle.

In a previous attempt by Florian et al.33 in 2009, J-resolved spectra of 29Si enriched

crystalline and glassy CaSiO3 were measured. Due to 29Si enrichment, the spectrum resulted

in J multiplets (Q2) for crystalline wollastonite whereas the J-multiplets rendered the J-

resolved spectrum featureless in CaSiO3 glass. The number of resonances in a J-multiplet

increase as 2n with n neighboring 29Si. Thus, the degree of complexity introduced to the

spectrum by the J multiplets increases with Q1 < Q2 < Q3 < Q4. Since silica glass

is entirely Q4, 100% 29Si enrichment gives the worst-case scenario. To make the spectra

analysis more tractable we take on the experimentally challenge of measuring the 2D J-

resolved spectrum in silica glass at 29Si natural abundance levels, 4.7%, where, instead of

the overlapping multiplet patterns33 in 29Si enriched samples, the J splittings appear as

simpler overlapping doublet patterns arising from isolated 29Si-O-29Si linkages. Another

advantage of natural abundance is that the homonuclear dipolar coupling between 29Si is

easily removed with MAS due to its inhomogeneous nature34. Most importantly, we develop
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and present a detailed spectral analysis for mapping the 2D J-resolved spectrum into the

bi-variate probability distribution correlating the central Si-O-Si angle of a Q4–Q4 linkage to

its mean Si-O-Si angle (seven angles) in silica glass which is significantly more information

rich than the one dimensional Si-O-Si angle distribution.

II. THEORETICAL BACKGROUND

A. J-coupling under echo train acquisition

A theoretical treatment of the detection of homonuclear J-coupling between spin 1/2

nuclei using echo train acquisition in the context of liquid state NMR35,36 has been given by

Allerhand35. For two spin-1/2 nuclei coupled through the J interaction, the modulation of

the nth echo predominantly follows

s(n) ∝ cos

[
πJn2τ − n sin−1

{
J sin(πR 2τ)

R

}]
, (1)

where

R = (∆ν2 + J2)1/2. (2)

Here 2τ is the inter-echo period and ∆ν is the difference in the chemical shifts of the J-

coupled spins. From Eq. (1) one finds the well known behavior that the echo modulation

frequency disappears as the strong coupling limit, where J � ∆ν, is approached,

lim
R→J

s(n)→ 1. (3)

All resonances close to the strong coupling limit exhibit modulation frequencies of or near

0 Hz.

From Eq. (1) one can also find in the weak coupling limit, where J � ∆ν, that

s(n) ∝ cos [πJn2τ (1− sinc(πR 2τ))] . (4)

It is critical to be aware of two limiting behaviors for echo train acquisition in the weak

coupling limit. When 2τ is large, or more specifically, sinc(πR 2τ) � 1, this expression

simplifies to the expected behavior,

lim
2τ→∞

s(n)→ cos(πJn2τ). (5)
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FIG. 1. Graphical representation of the shifted-echo PIETA sequence and relevant symmetry

pathways. Here κ = 1..N and n = 1...2N is echo counter where 2N is the number of echoes

acquired.

On the other hand, in the limit that 2τ goes to zero, i.e., sinc(πR 2τ) = 1 the echo modulation

frequency disappears,

lim
2τ→0

s(n)→ 1. (6)

Thus, even in the weak coupling limit, the J modulation during echo train acquisition

deviates from the expected behavior of Eq. (5), instead giving, according to Eq. (4), a τ

dependent echo modulation frequency (sinc function variation of the J splitting) when the

inter-echo period is short relative to the inverse of the shift difference. The influence of this

effect diminishes as 1/(π∆ν 2τ). In this study the majority of the 29Si–29Si pairs fall in the

weak coupling limit and we show that only a small fraction (vide infra) are lost due to being

in the strong coupling limit or having frequency shift differences that are small compared to

1/(2τ).

B. Pulse Sequence

The shifted-echo Phase Incremented Echo Train Acquisition (SE-PIETA) pulse sequence

is shown in Fig. 1. We describe this sequence using the symmetry pathway formalism37

which generalizes the concept of coherence transfer pathways38 to the “spatial pathway,”

which maps into a set of spatial symmetry pathways, and the “transition pathway,” which

maps into a set of transition symmetry pathways. In the case of weak J coupling between
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dilute 29Si–29Si pairs under fast magic-angle spinning (MAS) the rotating frame transition

frequency is given by

ΩAX = −ω0σiso,A pA − ω0σiso,X pX − 2πJAX dAX , (7)

where the transition symmetry functions are given by

pA = mA,j −mA,i,

pX = mX,j −mX,i,

dAX = mA,jmX,j −mA,imX,i.

(8)

Here σiso,A and σiso,X are the isotropic nuclear shieldings, ω0 is the Larmor frequency and

JAX is the indirect coupling constant. The quantum numbers, mA and mX , are associated

with a quantized energy levels of A and X nuclei, respectively, while i and j represents

the initial and final energy state of the NMR transition. The pA, pX , and dAX values for

single quantum transitions in a system of two weakly coupled spin 1/2 nuclei are shown

in Fig. S1 of the Supplemental Material39. In the case of two weakly coupled homonuclear

nuclei it is useful to define the additional transition symmetry function pAX = pA + pX .

The pA, pX , and dAX spin transition symmetry functions reflect their symmetry under the

orthogonal rotation subgroup where simple rules hold under a π pulse, such as, the dAX

spin transition symmetry function is invariant, whereas, pA, pX and pAX spin transition

symmetry functions change sign.

The SE-PIETA sequence separates and correlates the third frequency term in Eq. (7),

the weak J coupling, with the isotropic 29Si chemical shifts of the first and second terms

in Eq. (7). This sequence is based on the PIETA method for obtaining a 2D J-resolved

spectrum in a “pseudo-single-scan” experiment31. “Single-scan” in the sense that the en-

tire multi-dimensional time domain signal is acquired in a single acquisition, and “pseudo”

because the separate “single-scan” signals must also be acquired along an rf pulse phase

dimension. Sampling in the rf pulse phase dimension, however, need not increase the to-

tal experiment time since it is performed in lieu of conventional phase cycling and signal

averaging.

The shifted-echo modification of the sequence eliminates a signal artifact when using the

original PIETA experiment for 2D J-resolved spectroscopy which arises from an inability to

acquire a full echo for the t1 = 0 (n = 1) cross-section. Using the shifted-echo approach16,37,
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in the case of 2D J-resolved spectroscopy, requires a simultaneous echo of both p and d

transition symmetries at t1 = 0. It is well known40–42 that such a simultaneous echo in the

case of two weakly coupling nuclei can be generated with the sequence

equilibrate− π

2
− τ − π − τ − π

2
− τ − π − τ → • (9)

The first π/2 pulse on a system of two weakly coupled spin 1/2 nuclei excites all eight

single quantum transitions, shown in Fig. S1, which then evolves for a period τ . Next,

the π pulse converts the transition |mA,j,mX,j〉 〈mA,i,mX,i| entirely into the transition

|−mA,j,−mX,j〉 〈−mA,i,−mX,i| leaving the number of transition pathways after the π pulse

at eight. By the end of the second τ period all chemical shift evolution phase on these

8 transition pathways refocus into an echo. At this point these eight transition pathways

can be divided into two sets of four with the first set having the same negative J (or dAX)

evolution:

A∗2
π→ A1, X∗2

π→ X1,︸ ︷︷ ︸
pAX = +1→ −1

2dAX = −1→ −1

A1
π→ A∗2, X1

π→ X∗2︸ ︷︷ ︸
pAX = −1→ +1

2dAX = −1→ −1

, (10)

and the other set having the same positive J (or dAX) evolution:

A∗1
π→ A2, X∗1

π→ X2,︸ ︷︷ ︸
pAX = +1→ −1

2dAX = +1→ +1

A2
π→ A∗1, X2

π→ X∗1︸ ︷︷ ︸
pAX = −1→ +1

2dAX = +1→ +1

. (11)

The second π/2 pulse has the similar effect as in a solid echo experiment43, which is to

transfer coherence only between single quantum transitions with opposite signs of dAX44.

As the dAX values of transitions remain invariant under the second π pulse while the pAX

symmetries refocus again into an echo there will be a simultaneous echo of both pAX and

dAX symmetries at the end of the fourth τ period as shown in Fig. 1. With perfect π/2 and

π rotations the transition pathways in two weakly coupled nuclei generate the simultaneous

echo at t1 = 0 with no loss of intensity to other transition pathways.

After the formation of the simultaneous echo the chemical shift evolution can be contin-

ually refocused by a train of π pulses into echoes whose modulation by J evolution leads to

the desired doublet splitting. The 16 detectable pathways with 2∆dAX = +2, leading to the
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nth echo is given in condensed notation below,

A∗2
π→ A1

π
2→

X∗2
π→ X1

π
2→

A1
π→ A∗2

π
2→

X1
π→ X∗2

π
2→


⊗



A∗1 [
π→ A2(t2)

π→ A∗1 ]κ,

X∗1 [
π→ X2(t2)

π→ X∗1 ]κ,

A2 [
π→ A∗1

π→ A2(t2) ]κ,

X2 [
π→ X∗1

π→ X2(t2) ]κ,

(12)

and the 16 detectable pathways with 2∆dAX = −2, leading to the nth echo is similarly given

by,

A∗1
π→ A2

π
2→

X∗1
π→ X2

π
2→

A2
π→ A∗1

π
2→

X2
π→ X∗1

π
2→


⊗



A∗2 [
π→ A1(t2)

π→ A∗2 ]κ,

X∗2 [
π→ X1(t2)

π→ X∗2 ]κ,

A1 [
π→ A∗2

π→ A1(t2) ]κ,

X1 [
π→ X∗2

π→ X1(t2) ]κ,

(13)

where t2 next to a transition represent acquisition of an echo. A full expansion of these 32

transition pathways are given in the Supplemental Material39.

The symmetry pathways associated with these transition pathways are

pAX = 0
π
2→ +1

π→ −1
π
2→ +1 [

π→ −1(t2)
π→ +1 ]κ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1(t2)
π→ ±1 ]κ,

(14)

pAX = 0
π
2→ +1

π→ −1
π
2→ −1 [

π→ +1
π→ −1(t2) ]κ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1
π→ ±1(t2) ]κ,

(15)

pAX = 0
π
2→ −1

π→ +1
π
2→ +1 [

π→ −1(t2)
π→ +1 ]κ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1(t2)
π→ ±1 ]κ,

(16)

pAX = 0
π
2→ −1

π→ +1
π
2→ −1 [

π→ +1
π→ −1(t2) ]κ,

2dAX = 0
π
2→ ∓1

π→ ∓1
π
2→ ±1 [

π→ ±1
π→ ±1(t2) ]κ.

(17)
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Because the second π/2 must allow both ∆pAX = 0 and ∆pAX = ±2 it is necessary to

implement separate phase dimensions for the preparation sequence of Eq. (9) and the echo

train acquisition as shown in Fig. 1. A Fourier transform of the signal, s(φ1, φ2, n, t2), with

respect to the pulse phases φ1 and φ2 transforms the signal to s′(∆p1,∆p2, n, t2) signal where

the two desired pathway signals at nth echo appear at the coordinates

{∆p1,∆p2}n = {3 (−1)n−1, 2 (−1)n dn/2e},

{∆p1,∆p2}n = {5 (−1)n , 2 (−1)n dn/2e}.
(18)

Here ∆p1 is the accumulated change in coherence order through the first three pulses while

∆p2 is the accumulated change in coherence order through the subsequent π pulses leading

up to the nth echo and d·e is the ceiling function. Because desired signal along ∆p1 dimension

is always sampled at either ±3 or ±5 for all n, we show in the Supplemental Material39 an

improved pulse sequence where the φ1 phase dimension is replaced by a phase cycling scheme.

III. METHODS AND ANALYSIS

A. Sample Preparation

The glass was synthesized starting from SiO2 (99.7 % Strem Chemicals) and Cobalt (II)

carbonate hydrate (CoCO3 · xH2O) (99.99% Aldrich). The latter was first heat-treated

in an alumina crucible for one hour at 800◦C to eliminate anionic impurities (and H2O).

The same heat treatment was applied after the mixing and before melting. The mixed

starting components were melted for approximately 2 min on a water-cooled aluminum

plate connected to a vertical laboratory solar furnace of 2 kW power and heat flux of 900-

1000 W/m2. Within a few seconds the temperature reached around 1900 ◦C (± 50 ◦C)

and instantaneous melting was observed without the formation of bubbles or any visible

precipitates. Some fumes were observed, indicating vaporization of SiO2, which are expected

in an oxidizing atmosphere45. Transparent quasi-spherical blue glassy droplets between 2-5

mm in diameter were obtained after melting. The glass composition was determined by

SEM-EDX analysis (Hitachi S 4500, EDS: Kevex) after a metallization with gold using the

beam energy of 20 keV. With no cobalt signal detected, its amount is estimated to be less

than a few 100 ppm.
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B. NMR Spectroscopy

The experiment was performed on a Bruker Avance III HD 400 MHz NMR spectrometer

operating at 9.4 T, with a 29Si Larmor frequency of 79.40716 MHz, using a 4 mm rotor

spinning at 14.286 kHz. The chemical shift was referenced with respect to TMS at 0 ppm.

The radio-frequency field strength was set to 53.7 kHz with a t90◦ of 4.65 µs. The magic

angle was set accurately to within 0.002◦ using STMAS46,47 on RbNO3. This procedure

provides better accuracy than the KBr spinning sidebands based procedure and removes

residual 29Si-29Si dipolar couplings in the 29Si 2D J-resolved experiments.

The four dimensional pulse sequence shown in Fig. 1 was implemented, with a time

dimension, t2, an echo count dimension, n, and two phase dimensions φ1 and φ2. The pulse

phase increment was set to π/6 and π/128 for the phase dimensions, φ1 and φ2, with 12 and

256 phase points, respectively. A total of 254 echoes were collected with a recovery period

of 60 s. The dwell time was set at 40 µs. The inter-echo period, 2τ , was set to 40 ms. A

total of 16 scans were averaged for a total experiment time of 40 days. The Bruker pulse

sequence for the shifted-echo PIETA sequence is available in the Supplemental Material39.

C. Signal processing

All signal processing was performed with RMN48. A two dimensional Fourier transform

was performed on the four dimensional signal, s(φ1, φ2, n, t2), with respect to the two phase

dimensions, φ1 and φ2, transforming to s′(∆p1,∆p2, n, t2). The signal corresponding to the

desired {∆p1,∆p2}n coordinates in Eq. (18) were retained in s′(∆p1,∆p2, n, t2) whereas

signal at all other {∆p1,∆p2}n coordinates were zeroed. Next, a projection onto the ∆p1

dimension followed by a projection onto ∆p2 dimension was performed. From the resulting

two dimensional echo count n vs time t2 signal, s′′(n, t2), the echo count dimension n was

converted to the echo time dimension, t1, using the relationship

t1 = 2τ(n− 1). (19)

The formation of simultaneous pAX and dAX echo occurs at t1 = t2 = 0. A step-by-step

graphical illustration of this processing is given in the Supplemental Material39. Alterna-

tively, a Matlab script that performs a post-acquisition “phase cycling” down to a conven-

tional 2D J-resolved signal, s′′(t1, t2) is also made available in the Supplemental Material39.
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FIG. 2. (A) Natural abundance 29Si-O-29Si 2D J-resolved spectrum of CoO doped silica glass

showing contributions from both coupled and uncoupled 29Si resonances. (B) Simulation and (C)

residue obtained from the least square minimization of experimental data using model s(δ, t1) in

Eq (25). (D-F) Decomposition of the Fourier transform of the model s(δ, t1) in Eq. (25) into (D)

uncoupled 29Si spin resonances, (E) weakly coupled 29Si-O-29Si spin resonances and (F) non weakly

coupled 29Si-O-29Si spin resonances.

A two dimensional Fourier transform was performed on s′′(t1, t2), transforming the time

dimension, t2 into the 29Si MAS dimension and echo time dimension, t1, into the J-resolved

dimension. Next, a shear of −45◦ was performed along the 29Si MAS dimension to transform

it into a pure 29Si isotropic chemical shift dimension, δ. The resulting 29Si 2D J-resolved

spectrum is shown in Fig. 2A.
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D. 29Si Isotopomer Statistics

Of the three stable isotopes of silicon, 28Si is the most abundant at 92.23%, followed by

29Si at 4.67%, and 30Si at 3.1%. Of these only 29Si is NMR active with I = 1/2. To predict

the relative intensity of all possible J multiplets in the 29Si NMR spectrum of silica glass we

start with the probability that n of the four Si atoms connected to a 29SiO4 tetrahedron in

silica glass are 29Si nuclei,

Pn =

4

n

 pn(1− p)(4−n), (20)

where p = 0.0467 is the natural abundance of 29Si. This expression predicts that the rel-

ative intensity of J multiplets decrease rapidly with increasing n, with P0 = 0.826 for the

uncoupled resonance, P1 = 0.162 for the two spin multiplet, P2 = 0.0119 for the three spin

multiplet, P3 = 0.000388 for the four spin multiplet, and P4 = 4.76× 10−6 for the five spin

multiplet. While the 29Si NMR spectrum of silica glass contains contributions from all five

cases we can confidently take the observed intensity as arising entirely from the uncoupled

and two spin doublet resonances. Thus while the sum of the Pn is 1 we can approximately

terminate the sum at P1: ∑
n

Pn ≈ P0 + P1 ≈ 1. (21)

In Eq. (7) and section II, we considered the resonances from an ideal case of two weakly

J-coupled spin 1/2 nuclei where the only interactions were isotropic chemical shifts of the

two nuclei and the J coupling between them. In the solid state, however, the chemical shift

anisotropies (CSA) and dipolar couplings also play an important role in the detection of

J-couplings. In a simple Hahn echo experiment a two coupled spin system in the solid state

behaves identical to that of solution state NMR49 in the fast MAS limit50 where

|νr| > |d∆ν/2πJ |, |∆νiso|. (22)

Here νr is the spinning frequency, d/2π is the instantaneous dipole-dipole coupling fre-

quency, ∆ν is the difference in the instantaneous chemical shift frequencies, J is the scalar

coupling frequency and ∆νiso is the difference in the isotropic chemical shift frequencies of

the connected nuclei. On the other hand, under moderate MAS speeds50,

|∆νiso| <
∼
|∆νansio| < |νr| < |d∆ν/2πJ | (23)
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the coupled spins mostly remain within a weak coupling limit because the CSA ensures that

the instantaneous chemical shifts of the coupled spins are different for most of the time

even when the two spins have identical isotropic chemical shifts. In Eq. (23), ∆νansio is the

differences in the anisotropic part of the instantaneous chemical shift frequencies.

Because of the disordered network in silica glass, there is a distribution of isotropic

chemical shifts as well as CSAs, dipole-dipole and J couplings. In silica glass, the Q4

chemical shift anisotropy51 is of the order of 2 kHz, the dipole-dipole coupling frequency

between two 29Si at 3 Å is of the order of 170 Hz, the isotropic chemical shift spans a range

of over 2 kHz, and the J-coupling varies from 5 to 25 Hz. With νr = 14.286 kHz, most of

the coupled spin system in silica glass would reside within the moderate MAS condition,

Eq. (23), and would result in echoes that are modulated by J-coupling as cos πJt, i.e., the

weak coupling limit. Given the strength of all interactions in silica glass, some fraction of

the coupled spins—more likely for the higher J-couplings—may be in fast MAS limit, in

which case, there will be a finite probability of non-weak couplings. To account for these

non-weak resonances we split the doublet relative intensity into

P1 ≈ Pa0 + Pa1 , (24)

where Pa0 is the relative intensity of weakly coupled 29Si-O-29Si spins, and Pa1 is the relative

intensity of non-weak couplings.

E. Line shape analysis

As a starting point in our 2D line shape analysis we define p(J, δ) as the bi-variate

probability distribution for isotropic 29Si chemical shift and 2JSi-O-Si coupling in silica glass.

The observed signal can be decomposed into a weighted sum of three contributions from

(1) uncoupled 29Si sites, (2) weakly coupled 29Si-O-29Si sites and (3) non-weakly coupled

29Si-O-29Si sites,

s(δ, t1) = (1− Pa0 − Pa1)s1(δ, t1)

+ Pa0s2(δ, t1) + Pa1s3(δ, t1), (25)

where the weights are constrained by the natural abundance 29Si statistics of Eq. (21) and

(24).
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The first contribution, s1(δ, t), from uncoupled 29Si resonances, is modeled as the product

s1(δ, t1) = p(δ)sdecay(δ, t1), (26)

where p(δ) is the one-dimensional probability distribution for isotropic 29Si chemical shift of

silica glass, given by

p(δ) =

∫
J

p(J, δ)dJ, (27)

and sdecay(δ, t1) is a stretched exponential decay in the echo time dimension, t1, associated

with each isotropic chemical shift. The isotropic 29Si line shape of silica glass has been well

established9,51–53 as a skewed distribution. Of the various models that have been proposed to

describe this line shape52, the skew-normal distribution51,54 has been found to be reasonably

accurate. In our analysis, however, any small inaccuracy is of concern because, as stated

earlier, the coupled 29Si-O-29Si resonances only accounts for 16.2% of the total observable

resonances. Therefore, any residual modulation from inaccuracies in modeling the uncoupled

isotropic 29Si line shape will cause a significant distortion in the extracted 2J doublet line

shape. Thus, we introduce additional flexibility into the isotropic 29Si uncoupled line shape

model with a combination of skew-normal and normal distribution function

p(δ) ≈ C1

∆1

e−Y
2
1 {1 + erf (α1Y1)}︸ ︷︷ ︸
skew-normal

+
C2

∆2

e−Y
2
2︸ ︷︷ ︸

normal

, (28)

where

Yi =
δ − ξi√

2∆i

, (29)

and Ci, ξi, ∆i and αi are the amplitude, location, scale and shape parameters, respectively,

for the ith distribution. This model gives good agreement with the observed isotropic 29Si

line shape, as shown in Fig. S9 of the Supplemental Material39. The familiar moments of this

distribution: mean isotropic chemical shift, µmas, the standard deviation, σmas, the skewness,

γmas, and the excess kurtosis, κmas, are listed in Table I.

It is well established that NMR relaxation behavior in glasses, specifically low abundance

nuclei like 29Si, are often found to be stretched exponentials with a stretch exponent of

β ≈ 0.5—the hallmark of a continuous distribution of relaxation times arising from distant

and fluctuating paramagnetic centers55. Considering paramagnetic relaxation to be the only

dominant mechanism in the silica glass used in our measurement, doped with CoO where Co
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moments description value

µmas = µ1 mean -109.63 ppm

σmas =
√
µ2 standard deviation 6.45 ppm

γmas = µ3/σ
3
mas skewness 0.06

κmas = µ4/σ
4
mas − 3 excess kurtosis 1.42

TABLE I. Moment analysis of uncoupled 29Si isotropic MAS line shape from model p(δ) in Eq. (28)

where µn is the nth moment.

is the paramagnetic center, we expect a similar stretch exponential behavior for the signal

decay along the echo time dimension. We further observe a differential stretch exponential

relaxation across 29Si isotropic chemical shift sites ranging from -95 ppm to -125 ppm with a

slight linear variation in the stretch exponent from 0.6 to 0.5, respectively. This is modeled

as

sdecay(δ, t1) = exp

{
−
(
t1 + 4τ

T2

)β(δ)
}
, (30)

where the stretch exponent is given by

β(δ) = cβ +mβ (δ − µδ) , (31)

with cβ and mβ as the corresponding intercept and slope, respectively, and T2 is the trans-

verse dephasing time constant. The term 4τ is added in Eq. (30) because t1 is referenced

to zero at the first echo whereas the signal starts relaxing after the first π/2 pulse, i.e., a

period of 4τ before the detection of first echo. Here, µδ is the mean 29Si isotropic chemical

shift.

The second echo train signal contribution, s2(δ, t1), from the weakly coupled 29Si-O-29Si

resonances for a given chemical shift is given by

s2(δ, t1) =

[∫
J

pw(J, δ) cos(πJt1)dJ

]
sdecay(δ, t1), (32)

where pw(J, δ) is the bi-variate probability distribution of 2JSi-O-Si couplings and isotropic

chemical shifts from the weakly coupled 29Si nuclei in silica glass. For s2(δ, t1) we find

it sufficient to approximate pw(J, δ) as a bi-variate normal distribution with a correlation

coefficient rJ,δ. One can then express s2(δ, t1) (see Supplemental Material39) as
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s2(δ, t1) =
N

σδ
exp

[
−(δ − µδ)2

2σ2
δ

]
︸ ︷︷ ︸

coupled 29Si lineshape

exp

[
−1

2
π2t21σ

2
J

(
1− r2

J,δ

)]
︸ ︷︷ ︸

J-distribution

cos (πt1J(δ)) sdecay(δ, t1), (33)

where N = [C1 + C2] and

J(δ) = rJ,δ
σJ
σδ

(δ − µδ) + µJ . (34)

The first part in Eq. (33) refers to the 29Si isotropic chemical shift lineshape arising from

coupled 29Si-O-29Si resonances and is described by a normal distribution with mean µδ and

standard deviation σδ. The second part describes a normal distribution of J-coupling with

mean µJ and standard deviation σJ . The cosine term describes the time domain oscillation

and sdecay(δ, t) simulates the signal decay as given in Eq. (30).

Similarly, the third contribution, s3(δ, t1), from the non-weakly coupled 29Si-O-29Si reso-

nances, is modeled as the product

s3(δ, t1) =
N

σδ
exp

[
−(δ − µδ)2

2σ2
δ

]
︸ ︷︷ ︸

coupled 29Si lineshape

exp

[
−π

2σ2
st

2
1

2

]
sdecay(δ, t1) (35)

which shares the same 29Si isotropic chemical shift lineshape as the weakly coupled reso-

nances, and experiences an additional decay during the echo time which follows a Gaussian

dependence with standard deviation σs.

The experimental data was subjected to a least squares minimization with the full model

of Eq. (25) using python’s LMFIT56 module. All data modeling and spectral analysis were

performed with code written in python 357. The graphics were produced using python’s

matplotlib library58. The optimized fit parameters along with reduced chi square are listed

in Table II. Note that the mean and standard deviation in Tables I and II, for the uncoupled

and coupled isotropic line shapes, respectively, are approximately identical. The best-fit

simulation and residuals after a Fourier transformation along the echo time dimension, t1,

are presented in Fig. 2.

F. Mapping to Si-O-Si bond angle distribution

The dependence of the 2JSi-O-Si coupling on local structure in two connected Q4 was

recently examined using first-principles DFT calculations32. The two main influences on
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coefficient value coefficient value

aJ 107.88◦ bJ 223.49◦

cJ 0.00002487◦ dJ 53.01

m1 0.778 Hz/◦ J0 −7.5 Hz

aδ −0.6148 ppm/◦ bδ −19.297 ppm

TABLE III. Coefficients used in Eqs. (40) and (38) for mapping the mean chemical shift and

2JSi-O-Si coupling into the double mean Si-O-Si angle of the two Q4 involved in coupling and the

linkage Si-O-Si angle of the two coupled nuclei.

2JSi-O-Si were found to be a primary dependence on the linkage Si-O-Si angle and a secondary

dependence on a double mean of Si-O-Si linkage angles of the two connecting tetrahedra Q4
i

and Q4
j containing the coupled 29Si nuclei. Here, the double mean is given by

〈Ω〉 =
〈Ω〉i + 〈Ω〉j

2
=

1

8

(
2Ω0 +

6∑
k=1

Ωk

)
, (36)

where 〈Ω〉i and 〈Ω〉j are mean Si-O-Si bond angles at Q4
i and Q4

j , respectively, and given by

〈Ω〉i =
1

4

∑
k=0,1,2,3

Ωk, and 〈Ω〉j =
1

4

∑
k=0,4,5,6

Ωk. (37)

In this numbering scheme the six outer Si-O-Si linkage angles correspond to k 6= 0. Following

these definitions the 2JSi-O-Si can be related to the Q4
i –Q4

j inter-tetrahedral linkage angle, Ω0,

according to

Ω0(J, 〈Ω〉) = aJ + bJ

(
J − J0

m1〈Ω〉

)
+ cJ exp

{
dJ

(
J − J0

m1〈Ω〉

)}
. (38)

The coefficients aJ , bJ , cJ , dJ , J0 and m1 determined previously32, are given in Table III.

Note that this expression requires both 2JSi-O-Si and the double mean, 〈Ω〉 of the Q4
i –Q4

j pair

to determine Ω0.

There is an established linear relationship53,59,60 between 29Si isotropic chemical shift δ

of a Q4 site and its mean Si-O-Si angle,

〈Ω〉 = (δ − bδ)/aδ, (39)
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with coefficients, aδ and bδ, given in Table III. From this one readily obtains

〈Ω〉 = (δ − bδ)/aδ, (40)

where δ = 1
2
(δi + δj) is the mean 29Si isotropic chemical shift, and δi and δj are the 29Si

isotropic chemical shifts of Q4
i and Q4

j , respectively. Thus, Eqs. (38) and (40) can be com-

bined to map p(J, δ) into p(Ω0, 〈Ω〉). While this mapping requires p(J, δ), the line shape

analysis of the 2D J-resolved spectrum only provides pw(J, δ). To proceed it is necessary

to make the approximation p(J, δ) ≈ pw(J, δ). Based on the values of Pa0 = 0.144 and

Pa1 = 0.018 from the experimental line shape analysis this would suggest a loss of intensity

due to the non-weakly coupled sites as 11.1%. This loss will be strongest at the highest

J-couplings. Therefore, this approximation is likely to reduce intensity in the Si-O-Si bond

angle distribution at the higher angles. Note, that this loss can be diminished by performing

measurements at higher magnetic field strengths and using longer inter-echo periods.

We begin the analysis by determining p(J, δ) from p(J, δ) through the coordinate trans-

formations

Series A: p(J, δ)
A1

=⇒ p(J, δi, δj)
A2

=⇒ p(J, δ) .

Step A1: Given that p(J, δ) is approximately a bi-variate normal distribution we assume

that we can construct p(J, δi, δj), a trivariate normal distribution of silica glass, imposing

the restrictions that

p(δi) =

∫
p(J, δi, δj) dJ dδj =

∫
p(J, δ) dJ = p(δ),

p(δj) =

∫
p(J, δi, δj) dJ dδi =

∫
p(J, δ) dJ = p(δ).

This leads to a covariance matrix for p(J, δi, δj) given by

VJ,δi,δj =


σ2
J rJ,δ σJσδ rJ,δ σJσδ

rJ,δ σJσδ σ2
δ rδi,δj σ

2
δ

rJ,δ σJσδ rδi,δj σ
2
δ σ2

δ

 , (41)

and a mean vector of µJ,δi,δj = [µJ , µδ, µδ]
T where the superscript T represents the transpose.

The only unknown parameter in the covariance matrix VJ,δi,δj is the correlation coefficient,

−1 ≤ rδi,δj ≤ 1, between the 29Si isotropic chemical shift distributions p(δi) and p(δj).

Since Q4
i and Q4

j share a common angle, i.e., Ω0, their mean angle distributions, p(〈Ω〉i)

and p(〈Ω〉j), will be correlated even when the individual bond angle distributions, i.e., p(Ωk),
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are uncorrelated. In the appendix we derive approximate expected relationships between

the variances and covariances of Ω0, 〈Ω〉i, 〈Ω〉j, and 〈Ω〉 with an initial assumption of a

seven dimensional normal distribution correlating all seven angles. In this assumption we

further take the individual bond angle distributions, p(Ωk), as identical, and correlated to

each other with correlation coefficient r if the Si-O-Si bond angles share a Si, and with cor-

relation coefficient r′ if not. This leads to a covariance matrix for the bivariate distribution,

p(〈Ω〉i, 〈Ω〉j), given by

V〈Ω〉i,〈Ω〉j =
σ2

Ω

4

 (3r + 1) 1
4
(6r + 9r′ + 1)

1
4
(6r + 9r′ + 1) (3r + 1)

 , (42)

where σ2
Ω is the variance of the individual bond-angle distribution. The corresponding

correlation coefficient is given by

r〈Ω〉i,〈Ω〉j =
6r + 9r′ + 1

4(3r + 1)
. (43)

From this expression one can show that uncorrelated individual bond angle distributions,

i.e., r = r′ = 0, leads to a correlation coefficient between the two mean angle distributions

of r〈Ω〉i,〈Ω〉j = 0.25. The linear relationship between δ and 〈Ω〉 leads to

rδi,δj = r〈Ω〉i,〈Ω〉j . (44)

Thus, we expect rδi,δj = 0.25 when the individual bond angle distributions, i.e., p(Ωk) are

uncorrelated.

Similarly, the seven dimensional normal distribution also leads to the covariance matrix

for the bivariate distribution, p(Ω0, 〈Ω〉), given by

VΩ0,〈Ω〉 = σ2
Ω

 1 1
4
(3r + 1)

1
4
(3r + 1) 1

32
(18r + 9r′ + 5)

 , (45)

with a corresponding correlation coefficient given by

rΩ0,〈Ω〉 =

√
2 (3r + 1)√

18r + 9r′ + 5
. (46)

We will refer back to these last two results in later steps of this analysis.
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Step A2: The distribution p(J, δi, δj) is mapped to distribution p(J, δ) following the

linear coordinate transformation
J

δ

 =

 1 0 0

0
1

2

1

2


︸ ︷︷ ︸

A1


J

δi

δj

 , (47)

where A1 is the projection matrix that projects the distribution p(J, δi, δj) onto the diagonal

δi = δj. The mean vector of the p(J, δ) distribution becomes

µJ,δ = A1 · µJ,δi,δj = [µJ , µδ]
T , (48)

and the covariance matrix becomes

VJ,δ = A1 · VJ,δi,δj ·AT
1 =

 σ2
J rJ,δ σJσδ

rJ,δ σJσδ σ2
δ

(
1 + rδi,δj

)
2

 , (49)

with the correlation coefficient

rJ,δ =
rJ,δ
√

2√
1 + rδi,δj

. (50)

To obtain the Si-O-Si angle distribution, p (Ω0), we continue with the following transfor-

mations

Series B: p(J, δ)
B1

=⇒ p(J, 〈Ω〉) B2
=⇒ p

(
Ω0, 〈Ω〉

)
.

Step B1: We transform p(J, δ) to p(J, 〈Ω〉) using Eq. (40). In matrix notation this linear

coordinate transformation is represented as
J

〈Ω〉

 =

 1 0

0
1

aδ


︸ ︷︷ ︸

A2

 J
δ

+

 0

− bδ
aδ


︸ ︷︷ ︸

b2

. (51)

Here A2 is the affine transformation matrix and b2 is a constant vector. The mean vector

of the p(J, 〈Ω〉) distribution follows as

µJ,〈Ω〉 = A2 · µJ,δ =

[
µJ ,

µδ − bδ
aδ

]T
, (52)

and the covariance matrix becomes

VJ,〈Ω〉 = A2 · VJ,δ ·AT
2 =

 σ2
J rJ,δ σJ

σδ
aδ

rJ,δ σJ
σδ
aδ

σ2
δ

a2
δ

(
1 + rδi,δj

)
2

 . (53)
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Step B2: The final transformation from p
(
J, 〈Ω〉

)
to p

(
Ω0, 〈Ω〉

)
distribution is per-

formed numerically using the non-linear transformation in Eq. (38). For this we first con-

struct the two dimensional probability distribution p
(
J, 〈Ω〉

)
from µJ,〈Ω〉 and VJ,〈Ω〉 following

p
(
J, 〈Ω〉

)
=

exp

{
−1

2

(
x− µJ,〈Ω〉

)T
·
[
VJ,〈Ω〉

]−1

·
(
x− µJ,〈Ω〉

)}
2π

√
det
(
VJ,〈Ω〉

) , (54)

where x =
[
J, 〈Ω〉

]T
and ‘det’ denotes matrix determinant. From the p

(
J, 〈Ω〉

)
distribution,

we determine the p
(

Ω0, 〈Ω〉
)

distribution following

p
(

Ω0, 〈Ω〉
)

=

∫
J

p
(
J, 〈Ω〉

)
D
[
Ω0 − Ω0

(
J, 〈Ω〉

)]
dJ, (55)

where the function D[·] denotes the Dirac delta function and function Ω0(·) is given by

Eq. (38).

In principle, this entire mapping only requires the introduction of one additional parame-

ter, rδi,δj , the correlation coefficient between the isotropic chemical shift distributions, while

the other statistical parameters characterizing p(J, δ), are determined from the experimental

spectrum and given in Table II. Performing this analysis of the experimental results with

just these assumptions, however, results in the statistics of

p(Ω0) =

∫
p
(

Ω0, 〈Ω〉
)
d〈Ω〉, (56)

not being consistent with

p
(
〈Ω〉
)

=

∫
p
(

Ω0, 〈Ω〉
)
dΩ0, (57)

for any value of rδi,δj . To highlight this point we take rδi,δj = 0.25 which corresponds to

r = r′ = 0 and obtain µΩ = 146.8◦ and µ〈Ω〉 = 146.8◦, and σΩ = 10.64◦ and σ〈Ω〉 = 8.0◦

from the analysis of the experimental spectrum. While the two means are consistent, the

two standard deviations are not. This can be seen by calculating the expected double mean

standard deviation using Eq. (45) with r = r′ = 0 where one obtains

σ〈Ω〉 =

√
5

32
σΩ. (58)

Thus, if the standard deviation of p
(
〈Ω〉
)

from the experimental 2D spectrum analysis has

a standard deviation of σ〈Ω〉 = 8.0◦ then one would expect the standard deviation of p(Ω0)
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to be σΩ = 20.2◦, a value that is significantly larger than the expected value of σΩ = 10.64◦.

This statistical inconsistency remains no matter what values of r and r′ are investigated.

We believe the series of transformations given here are conceptually correct and that

the source of the statistical inconsistency is the use of an incomplete relationship for 29Si

isotropic chemical shift to local structure around Q4. Specifically, there is a less established

additional dependence on mean Si–O distance, which is commonly overlooked but noticed

in porous siliceous zeolites by Lewis et. al61. They report an improved relationship between

29Si isotropic chemical shift and the local Q4 structure given by

δ = b′δ +
a′δ
4

∑
k

(
〈dSi-O,k〉

cos Ωk

cos Ωk − 1

)
, (59)

where 〈dSi-O,k〉 is the mean Si-O bond distance of Si-O-Si linkage with angle Ωk. The

summation over index k denotes all four Si-O-Si bond angles of the Q4. The values

a′δ = −216.95 ppm/Å and b′δ = 48.54 ppm were obtained by Lewis et. al61 after calibrating

with respect to high silica zeolites ZSM-5(RT), ZSM-5(HT), Ferrierite(RT), Ferrierite(HT)

where RT=room temperature, HT=high temperature, and the dense phase SiO2 poly-

morphs, Quartz and Cristobalite. The reason why this relationship is often overlooked,

and that the previous relationships between chemical shift and mean Si-O-Si angle alone

has applied so well in crystalline silicates, is due to the co-existence of a strong correlation

between Si–O distance and Si-O-Si angle62,63. A similar issue arose in early efforts to de-

termine the relationship between the 17O quadrupolar coupling constant and the Si-O-Si

angle in silicates. In those studies the influence of the Si–O distance was included only

through its parametric dependence on the Si-O-Si angle which was conventionally thought

to vary according to a negative correlation discovered in crystalline silica polymorphs and

further supported by potential energy surfaces determined in ab initio studies of small sili-

cate clusters62,63. Instead of assuming this correlation Clark et al27 determined a relationship

for the 17O quadrupolar coupling constant that explicitly includes both Si–O distance and

Si-O-Si angle and calibrated this expression with experimental 17O results from crystalline

silica polymorphs, Coesite, α-Quartz, Cristobalite, and Ferrierite(RT). Armed with this

relationship Clark and others28,29 discovered a counter-intuitive result from the 17O DAS

spectrum of silica glass showing a positive correlation between Si–O distance and Si-O-Si

angle. Thus, to proceed in our analysis we assume a line of regression in the correlation
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between 〈dSi-O,k〉 and Ωk in silica glass of the form

〈dSi-O,k〉 = d◦Si-O +mΩ(Ωk − Ω∗), (60)

where Ω∗ = 150◦. As shown in appendix, one can invoke Eq. (60) and linearize Eq. (59)

about Ω∗ = 150◦ as

δ = [Λ0 d
◦
Si-O + Λ1 mΩ]︸ ︷︷ ︸

aδ

〈Ω〉+ [b′δ + Λ2 d
◦
Si-O +mΩ Λ3]︸ ︷︷ ︸
bδ

. (61)

Equation (61) shows how the slope and intercept of the linear relationship between

29Si isotropic chemical shift and mean angle 〈Ω〉 depends on the trend between the

Si-O-Si bond angle, Ω and mean Si-O distance 〈dSi-O〉. where Λ0 = −0.543716 ppm/(◦·Å),

Λ1 = −100.687 ppm/Å, Λ2 = −19.1295 ppm/Å, and Λ0 = 15, 103.03 ppm·◦/Å. In other

words, we assume that the 29Si isotropic chemical shift relationship to mean angle has the

same function form of Eq. (39) but now with an unknown aδ and bδ values which depend on

the linear trend in the correlation between 〈dSi-O,k〉 and Ωk.

Alternatively, one might also call into question the validity of Eq. (38) to account for the

statistical inconsistency. Previous investigations of Eq. (38), however, were fairly exhaustive

in determining 2JSi-O-Si behavior in a wide range of cluster geometries—investigating depen-

dences on Si-O distance, the central Si-O-Si linkage angle, the dihedral angle, and the outer

Si-O-Si linkage angles. Thus, we are confident in its accuracy and robustness for interpreting

2J in both crystalline and glassy materials, regardless of the angle-distance correlation.

Since both 2JSi-O-Si and δ depend on the same seven Si-O-Si angles associated with the

Q4
i –Q4

j linkage we can propose a statistical model that provides the necessary constraints to

keep p (Ω0) and p
(
〈Ω〉
)

statistically consistent and, at the same time, calibrate the unknown

aδ and bδ values of Eq. (61). We begin by writing the covariance matrix derived from the

analysis of the experimental spectrum as

V
{exp}

Ω0,〈Ω〉
=

 σ2
Ωexp cov(Ω0, 〈Ω〉)exp

cov(Ω0, 〈Ω〉)exp
σ2
δ

a2
δ

(
1 + rδi,δj

)
2

 . (62)

Because of the linear relationship of Eq. (40) or Eq. (61), the experimental variance of

p
(
〈Ω〉
)

remains the same as in Eq. (53) through the numerical transformation of Eq. (55)—

recalling that σ2
δ is obtained from the experimental isotropic chemical shift line shape. Taking
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the mean and variance of p(Ω0) from experiment as the same as the model,

µΩexp = µΩ, and σ2
Ωexp = σ2

Ω, (63)

we equate the covariance matrices of Eq. (62) and (45) and obtain the two constraints

cov(Ω0, 〈Ω〉)exp =
σ2

Ω

4
(3r + 1), (64)

σ2
δ

a2
δ

(
1 + rδi,δj

)
2

=
σ2

Ω

32
(18r + 9r′ + 5). (65)

Substituting the expression of Eq. (43) for rδi,δj into Eq. (65) leads to the solution

r =
4

3

(
σδ
aδσΩ

)2

− 1

3
. (66)

Note, there is also an unphysical solution, r = −(5 + 9r′)/18, which lies outside the bounds

discussed below. For Eq. (66) and (64) to have a simultaneous solution in r, we substitute

Eq. (66) in Eq. (64) and obtain

cov
(

Ω0, 〈Ω〉
)

exp
=
σ2

Ω

4
(3r + 1) =

(
σδ
aδ

)2

. (67)

In Eq. (67) we have the constraints between the covariance of the experimentally derived

distribution, p
(

Ω0, 〈Ω〉
)

, the model parameters, σΩ, r, and the slope aδ, all of which enforce

statistical consistency.

Additionally, we find that the range of the correlation coefficients r and r′ can be further

constrained with this statistical model. In our analysis we combine the correlation coeffi-

cients r〈Ω〉i,〈Ω〉j , rδi,δj , rJ,δ and rΩ0,〈Ω〉 in Eqs. (43), (44), (50), and (46) respectively, with the

experimentally determined correlation coefficient rJ,δ = −0.5 to determine the bounds on

r ∈
[
−1

3
, 1

]
and a parametric dependence on r′ as

r′ ∈


[
−1− 4r,

1

3
(1 + 2r)

]
r ∈

(
−1

3
, 0

]
[

1

18
(36r2 − 12r − 6),

1

3
(1 + 2r)

]
r ∈ (0, 1]

(68)

This range of allowed values for r and r′ are shown as the shaded area in Fig. 3. The

associated rδi,δj is indicated by the shaded contour colors with the corresponding legend on

the right.
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FIG. 3. Shaded area represents the statistically allowed correlation coefficients r and r′. The

contour lines with corresponding legend on the right indicate the associated value of the correlation

coefficient rδi,δj . The dotted line corresponds to r = r′. The solid line represents the subset of

r, r′ values where a self consistent distribution is obtained from the analysis of experimental 2D

spectrum. The closed and open circles represent the two solutions presented in Table IV.

To illustrate the statistical inconsistency when using the previous relationships between

chemical shift and mean Si-O-Si angle alone, we take the slope, aδ = −0.6148 ppm/◦,

calibrated from crystalline silica polymorphs, and plot the three covariances of Eq. (67) in

the case of r = 0 in Fig 4A. Since solutions to Eq. (67) can only be true at the intersection

of all three lines we clearly see that there can be no statistically consistent solution in this

particular case.

To find solutions we adopt the iterative approach outlined in Algorithm 1. For each

possible value of r′ we apply this algorithm to determine the r value that satisfies Eq. (67).

The results of this approach, giving all values of r and r′ consistent with the experimental

spectrum, are shown as the solid black line in Fig. 3. Not all of these solutions, however,

are reasonable since a high value of |rδi,δj | would lead to a greater fraction of 29Si–29Si pairs

being in the strong J coupling limit. The more likely solutions are in the range near smaller

values of |rδi,δj |, and, as we will see, result in distribution statistics that are not significantly

different. For example, in the case where r′ = 0 there is a single solution, shown as the open

circle in Fig. 3, with r = −0.082, aδ = −1.33 ppm/◦, and bδ = µδ−aδµΩ = 87.34 ppm. Here
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)

exp
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line) and (σδ/aδ)
2 (dot-dashed line) when r′ = 0 where r ∈ [−0.25, 0.608]. In (A) aδ = −0.6148

ppm/◦ and (B) aδ = −1.33 ppm/◦. In (A), there is no point in r where a self consistent p
(

Ω0, 〈Ω〉
)

distribution is obtained.
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FIG. 5. (A) Correlation between Si-O-Si bond angle Ω0 and double average angle 〈Ω〉 when r′ = 0.

(B) Comparison of double average Si-O-Si bond angle distributions 〈Ω〉 against Si-O-Si bond angle

distributions form 17O DAS28. (C) Comparison of Si-O-Si bond angle distributions from various

models. Line 1 XRD Mozzi and Warren model64, line 2, HXRD short range order (SRO) model65;

line 3 HXRD/ND Neuefeind and Liss chain66 model. The bond angle distribution from current

work is represented in bold line.
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Algorithm 1: Iterative algorithm used in this analysis. The convergence is

obtained when the absolute tolerance between the three covariances in Eq. (67) is

less than 0.005◦.

input: aδ, bδ, aJ , bJ , cJ , dJ , m1, J0 (values from Table III);

assign: r, r′;

repeat

Evaluate rδi,δj ; /* Eq. (43) */

Evaluate V
J,〈Ω〉 ; /* Eq. (53) */

Construct p
(
J, 〈Ω〉

)
; /* Eq. (54) */

Compute p
(

Ω0, 〈Ω〉
)

; /* Eq. (55) */

Evaluate µΩ, σ2
Ω, σ2

〈Ω〉
, cov

(
Ω0, 〈Ω〉

)
exp

;

Update r =
4

3

(
σδ

aδ σΩ

)2

− 1

3
; /* Eq. (66) */

Update aδ = − σδ√
cov

(
Ω0, 〈Ω〉

)
exp

; /* Eq. (67) */

Update bδ = µδ − aδ µΩ; ; /* pivot at (µδ, µΩ) */

until convergence;

end

bδ is determined through the constraint of the mean of p(Ω0) and p
(
〈Ω〉
)

distributions being

identical. This solution is illustrated as the intersection of the three lines in Fig. 4B where

Eq. (67) is satisfied. This case corresponds to the physical situation where the Si-O-Si angle

distributions which do not share a Si are entirely uncorrelated, i.e., r′ = 0. The resulting

distribution p
(

Ω0, 〈Ω〉
)

is presented in Fig. 5A. The projection onto the Ω0 dimension in

Fig. 5A gives p(Ω0), the Si-O-Si bond angle distribution in silica glass presented as a bold

solid line in Fig. 5C. The statistics of this distribution are given in Table IV. We also

present the statistics in Table IV for the consistent solution with r = r′ where there is a

single solution, shown as the filled circle in Fig. 3, with r = r′ = −0.068, aδ = −1.3 ppm/◦,

and bδ = 82.54 ppm. Comparing the two cases in Table IV illustrates the small degree of

variation in the parameters along this solid line of solutions.
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r′ = r r′ = 0

statistic response response

µΩ = µ〈Ω〉 = µ〈Ω〉 147.8◦ 147.8◦

σΩ 10.7◦ 10.7◦

σ〈Ω〉 4.8◦ 4.7◦

σ〈Ω〉 3.4◦ 3.5◦

r −0.068 −0.082

rδi,δj = r〈Ω〉i,〈Ω〉j −0.005 0.17

rΩ,〈Ω〉 0.45 0.43

r
Ω,〈Ω〉 0.63 0.57

mode ≈ 147◦ ≈ 147◦

aδ −1.3 ppm/◦ −1.33 ppm/◦

bδ 82.54 ppm 87.34 ppm

TABLE IV. Mean, Mode, standard deviations of Si-O-Si bond angle distributions and correlation

coefficients between them for the two models r′ = r (left) and r′ = 0 (right).

Distribution Method Bond angle distribution

µΩ Mode σΩ ≈ FWHM

Mozzi and Warren64 (1969) X-ray 147.9◦53 144◦ 12.7◦ 37◦

Neuefeind and Liss66 (1996) High energy X-ray 146.7◦ 146.8 7.3◦ 17◦

Mauri et. al.53 (2000) 29Si MAS NMR 151.4◦ 148◦ 11.3◦ 30◦

Clark et. al.28 (2004) 17O DAS NMR 146.6◦ 147◦ 3.8◦ 10◦

Charpentier et. al.11(2009) 17O DAS NMR re-analysed 147.1◦ 147◦ 11.17◦ 23◦

Charpentier et. al.11(2009) 29Si NMR 148.4◦ 10.8◦ 23◦

This work 29Si-O-29Si J-coupling NMR 147.8◦ 147◦ 10.7◦ 19◦

TABLE V. Comparison of the mean, mode, and standard deviation of the Si-O-Si bond angle

distribution in silica glass obtained from other experimental methods.
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IV. RESULTS AND DISCUSSION

A contour plot of the self-consistent bi-variate probability distribution correlating the

central Si-O-Si angle of a Q4–Q4 linkage to its double mean Si-O-Si angle (seven angles)

is given in Fig. 5A. In Figs. 5B and 5C are the 1D projections onto dimensions associated

with the double mean Si-O-Si angle and central linkage angle, respectively. The statistics of

the bi-variate distribution are given in Table IV. Although there is a strong correlation of

rΩ,〈Ω〉 = 0.57 between these two distributions, this is expected as the central linkage angle is

used in defining the double mean of Eq. (36). More noteworthy, however, is the relatively

low value of the correlation coefficient, r = −0.082, for the four Si-O-Si angles of each

Q4 unit, determined with the underlying model of a septa-variate probability distribution

of Si-O-Si angles in the Q4–Q4 linkage (see Eq. (69)). The Si-O-Si angles in silica glass

have been commonly assumed as uncorrelated in both diffraction64–66 and NMR9,10,53,67,68

analyses, although Malfait et al.69 had argued against this assumption due to ring topology

constraints. Here we find experimental confirmation of uncorrelated tetrahedral linkage

angles in silica glass.

The 1D Si-O-Si bond angle distribution in silica glass derived from this bi-variable dis-

tribution (Fig. 5C) has a mean at 147.8◦, a mode at 147◦ and a standard deviation of 10.7◦.

As mentioned earlier, some intensity at the larger Si-O-Si angles may be lost due to the

non-weak couplings which corresponds to ∼ 11.1% of the total coupled resonances. A se-

lected comparison of bond angle distribution statistics from silica glass obtained from other

methods is shown in Table V. The often cited Si-O-Si bond angle distribution of Mozzi and

Warren64 for silica glass is also shown in Fig. 5C as line 1. While the mode of 144◦ falls close

to our 29Si 2J-derived distribution, the width of Mozzi and Warren distribution is signifi-

cantly wider—an observation that has generally been attributed to incorrect assumptions

of uncorrelated angles and distances in Mozzi and Warren’s analysis1,66. Using assumptions

nearly identical to Mozzi and Warren, Poulsen et al.65 used high-energy X-rays measurements

of silica glass to obtain the distribution shown as line 2 in Fig. 5C. Neuefeind and Liss66

obtained the distribution shown as line 3 in Fig. 5C after reanalyzing high-energy X-ray70

and neutron71,72 diffraction data of silica glass. They attribute the narrowness of their dis-

tribution to a non-uniform distribution of dihedral angles, Si-O-Si-O, but find no evidence of

correlation among Si-O distances, Si-O-Si angles, and the dihedral angles. This distribution
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gives the closest agreement with our 29Si 2D J-resolved spectrum-derived distribution.

An extensive comparison of experimental and MD predicted 1D Si-O-Si bond angle distri-

butions in silica glass was given by Malfait et al.69 in 2008. Overall, there is little agreement

among the 1D Si-O-Si bond angle distributions obtained from various MD approaches, and

no particular MD approach seems to give consistent agreement with the experimental values

obtained here. Unfortunately, the possibility of a full-blown ab initio molecular dynamics

(MD) simulation of a liquid cooled from the melt into the glassy state is decades away—

maybe longer—from our current capabilities. The challenges to classical MD simulations

today not only depend on finding accurate potentials but also in obtaining the computa-

tional resources to simulate the glass transition at a realistic cooling rate with a realistic

number of atoms. Ab initio MD methods73 have advanced significantly in the last decade

and hold great promise, particularly in providing accurate potentials; however, it comes at

the cost of even greater demands for computational resources which have yet to be realized.

In 2004, Clark et al28 measured and analyzed the 17O DAS spectrum of silica to obtain

an angle distribution that agrees with the mean and mode obtained from our 29Si 2D J-

resolved spectral analysis but is considerably narrower in width. As described earlier29,

however, the narrow width from the 17O DAS analysis is an artifact of an over-simplified

assumption that each ω1 (anisotropic) DAS spectrum cross-section contains a single site. In

reality each ω1 cross-section contains overlapping line shapes arising from a multitude of sites

with varying Cq, ηq, and 17O chemical shift. By modeling each cross section with a single

site their analysis determines the mean Cq and ηq of each cross section. This biased the

overall Cq and ηq distributions obtained from the full 2D spectrum towards a mean Cq and

ηq distribution with smaller widths. Therefore, the previous 17O DAS results on silica28,29

were analyzed in terms of a mean Si-O-Si bond angle distribution, which, as seen in Fig. 5B,

compares favorably to the 〈Ω〉 distribution obtained from the J-resolved spectrum. Thus,

we expect the correlations and the modes of the distributions obtained with 17O DAS to be

accurate. It should be noted that the 17O DAS spectra analysis could be improved to obtain

the individual Ω distribution. Such an approach would be highly worthwhile as 17O DAS

spectra still provides the most direct measure of the correlation between the distributions

of Si-O-Si bond angle and Si-O distance.

In 2009, Charpentier et al.11 re-analysed the 17O DAS spectrum and employed a more

realistic p(Cq, ηq) distribution for modeling the 17O DAS and obtained a Si-O-Si distribution
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that is consistent with our result derived from the 29Si 2D J-resolved spectrum. Charpentier

claim no evidence for the positive correlation between Si-O bond distance and Si-O-Si bond

angle reported by Clark et al28, although we would caution that Charpentier’s re-calibration

of the Cq relationship to Si-O-Si and Si–O distance used only 17O NMR results from Quartz,

Cristoballite, and Coesite, and did not include 17O results from any siliceous porous silicates

which can have a distinctly different angle-distance correlation.

Finally, we focus on the need to modify the linear relationship between the Q4 29Si

chemical shift and mean Si-O-Si angle to obtain a self-consistent bi-variate distribution from

the 2D spectrum correlating 29Si chemical shift and 2JSi-O-Si. As we show in section III F,

using the linear relationship of Eq. (39), calibrated on crystalline silica polymorphs, to

analyze the experimental 29Si MAS spectrum of silica glass leads to a standard deviation

of σΩ = 20.2◦, significantly larger than all values in Table V, including the distribution of

Mozzi and Warren. As noted earlier, it is an often overlooked fact that the 29Si isotropic

chemical shift of a Q4 is dependent on both mean Si-O-Si bond angle and mean Si-O distance.

Equation (61) further illustrates how the coefficients aδ and bδ in Eq. (39) depend on the

trend in the correlation between the mean Si-O bond distance and Si-O-Si bond angle given

by Eq. (60). A plot of mean Si-O bond distance and Si-O-Si bond angle of various crystalline

silica polymorphs is shown in Fig. 6A and illustrate the well known negative trend in this

particular correlation. This trend approximately follows mΩ = −0.25 pm/◦, also shown in

Fig. 6A as the solid black line. It is this value of mΩ in Eq. (61) that leads to aδ = −0.62

ppm/◦ and bδ = −19.82 ppm. Interestingly, a similar plot for Ferrierite, shown as the solid

black symbols in Fig. 6A, illustrate a different correlation between mean Si-O-Si bond angle

and mean Si-O distance, approximately following mΩ ≈ 0 pm/◦, and shown in Fig. 6A as

the dotted line.

Turning this argument around, we interpret the values of aδ = −1.33 ppm/◦ and

bδ = 87.34 ppm, obtained from our self-consistent analysis of the 2D J-resolved spectrum,

using Eq. (61) and find mΩ = 0.459 pm/◦ and d◦Si-O = 1.596 Å. This positive trend is shown

as the dashed black line in Fig. 6A and is nearly orthogonal to the trend from crystalline

silica polymorphs. More impressive is the excellent agreement between the trend obtained in

this study and that obtained by Trease et al29 from 17O DAS measurements on an ambient

pressure silica glass, shown together in Fig. 6B. Also shown in Fig. 6B are the results of

Trease et al.29 on two other silica glasses densified at 8 and 13.5 GPa. In the three silica
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FIG. 6. (A) Correlation of Si-O bond distance and Si-O-Si bond angle for crystalline silica

polymorphs along with the positive trend observed in silica glass (dashed black line). The negative

angle-distance trend (solid black line) corresponding to mΩ = −0.25 pm/◦ is obtained from low

Quartz, Coesite, and Tridymite. The solid black circles correspond to high silica Ferrierite structure

with the negligible angle-distance trend shown in dotted line, mΩ ≈ 0 pm/◦. (B) Overlay of the 2D

histogram correlating mean Si-O bond distance to mean Si-O-Si angle obtained by Trease et al.29

on ambient and densified silica glasses along with the positive trend obtained from the analysis of

the 2D J-resolved spectrum.

glasses of the Trease et al.29 study and the ambient pressure silica glass of the Clark et al.28

study a consistent positive trend in the correlation of Si-O-Si bond angle and Si-O distance is

observed in agreement with the results of this study. Our analysis of the 29Si 2D J-resolved

spectrum provides an independent confirmation of this positive trend. Unlike the 17O DAS

measurements, however, the strength of this positive correlation cannot be determined from

the 29Si 2D J-resolved measurement.

Given this growing evidence for a positive correlation between Si-O bond distance and

Si-O-Si angle in silica glass, what is its physical origin? Clark et al.28 invoked density

fluctuations to explain the positive correlation between Si-O distance and Si-O-Si angle

from their 17O DAS results of silica suggesting that smaller angles and distances correspond

to higher density regions with smaller rings and vice versa. In this study, however, we find

little to no correlation between Si-O-Si angles, i.e., r ≈ 0, that is, a result that would be
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inconsistent with this hypothesis of density fluctuations. This positive correlation appears

to be something more fundamental to the structure of silica glass and perhaps other fully

connected tetrahedral networks. A more plausible explanation, recently proposed by Sen30,

uses the concept of differential entropy to show that a positive correlation between angle and

distance has a higher entropy than the negative correlation. And while a positive correlation

between distributions is lower in entropy than fully uncorrelated distributions, Sen shows

that the combination of entropic and energetic contributions stabilize the positive correlation

in silica glass structure over both uncorrelated or negatively correlated distributions. Overall,

this suggests that the notion that SiO4 tetrahedra in silica glass are structurally identical to

those in crystalline silica polymorphs is incorrect.

V. SUMMARY

We have used the shifted-echo PIETA pulse sequence to measure the natural abundance

29Si 2D J-resolved spectrum of silica glass. A full analysis of the NMR transition pathways

in this experiment is given as well as a review of the effects of intermediate to strong

couplings and the inter-echo delay times on the J modulated signal measured during echo

train acquisition. By working with a 29Si natural abundance sample we find that the doublets

from isolated 29Si-29Si pairs are dominant, making the 2D J-resolved spectrum of silica glass

more easily analyzed than a 29Si-enriched sample where multiplets are present. It is only

through the sensitivity gain of PIETA that such a natural abundance strategy is possible.

Our analysis of the 2D J-resolved spectrum exploits a recently improved understanding32

of the relationships between geminal J couplings and local structure of a Q4-Q4 linkage in

which knowledge of both 2JSi-O-Si coupling and mean 29Si chemical shift of a Q4-Q4 linkage

can be used to determine its central Si-O-Si linkage angle and the mean (seven) Si-O-Si

linkage angle. Even then, this mapping of the 2D J-resolved spectrum of silica glass into

the bi-variate distribution is not trivial, and requires additional assumptions that (1) the

majority of the J couplings are in the weak limit, (2) there is a bivariate normal distribution

of 29Si chemical shifts of the two linked Q4, with a correlation coefficient determined in the

mapping, and (3) the statistics of correlated angle distributions can be constrained with

the assumption of a multi-variate (seven dimensional) normal distribution of angles in the

Q4-Q4 linkage. These three assumptions, however reasonable, do not lead to a statistically
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consistent bi-variate probability distribution. Additional flexibility in the mapping must be

introduced. This is done by assuming that a line of regression in the correlation between

〈dSi-O〉 and Ω in silica glass, using an adjustable slope and intercept, can be combined with a

known relationship61 between isotropic 29Si chemical shift of a Q4 and its mean Si-O distance

and mean Si-O-Si angle. This approach is suggested by the failure of previous attempts to

determine the correct Si-O-Si angle distribution width from the 29Si MAS line shape. In

other words, any relationship between 29Si chemical shift and mean Si-O-Si angle alone,

when calibrated with 29Si chemical shifts of crystalline silicates, will be inappropriate for

analyzing the 29Si MAS spectra of silica glass. Only with this added flexibility in the analysis

can a statistically consistent bi-variate probability distribution correlating the central Si-O-Si

angle to the mean Si-O-Si angle be obtained.

From our measurement and analysis of silica glass we determine that the Si-O-Si linkage

angles are relatively uncorrelated and that the Si-O-Si angle distribution has a mean at

147.8◦, a mode at 147◦ and a standard deviation of 10.7◦. An unexpected outcome from our

analysis is that the line of regression in the correlation between 〈dSi-O〉 and Ω in silica needed

to obtain this consistent bi-variate probability distribution reveals a positive correlation.

This confirms a trend previously determined by 17O DAS measurements of ambient pressure

and densified silica glasses, and recently interpreted as playing an important entropic role

in determining the structure of a fully connected tetrahedral network of silica glass30.
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VI. APPENDIX

A. Statistical Model

Consider a seven dimensional multi-variate normal Si-O-Si bond angle distribution in

silica glass about a Q4-Q4 linkage where individual bond angle distributions p(Ωk)’s are

assumed to be identically described by a normal distribution with mean µΩ and standard

deviation σΩ. We represent the coordinate of this seven dimensional space by the vector
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Ω = [Ω3,Ω2,Ω1,Ω0,Ω4,Ω5,Ω6]. Furthermore, an individual bond angle distribution from

this seven dimensional space is assumed to be identically correlated to another bond angle

distribution with correlation coefficient r if the Si-O-Si bond angles share a Si. The other

bond angle pairs are assumed to be correlated with a correlation coefficient r′. Under these

assumptions we write the covariance matrix of p(Ω) as

V7 = σ2
Ω



1 r r r r′ r′ r′

r 1 r r r′ r′ r′

r r 1 r r′ r′ r′

r r r 1 r r r

r′ r′ r′ r 1 r r

r′ r′ r′ r r 1 r

r′ r′ r′ r r r 1


. (69)

Exploiting the properties of linear transformations, we derive analytical expressions for the

statistic of p
(

Ω0, 〈Ω〉
)

distribution using the covariance matrix V7. We also derive expres-

sions for the statistics of the p
(
〈Ω〉i, 〈Ω〉j

)
and p (δi, δi) distributions.

1. p
(

Ω0, 〈Ω〉
)
statistics

Following the definition of Eq. (36) the seven dimensional Si-O-Si bond angle distribution

p(Ω) is subjected to the following linear coordinate transformation


Ω0

〈Ω〉

 =
1

8


0 0 0 8 0 0 0

1 1 1 2 1 1 1


︸ ︷︷ ︸

M1

ΩT , (70)

where M1 is the coordinate transformation matrix. From M1, we derive the expression for

the covariance matrix of p
(

Ω0, 〈Ω〉
)

distribution, VΩ0,〈Ω〉 = M1 · V7 ·M1
T , to obtain the

expressions in Eqs. (45) and (46).
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2. p (〈Ω〉i, 〈Ω〉j) statistics

From the definition of Eq. (37) we construct a p (〈Ω〉i, 〈Ω〉j) distribution by performing

the following linear coordinate transformation 〈Ω〉i
〈Ω〉j

 =
1

4

 1 1 1 1 0 0 0

0 0 0 1 1 1 1


︸ ︷︷ ︸

M2

ΩT , (71)

where M2 is the transformation matrix. From the covariance matrix for this distribution,

V〈Ω〉〈Ω〉 = M2 · V7 ·M2
T , we obtain Eqs. (42) and (45).

3. p (δi, δj) statistics

Using the linear transformation

δλ = aδ〈Ω〉λ + bδ,

where λ = i or j, the distribution p (〈Ω〉i, 〈Ω〉j) can be mapped to distribution p(δi, δj) when

subjected to the following coordinate transformation δi
δj

 =

 aδ 0

0 aδ


︸ ︷︷ ︸

M3

 〈Ω〉i
〈Ω〉j

+

 bδ
bδ


︸ ︷︷ ︸

b3

, (72)

where M3 is the affine transformation matrix and b3 is a constant vector. The covariance

matrix for p(δi, δj) distribution, Vδi,δj = M3 · V〈Ω〉i,〈Ω〉j ·M3
T , is given by

Vδi,δj = a2
δ V〈Ω〉i,〈Ω〉j , (73)

and the correlation coefficient of Eq. (44) follows from Vδi,δj .

B. 29Si chemical shift dependence on Si-O distance

To compare Eq. (59) with the linear relationship in Eq. (39), we consider a linear trend

of Eq. (60). Substituting Eq. (60) in Eq. (59), followed by a linearization using a series

expansion in Ωk about Ω∗ we have
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δ =
(
a′δ x2 d

0
Si-O + a′δ x1mΩ

)
〈Ω〉+ (x1 a

′
δ − x2 a

′
δ Ω∗) d0

Si-O − a′δ x1mΩ Ω∗ + b′δ (74)

where x1 =
(
2
√

3− 3
)

and x2 =
π

90◦
(
7− 4

√
3
)

are coefficients from the series expansion.

Here 〈Ω〉 = 1
4

∑
k Ωk is the average Si-O-Si bond angle about the Si tetrahedron. Expanding

about Ω∗ = 150◦ leads to

Λ0 = a′δ x2 = −0.543716 ppm/(◦· Å),

Λ1 = a′δ x1 = −100.687 ppm/Å,

Λ2 = Λ1 − Λ0Ω∗ = −19.1295 ppm/Å,

Λ3 = −Λ1Ω∗ = 15103.03 ppm·◦/Å,

(75)

and the expression in Eq. (74) reduces to Eq. (61). Equation (61) shows how the slope

and intercept of the linear relationship of Eq. (39) between 29Si isotropic chemical shift and

mean angle 〈Ω〉 depends on the trend between the Si-O-Si bond angle, Ω, and the mean

Si-O distance, 〈dSi-O〉.
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