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It is a generally accepted fact that the unique dielectric properties of relaxor ferroelectrics are
related to the formation of polar nanoregion (PNRs). Less well recognized is the corollary that,
because they are polar and therefore lack inversion symmetry, PNRs are also piezoelectric at the
nanoscale and can therefore behave as nanoresonators. Using the particular relaxor ferroelectric
K1−xLixTaO3 (KLT), we show that, when electrically excited into oscillation, these piezoelectric
nanoresonators can drive macroscopic electro-mechanical resonances. Unexpectedly however, pairs
of coupled resonances corresponding to a particular type of oscillation are observed, with one of
the resonance exhibiting a characteristic Fano-like lineshape. The complex resonance spectra can
be described equally well by two alternative but complementary models both involving two reso-
nances coupled through a relaxation: a purely classical one based on two coupled damped harmonic
oscillators and a semi-classical based on two discrete excitations coupled to each other through a
continuum. Together, they provide complementary perspectives on the underlying physics of the
system. Both reproduce the rapid evolution of the resonance spectrum across three wide tempera-
ture ranges, including a phase transition range. In the high temperature range, the coupling between
modes is due to the collective π relaxation of the lithium ions within PNRs and, in the phase tran-
sition range, to ”heterophase relaxation” of the surrounding lattice between its high temperature
cubic and low temperature tetragonal phases, both coherent effects. The coupling is suppressed in
the intermediate range of the collective π/2 relaxation of the lithium ions. Incidentally, the mea-
sured dielectric spectra are shown to bear a surprising but justifiable resemblance to the optical
spectra of certain atomic vapors exhibiting electromagnetically induced transparency.

PACS numbers: Relaxor Ferroelectrics Dielectric Loss and Relaxation Piezoelectricity and electromechanical
effects Composites (nanosystems embedded in a larger structure) Effects of atomic coherence on propagation,
absorption, and amplification of light; electromagnetically induced transparency and absorption

I. INTRODUCTION

K1−xLixTaO3 (KLT), KTa1−xNbxO3 (KTN),
PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT),
PbZn1/3Nb2/3O3-PbTiO3 (PZN-PT),
PbSc1/2Nb1/2O3 (PSN) belong to the family of re-
laxor ferroelectrics (RF). RFs are highly polarizable
mixed compounds in which substituted cations are
off-centered already in the paraelectric phase, forming a
dipole that can reorient between several crystallograph-
ically equivalent directions. At lower temperatures,
interactions between off-center ions in the highly polar-
izable lattice result in the formation of lower symmetry
(i.e. permanent) polar nano-regions (PNR)[1, 2], the
size of which can be estimated from neutron and x-ray
elastic diffuse scattering [3, 4]. Although the term
polar nano-regions or PNRs is widely used in the RF
literature, it would be preferable in the present paper
to label these polar nano-domains or PNDs [5] so as
to emphasize the long-lived or permanent character of
the local distortion and lower local symmetry of these
regions below a certain temperature, T ∗, both features
that are essential in explaining the results reported here.
Because of the general practice in the RF literature

however, we keep here the PNR label. Due to their
mixed composition and resulting complex structural
features, RFs exhibit unique local as well as lattice
dynamics, the most characteristic feature of which is the
strong frequency dispersion of their dielectric constant
commonly identified as “the relaxor behavior” [6, 7].
This dispersion is due to the relaxation of the PNRs
between different orientations. Simultaneously, when
subjected to relatively small dc electric fields, relaxor
ferroelectrics (RF) exhibit unusual electro-mechanical
resonances (EM) [8] that are clearly associated with
the presence of these PNRs coupling polarization and
strain. Similar resonances have also been observed in
nanocomposites [9] and are interesting for two reasons.
First, they provide a sensitive tool to probe the interplay
between local and lattice dynamics which is at the
core of the behavior of these complex solids. Secondly,
they form the basis for the primary applications of
RFs in transducers and actuators [10, 11]. In an earlier
paper [12], we reported the first observation of new
resonances in KTN and KLT and interpreted them as
evidence for the formation of permanent polar nan-
odomains in the ”paraelectric” relaxor phase. In a follow
up article [13], we developed a phenomenological Debye
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model involving electrostrictive polarization-strain
coupling to describe this resonance. This two papers
focused on the primary (broad) resonance as a signature
of the PNRs and their electrostrictive properties, as
we did not yet recognize at the time the importance of
the secondary (narrow) resonance, the meaning of its
characteristic spectral shape and its relationship to the
primary resonance. In the present article, we report
the results of a comprehensive and detailed study of
these resonances in the relaxor KLT over a wide range
of temperatures and frequencies. Most importantly,
we now identify pairs of coupled resonances (primary
and secondary), uncover their origin and describe the
coherent coupling mechanism that gives rise to their
characteristic spectral shapes. These spectral shapes are
seen to evolve rapidly with decreasing temperature, first
due to their interaction with the relaxations mentioned
above, and then to the occurrence of a phase transition.
In the vicinity of the phase transition, they provide
evidence for the existence of ”hetero-phase fluctuations”
of the system between its high temperature cubic and
low temperature tetragonal phase [14].

In KLT, lithium ions are off-centered from the normal
crystallographic site by almost 1Å, thus forming electric
dipoles that can reorient among six equivalent cubic di-
rections [15, 16]. At lower temperature, interactions be-
tween off-center lithium ions result in their displacements
becoming correlated, leading to a local transition and the
appearance of tetragonal polar nanoregions [4]. PNRs ex-
hibit two distinct types of local dynamics. First, they
can relax between several crystallographically equivalent
orientations via collective 90◦ and 180◦ jumps of the Li
dipoles [17, 18]. Secondly, being polar and therefore lack-
ing inversion symmetry, they are also piezoelectric and
can exert a stress on the surrounding lattice to drive
a crystal bar into electro-mechanical resonance. Simi-
lar resonances have also been observed KTN and PZN.
Given the common characteristics of relaxor ferroelectrics
(off-center mixed ions and a high polarizability), the re-
sults reported below should be indicative of the behavior
of other RFs as well, and to provide a more complete
picture of the inter-relationship between mesoscopic and
macroscopic dynamics in these compounds. With regards
to applications, these results may also contribute to a
better understanding of the piezoelectric properties of
nanocomposites.

In the next Experimental and Results section, we
present the dielectric constant and electro-mechanical re-
sults on the two crystals studied. In the Analysis section,
we fit the resonance spectra with two different theoreti-
cal models, providing complementary perspectives on the
underlying physics. Finally, in the Physical Model and
Discussion section, we describe schematically the under-
lying physics of the two models and highlight their special

meaning.

II. EXPERIMENTAL DETAILS AND RESULTS

Two KLT single crystals were grown from solution by
the slow cooling method at Oak Ridge National Lab-
oratory. The nominal lithium concentrations of these
two crystals were x=3.5% and x=10%. However, using
a formula proposed earlier to calculate concentrations
of lithium based on the transition temperature [19], we
estimate that actual concentrations in our crystals were
respectively 2.6% and 4.7%, both therefore exceeding
the critical concentration of ≤ 2%. The crystals were cut
along (100) faces in the form of bars with approximate
dimensions 5 × 2 × 1mm. Metallic electrodes were
evaporated on the two largest parallel surfaces of the
samples. In order to rule out possible electrode-sample
interface effects, different coating/interface conditions,
such as sputtered gold, vapor deposited aluminum and
painted silver, were tested to ensure that the same
dielectric results were obtained. Different grades of
surface polish were also tested, from rough to optical
grade, and the same dielectric results were obtained in
all cases. Ultimately, aluminum electrodes were used.
The samples were held stress-free inside an open cycle
cryostat. For the dielectric relaxation measurements,
a small ac electric field (0.5V/cm) was applied across
the short dimension (thickness) of the crystal sample.
The parallel plate capacitance and the loss tangent were
measured with a HP4194A network analyzer, sweeping
the frequency from 100Hz to 10MHz. The measured
capacitance was converted to a dielectric constant
through the relation ǫ′ = Cd/Aǫ0, where C is the
capacitance, d the sample thickness, A the area of the
electrode and ǫ0 the free space permittivity. The samples
were cooled with liquid helium from room temperature
to ∼ 20K. The cooling rate was controlled to be on
average 0.2K/min but the temperature was equilibrated
at each measuring temperature, allowing sufficient time
for the sample to reach thermal equilibrium before
each measurement, as monitored by the stability of the
capacitance value at that temperature.

Fig. 1 shows the imaginary part of the dielectric per-
mittivity (absorption) of the K1−xLixTaO3 (KLT) crystal
with an actual concentration of 2.6% Li (nominal 3.5%),
measured upon cooling as a function of temperature and
at several frequencies. Two relaxation peaks are visible.
The small peak at ∼ 95K corresponds to the 180◦ reori-
entation or π relaxation and the large peak at lower tem-
perature to the 90◦ reorientation or π/2 relaxation of the
PNRs under the effect of the external ac field [16]. The
weaker strength of the π relaxation in KLT3.5% is due
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FIG. 1. Imaginary part of the dielectric constant of KLT3.5%
measured at different frequencies. The hatched area marks
the transition region III (see text below). Inset: birefringence
of a different KLT3.4% crystal [21]
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FIG. 2. Imaginary part of the dielectric constant of KLT10%
measured at different frequencies. The high temperature peak
corresponds to the π relaxation and the low temperature peak
(interrupted by the transition), to the π/2 relaxation. The
hatched area marks the transition region III (see text below)

to the fact that the corresponding distortion (or elastic
quadrupole) is the in principle the same for both crys-
tallographic orientations (zero or π) of the PNRs but for
the piezoelectric effect. The transition to the tetragonal
phase is evidenced by several experimental observations,
probably the most direct of which are the sharp drop in
the dielectric constant at Tc ≈ 47K and a doubling of the
phonon peaks detected in a neutron inelastic scattering
study of KLT3.5% [20]. The inset in Fig. 1 also shows
birefringence results obtained under continuous cooling

and warming (no equilibration) in a KLT crystal with
nominal 3.4% lithium [21]. Instead of a single curve, these
reveal a narrow thermal hysteresis loop (see also [22])
which signals the existence of a two-phase region around
the transition. Fluctuations between these two phases
can therefore be expected in the vicinity of the transition
(see later discussion on hetero-phase fluctuations) [23]. In
this regard, it is useful to note in Fig. 1 that the width
of the thermal hysteresis in the KLT3.4% crystal is ap-
proximately the same as that of the hatched area on the
dielectric curve of the KLT3.5% crystal, which represents
the transition region (Tc ± 4K) to be examined below.

For comparison, the corresponding dielectric results
obtained on the KLT crystal with an actual x=4.2% Li
concentration (nominal 10%) are presented in Fig. 2. For
this higher concentration, the π relaxation peak is much
more prominent than in KLT3.5, possibly due to the
larger size of the polar nanoregions and stronger strain
fields. At the lower frequencies, the π/2 relaxation peak
is not fully developed, being cut off by the intervening
transition. Stated otherwise, the structural transition in
KLT10% intervenes at a higher temperature than that
at which the π/2 relaxation peak would normally be ob-
served if the transition did not occur.

Relaxor ferroelectrics (RFs) also exhibit characteris-
tic resonances, precisely in the same temperature region
in which the PNRs are present and undergoing the π/2
and π relaxations mentioned above (see also Ref. [12]).
For the measurements of these dielectric resonances, the
same configuration was used as for the dielectric relax-
ation measurements save for a modest dc electric field
(∼ 370V/cm) that was applied to partially align the
PNRs and induce a small but non-zero macroscopic po-
larization. The frequency of the small measuring ac
electric field was then swept through the resonance, the
frequency of which can be calculated from the dimen-
sion of the crystal bar, L, the density, ρ = 7.02g/cm3,
and the elastic constant, C11 ≈ 4 × 1012 dynes/cm2, as

ν = 1

2L

√

C11

ρ .[12] The results are presented in Fig. 3 in

the form of the dielectric loss tangent, D ≡ ǫ′′/ǫ′.

The frequencies of both resonances are found to fall
within the same range as for length mode (longitudi-
nal) oscillations, associated with the longitudinal strain
(ǫ11) of the bar, i.e. perpendicular to the direction of
the applied electric field (E3), associated with the C11

elastic modulus and corresponding to the d311 piezo-
electric coefficient. The long dimension of the crystal
bar samples was sufficiently different from the two oth-
ers so as to exclude the possibility that the two reso-
nances observed might correspond to two distinct modes
of vibration(width-thickness). The resonance frequencies
on the KLT3.5 sample measured here were also found to
be very close to those measured in KTN samples with
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FIG. 3. Evolution with temperature of the dielectric loss, D ≡ ǫ′′/ǫ′, of KLT3.5. As discussed in the text, the spectra shown can
be grouped into four regions: 104K-88K in Region I of the π relaxation, 70K-58K in Region II of the π/2 relaxation, 50K-44K
in Region III of the transition, and 42K below Tc. The broad resonance couples strongly to the narrow one as they are closest
to each other just below 96K. Below 70K the broad resonance peak rides over the π/2 relaxation peak and is strongly damped
at 58K. At 50K both the broad and narrow resonance peaks have reappeared. And below the phase transition region, only
the broad resonance is active (see explanation in text).

similar sample dimensions. It is important to note that,
while the PNRs are piezoelectric (lack of local inversion
symmetry), the rest of the crystal is not (being cubic and
with inversion symmetry). Hence, it is the PNRs that
are excited into piezoelectric oscillations, thereafter driv-
ing the macroscopic oscillations of the bar. Unexpect-
edly, not one but a pair of resonances is observed start-
ing approximately at 120K, the temperature at which
the (quasi-static or static) PNRs are known to appear as
determined from independent measurements mentioned
above (Raman [2] and diffuse neutron scattering [4]).
The more intense of the two resonances is broad and
symmetric and the less intense is narrow and presents
a characteristic asymmetry. It is important to note that
these resonances are only observed upon appearance of

the PNRs and have been observed reproducibly in several
crystals. They cannot therefore be due to sample size or
electrode effects.

The evolution of the resonances can be divided in three
stages: i) region I, the π relaxation range, ii) region II,
the π/2 relaxation range and region III, the transition
range. In region I, both resonances appear and grow in
amplitude, with the narrow resonance becoming equal in
strength to the broad resonance. One major difference
however is that the frequency of the narrow resonance re-
mains constant with changing temperature while that of
the broad resonance continuously decreases in frequency,
(anti-)crossing over the narrow one at the temperature
in the temperature region of the π relaxation maximum.
At their point of closest approach, (T≈ 96K in Fig. 3),
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FIG. 4. Real part of the dielectric constant of KLT3.5 in the
transition region (hatched area in Fig. 1) and just below

both resonance peaks are almost equal in strength and
width, suggesting an energy exchange between them. In
region II, the narrow resonance progressively disappears
while the frequency of the broad resonance continues to
decrease with decreasing temperature, becoming strongly
damped as it approaches the π/2 relaxation. It is impor-
tant to note that, compared to the resonance peaks, the
relaxation peak is much broader and shifts rapidly with
temperature. Consequently, the relaxation peak appears
only as a sloped background within the limited frequency
range used to display the resonances and its slope changes
sign between 70K and 58K as it crosses over the π/2 re-
laxation. In Region III, approaching the transition and
with the π/2 relaxation now much too slow and there-
fore no longer active in dampening the resonances, both
reappear and the broad resonance again increases in fre-
quency and decreases in width. At 44K, the two reso-
nances are again close to each other in frequency, result-
ing this time in a spectrum that superficially looks like a
broad peak split in the middle. Throughout, the broad
resonance shifts in frequency but the narrow resonance
remains at approximately the same frequency. Finally, at
42K and below for KLT3.5, only the broad resonance is
observed. The corresponding real parts of the dielectric
permittivity are also shown in Fig. 4 at two temperatures
within the transition range and below. Strikingly, below
the transition a single resonance is observed.

Very similar resonance spectra are observed in the
KLT10 (4.7% Li) crystal and are presented in Fig. 5.
The evolution of the resonances is very similar to that in
the KLT3.5 (2.6% Li) crystal, with the same three tem-
perature ranges: i) the π relaxation range, ii) the π/2
relaxation range, and iii) the transition range. At this
higher concentration, both the π relaxation and π/2 re-
laxation peaks are now clearly visible in Fig. 2 in addition
to the resonances. However, for the reason mentioned in
the previous paragraph, in Fig. 5 they are only seen as a

sloped background in the narrow frequency intervals of
the resonance spectra. As the π relaxation crosses the
resonances, between 112K and 105K, the slope of the
background changes from negative to positive. As ex-
plained below, the fact that the broad resonance (anti)-
crosses the narrow one, and itself becomes equally narrow
in this temperature range which also coincides with the
π relaxation maximum, suggests that the two resonances
are coupled via the relaxation. A sloped background is
also observed in Region II of the π/2 relaxation, but the
slope is not seen changing sign because the relaxation
peak is cut short by the intervening transition, now at
higher temperature for this higher concentration crystal.
The additional small peaks that are seen at the lower
temperatures in the spectra of Figs. 3 and 5 are not un-
derstood at this time. They are much smaller in am-
plitude and do not affect the interpretation of the main
features (broad and narrow peaks) reported here.
The frequency evolution of the broad and narrow res-

onances is summarized in Figs. 7 and 8 for the KLT3.5
and KLT10 crystals respectively, together with the tem-
perature evolution of the real part of the dielectric con-
stant measured without an external dc field at 50 kHz
for KLT3.5 and at 40 kHz and 498 kHz for KLT10. On
the high temperature side, the broad and narrow reso-
nances (anti)-cross in the region of the π relaxation. In
the intermediate temperature range, the frequency of the
broad resonance decreases rapidly and reaches a mini-
mum at approximately the same temperature as that of
the maximum of the π/2 relaxation (when measured at
the same frequency as the resonance). It then increases
rapidly upon approaching the phase transition, where the
two resonances again meet. In the next Analysis section,
we show that the resonance spectra presented above can
be described equally well by two complementary mod-
els, each reflecting a different aspect of the resonance-
relaxation dynamics. In the subsequent Discussion sec-
tion, we then describe the physical mechanisms that ex-
plain the evolution with temperature of the dielectric res-
onance spectra.

III. ANALYSIS

In the present section, we show that the observed
spectra in all three separate temperature regions
identified above can be accurately described by either
one of two models, the first one purely classical and
phenomenological and the second one semi-classical,
providing complementary perspectives on the results.
Both models are shown to describe equally well the
spectral shapes in regions I and III in terms of two
resonances coupled by a relaxation, the π relaxation
in Region I and the heterophase relaxation in Region
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FIG. 5. Evolution with temperature of the dielectric loss, D ≡ ǫ′′/ǫ′, of KLT10. As discussed in the text, the spectra shown
can be grouped into four regions: 135K-105K in Region I of the π relaxation, 85K-72K in Region II of the π/2 relaxation, 68K
in Region III of the transition, and 50K below Tc. The broad resonance is seen to strongly couple to the narrow one as they
are nearest to each other at 105K. This temperature also corresponds approximately to the temperature at which the slope
of the background goes from being negative to being positive vs frequency, i.e. where the π relaxation crosses the resonances,
as seen from Fig. 2. Note the anti-crossing of the two resonances at 105K and the anti-resonance between 72K and 55K (latter
not shown), indicating the coherent character of the interaction [27]

III (see below). In the intermediate region II, the π/2
relaxation dominates and dampens the resonances. In
what follows, we first establish the physical basis for the
two models, then present each successively, and finally
compare their predictions with the experimental results.
Before proceeding however, several qualitative remarks
can already be made to inform the interpretation of the
results presented above: 1) the fact that both resonances
appear when the PNRs are known to form [2, 4] (breaking
local inversion symmetry and locally inducing piezoelec-
tricity) at approximately 120K for KLT3.5 and 140K
for KLT10, indicates that the PNRs must be the primary
driver of these resonances, while the surrounding lattice
remains cubic; 2) the observation of a pair of resonances
rather than a single one in the frequency range for

longitudinal oscillations of the bar samples suggests the
existence of two distinct vibrational configurations or
modes, corresponding respectively to in-phase and out-
of-phase oscillations of the PNRs with the surrounding
lattice or bar (see below); 3) the asymmetric shape of
the narrow resonance peak does seem to suggest the
existence of a coupling between these two modes of
oscillation. Next, we present each model successively
and show that both describe the experimental spectra
very well across the three temperature regions, quan-
titatively confirming the qualitative remarks made above.

Purely Classical Model

The observed resonance spectra can be explained phe-
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nomenologically in terms of the dynamics of the well-
known classical system of two damped oscillators cou-
pled to each other, as described by Eq. 1 [24, 25]. In
these equations, X1,2 designates the displacements, γ1,2
the damping coefficients and ω1,2 the radial frequencies
of the two oscillators, ν12 the coupling coefficient between
them, a1 the drive amplitude of the first oscillator and ω
the driving frequency. In the present KLT case, one of
the oscillators is the PNRs and the other the surround-
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ing lattice. The even normal mode of this coupled sys-
tem corresponds to the PNRs and surrounding lattice
oscillating in phase (both simultaneously in extension or
contraction) and the odd mode, to them oscillating out-
of-phase relative to each other.

Ẍ1 + γ1Ẋ1 + ω2

1
X1 − ν2

12
X2 = a1 exp(−iωt)

Ẍ2 + γ2Ẋ2 + ω2

2
X2 − ν2

12
X1 = 0

(1)

These two normal modes can be coupled by flipping the
displacement (deformation) vector of one of the two os-
cillators and correspondingly the relative phase of its mo-
tion by 180◦. Because the surrounding lattice or macro-
scopic bar sample is set into oscillations by the piezoelec-
tric polar nano-domains, it should be clear that, initially,
the ac field can only excite the even (primary) normal
mode with displacement X1. The latter can then cou-
ple to the odd (secondary) mode with displacement X2

through the polarization and strain reversal of the PNRs,
and vice versa.(see schematic representationof the modes
in the next section) At the higher temperature (Region
I) the two modes are coupled through the π relaxation or
180◦ polarization reversal of the piezoelectric PNRs, ac-
companied by a change of sign of their strain state from
expansion to contraction. And in the transition range
(Region III), they are coupled by the relaxation of the
surrounding lattice between its higher temperature cubic
and its lower temperature tetragonal phase (heterophase
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relaxation), also accompanied by a change of sign of the
strain from expansion to contraction and vice-versa.
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FIG. 9. Dielectric Loss of KLT3.5 at 98K and 44K (same
data as in Fig. 3) fitted with the two coupled oscillators model
described by Eq.(1)

Fit parameters 98K 44K

a1 1.44× 106 8.71 × 107

ω1/2π(kHz) 672.69 671.75
ω2/2π(kHz) 671.90 672.09
γ1 340.9 1587.2
γ2 32.1 17.8
ν12 4.2× 108 4.4 × 108

background 0.0095 0.0023

TABLE I. Fit Parameters from the Purely Classical Model of
two coupled damped harmonic oscillators

The vibrational spectrum of such a well-known system
does in fact reproduce very well the resonance spectra
of KLT3.5 observed in both regions I and III. The
experimental spectra and fits to the solution of Eq. (1)
at 98K and 44K are shown in Fig. 9 and the fitting
parameters are listed in Table I. The quality of the fits
to the experimental curves is excellent and the variation
of the fitted values resulting from varying the starting
values of the parameters is found to be less than 1%. As
seen in Table I, the major differences between the two
temperatures are i) the much higher damping of the
driven primary oscillator (broader resonance peak) but
slightly lower damping of the secondary oscillator at 44K

than at 98K, and ii) the smaller frequency separation
and therefore greater overlap of the two resonances
at 44K ≈ 350 Hz than ≈ 800 Hz at 98K. Despite
the coupling coefficient ν12 being almost the same at
the two temperatures, the fact that the two resonance
peaks overlap significantly at the lower temperature
translates into a higher transition probability between
the two modes. As explained below, such a higher
transition probability at 44K can itself be explained
by the proximity of the structural transition and the
correspondingly much softer and deformable lattice.

Semi-Classical Model

As an alternative to the purely classical model above,
the observed spectrum of KLT3.5 can be described
equally well by a semi-classical model which contributes
a complementary physical perspective on the results. As
described by Fano, an asymmetric lineshape such as that
of the narrow peak results from the coherent mixing of a
vibrational excitation from a ground state to a discrete
excited state with a parallel excitation to a continuum,
itself coupled to the same excited state. [26] The two co-
herently coupled parallel excitation paths lead to an in-
terference. The Fano resonance picture can be extended
to the case of two separate excitations between discrete
energy levels which are coupled to each other through a
continuum. In the context of KLT, the two separate ex-
citations are the even and odd modes and the continuum
corresponds to the relaxation coupling the two. Such a
situation was modeled several years ago by Zawadowski
and Ruvalds (ZR) [27] for the case of two discrete and
long wavelength optical phonons coupled to each other
through pairs of acoustic phonons with wavevectors +k
and -k and thus forming a continuum. The two-acoustic-
phonon Green’s function was taken to be purely imagi-
nary, which is equivalent to a relaxation in the present
KLT case. Given the one-to-one correspondence between
the vibrational configuration described by ZR and the
present one, we can directly use the spectral function
given in Eq. (12) of their paper to describe the dielectric
loss spectra in KLT:

ρ(ω) =
ǫ′′

ǫ′
=

[Aga/2∆a +Bgb/2∆b]
2

1 + [g2a/2∆a + g2b/2∆b]2
(2)

in which A and B are the oscillator strengths of the two
normal modes, gα their respective coupling coefficients
to the relaxation and ∆α ≡ (1 − ω

ωα

) the relative fre-
quency separation from their resonance frequencies. By
contrast with the purely classical model described earlier
by Eq.(1), in the semi-classical ZR model both discrete
vibrational normal modes are assumed to be driven by
the ac field instead of just the even (primary) mode. The
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fitted spectra of KLT3.5 are presented in Fig. 10 at 98K,
near the high temperature anti-crossing point in Region
I, and close to the transition in region III at 44K. Here
again, two seemingly very different spectra are fitted very
well by the same model and we estimate the uncertainty
on the fitted parameters to be less than 1%. The values
of the fitting parameters are given in Table II. Unlike the
fitting results obtained with the purely classical model,
the respective frequencies of the two resonances are found
here to be practically the same at 98K and 44K.
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FIG. 10. Dielectric Loss of KLT3.5 at 98K and 44K (same
data as in Fig. 3), fitted with the ZR model of Eq.(2)

Fit parameters 98K 44K
A 0.00169 0.0117
B 0.00106 0.0077
ωa/2π(kHz) 672.51 671.57
ωb/2π(kHz) 671.72 672.30
ga 0.01855 0.04033
gb 0.01451 0.028
background 0.0078 0.0231

TABLE II. Fit parameters from the Semi-Classical Model of
two discrete transitions coupled via a continuum

In the present semi-classical model, the main difference
between the spectra in Regions I and III is the larger
values of both coupling coefficients or widths of the
resonances, ga and gb, which are twice as large at 44K
as they are at 98K, while remaining in the same ratio,
1.3-1.4. This doubling results in the extensive overlap
of the two resonances. This extensive overlap, and the

resulting much larger transition probability between
the two modes, appears to be the essential common
feature of the two models. In the purely classical model,
this overlap stems from a significant increase in the
damping/width of the even (primary) mode and the
reduced frequency separation between the two modes
while, in the semi-classical model, it originates from
an equal increase in the coupling coefficients of both
modes to the acoustic continuum or relaxation. It is
also important to note that the coupling between the
two oscillators is taken into account differently in the
two models. In the purely classical model, the primary
(driven) mode is coupled to the secondary (slave) mode
through an implicit continuum (the π or the heterophase
relaxation), with the coupling expressed in the damping
coefficient. In the semi-classical model by contrast,
both oscillators are coupled explicitly to a common
continuum, each with its own coupling coefficient.

IV. PHYSICAL DESCRIPTION AND

DISCUSSION

In the present section, we describe a possible physical
model that can explain the experimental results reported
and analyzed in the two preceding section. Although
there could be others, the validity of the proposed model
rests on its ability to explain these results across the three
temperature regions, I, II and III. In each figure below,
the PNRs are assumed to be aligned, at least partially,
by the dc field while the ac field excites both resonances
and relaxation. In region I, at high temperature, the even
(in-phase) and odd (out-of-phase) normal modes of the
PNRs-surrounding lattice system are coupled via the π
relaxation of the lithium ions (red dots in Fig. 11) which
switches the polarization of the PNRs (green arrows) by
180◦ and, correspondingly, their piezoelectric deforma-
tion from expansion or dilation to contraction. It should
however be obvious that, initially, the ac field can only
excite the coupled system in its even or in-phase mode
since it is the piezoelectric deformation of the PNRs that
initially drives the surrounding lattice and bar into os-
cillations. Only once the system has been set oscillating
in the in-phase mode of vibration can it transition back
and forth between the two modes through a reversal of
the PND polarization and associated piezoelectric defor-
mation triggered by the π relaxation.
One important aspect of the observed dynamics in Re-

gion I is that it is coherent, since the same ac field that
excites the piezoelectric resonance of the PNRs also trig-
gers their π relaxation and accompanying 180◦ polariza-
tion reversal. Therefore, the π relaxation itself is not
just thermally activated but assisted by the piezoelectric
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a)

b)
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Out-of-phase mode

c)

d)
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field
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FIG. 11. Schematic representation of the modes of oscillations
of the KLT crystal bar with PNRs partially aligned vertically
in the dc electric field; the polarization of individual PNRs
is represented by vertical green arrows and their deformation
by horizontal open red arrows and dashed blue lines. The
red dot inside each PND represents the lithium ions whose
cooperative π relaxation is driven by the same ac electric field
that drives the resonances. The position of the red dots can
be seen to be related to the nature of the deformation of
the PND (expansion or contraction). The deformation of the
crystal bar is indicated by horizontal blue arrows. a) and
b) correspond respectively to the polarized cubic (PC) and
strained cubic (SC) states, and c) and d) to the polarized
tetragonal (PT ) and strained tetragonal (ST ) states.

deformation of the PNRs, which reduces the potential
barrier for the reorientation of the lithium ions and ac-
companying reversal of the PNRs polarization. And this
process is clearly more effective for the in-phase or even
mode since the deformations of the PNRs and surround-
ing lattice are then both of the same sign (see evolution
from b) to c) or d) in Fig. 11). A stronger coupling to the
relaxation means a higher damping of the in-phase mode
and a broader resonance peak, as indeed observed.

Region II is the temperature region within which
the π/2 relaxation reaches its maximum amplitude,
ωτπ/2 = 1 (see Fig. 1). Unlike in Region I, the 90◦ reori-
entation of the PNRs in region II does not couple the
two oscillation modes to each other, and the out-of-phase
mode (narrow asymmetric resonance) therefore vanishes
(in KLT3.5) or is strongly suppressed (in KLT10).
Additionally, and as seen in Figs. 3, 7, 5 and 8, the π/2
relaxation crosses over the frequency of the broad reso-
nance, strongly damping it and depressing its frequency
(as for a damped harmonic oscillator with increasing
damping). The effect of the π/2 relaxation is illustrated
in Fig. 12. This mechanism explains both the increased
damping and associated rapid frequency decrease of
the broad resonance and the total disappearance of the

narrow resonance in KLT3.5 (and partial in KLT10),
which only exists through its coupling to the broad
resonance via the π relaxation. At lower temperatures,
the π/2 relaxation itself slows down and in turn becomes
inactive. As a result, the broad resonance is no longer
damped, it recovers an even larger amplitude than before
and its frequency increases again. The model used here
to describe the evolution of the resonances in Region
II is therefore fully consistent with the model used in
Region I, itself based on the interaction of the resonance
with a relaxation, π in Regions I and π/2 in Region II.

In-phase mode- π/2 relaxa"on

a)

e
ac
field

e
ac
field

b)

FIG. 12. The two half-cycles of PNRs undergoing a π/2 re-
laxation, which broadens the broad resonance and suppresses
the narrow resonance; the features in this figure are the same
as in the previous figure

In region III, although the π and π/2 relaxations are
no longer active, the two resonances nevertheless reap-
pear, now strongly overlapping. The fact that the same
two models are able to reproduce the experimental spec-
tra in Region I and III indicates that a similar generic
explanation must apply in both, in terms of two discrete
oscillators (even and odd normal modes) coupled through
a continuum (a relaxation). However, as already hinted
above, the physical nature of the relaxation coupling the
two modes is not the same in both regions. In Region I,
the even and odd modes correspond to the in-phase and
out-of-phase oscillations of the PNRs-surrounding lattice
system, coupled to each other through the π relaxation
of the PNRs. But Region III lies well below the peak
temperature of both relaxations, which are therefore in-
active. The two modes must now be coupled through
a different kind of relaxation, the nature of which is re-
vealed by two observations: i) Region III straddles the
structural transition, as shown by the hatched area in
Fig.1, and ii) the thermal hysteresis seen in the inset of
the same figure shows that Region III is a region in which
the high and low temperature phases are metastable on
some time scale, but can relax from one to the other.
These two observations suggest that the relaxation that
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is active in Region III is the relaxation of the surround-
ing lattice between its high temperature (cubic) and low
temperature (tetragonal) phases, otherwise called ”het-
erophase fluctuations”.

Heterophase fluctuations are indeed observed near
weakly first order transitions, where they are due to
the presence of precursors of a low temperature phase
within a high temperature equilibrium phase and vice
versa. [23, 28, 29] Such fluctuations are quite naturally
expected to occur in relaxors since the PNRs do indeed
represent stable precursors of the low temperature phase,
already present above the transition. In the present case
however, they are activated or assisted by the PNRs.
Because the PNRs are intrinsically piezoelectric, mod-
ulation of their polarization by the ac field leads to a
modulated stress on the surrounding lattice which, be-
ing already near a structural instability in the vicinity of
the transition, can easily be made to transform (stress-
induced) from the cubic to the tetragonal phase and vice-
versa. This stress-assisted transformation is necessarily
accompanied by a phase change in the oscillations of
the surrounding lattice relative to those of the PNRs,
or coupling of the even/in-phase mode and the odd/out-
of-phase mode as in Region I. Here however, instead of
the 180◦ PNR polarization relaxation being induced by
the stress from the surrounding lattice or bar, it is now
the surrounding lattice relaxation between the cubic and
tetragonal phases that is induced by the piezoelectric
deformation of the PNRs. Moreover, because the het-
erophase relaxation between the two phases is induced by
the piezoelectric oscillations of the PNRs, it is also coher-
ent with the latter. Fig. 13 represents an attempt at il-
lustrating the likely sequence for the resonance-relaxation
process in which the ac field again modulates the polar-
ization of the PNRs whose deformation drives the het-
erophase relaxation of the surrounding lattice and ulti-
mately the macroscopic bar oscillations. Here in Region
III we should note that the sequence of the oscillations
is a)-d)-c)-b)-a) because the switch from the even to the
odd mode is due to the cubic-tetragonal transformation
of the surrounding lattice whereas, in Region I, it was due
to the reversal of polarization and accompanying piezo-
electric strain of the PNRs. Hence, the two coupled-mode
picture that explains the dynamics in Region I is also
valid in Region III, although the physical nature of the
relaxation coupling the two modes is reversed in the two
Regions.

Starting with half-cycle a) and the cubic lattice,
the combination of the dc and ac fields enhances the
polarization of the PNRs which contract (C), resulting
in the contraction of the surrounding lattice and bar
sample. The latter contraction then induces the cubic-
to-tetragonal transformation of the lattice in half-cycle
d), which maintains the bar in contraction while the ac

heterophase relaxationIn-phase mode

a)

b)

e
ac
field

e
ac
field

Out-of-phase mode

c)

d)

e
ac
field

e
ac
field

C

X XX XX

cubic cubic

cubic cubic

tetra

tetratetra

tetra

XX C C X

CX XC CC CC CC

FIG. 13. Normal modes of oscillations of the PNRs and sur-
rounding lattice in the transition region. The color codes are
the same as in the Region I representation. At the lower tem-
perature of the transition however, both the π and π/2 relax-
ations are inactive and the PNR polarization remains aligned
along the dc field, upward in the picture. C and X designate
contraction and expansion respectively and the crystal sym-
metry of the surrounding lattice is also indicated. Following
the ac field, the system evolves along the path a)-d)-c)-b)-
a) or, according to the labels of Fig.11 from PC to ST , PT ,
SC and back to PC . Starting from the in-phase mode half-
cycle a), the surrounding lattice between PNRs is cubic but
its contraction under the opposite deformations of the PNRs
and the bar induces a transition to the tetragonal phase in
d). Similarly, its expansion in c) induces a transition back to
the cubic phase in b).

field has reversed and the PNRs are now expanding. The
PNRs-surrounding lattice system now oscillates in the
odd mode. In half-cycle c), with the reversal of the ac
field but still in the out-of-phase mode, the PNRs now
contract while the surrounding lattice expands, inducing
the reverse tetragonal-to-cubic transformation of the
lattice and coupling the odd mode back to the even mode
in half-cycle b). Here we note that the two half-cycles a)
and b) of the even mode in the cubic lattice are identical
to those in Fig.11, but that the two half-cycles c) and d)
of the odd mode are inverted compared to the previous
ones due to the cubic-tetragonal heterophase relaxation.
The proposed model is again consistent with the lower
frequency and much higher damping coefficient of the
even (in-phase) mode.

We now address the question of the coherence between
the in-phase and out-of-phase oscillations (even and
odd modes) of the system, a coherence that is essential
to the efficient transfer of energy between them. This
coherence is evidenced by the Fano-like asymmetry of
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the narrow resonance peak at higher temperature in
Region I and in the transition region III by the sharp
wedge between the two resonances in Fig. 3 at 48K
and 44K or in Fig. 5 at 72K and 68K (see circled
anti-resonances, as in Refs.[26, 27]). These characteristic
lineshapes are signatures of coherent effects and indicate
that the relaxation coupling the in-phase and out-of-
phase oscillations is not simply thermally activated but
assisted by those, both being excited coherently by the
same ac electric field. In Region I, the two modes are
coupled to each other via the 180◦ or π relaxation of the
PNRs, which is facilitated/assisted by the deformation
of the surrounding lattice and bar. In region III, where
the π relaxation is no longer active, the relaxation that
couples the two oscillation modes is now the structural
transformation of the surrounding lattice from cubic to
tetragonal, which is stress-induced by the piezoelectric
PNRs. This explains the 4.6 fold increase in the damping
of the driven primary oscillator in the purely classical
model and the doubling of both coupling coefficients in
the semi-classical model. Both are therefore coherent
effects.

The necessary condition for the observation of coupled
resonances such as those reported above in KLT is
the presence of piezoelectric polar nanodomains with
orientational degrees of freedom. These are in fact the
characteristic features of relaxor ferroelectrics. It is
therefore not surprising that similar resonances have also
been observed in other relaxors, KTa1−xNbxO3 (KTN),
PbMg1/3Nb2/3O3 (PMN) [12] and PbZn1/2Nb1/2O3

(PZN). The present report on the PNR-related res-
onances observed in KLT, and their analysis and
interpretation, should therefore contribute broadly to
a better understanding of the multiscale dynamics in
relaxor ferroelectrics, explaining how their macroscopic
properties emerge from their structural and dynamical
properties at the nano level.

Besides their contribution to a better understanding of
relaxor ferroelectrics, the above results may also be of a
general interest in Condensed Matter Physics. Relaxor
ferroelectrics are but one example of what can be called
coherent nanocomposites. Such systems are character-
ized by a nanometer scale local order that is structurally
coherent with the surrounding lattice, as in relaxor ferro-
electrics. Similar types of phenomena as those described
in the present paper are likely to be observed for instance
in nanocomposite magnetic systems.[30] The resonance
phenomena reported here may also be of interest at a
more general physical level. They are indeed concep-
tually similar to phenomena observed in very different
fields of physics, and in particular electromagnetically in-
duced transparency (EIT) in atomic physics. The dielec-

tric susceptibility spectra reported above in the relaxor
KLT near the phase transition are indeed almost iden-
tical to the optical susceptibility spectra resulting from
EIT in atomic vapors and reproduced here in Fig. 14 for
rubidium from Ref.[31] (compare with the KLT spectra
in Figs. 3, 4, 5 and 6).

FIG. 14. Imaginary (top) and Real (bottom) parts of the op-
tical susceptibility of an atomic rubidium vapor [31]. ωp is the
probe (laser) frequency, ω31 and γ31 the resonant frequency
and damping respectively of the primary transition (in KLT,
(1) would be the polarized state and (3) the in-phase strained
state of the PNRs-surrounding lattice system with state (2)
corresponding to the out-of-phase strained state). The dash
curve corresponds to the susceptibility of a usual two state
system (1-3), which does not exhibit EIT.

The physical model used to describe the resonance
phenomenon in KLT can in fact also be described
semi-classically by analogy with the formalism of EIT
for an atom with three discrete states (a ground state
(1) and two coupled excited states (2,3)) exhibiting two
closely spaced lifetime-broadened resonances that decay
to the same continuum [32] (see also [33]). In KLT,
the ground state corresponds to the polarized state and
the two excited states to the in-phase and out-of-phase
strained states of the PNR-surrounding lattice system.
The energy width of the two excited states is associated
with the damping of the oscillators in the classical model



13

and with the coupling strength of the two oscillators
to the continuum in the semi-classical model, both
contributing to the overlap between the states and
increased coherency between the two resonances. The
correspondence of the coherent dynamics of KLT and
other relaxors with EIT will be further explored in a
subsequent paper.

In conclusion, we have reported the observation and
provided a comprehensive explanation of pairs of cou-
pled resonances in the relaxor ferroelectric K1−xLixTaO3

(KLT). Similar resonances are also observed in other re-
laxors such as KTa1−xNbxO3 (KTN) but also PMN and
PZN. These resonances provide a window into the mul-
tiscale dynamics of complex oxides, from the nano- to
the macro- scale. They are shown to be associated with
two distinct oscillating configurations or normal modes
of the nanocomposite PNRs-surrounding lattice system,
coherently coupled to each other via a relaxation. The
observed spectra exhibit characteristic Fano lineshapes
which evolve rapidly through three temperature ranges,
due to the complex interactions between resonances and
relaxations. Despite this rapid evolution, the resonance
spectra are explained and fitted equally well over the
entire temperature range using either one of two mod-

els, a purely classical or a semi-classical model, each
highlighting a particular aspect of the system. Simi-
lar spectra are observed in other relaxors, pointing to
the generality of these results. It may also be worth
mentioning that other types of measurements have also
revealed Fano lineshapes in disordered relaxor ferro-
electrics, even though these have been observed in the
THz frequency range and may therefore have different
physical origins.[34, 35]. Finally, and of possibly broader
significance, the spectral lineshapes reported and ana-
lyzed in the present study are shown to be identical to
those observed in the optical spectra of atomic vapors as a
result of electromagnetically-induced transparency (EIT)
and the conceptual similarity between the two phenom-
ena is noted.
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