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Topological structural phases (TSP) of nontrivial winding number are of long-standing fundamen-
tal relevance in the theory of phase transition. However, for decades, no TSP have been discovered
in technological ferroelectric bulk solids. Here we formulate a generally-applicable scheme to create
TSP in ferroelectrics. The approach consists in selectively exciting phonon modes to produce the
targeted TSP, and can be employed to generate novel TSP that do not naturally exist in bulk materi-
als. We further demonstrate the effectiveness of this approach by creating in bulk SrTiO3 three TSP
structures, namely the flower, tetragonal-like vortex, and orthorhombic-like vortex phases. These
topological phases lead to the discovery of interesting properties, which include (i) a marked dif-
ference in the excitation stiffness of different topological phases, and (ii) the existence of symmetry
breaking between vortex phases.

Topological structural phases (TSP) have widespread
importance, ranging from Quantum Hall state[1, 2], spin-
lattice skyrmion[3], to two-dimensional gravity[4]. Hence
generating unusual TSP has been a topic of profound
interest for decades.[5] Among them, TSP—that can
be generated when solids are under external excitation
and yet do not exist under ambient condition—are of
particular relevance both fundamentally and technologi-
cally. Fundamentally, these TSP do not naturally exist
in ambient solids, and therefore can vastly expand (and
deepen) the existing knowledge of unknown structural
phases. Furthermore, controlled by external excitations,
these TSP may thus be turned on and off, which al-
lows the occurrence of unconventional phase transitions
and drastic tuning of properties. Moreover, the inter-
atomic interaction in TSP could be profoundly different
from that in bulk solids, providing microscopic insights
to study structure formation and structure transforma-
tion. Technologically, solids in TSP often display supe-
rior properties which are absent in normal solids, and
hence offer promise for new applications. For examples,
under X-ray illumination, Pr0.7Ca0.3MnO3 was discov-
ered to undergo pronounced phase transition from insu-
lator to metallic ferromagnetic state, displaying colossal
magnetoresistence.[6, 7] Similarly, an enhanced supercon-
ductivity was reported in YBa2Cu3O6.5 when the solid
is under terahertz optical pulse.[8]

According to the theory of topology, topological struc-
tural phases are characterized by the topological wind-
ing number, defined as the number of 2π by which a
vector-field order parameter rotates after having travelled
a loop of closed path.[5, 9] When the winding number is
nonzero, a topologically nontrivial structural phase ex-
ists, which is distinct from, and cannot be continuously
deformed into, a topologically trivial phase.[5, 9]

Ferroelectrics (FE) are an important class of solids
with spontaneous polarization[10], caused by the delicate
balance between long-range Coulomb and short-range co-
valent interactions[11]. The large dielectric response[12],
ultrahigh electromechanical coefficients[13, 14], existence
of unusual morphotropic phase boundary[15–18], strong
polarization proximity effect[19], and large coupling

between rotation and polarization[20–23] make them
unique for various applications.

In ferroelectrics, different phases are often obtained by
varying temperature. Structural phases such as cubic,
monoclinic, tetragonal, orthorhombic, and rhombohedral
phases may be achieved by change of temperature.[10]
However, the winding numbers of these phases are all
zero,[5] and are hence topologically trivial. Another
route of obtaining different structural phases in ferro-
electrics is to utilize the depolarization field in the low-
dimensional structures [24–29]; this approach is to be
named the “depolarization-field approach” (DFA). Obvi-
ously these low-dimensional phases in FE nanostructures
depend critically on the existence of depolarization field.
DFA nevertheless has two limitations: (i) The depolar-
ization field is hard to control precisely; (ii) In bulk solids
where depolarization fields vanish, this approach does not
apply.

Here we propose and implement a different approach
to create topologically nontrivial structure phases in fer-
roelectrics, which can vastly increase the number of pre-
viously unknown structural phases. Unlike previous ap-
proach of DFA [24–27], the current approach does not

require the existence of depolarization field, and is gen-
erally applicable for any ferroelectrics even when there is
completely no depolarization field. The present method
is rigorous and consists in generating the desired TSP by
excitation of selective phonon modes. To demonstrate
the validity of our method, we go one step further and
successfully apply the approach to bulk SrTiO3 (STO)
in which no depolarization field occurs, producing novel
structural phases that do not exist in bulk STO, such
as the flower state (which, to our knowledge, has not yet
been experimentally realized in ferroelectric bulks and/or
nanostructures.)

Furthermore, as one marked feature of importance, the
current approach allows to control the displacements of
individual atoms. We find in this study that excitation of
a combination ofX5 mode at 129.3 cm−1 andX1 mode at
284.5 cm−1 in SrTiO3 generates a FE vortex (of winding
number 1) in which Ti atoms move along the tetrago-

nal direction, and in contrast, excitation of X5 mode at
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129.3 cm−1 alone nevertheless gives rise to a remarkably-
different FE vortex in which Ti atoms move along the
orthorhombic direction. Moreover, our study reveals in-
triguing physics about ferroelectric TSP: (i) There is a
possibility that phase transformation may exist between
different ferroelectric states of curled polarization; (ii)
Two similar TSP states could have surprisingly different
energetics. Combinations of these results demonstrate
that there is interesting and rich physics to be learnt
about TSP in ferroelectrics.

Let us first describe the topological ferroelectric phases
that we intend to generate; none of these phases exist in
bulk SrTiO3. We begin with SrTiO3 at room tempera-
ture (which is cubic), and intend to create topologically
nontrivial structures within 2× 2× 1 supercell. Further-
more, we require that the displacements of Ti atoms in
TSP form unusual patterns as displayed in Fig.1(a)-(c).
The reason we choose to work with SrTiO3 at room tem-
perature is that the costly cooling process becomes un-
necessary for creating TSP. The TSP in Fig.1(a)-(c) ex-
hibit the following features: (i) The Ti atoms in Fig.1(a)
move collectively toward the center of the supercell, form-
ing a flower state. This state is to be abbreviated as
the “F” state. (ii) The Ti atoms in Fig.1(b) are si-
multaneously displaced along the 〈100〉-equivalent direc-
tions in the respective bulk cell of each Ti atom, forming
a polarization vortex phase. In this phase, since each
Ti atom moves toward the “tetragonal” direction, this
vortex state will be named as the tetragonal-like vortex
state, to be denoted as “T V state”. (iii) The Ti atoms in
Fig.1(c) form another vortex-like state; unlike the vortex
state in Fig.1(b), the Ti atoms in Fig.1(c) move along
the 〈110〉-equivalent directions (which is to be named as
an orthorhombic-like vortex state, abbreviated as “O V
state”).

Here it worths pointing out that at this moment we
only know the displacements of Ti atoms, and the posi-
tions where Sr and O atoms will be located are not yet
known. The displacements of those atoms other than
Ti must be determined by the principle of constrained
energy minimization. Furthermore, we would like to
emphasize that, unlike in FE nanostructures or at FE
interfaces[28, 29], there is no depolarization field in FE
bulks, and therefore, generating topological FE phases or
vortex-like FE ordering with nonzero topological wind-
ing number in bulk (such as the T V and O V phases
in Fig.1) is highly nontrivial. Although interesting elec-
tric skyrmions and other topological phases were recently
proposed in multi-domain solids[30], very few topological
ferroelectric phases have been discovered so far in single-
domain bulks where depolarization field vanishes.

Our approach consists of three steps. The validity
of these steps is confirmed by many TSP we have gen-
erated, in addition to those in Fig.1. First, we de-
termine where other atoms should be located in re-
sponse to the designated topological pattern of Ti dis-
placements, by performing a constrained first-principles
total-energy optimization in which the positions of Ti

atoms are constrained. This is done by the density func-
tional theory[31] (DFT). It leads to the optimized po-
sitions of other atoms within the constrained subspace,
which should lower the excitation energy for the targeted
TSP. Denote the atomic positions after optimization as
r′opt(l

′ζ′α), where l′ is cell index, ζ′ is atom index within
a cell, α is the direction index of cartesian coordinate.
Since TSP is often a super-structure with different lattice
periodicity than the bulk solid [e.g., as in Fig.1(a)-(c)],
we denote the periodic lattice of the TSP super-structure

as ~R′
l′ = l′1~a

′
1 + l′2~a

′
2 + l′3~a

′
3, where l

′
i are integers, and

~a′1 = 2a0~i, ~a
′
2 = 2a0~j, and ~a′3 = a0~k are lattice vec-

tors of TSP (with a0 being the lattice constant of cubic

SrTiO3, and ~i, ~j, ~k being unit vectors along the cubic
[100], [010], [001] directions). Meanwhile, denote the pe-

riodic lattice of bulk as ~Rl = l1~a1 + l2~a2 + l3~a3 (where

~a1 = a0~i, ~a2 = a0~j, and ~a3 = a0~k are the lattice vectors of
bulk). Symbols with prime describe quantities belonging
to the TSP super-structure, and symbols without prime
describe quantities belonging to bulk.[32]
From the optimized atomic positions r′opt(l

′ζ′α) ob-
tained in constrained minimization, we determine the
atomic displacements of the TSP super-structure with
respect to the centrosymmetric configuration of zero po-
larization as d′(l′ζ′α) = r′opt(l

′ζ′α) − r′c(l
′ζ′α), where

r′c(l
′ζ′α) is the atomic position of centrosymmetric con-

figuration. We further construct a normalized vec-

tor as e′(l′ζ′α) = 1
A

√

Mζ′

N ′
d′(l′ζ′α), in which |A|2 =

1
N ′

∑

l′ζ′αMζ′ |d′(l′ζ′α)|2 is the normalization factor,Mζ′

is atomic mass, and N ′ is the number of TSP supercells
in the solid.
Second, we use linear response perturbation theory[34–

36] to determine for bulk solids the phonon eigen-
modes e

n~k
(lζα) and phonon displacements [u

n~k
(lζα) =

1√
Mζ

e
n~k
(ζα)ei

~k·~Rl ] at branch n and wave vector ~k. We

then project the vector e′(l′ζ′α) of the super-structure of
TSP using the phonon displacements u

n~k
(lζα) of bulk as

e′(l′ζ′α) =
∑

n~k

C
n~k

{

√

Mζ

N
u
n~k
(lζα)

}

, (1)

in which l′ζ′α and lζα correspond to the same displace-
ment direction of the same atom. N is the number
of bulk cells in the solid. Eq.(1) is possible since dis-

placements u
n~k
(lζα) of bulk phonons at different n~k

form a complete basis. Using the orthonormal proper-
ties 1

N

∑

lζα Mζ u
∗
n1

~k1

(lζα)u
n~k
(lζα) = δn1nδ~k1

~k
, one can

determine C
n~k

as

C
n~k

=
∑

lζα

√

Mζ

N
u∗
n~k
(lζα)e′(l′ζ′α) . (2)

C
n~k

reveals which phonon modes need be excited in order
to form the desired TSP. It is straightforward to prove
that C

n~k
satisfy the identity equation

∑

n~k
|C

n~k
|2 = 1,

which is also confirmed in our numerical calculations.
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As a third step, we reconstruct new TSP with atomic
displacements d̃′(l′ζ′α) by selectively exciting a subset of
nonzero-C

n~k
bulk phonons according to

√

Mζ′

N ′
d̃′(l′ζ′α) =

∑

n~k

Q
n~k
C

n~k

{

√

Mζ

N
u
n~k
(lζα)

}

, (3)

where excitation weight Q
n~k

can be chosen by adjust-

ment of the excitation intensity at different n~k. If Q
n~k

is chosen to be uniform (i.e., Q
n~k

= Q), the desired TSP
is obtained. If Q

n~k
is chosen to be inhomogeneous (i.e.,

Q
n~k

depends on n~k), other TSP structures of sub-group
symmetry will be obtained.
Technically we perform the constrained structural op-

timization using first-principles density functional the-
ory within the local density approximation (LDA) via
QUANTUM ESPRESSO.[37, 38] Norm-conserving pseu-
dopotentials of Troullier-Martins type[39] are used to ac-
count for the effects of core electrons. Semi-core states
of Ti 3s and 3p are treated as valence states to ensure
better accuracy.[40] The cut-off energy for wave function
expansion is 100Ry, which was found sufficient in calcu-
lations of various properties such as lattice vibration un-
der finite electric fields[41], effects of vacancies[42], and
rigorous computing of LO/TO splitting[43]. To deter-
mine phonon frequencies and eigenmodes, we use den-
sity functional perturbation theory[34, 35] (DFPT) and
linear response calculations, in which the perturbation-
induced changes in wavefuntions are obtained by solving
the Sternheimer equation (Hscf−εn)|∆ψn〉 = −(∆Vscf−
∆εn)|ψn〉 , where Hscf is the Kohn-Sham Hamiltonian
of unperturbed system, εn is single-particle eigenvalue

of Hscf , and ∆Vscf (r) = ∆V (r) + e
∫ ∆n(r′)

|r−r′| dr′ +
dvxc(n)

dn

∣

∣

∣

n=n(r)
∆n(r) is the self-consistent perturbation

potential. With atomic displacements of a topologi-
cal structure phase (obtained from constrained struc-
tural optimization) and bulk-phonon eigenmodes (ob-
tained from linear response calculations), two in-house
computation codes are written to perform phonon pro-
jection and to reconstruct new topological structures gen-
erated by selective excitation of phonon modes.
The atomic displacements, obtained from constrained

DFT structural optimization, are shown in Fig.1(a)-(c)
for the F, T V, and O V phases, respectively. During
the structural optimization only the displacements of Ti
atoms are constrained, while other atoms are allowed to
relax. For all three considered TSP in Fig.1, we find that
the displacements of Sr atoms are rather small and are
thus not shown.
Fig.1(a)-(c) reveals two interesting observations: (i) In

the F phase (Fig.1a) and T V phase (Fig.1b), despite the
fact that the Ti displacements are drastically different
(namely they are centripetal in the F phase, but are cir-
cularly rotating in the T V phase), the displacement pat-
terns of O1-O4 atoms are nevertheless remarkably simi-
lar, and in particular, all of them move toward the center

of the 2×2× 1 supercell, showing that different patterns
of Ti displacements may lead to surprisingly similar pat-
terns in O displacements. This plays an important role
in determining the energetics of topological ferroelectric
phases (see below). (ii) On the other hand, although the
Ti displacements in T V and O V phases (Fig.1b and
Fig.1c) are similar—and in both phases are circularly ro-
tating, the displacements of O atoms are, however, no-
tably unlike. Interestingly, while the displacements of
O1-O4 atoms in Fig.1c form a vortex, the displacements
of O1-O4 in Fig.1b do not. The fact that the O1-O4
atoms do not form a vortex in Fig.1b also demonstrates
that the local off-center displacements of atoms may con-
siderably differ from the global topology of TSP. It is
thus unjustified to assume that the displacements of each
atomic species are conformed with the global topology.

As described above, topological structural phases can
be characterized by the topological winding number. Ex-
amining the displacement vectors of Ti on a circle con-
necting the four Ti atoms in Fig.1(a)-(c), it is straight-
forward that the winding numbers of all three structural
phases are +1.[5, 9] Therefore, the F, T V, and O V
phases are topologically nontrivial structures, which are
stable as long as excitation remains.

We have also determined the topological winding num-
bers of the considered TSP, by computing the local po-

larization of each 5-atom bulk cell, defined as ~Ploc(c) =
1
Ω

∑

iǫc Z
∗
i ∆~ri, where c is the index for 5-atom bulk cells,

i is the atom index, Ω is the volume of a bulk cell, Z∗
i is

the Born effective charge tensor, and ∆~ri is the displace-
ment of atom i. Since the three topological phases all

have a four-fold C4 rotation symmetry, the local ~Ploc(c)
polarizations of the four bulk cells in Fig.1(a)-(c) are sym-

metry related. We will thus present ~Ploc(c) in the bulk
cell at the bottom left of the supercell in Fig.1(a)-(c),
and this bulk cell is to be called bulk cell I.

We find that, for the O V phase in Fig.1(c), when the
magnitude of Ti displacement is 0.1 Å, the local polar-

ization in bulk cell I is ~Ploc = (0.118,−0.118, 0) C/m2,
where the Cartesian x, y, z directions are along the cubic
[100], [010], [001] axes, respectively. This tells that (i)
~Ploc is nonzero, and each bulk cell is thus ferroelectric;

(ii) ~Ploc points at the direction of Ti displacement in the
cell; (iii) After using the C4 symmetry, we find that the
topological winding number for the O V phase, obtained

from the ~Ploc polarizations, is +1 in Fig.1(c) (which is
the same as that obtained from the Ti-displacement vec-
tors), showing that the phase is indeed topologically non-
trivial. Similar conclusions are also valid for the F and
T V phases, where the local polarization in bulk cell

I is ~Ploc = (0.083, 0.083, 0) C/m2 for the F phase and
~Ploc = (0.157,−0.039, 0) C/m2 for the T V phase, when
the magnitude of Ti displacement is 0.1 Å.

It is worthy of noticing that the vortex size of Ti dis-
placements in Fig.1(b) and (c) is markedly small—only
four bulk cells with a length of merely 0.77nm, which is
smallest ferroelectric vortex that has been discovered so
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far (to the best of our knowledge). The tiny FE vortices
found in Fig.1 promise to produce an ultrahigh density of
ferroelectric memories on the order of 103 Terabits/inch2,
which is approaching the ultimate limit of FRAM.[44]

The vortices obtained in Fig.1 for bulk solids differ pro-
foundly from the FE vortices previously reported in FE
nanodots[28], in two important aspects: (1) The FE vor-
tex in nanodots was determined using effective Hamilto-
nian which involves only soft mode. Since a soft mode
consists of a frozen amount of contribution from each in-
dividual atom in bulk cell[45], the displacements of each
species of atoms (such as O) therefore also form a vor-
tex. In contrast, the FE vortex, obtained from ab initio

calculations, reveals that the displacements of individual
species do not necessarily form a vortex as demonstrated
by the O atoms in Fig.1(b), which will significantly alter
both lattice and electronic properties. (2) Our results
show that FE vortex does not even need to originate
from soft modes. For instance, in T V phase (Fig.1b),
the peculiar displacements of the Ti and O1 atoms in
the top-left cell are not related to the soft mode at Γ or
the rotational-instability mode at M .

We next turn attention to determining what phonon

modes and at which specific ~k points in bulk SrTiO3

need be excited in order to generate the topological
phases in Fig.1(a)-(c). By using the group theory of
translational symmetry,[46] we find that only the lattice-
vibration modes at two phonon wave vectors in bulk

SrTiO3, namely ~k1 = 2π
a
(0, 12 , 0) and ~k2 = 2π

a
(12 , 0, 0),

contribute to forming the topological F, T V and O V
phases, which is consistent with the fact that the super-
cells of these phases have a lattice periodicity of 2×2×1.

Since ~k1 and ~k2 are symmetry equivalent, we will mainly

focus our discussion on ~k1.

The bulk phonon modes at ~k1 are 2X5′ ⊕3X5⊕2X4′ ⊕
X2 ⊕ 2X1, according to the irreducible representation
of group theory. The X5′ and X5 are doubly degener-
ate, and other modes are singly degenerate. The fre-

quencies of bulk phonons at ~k1, obtained from our linear
response calculations, are 108.4 and 318.5 for two X5′

modes, 129.3, 174.4, and 527.4 for three X5 modes, 170.4
and 776.1 for two X4′ modes, 281.1 for X2, 284.5 and
542.5 for two X1 modes (all frequencies are in units of
cm−1). These mode frequencies are plotted in Fig.2(a).

The modes—that need be excited at ~k1 in order to gen-
erate each considered TSP—and their quantitative |C

n~k
|2

contributions are shown in Fig.2(b)-(d). For the sake of
visualization, the |C

n~k
|2 contributions in Fig.2(b)-(d) are

Gaussian broadened, with a broadening width of 5.25
cm−1. After excitation, it is numerically confirmed by
Eq.(3) that the computed atomic displacements exactly
match those TSP in Fig.1(a)-(c).

Rather remarkably we find that, to generate the
unusual TSP, no complicated phonon excitations are
needed. Instead, a few modes are sufficient to meet the
goal. According to our calculations, to create the flower
(F) state, only a predominating X1 mode at frequency

ω=284.5 cm−1, with a minor contribution from another
X1 mode at ω=542.5 cm−1, is needed (see Fig.2b). Even
the complex T V phase and the O V phase with pecu-
liar atomic-displacement patterns also require only a few
modes: two predominating modes (X5 at 129.3 cm

−1 and
X1 at 284.5 cm−1) need be excited in order to gener-
ate the T V phase (Fig.2c),[47] and to produce the O V
phase, one predominating mode (X5 at 129.3 cm−1) is
sufficient (Fig.2d).

Selective excitation of phonon modes cannot be
achieved by temperature, since thermal excitation is ran-
dom, and will affect all phonons at every wave vector.
The random excitation is cancelled and will not cause
TSP. To generate TSP, one possible approach is to use
neutrons of definite energy and momentum. By momen-
tum and energy conservations, one can excite specific vi-
bration modes at specific phonon wave vectors.

It is interesting that the F phase is formed by exciting
the singly degenerated X1 modes (Fig.2b). But the O V
phase must be created by exciting the doubly degenerated
X5 modes (Fig.2d). Furthermore, since both T V and
O V phases are vortex-like structures and have similar
Ti-displacement patterns (Fig.1), intuition tells us that
their phonon modes of excitation should be similar. How-
ever, Fig.2c and Fig.2d reveal that the excitations to gen-
erate the T V and O V phases are notably different. Un-
like the O V phase that requires only doubly-degenerate
X5 excitation (Fig.2d), the T V phase is formed by mix-
ing the doublet X5 and singlet X1 modes (and both com-
ponents are significant in Fig.2c).

The difference in the mode excitations of three topo-
logical phases originates from the fundamental difference
in crystallographical symmetry. By examining the space
group of atomic positions,[48] we have identified the crys-
tal symmetry of each TSP. We find that the F phase
has a symmorphic crystal symmetry of P4/mmm (space
group 123); the T V phase has a symmorphic crystal
symmetry of P4/m (space group 83); the O V phase has
a non-symmorphic crystal symmetry of P4/mbm (space
group 127). The two circularly-polarized phases (T V
and O V) are thus found to have different crystal sym-
metries. This finding is of important implication for the
following reason. It is known that one key criterion of
judging whether or not a phase transition exists is by
the breaking of symmetry.[49] Since the T V and O V
phases have different symmetries, the transformation be-
tween these vortices is thus a phase transition.

Two possible approaches may realize the transition
from the O V to T V phases: (i) One approach is by
rotating the Ti displacements from the orthorhombic di-
rection to the tetragonal direction. This can be achieved
by excitation of additional phonons (which rotate the Ti
displacements) or by external electric fields. (ii) Another
approach is to utilize the intermediate cubic phase, by
first turning off the phonon excitation of the O V phase
so that the structure returns to the cubic phase, and then
turning on the phonon excitation of the T V phase which
will make the structure transform from the cubic phase
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to the T V phase.

Switching of a topological vortex state is also possi-
ble. Consider a FE vortex state with toroid moment
+ ~G. Its degenerate state is a vortex with an opposite

toroid moment -~G. Switching can be realized by turning

off the phonon excitation of + ~G (so that the system is
transformed to the cubic phase) and then turning on the

phonon excitation of -~G (so that the toroid moment is
switched).

We now investigate the energetics of different topolog-
ical phases. Here we are interested in the uniform exci-
tation, namely the circumstance that Q

n~k
in Eq.(3) is a

constant (Q
n~k

= Q) independent of n~k, which perhaps is
the most important scenario that can be implemented in
experiments by uniformly adjusting the excitation inten-
sity. Obviously the energy to excite a TSP depends on
the amplitude Q, for Q describes how far the TSP devi-
ates from the unexcited structure. Fig.1(d) depicts the
excitation energies as a function of Q for three consid-
ered TSP, obtained from DFT total-energy calculations
on the TSP reconstructed using Eq.(3).

We numerically find that the excitation energy can be
well described analytically by formula ∆E = a2Q

2 +
a4Q

4 + a6Q
6, which is witnessed by the fitting curves

in Fig.1(d). Another merit of this analytical expression
is that it yields quantitatively the stiffness of topological
excitation, characterized by the a2 coefficient. The ob-
tained a2, a4 and a6 coefficients are respectively 2.8209,
0.1987, 0.0067 eV for the F phase; 1.8282, 0.4187, -0.0157
eV for the T V phase; and 0.4748, 0.4857, -0.0949 eV for
the O V phase. These coefficients reveal that the stiff-
ness of the F phase is the highest among the three phases,
with its a2 value to be nearly 600% times that of the O V
phase. In contrast, the O V phase is soft, requiring the
least excitation energy. Furthermore, our first-principles
results predict that, for the O V phase, the higher-order
a4 coefficient is significant (and in fact, is comparable
with a2), showing that the anharmonic effect is particu-
larly important for this phase.

Without excitation of phonons, the ground state of
SrTiO3 at room temperature is cubic (the energy of
which is denoted as E0), and the TSP are not the lowest
energy state and will have a finite lifetime before relax-
ing to the ground state. However, with the excitation of
phonons, the energy Eext of external excitation (i.e., the
sum of the energies of all phonons excited) is absorbed
by SrTiO3. After absorption, the total energy of SrTiO3

is E0 + Eext. With respect to E0 + Eext, the TSP have
a lower energy, and are stable as long as the excitation
remains.

It is straightforward that the F phase in Fig.1(d)
should have a high excitation energy since, by moving
concentrically toward the center of supercell, Ti ions
which are positively charged will trigger strong Coulomb
repulsion and thus increase the energy.

However, it is rather surprising that the energy of
the T V phase in Fig.1(d) is markedly higher, by over

100%, than that of the O V phase for a given Q.
Both being circularly-polarized and possessing similar Ti-
displacement patterns (Fig.1b and c), the T V and O V
phases are anticipated to exhibit similar excitation ener-
getics. But our ab initio results show otherwise, which is
interesting and meanwhile puzzling.

We now provide microscopic insight to explain the con-
siderable difference in energy between the T V and O V
phases. The difference can be understood by the sub-
tlety in local environment and local depolarization field.
Note that the O displacements form a vortex-like struc-
ture in the O V phase (Fig.1c), but not in the T V phase
(Fig.1b). In T V phase (Fig.1b), although Ti displace-
ments are vortex-like, the O displacements display in-
stead an unusual head-to-head pattern. This head-to-
head O pattern gives rise to strong local depolarization
field and increases the energy, which explains why the
T V phase has significantly higher energy than the O V
phase.

The relative energetics of three TSP in Fig.1(d) are
consistent with the outcome of phonon excitations. As re-
vealed in Fig.2(b)-(d), the (high-energy) F phase mainly
consists of the excitation of X1 mode at a high frequency
of 284.5 cm−1—and in contrast, the (low-energy) O V
phase consists of predominantly the excitation of the X5

mode at a lower frequency (129.3 cm−1). It signals a cor-
relation between the energy of TSP and the frequencies
of phonon modes that need be excited, as it should.

The current approach of generating TSP offers consid-
erable advantages. (a) In bulk FEs, structure phases are
often obtained by varying temperatures.[10] However, the
number of structural phases that can be obtained by tem-
perature is rather limited. Only a handful of structural
phases such as cubic, tetragonal, monclinic, orthorhom-
bic, and rhombohedral phases have been achieved. In
contrast, the method implemented in this study can gen-
erate many novel structure phases that do not exist in
bulks. (b) The current method of generating TSP is su-
perior than the previous DFA approach of utilizing depo-
larization, for depolarization fields are difficult to control.
Furthermore, since the current approach of phonon exci-
tation applies to any bulk FEs, it can thus vastly expand
the range of materials that host topological ferroelectric
phases. DFA does not work for bulk. (c) Although phase
transformations between two structures of different po-
larizations (e.g., between rhombohedral and tetragonal
phases via polarization rotation[13, 14]) have been amply
studied, transitions between two topological FE phases
with nonzero winding numbers are far less explored. This
may open a new field to study phase transformations,
which should broaden our knowledge on the fundamen-
tal theory of phase transition.

In summary we have formulated a scheme to generate
technologically-important and topologically-nontrivial
structure phases in ferroelectrics by selective excitation
of phonon modes. The approach (i) can be applied to
any ferroelectrics and is thus general; (ii) is able to cre-
ate novel and previously unknown structure phases that



6

do not naturally exist in bulk FEs, which allows funda-
mental knowledge to be gained on atomic interactions in
new phases; (iii) is rigorous since bulk phonon modes are
complete in forming any topological structures.
By taking a step further and implementing the method

on SrTiO3, we discovered that only a very few modes are
needed in order to generate the F, T V, and O V phases,
which are topological phases with winding number of 1.
Among them, the F phase has not yet been experimen-
tally realized in either bulk FEs or nanostructured FEs,
and meanwhile, the T V and O V phases are smallest fer-
roelectric vortices found thus far, promising for ultrahigh
density of ferroelectric memories. Our results show that
(1) FE vortex phases need not result from soft modes,
and (2) individual species of atoms (e.g. O atoms) may
defy conventional wisdom by not possessing vortex-like
displacements in vortex phase.
We further demonstrated a marked difference in the

excitation stiffness between the T V and O V phases.
The difference can be microscopically attributed to lo-
cal depolarization field caused by the head-to-head oxy-
gen displacements in the T V phase, revealing the crit-
ical importance of local structure. Moreover, the T V
and O V phases are found having distinct symmetry, sig-
naling that transformation between different topological
phases is thus a new type of phase transitions. Based
on the fact that topologically nontrivial structure phases
in ferroelectrics are fundamentally interesting and poorly
understood, we hope that the current study will stimu-
late more theoretical and experimental interest in this
exciting field.
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FIG. 1: Top view (along the crystallographic [001̄] direction of
perovskites) of the atomic displacements on the TiO2 plane,
for the following topological structure phases: (a) the F phase,
(b) the T V phase, and (c) the O V phase. The locations of
O atoms in (a)-(c) are labelled for the sake of discussion.
The total energy as a function of excitation amplitude Q is
shown in (d). In (d), symbols are results obtained from direct
DFT calculations using the atomic positions reconstructed
from Eq.(3), and curves are obtained from analytical fitting.
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FIG. 2: (a) The ω frequencies (in cm−1) of phonon modes at
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modes at ~k1 to the formation of the following topological
structure phases: (b) the F phase, (c) the T V phase, and
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