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Field quantization in high curvature geometries help understanding the elastic and inelastic scat-
tering of photons and electrons in nanostructures and probe-like metallic domains. The results
find important applications in high-resolution photonic and electronic modalities of scanning probe
microscopy, nano-optics, plasmonics, and quantum sensing. We present a calculation of relevant
photon interactions in both hyperboloidal and paraboloidal material domains. The two morpholo-
gies are compared for their plasmon dispersion properties, field distributions, and radiative decay
rates, which are shown to be consistent with the corresponding quantities for the finite prolate
spheroidal domains. The results are relevant to other material domains that model a nanostructure
such as a probe tip, quantum dot, or nanoantenna.

I. INTRODUCTION

Materials confined to microscopic elongated ”probe-
like” domains, in addition to having been tremendously
enabling in various forms of scanning probe microscopy
(SPM), hold great potential for emerging applications in
fields such as quantum sensing [1–4]. Recent interest in
the properties of such tip-shaped material domains is re-
flected in the demonstration of laser pulse induced elec-
tron emission from a gold solid tip under grating cou-
pled plasmon excitation [5–7]. These applications make
use of the excitation and resonant properties of surface
modes on bounding surfaces and interfaces of metallic,
dielectric, and metallo-dielectric domains that take the
form of a tip [8]. Examples of systems that use a probe
tip include scanning tunneling microscope, photon scan-
ning tunneling microscope, apertured and apertureless
nearfield scanning optical microscope, nanoantennas, and
processes such as tip-enhanced spectroscopy and lithog-
raphy. The intriguing excitations, typically studied near
the tip apex, are expected to receive contributions not
only from stationary modes, such as those occurring at
the surfaces of finite nanoparticles, but also from non-
stationary modes propagating at the infinite interfaces.
The theoretical and modeling tools for investigating the
response of these systems and their dependence specif-
ically upon the geometric characteristics have been in-
dispensable in the development of these applications. In
particular, analytical techniques that lend themselves to
provide complete or partial information on the system
are often regarded as necessary not only for obtaining the
system response (e.g., energy distribution in the nearfield
of the nanoparticles), but also for elucidating the inner
working of the systems (e.g., the contributing eigenstates
and eigenvalues). Calculation of geometric and material
dependencies of surface mode excitation, decay and scat-
tering on the bounding surfaces of nanoscale domains are
both instructive and necessary for better design and fab-

rication.

Here, we investigate the radiative decay rate of plas-
mons by quantizing the surface modes engendered on the
surface of a metallic probe modeled as one sheet of a two-
sheeted hyperboloid of revolution, shown in Fig. 1(a).
This geometry offers an elegant adaptability not only
for the description of the local curvature of a fabricated
probe but also for the modeling of nearly planar inter-
faces [8]. In addition, it has the property that the hy-
perboloidal domain translates along its symmetry axis
when changing the opening angle θ0, that is, smaller
µ0 = cos θ0, yields smaller gap zmin, the apex distance to
origin o in Fig. 1(a). To provide a basis for comparison,
we quantize the surface charge density oscillations on the
useful system of a paraboloid of revolution, which offers
a similar apex morphology but a different asymptotic be-
havior away from the apex. Importantly, the apex and
off-apex curvature of a paraboloid of revolution presents a
more natural topology for comparison of its spectral and
scattering properties with that of a finite body of similar
curvature, e.g., a spheroidal domain. Therefore, for the
sake of validation, we extend our investigations to also
study the radiative decay of plasmons excited on a pro-
late spheroid, which owing to its finite volume presents a
more tangible system.

Our presentation is organized as follows. In sec-
tion II, we treat the paraboloidal plasmons. Here, within
the quasi-static framework, representing the material
domain with a frequency-dependent dielectric function,
we derive the nonretarded plasmon dispersion relations,
eigenmodes, and fields. From the classical energy of
paraboloidal charge density oscillations, we then derive
the Hamiltonian of the system. We then proceed to
quantize the plasmon field and, employing an interaction
Hamiltonian derived from the first order perturbation
theory within the hydrodynamic model of an electron
gas [9, 10], obtain an analytical expression for the radia-
tive decay rate of the plasmons. Having established the
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full treatment of the paraboloidal system, in section III,
we proceed to investigate the quantized charge density
oscillations on the surface of one sheet of a two-sheeted
hyperboloidal of revolution. In both these sections the
use of non-retarded potentials and dispersion relations is
justified due to the sub-wavelength dimension of the tip.
In section V, we discuss our findings and compare both
the paraboloidal and hyperboloidal results. An interest-
ing comparison of the paraboloidal domain can be made
with respect to the surface modes and radiation patterns
of a prolate spheroid, a finite geometric domain highly
suitable for modeling of nanoparticles such as a quantum
dot. In specific cases, we further validate the results us-
ing computational techniques to obtain the lower energy
eigenmodes and farfield radiation patterns. Concluding
remarks are provided in section V.

II. PLASMON EXCITATION AND RADIATIVE
DECAY ON PARABOLOIDAL SURFACES

Quantum calculations that take into account the ge-
ometric effects of the bounding surfaces of the material
domains are important to corroborate experimental ob-
servations in nanophysics. Here, our goal is to calculate
the probability amplitude that a surface plasmon in a
given initial state, engendered near the apex region of a
probe-shaped material domain, will emit a photon into a
given final state. To model a tip-like domain, we consider
a surface of revolution about the z–axis resulting in the
usual azimuthal symmetry. Using two parameters r and
β, such a surface can be parametrized as [11]:

r = r(r, β) = r cosβ~i+ r sinβ~j + f(r)~k,

for any explicit equation of a surface of revolution writ-
ten as z = f(r), where r =

√
x2 + y2. Here, we will em-

ploy three specific cases of surfaces of revolution: a sin-
gle sheet of a two-sheeted hyperboloid, a paraboloid, and
a prolate spheroid. Fig. 1(a) shows an example hyper-
boloid. In the following, we will first treat a paraboloid,
for which we begin by seeking pertinent classical quanti-
ties.

A. Nonretarded potential, dispersion relations, and
classical energy of surface charge density

We consider a vacuum-bounded solid paraboloid of
revolution defined by η = η0, via the coordinates (ξ, η, ϕ)
given in Eqs. (A-1) and (A-2). Denoting the frequency
ω dependent dielectric function of the paraboloidal ma-
terial domain with ε1(ω), we set the outside medium di-
electric constant ε2 = 1, noting that for a general case
we may retain ε2 as a parameter. The quasistatic scalar
electric potential Φ is continuous everywhere in the space
and satisfies the Laplace equation everywhere except on

FIG. 1: Modeling systems and their potential distributions.
(a) One sheet of a two-sheeted hyperboloid of revolution mod-
eling a nanotip or a nanostructure with local curvature. Sur-
face modes of momentum κ, e.g., excited by incoming photons
hω, decay radiatively into a solid angle dΩ. The curvature of
the tip apex is set by the µ0 defining the hyperboloidal sur-
face. Here, µ0 = cos θ0, where θ0 is the angle between the z
axis and an asymptote to the hyperboloidal surface such that
small θ0 yields a sharp probe while θ0 → π/2 corresponds
to xy plane. The apex point zmin = z0µ0, near the focal
point of the hyperboloid, is set by the scale factor z0, as in
Eq. (B-1). Figures (b), (c) and (d) show the spatial distribu-
tion of the lowest lying eigenmodes of the quasi-static electric
potential for the three modeling domains investigated. For
the same mode index m, optimizing the apex curvature over-
lap within the same spatial zx domains, and analysing the
potential distribution, leads to the determination of the cor-
responding continuous eigenvalues λ of the paraboloid (b) and
q of the hyperboloid (d), respectively, as well as the discrete
eigenvalue l of the prolate spheroid (c). The geometric pa-
rameters η0, µ0, and ζ0 determines the form of the considered
domains.

the boundary surface η = η0. Employing the Lapla-
cian in Eqs. (A-3)–(A-5), and considering the two re-
sulting Sturm-Liouville problems Eqs. (A-4) and (A-5),
with unbounded domain η, ξ ∈ [0,∞) lead to a continu-
ous spectrum of real eigenvalues and eigenfunctions [12]
in terms of Bessel and modified Bessel functions given
by Eqs. (10.3.64) and (10.3.65)[13]. Using the fact that
the potential is bounded on the z-axis and vanishes as
r → ∞, together with the asymptotic behavior of the
Bessel functions [14, 15], we denote the potentials with
Φi and Φo, for the interior and the exterior domains, re-
spectively, and utilize the Heaviside function Θ with the
half-maximum convention Θ(0) = 1

2 to write the total
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potential as:

Φ(r, t) = Θ(η0 − η)Φi(r, t) + Θ(η − η0)Φo(r, t),

or explicitly:

Φ(r, t) =
∑
m,p

Spm(ϕ)

×
∫ ∞

0

Amλp(t)Jm(λξ)

[
Θ(η0 − η)Im(λη)Km(λη0)

+ Θ(η − η0)Im(λη0)Km(λη)

]
dλ, (1)

where m = 0, 1, 2, · · · , and p = 0, 1, while Amλp(t) are
the time t dependent amplitudes to be determined by
the boundary conditions, and {Spm(ϕ)} indicate the az-
imuthal symmetry of the eigenmodes, explicitly:

Spm(ϕ) = (2− δ0m)δ0p cosmϕ+ δ1p sinmϕ,

satisfying the orthogonality relation given in Eq. (A-16).
Thus, p determines the parity of the solutions. We also
note that Eq. (1) guarantees the continuity of the po-

tential across the boundary η = η0. With ~∇2Φ = 0 for
η < η0 and η > η0, see Eqs. (A-6)–(A-9), noting that the
derivative of Heaviside function is the Dirac delta func-
tion δ(x), the Poisson equation for the surface charge
density σ at the boundary surface η = η0 implies:

~∇2Φ =
δ(η − η0)

a2(ξ2 + η2)

(
∂Φo

∂η
− ∂Φi

∂η

)
= −4π

hη
σδ(η − η0),

(2)
where hη, given by Eq. (A-2), is a scale factor of the
paraboloidal system. Therefore, solving for the charge
density (following Eqs. (A-10)–(A-12)), we obtain:

σ =
1

4πaη0

√
ξ2 + η2

0

∑
m,p

Spm(ϕ)

∫ ∞
0

Amλp(t)Jm(λξ)dλ.

(3)
If we now let n0 denote the number density of free elec-
trons (mass me and charge −e) in the paraboloidal do-
main, and ~u denote the charge displacement vector, then
from the definition of the polarization, the surface charge
σ can be written as σ = −en0~u · êη|η0 . Furthermore, the

equation of motion for the electrons is given by me~̈u =

e~∇Φi. Thus, we have 4πσ̈ = −ω2
p

(
êη · ~∇Φi

)∣∣∣
η=η0

, and

it follows that:

σ̈ = −
ω2
p

4πa
√
ξ2 + η2

0

∑
m,p

Spm(ϕ)

×
∫ ∞

0

λAmλp(t)Jm(λξ)I ′m(λη0)Km(λη0) dλ. (4)

Differentiating the charge density in Eq. (3) twice with
respect to time t and equating it with Eq. (4), it follows

from the orthogonality of system {Spm}m,p that for each
fixed m and p:∫ ∞

0

Jm(λξ)
[
Ämλp(t) + ω2

mλAmλp(t)
]
dλ = 0, (5)

where

ω2
mλ = ω2

p λη0 I
′
m(λη0)Km(λη0). (6)

The (allowed) resonant values of the dielectric function
ε of the paraboloid can also be independently calculated
from a transcendental equation obtained by imposing the
quasistatic boundary conditions at the bounding surfaces
of the domain within which the scalar electric field satis-
fies the Laplace equation. Therefore, it can be shown that
ωmλ satisfies the Drude model 1−εmλ = ω2

P ω
−2
mλ. Utiliz-

ing the orthogonality relation for Bessel functions given
by Eq.(11.59) [16], (also see Appendix A, Eq. (A-19)
) it follows from Eq. (5) that the amplitudes Amλp(t)
undergo harmonic oscillations at continuous frequencies
ωmλ given by Eq. (6), that is:

Ämλp(t) + ω2
mλAmλp(t) = 0. (7)

The harmonic behavior of the field amplitudes will play
an essential role in the possibility of analytically calcu-
lating the energy of the paraboloidal charge system prior
to quantization.

Having obtained closed form expressions for the poten-
tial and induced surface charge density, we are now in the
position to calculate the potential energy V due to the
polarization charge distribution ρ as: V = 1

2

∫
Ω
ρΦ dΩ,

where Ω denotes the entire space. Since ρ is only confined
to the paraboloidal surface η = η0 and vanishes elsewhere
in the space, one may integrate over an infinitesimal thin
cover across the boundary: η0 − ε ≤ η ≤ η0 + ε. Letting
ε → 0+ and making the observation ρhη = δ(η − η0)σ,
the potential energy can be expressed as a surface integral
given in Eq. (A-15). From the orthogonality relations for
the trigonometric system {Spm(ϕ)} and the Bessel func-
tions along with the property of the delta function, see
Eqs. (A-13)–(A-19) in Appendix A, we obtain the poten-
tial:

V =
a

8

∑
m,p

δ̂mp

∫ ∞
0

Im(λη0)Km(λη0)

λ

[
Amλp(t)

]2
dλ,

(8)

where δ̂mp is given in Eq. (A-17).
We will now seek the kinetic energy T of the

paraboloidal charge system. Employing the charge dis-
placement vector, we write T = 1

2men0

∫
Ω
~̇u · ~̇udΩ. To

obtain an expansion for ~̇u, we note that in the expression
for the potential Φi given by Eq. (1), one may use the
harmonic oscillator equation Eq. (7) for the amplitudes
to replace Amλp(t) with −Ämλp(t)/ω2

mλ. As a result, in-
tegrating the charge displacement vector with respect to
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time, we obtain: me~̇u = −e~∇Ψ̇, where

Ψ(r, t) =
∑
m,p

Spm(ϕ)

×
∫ ∞

0

Amλp(t)

ω2
mλ

Jm(λξ)Im(λη)Km(λη0) dλ. (9)

With this expression in the integral for kinetic energy,
followed by utilization of the Gauss theorem and or-
thogonality relations for {Spm} and Bessel functions, see
Eqs. (A-20)–(A-24) in Appendix A, we can calculate the
kinetic energy as:

T =
a

8

∑
m,p

δ̂mp

∫ ∞
0

Im(λη0)Km(λη0)

λω2
mλ

[
Ȧmλp(t)

]2
dλ.

(10)
In view of Eqs. (8) and (10), we find that the total clas-
sical energy E of the paraboloidal system takes the fol-
lowing form:

E =
a

8

∑
m,p

δ̂mp

∫ ∞
0

Im(λη0)Km(λη0)

λω2
mλ

×
{[
Ȧmλp(t)

]2
+ ω2

mλ

[
Amλp(t)

]2}
dλ,

which is the total energy of the surface plasmon field,
suitable for quantization.

B. Field quantization and interaction of plasmons
with photons

To obtain the quantized plasmon field, the expression
for the classical field E needs to be rewritten in a suit-
able form. We begin by noting that since the poten-
tial together with the paraboloidal harmonics Im(λη),
Jm(λξ), Km(λη), and Spm(ϕ) are all real-valued, we have
that the amplitudes Amλp(t) are real-valued and satisfy
the harmonic oscillator equation Eq. (7). Therefore, to-
ward converting E into the Hamiltonian operator for a
scalar boson field (plasmons are spinless quasi-particles),
we write:

Amλp(t) =
αmpλ

2ωmλ
[amλp(t) + a∗mλp(t)], (11)

where amλp are complex-valued time dependent functions
proportional to e−iωmλt, and αmpλ are some real-valued
constants to be determined later. The time derivative of
Eq. (11) can now be expressed as:

Ȧmλp(t) =
iαmpλ

2
[a∗mλp(t)− amλp(t)]. (12)

Performing field quantization [17, 18], we replace the am-
plitudes amλp(t) and a∗mλp(t) with operator valued distri-

butions âmλp and its conjugate â†mλp, and note the com-

mutation relations [âmλp, â
†
m′λ′p′ ] = δmm′δpp′δ(λ − λ′).

The continuous spectrum of the eigenvalues λ originates
from the infinite axial dimension of the paraboloid. Tak-
ing the normal ordered expansion of the noncommuting
boson creation â†mλp and annihilation âmλp operators, a
comparison with the normal ordered expression of the
Hamiltonian operator for a scalar boson field [17], yields
the Hamiltonian:

Hsp =
∑
m,p

∫ ∞
0

~ωmλâ†mλpâmλpdλ, (13)

if we choose

α2
mλp =

8 ~λω3
mλ δ̂

−1
mp

a Im(λη0) Km(λη0)
. (14)

For the interaction of the plasmon system with a pho-
ton field with Hamiltonian Hp, we require the plasmon-
photon interaction Hamiltonian Hi, which is required to
determine the radiative decay rate of surface plasmons
excited on the paraboloidal surface. Our full system,
plasmon field + photon field is described by the tensor
product of the Fock spaces for the two constituent fields.
Here, to describe the plasmon-photon interaction, we re-
sort to the hydrodynamical formulation of the electron
gas by Crowell and Ritchie [10], and utilize the Hamilto-
nian: Hi = 1

c

∫
J ·AdΩ, where J is the induced current

density and A is the vector potential operator of the
photon field, see Eqs. (A-25) in Appendix A. This in-
teraction has been used previously to describe the emis-
sion of photons via plasmon decay on finite surfaces of
an oblate spheroid modeling silver nanoparticles vacuum
evaporated on a dielectric substrate [19]. Here, we will
apply this Hamiltonian to modeling the creation of a
plasmon on the surface of the paraboloid by a photon
or the decay of a paraboloidal plasmon and emission of a
photon [17]. This application requires the explicit deter-
mination of the current density operator, which in light
of the displacement operator: ~̇u = −(e/me)~∇Ψ̇, can be

written as: J = −(n0e
2/me)~∇Ψ̇.

To write the photon field as a sum with discrete mo-
mentum eigenstates as opposed to the continuous rep-
resentation, we consider our electromagnetic field to be
confined to a volume V, which is normally taken to be
represented by a cube. Taking the electromagnetic en-
ergy confined to a volume to be independent of the shape
of the volume [20, 21], we take as our quantization volume
a paraboloidal structure given by ξ = η = L with L� η0.
The volume is then found to be π

2L
6. In the paraboloidal

coordinates, ξ and η have dimensions of length1/2 and
so our volume has dimension L3. The transition to the
discrete sum then follows the lattice strategy in quantum
electrodynamics [22]:

1

(2π)3/2

∫
d3s→ 1√

V

∑
s

, (15)
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and δ(s−s′) = δss′ . Hence, we write the discretized vector
potential as:

A =
∑
s

∑
j=1,2

√
~c2
Vωs

êj
(
ĉsje

is·r + ĉ†sje
−is·r), (16)

with s being the three-dimensional photon wavevector
ωs = sc, and ĉ†sj and ĉsj , the photon creation and an-
nihilation time-dependent operators, while êj , the po-
larization vector being perpendicular to s for both val-
ues of j, satisfy the commutation relations [ĉsj , ĉ

†
sj ] =

δjj′δ(s− s′). For the physical quantities of interest in
our work, we find that the quantization volume V can-
cels out in our calculations. The photon field Hamil-
tonian corresponding to the vector potential above is
Hp =

∑
sj ~ωsĉ

†
sj ĉsj .

Taking A to be in the radiation gauge with both Φ = 0
and ~∇ ·A = 0, we note (~∇Ψ̇) ·A = ~∇ · (Ψ̇A), since the
current is confined to the surface of the paraboloid, we
have

Hi =
n0e

2

cme

∫ 2π

0

∫ ∞
0

(
Ψ̇A · êη

)
hξhϕ dξdϕ. (17)

Differentiating Ψ given by Eq. (9) with respect to time
and replacing Ȧmλp(t) using Eq. (12), we can now write
the interaction Hamiltonian as:

Hi =
n0e

2

2ime

∑
s

∑
j=1,2

√
~
Vωs

(êη ·êj)
(
ĉsje

is·r+ ĉ†sje
−is·r)

×
∑
m,p

∫ 2π

0

∫ L

0

[ ∫ ∞
0

Smp (ϕ)Jm(λξ)Im(λη0)Km(λη0)

×
αmλp(t)

ω2
mλ

(â†mλp − âmλp)dλ
]
hξhϕ dξdϕ, (18)

where we have taken the integral in ξ to be from 0 to L
now since our integral over space is bounded by ξ = L.

Having obtained the explicit form of the interaction
Hamiltonian, we now aim to calculate the probability
amplitude that a surface plasmon in a given initial state,
defined by m,λ, p will emit a j-polarized photon in s state
with momentum ~s. The total radiative decay rate for
a given initial state, γmλp, is obtained by summing over

final photon states, γmλp =
∑
s

∑
j=1,2 γ

(js)
mλp, where by

the Fermi Golden rule, the transition probabilities are:

γ
(js)
mλp =

2π

~

∣∣∣M(js)
mλp

∣∣∣2 δ(ωs − ωmλ) (19)

with M(js)
mλp = | 〈0| ĉjf sfHi â

†
miλipi

|0〉 | denoting the
emission matrix elements, f the final state, and i the
initial state, invoking the commutation properties:

〈0| âmλp â†m′λ′p′ |0〉 = δmm′δ(λ− λ′)δpp′ , (20)

〈0| ĉs′q′ ĉ†sq |0〉 = δ(s− s′)δqq′ , (21)

the non-vanishing terms yield:

M(js)
mλp =

n0e
2

2ime

√
~
Vωs

αmλp
ω2
mλ

Im(λη0)Km(λη0)I(j)
mλ, (22)

where we have dropped the i, and f for convenience and

I(j)
mλ =∫ 2π

0

∫ L

0

Spm(ϕ)(êη · êj)Jm(λξ)e−is·rhξhϕdξdϕ. (23)

For an arbitrary photon wavevector of the form:

s =
ωs
c

(cosψ, 0, sinψ),

we may consider the polarization vectors êj for s-
polarization and p-polarization, being perpendicular and
parallel to ẑs-plane, respectively, noting s · êj = 0. Thus,
we consider the polarization vectors ê1 = (0, 1, 0) and
ê2 = (sinψ, 0,− cosψ). Under these polarization condi-
tions, Eq. (23) leads to two different integrals to be cal-
culated:

I(1)
mλ = aη0

×
∫ 2π

0

∫ L

0

ξ2 sinϕEmλ(η, ξ)Jm(λξ)Spm(ϕ) dξdϕ, (24)

and

I(2)
mλ = aη0

∫ 2π

0

∫ L

0

(
ξ2 sinψ cosϕ+ ξη cosψ

)
× Emλ(η, ξ)Jm(λξ)Spm(ϕ)dξdϕ, (25)

where Emλ(η, ξ) = e−iA with A given by:

A = −aωs
c

[
ξη0 cosψ cosϕ+

sinψ(ξ2 − η2
0)

2

]
.

Thus, depending on the choice of the polarization vector
êj , each integral contributes to a polarization state. In

other words, I(1)
mλ represents the s-polarization and I(2)

mλ

corresponds to the p-polarization. For a photon emitted
pointing to the solid angle dΩ as depicted in Fig. 1(a),
final photon states results in a continuous energy spec-
trum. Hence, we let the quantization volume V go to
infinity so that we have a continuum s-states, that is:∑

s

→ V
(2π)3

∫
s2ds

∫
dΩ, (26)

where V/(2π)3 is the density of photon states per po-
larization. In view of transition probability given in
Eq. (19), the radiative decay rate per unit solid angle
may be written as:

dγmλp
dΩ

=
∑
j=1,2

V
(2π)3

∫
γ

(js)
mλps

2ds,
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in which using ωs = sc, we obtain the final expression:

dγmλp
dΩ

=
∑
j=1,2

V
(2π)3

ω2
mλ

c3

[
2π

~2

∣∣∣M(js)
mλp

∣∣∣2 ]
ωs=ωmλ

, (27)

which is observed to be independent of the volume V as

it cancels out with V−1 in |M(js)
mλp|2. Thus, we can take

our quantization volume to be infinite and convert the
sum over the photon states to an integral. Hence, the
paraboloidal decay rate per solid angle is given by:

dγmλp
dΩ

=
λ δ̂−1

mp

aπc3

(
n0e

2

me

)2

Im(λη0)Km(λη0)

×
[(
I(1)
mλ

)2
+
(
I(2)
mλ

)2]
, (28)

where I(1)
mλ and I(2)

mλ are given by Eqs. (24) and (25),
respectively, and must be computed numerically.

III. PLASMON EXCITATION AND RADIATIVE
DECAY ON HYPERBOLOIDAL SURFACES

Similar to the paraboloidal case, the hyperboloidal do-
main, shown in Fig. 1(a), is highly relevant for mod-
eling of electronic and photonic response of probe-like
nanostructures [8]. Under the same assumptions as the
paraboloidal case (see Eqs. (B-1)–(B-8) in Appendix B),
the potential now takes the form:

Φ(r, t) =

∞∑
m=0

Hm(ϕ)

×
∫ ∞

0

Amq(t)Pmq(η)
[
Θ(µ− µ0)Pmq(−µ0)

× Pmq(µ) + Θ(µ0 − µ)Pmq(µ0)Pmq(−µ)
]
dq, (29)

where Amq(t) are real time dependent amplitudes and
Hm(ϕ) = (2− δ0m) cosmϕ, and, for convenience, we use
Pmq(·) to denote Pm− 1

2 +iq
(·).

Following Eqs. (A-6)–(A-9) in Appendix A, the surface
charge density σ on µ = µ0 is found to be:

σ =
−1

4πz0

√
1− µ2

η2 − µ2
0

×
∑
m

Hm(ϕ)

∫ ∞
0

Amq(t)Pmq(η)Wmq(µ0)dq,

where Wronskian identity for Wmq(µ0) is given in
Eq. (B-13). It follows from the orthogonality relation for
the system {Hm(ϕ)}, given in Eq. (B-9), that for each
fixed m = 0, 1, 2, . . . , we have:∫ ∞

0

Pmq(η)

[
Wmq(µ0) Ämq(t)

+ ω2
pPmq(−µ0)P ′mq(µ0)Amq(t)

]
dq = 0. (30)

Applying the Van-Nostrand orthogonality relation for the
conical functions given in Eq. (B-6) and the exact ex-
pression for the Wronskian given in Eq. (B-14), it fol-
lows from Eq. (30) that for each fixed m and q ≥ 1 the
amplitudes Amq(t) satisfy the harmonic oscillator model

Ämq(t) + ω2
mqAmq(t) = 0, where the frequencies ω2

mq are
given by:

ω2
mq =

ω2
p π
√

1− µ2
0

2Zmq cosh(πq)
Pmq(−µ0)P ′mq(µ0), (31)

with Zmq defined by (B-15). Again, these resonant val-
ues can also be independently calculated from the tran-
scendental equation generated by satisfying the boundary
conditions.

To calculate the classical energy E, we follow the exact
same argument as in the case of a paraboloid outlined
in Section II and Appendix A. Consequently, using the
orthogonality relations in the hyperboloidal case given by
Eqs. (B-9) and (B-6), one finds the hyperboloidal energy:

E =
z0

4π

√
1− µ2

0

∑
m

δ̂0m

×
∫ ∞

0

[
Zmq cosh(πq)

]2
q sinh(πq) ω2

mq

Pmq(−µ0)Pmq(µ0)

×
{[
Ȧmq(t)

]2
+ ω2

mq

[
Amq(t)

]2}
dq. (32)

Using similar ansatz for Amq(t) and Ȧmq(t) as in
Eqs. (11) and (12), the coefficients α2

mq can be ob-
tained by a comparison of Eq. (32) with the Hamiltonian
Eq. (13) as:

α2
mq =

4π~ δ̂−1
0m

z0

√
1− µ2

0

q ω3
mq sinh(πq)[

Zmq cosh(πq)
]2
Pmq(−µ0)Pmq(µ0)

,

(33)

where δ̂0m is given by Eq. (B-10).
Utilizing Eq. (16) and the hyperboloidal analogue of

Eq. (17), setting up the plasmon current density, the in-
teraction Hamiltonian for the photon emission can be
expressed as:

Hi =
n0e

2

2ime

∑
s

∑
j=1,2

√
~
Vωs

(êµ ·êj)
[
ĉsje

is·r+ ĉ†sje
−is·r]

×
∑
m

∫ 2π

0

∫ L

1

[∫ ∞
0

Hm(ϕ)Pmq(η)Pmq(−µ0)Pmq(µ)

× αmq
ω2
mq

(â†mq − âmq)dq

]
hϕhη dϕdη. (34)

Thus, we may calculate the hyperboloidal emission ma-
trix element as:

M(js)
mq =

n0e
2

2ime

√
~
Vωs

αmq
ω2
mq

Pmq(−µ0)Pmq(µ0)I(j)
mq, (35)
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where for different polarization directions, we obtain:

I(1)
mq = −z0µ0

√
1− µ2

0

×
∫ 2π

0

∫ L

1

√
η2 − 1Pmq(η) sinϕHm(ϕ)Emq(η, ϕ)dηdϕ,

(36)

and

I(2)
mq = z0

√
1− µ2

0

×
∫ 2π

0

∫ L

1

Pmq(η)

[
µ0

√
η2 − 1 sinψ cosϕ+

√
1− µ2

0

× cosψη

]
Hm(ϕ)Emq(η, ϕ)dηdϕ, (37)

where we have put Emq(η, ϕ) = e−iB with

B =
z0ωs
c

[√
(η2 − 1)(1− µ2

0) cosψ cosϕ+ µ0 sinψη

]
.

The wavevector s and the polarization vectors ê1, ê2

remain the same as before. Moreover, similar to the case
for paraboloid, the choice of the polarization vector êj in
each integral determines the polarization state. Hence,

I(1)
mq represents the s-polarization and I(2)

mq corresponds to
the p-polarization. Using Eq. (33) in Eq. (27), and now
the position vector in hyperboloidal coordinates given by
Eq. (B-1), we arrive at:

dγmq
dΩ

=
q sinh(πq)δ̂−1

0m

4πz0c3
√

1− µ2
0

(
n0e

2

me

)2
Pmq(−µ0)Pmq(µ0)[
Zmq cosh(πq)

]2
×
[(
I(1)
mq

)2

+
(
I(2)
mq

)2
]
. (38)

IV. PLASMON EXCITATION AND RADIATIVE
DECAY ON PROLATE SPEROIDAL SURFACES

In order to provide a geometric basis for compari-
son, we now treat the case of plasmon excitation on
the surface of a prolate spheroidal domain. This struc-
ture presents an almost identical curvature to that of the
paraboloid but encompasses a finite domain, making the
interpretation of the surface modes and their associated
radiation patterns more tangible. The closely related
structure of an oblate spheroid has been employed in pre-
vious plasmon studies [19]. In both prolate and oblate
systems, a limiting case is that of a sphere [10, 17], which
can serve to validate the results. To obtain the quantized
surface modes of the prolate spheroid, we closely follow
the oblate case [19].

A prolate spheroid is defined by fixing the coordinate
η = η0 in coordinate system given in Eq. (B-1). The

quasi-static scalar potential for a spheroid defined by ζ =
ζ0 may then be written as:

Φ(r, t) =
∑
m,l,p

Amlp(t)Y
p
lm(µ, ϕ)

[
Θ(ζ0 − ζ)Pml (ζ)

×Qml (ζ0) + Θ(ζ − ζ0)Pml (ζ0)Qml (ζ)
]
, (39)

for some real coefficients Amlp(t), with l = 1, 2, 3, · · · ,
m = 0, · · · , l, p = 0, 1 and Pml (·) and Qml (·) being the
associated Legendre polynomial of first and second kind,
respectively, while Y plm(µ, ϕ) are the real spherical har-
monics (Eq. (C-1)). The allowed values of the dielectric
function εlm are then found to be:

εlm = 1−
(l +m)!

(ζ2
0 − 1)(l −m)!

[
(−1)m

P ′ml (ζ0)Qml (ζ0)

]
, (40)

following similar steps for Eqs. (1)–(6). We then obtain
the matrix elements for photon emission:

M(js)
lm =

z0 ω
2
p (−i)l αlmp

2ω2
lm

√
~
Vωs

Pml (ζ0)Qml (ζ0) (41)

×êj · ~∇s′
[
jl(z0s̃)Y

p
lm(θ̃, ϕ̃)

]
,

using initial expression as in Eq. (C-3), similar to the
oblate spheroidal case in [19], with êj being the unit
polarization vector for the emitted light, jl(·) spherical

Bessel function of order l, (see Eq. (C-5)) and ~∇s′ is the
gradient of the wavevector given in spherical coordinate
(s′, θ′, ϕ′), where αlmp, using classical energy as:

α2
lmp =

8π ~
z0

(−1)m+1 (l −m)!ω3
lm

(l +m)!Pml (ζ0)Qml (ζ0)
.

Following the same quantization scheme as before, radia-
tive decay rate of plasmons per unit solid angle Ω, is then
calculated to be:

dγlmp
dΩ

=
∑
j=1,2

z0ω
4
lm(1− εlm(ωlm))Pml (ζ0)

c3(ζ2 − 1)P ′ml (ζ0)

×
[
F

(j)
lmp(s, θ, ϕ)

]2
, (42)

where

F
(j)
lmp(s, θ, ϕ) =

jl(z0s
′′)

s

[
δ1j

√
ζ2
0 − 1

∂Y plm(θ′′, ϕ′′)

∂θ′′

+ δ2j
ζ0

sin θ

∂Y plm(θ′′, ϕ′′)

∂ϕ′′

]
,

with (s′′, θ′′, ϕ′′) denoting the wavevector in spherical
coordinate for which the transformations are given in
Eq. (C-6) and for the two polarization states s and p
[19].
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V. RESULTS AND DISCUSSIONS

The harmonic functions, making up the eigenmodes
of the hyperboloidal and paraboloidal systems, represent
the normal modes of the charge density. The infinite axial
dimension of these domains results in the corresponding
eigenvalues (λ and q) to form continuous spectra as op-
posed to the discrete value spectrum (l) of finite domains
such as spheroidal particles. While, this difference in the
nature of the eigenvalues is less noticeable when visual-
izing the potentials, as seen in Fig. 1(b), (c) and (d), it
becomes noteworthy when performing the quantization
since now an integration over the corresponding eigen-
value spectrum enters the Hamiltonian, Eqs. (18) and
(34). However, an inspection of the asymptotic proper-
ties of the integrands in the Hamiltonians reveal fast con-
vergence facilitating the calculation of the needed matrix
elements. To proceed, we note that for a more reasonable
comparison of the two systems, their physical dimensions
must be made comparable. Therefore, we geometrically
adjust the paraboloid and the hyperboloid so as to con-
trol and match their apex curvature and further match
it with that of a finite prolate spheroidal domain. The
latter, due to its finite domain, makes a natural case to
validate the findings for the two infinite domain cases
investigated.

For settings consistent with nanofabrication and pho-
ton scattering experiments involving gold probes, where
strong plasmon excitation has been reported [7, 23], we
employ the following settings: η0 = 60 nm and µ0 =
86 nm for the systems in Fig. 1(b), (c) and (d). The close
relationship of the calculated eigenvalues with the surface
plasmon momenta are clearly observable from the ”wave-
length” of the charge density oscillations in Fig. 1(b), (c),
(d) and Fig. C.2. For proper geometric and modal ad-
justments, the similarities in the potential distributions
are clearly evident from the contour plots. Since for the
argument values µ ≈ 1,−1, the conical functions become
singular, a numerical artifact in the form of a discon-
tinuity in the contour lines appear near the symmetry
axis of the hyperboloids, where µ attains those values.
Comparison with the corresponding potential distribu-
tion in the spheroidal case can be facilitated by taking
ζ0 = 65 nm matching its curvature with that of the
apexes in paraboloidal and hyperboloidal domains. With
the dimensions adjusted, using Eqs. (1), (29) and (39) to
simulate the spatial distributions of the potentials for the
three cases, one clearly observes the analogous role of λ
and q to the discrete spectrum l. The lowest azimuthal
mode m = 0 for the three domains shown in Fig. 1(b),
(c) and (d) was simulated by taking the second indices
as λ = 1, q = 0.2 and l = 1, generating relatively same
potential distributions. The potential distributions for
higher modes are shown in Fig. C.1, where two higher
modes for each domain (shape parameters η0, µ0 and ζ0)

FIG. 2: Paraboloidal and hyperboloidal nonretarded surface
plasmon dispersion relations. The resonance values of the di-
electric function ε are shown for low lying modes as a function
of the continuous eigenvalue λ for a paraboloid (black) and q
for a hyperboloid (red). The surfaces of the paraboloid and
hyperboloid are set by the parameter η0 and µ0, respectively.
The discrete modes are denoted by m for the azimuthal oscil-
lations.

are shown. In doing so, the Legendre functions Pmq(µ) of
imaginary order and their derivates have been calculated
using the computational algorithm of Gil and Segura [24],
and the integral expansion of Kölbig [25]. Analogous to
plasmon wavevector in the case of excitations on a pla-
nar interface (or a Cartesian thin film), which can be
emulated by µ0 → π/2 in Fig. 1(a), the higher the λ,
q, and l for the same m, the higher the number of fluc-
tuations for the same spatial domains, as shown in Fig.
C.2. Furthermore, from the spheroidal nearfield distri-
bution, one can readily observe the multipole order so
that (m, l) = (0, 1) corresponds to a dipolar distributions,
whereas (m, l) = (0, 2) leads to a quadrupolar behavior,
etc. Similarly, for (m, q) = (0, 1.5) or (m,λ) = (0, 2)
one obtains the corresponding multipolar nearfield dis-
tributions of the apex regions. Thus, guided by these
charge density oscillations, controlled by the parameters
(m,λ, η0), (m, q, µ0), and (m, l, ζ0) for the three cases and
by a geometric matching of their apex curvatures, one
may discuss the eigenmode dependent radiative decay
rates.

In addition to the material-specific electronic and op-
tical properties, in as far as the effect of the local curva-
ture is concerned, we expect the considered cases to ex-
hibit similarities in their resonance spectra. The plasmon
dispersion relations are good indicators of this resem-
blance. To study the relation between resonance modes
of isolated solid paraboloids and hyperboloids in vacuum,
we assume a local dielectric function and calculate their
eigenmode dependent allowed values εmλ and εmq using
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Eqs. (6) and (31). A comparison of the lowest lying plas-
mon modes (m = 0, 1, 2 and 3 of fixed probes η0 and
µ0) is given in Fig. 2. The modes may alternatively be
displayed with reference to bulk plasma frequency ωp.
Interestingly, the higher m modes show a higher sensi-
tivity to the morphological differences between the two
systems, in particular for lower λ and q values, that is,
in the long wavelength limit, which in analogy with the
planar plasmons would be near the light line, where re-
tardation effects are more pronounced [8]. We also note
that in the hyperboloidal case, in the limit µt → 0, we
have εmq → −1; that is, the modes asymptotically ap-
proach the surface plasmon resonance (ω → ωp/

√
2), as

expected for a Cartesian half-space. This limit is also
approached by large m values as seen in Fig. 2. In the
short wavelength regime λ, q →∞, the dielectric function
reads:

εmq ∼ −1− cot(θt)

q
, (43)

yielding the same surface plasmon limit [8, 26]. Similar to
the paraboloidal case, using the asymptotic behavior of
modified Bessel functions Im(λη) and Km(λη) for large
order m and large arguments λ and η (see Eqs. (9.7.8)
and (9.7.9) in [27]), we can write:

εmλ ∼ −1− 1

2λη
, (44)

which implies the same limit for large λ.
Following the field distribution and resonant dielectric

values corresponding to the normal modes of the sur-
face charge density oscillations, we may assume that a
plasmon has been created in a given eigenmode (m, o, p)
where o = λ, q, l designating the paraboloid, the hy-
perboloid and the spheroid, respectively. If the plas-
mons on the paraboloidal, hyperboloidal or spheroidal
surface are in the initial state â†(mop)i |0〉 , the proba-

bility amplitude for their emission into the final pho-
ton state ĉ†(sj)f |0〉 could be obtained using expressions

(22), (35) and (41). The |0〉 indicates that the fields
have been populated with 0 plasmons or photons (not-
ing amop |0〉 = c(sj) |0〉 = 0) whereas a general photon-
plasmon state is written as |Ψ〉 = |nsj〉 ⊗ |nmop〉 , that
is, a state with nsj j-polarized photons of momentum s,
and nmop plasmons in the (m, o, p) state.

Keeping the mode patterns, here, the ϕ = 0, π-
plane projection of the relative potential distributions in
Fig. 1(b), (c) and (d) and dispersion relations in Fig. 2 in
mind, we now compare the radiative decay rate per solid
angle of plasmons engendered on the three domains, us-
ing Eq. (28) (paraboloid with η0 = 60 nm), Eq. (38)
(hyperboloid with µ0 = 86 nm) and Eq. (42) (prolate
spheroid with ζ0 = 65 nm) for two lowest azimuthal mods
m = 0 and 1. To calculate the matrix elements given in

Eqs. (22) and (35), the integrations I(j)
mλ and I(j)

mq (in

FIG. 3: The radiative decay rate of plasmons engendered on
paraboloidal, hyperboloidal, and prolate spheroidal surfaces.
The decay rate of paraboloidal plasmons (blue) is computed
from Eq. (28) for the single eigenmode m = 0 (right), m = 1
(left) and λ = 1 when the shape parameter is η0 = 60 nm.
Similarly, the decay rate of hyperboloidal plasmons (green)
computed from Eq. (38) corresponds to the eigenmode m = 0
and q = 0.2 for a shape parameter µ0 = 86 nm. For compar-
ison, the radiative decay rate (red) for plasmons excited on
a prolate spheroidal surface is computed using Eq. (42) for
ζ0 = 65 nm and m = 0, l = 1, corresponding to the dipolar
mode. To facilitate visual comparison within the same plot
window, note that the spheroidal case for m = 0 (right) has
been multiplied by 0.006 and for the case m = 1 (left) by
0.01. The composition of the specific parameters for compar-
ison was guided by the potential distribution in each case.

case for paraboloid and hyperboloid, respectively) must
be carried out numerically as they lack analytical solu-
tions in variable ξ in the case for paraboloid and η in the
case for hyperboloid. The choice of polarization vectors

êj for j = 1, 2 corresponds to I(1)
mλ given by Eq. (24) to

represent the s-polarization, and I(2)
mλ given by Eq. (25),

the p-polarization. Inspecting the integrands for their
convergence, we compute the integrals using an iterative
numerical integration scheme (Runge-Kutta) due to lack
of fast oscillations. The result is shown in Fig. 3. Note
that to facilitate visual comparison within the same plot
window, the radiative decay rate for prolate spheroid for
modes m = 0 and m = 1 have been multiplied by 0.006
and 0.01, respectively. The effect of higher index modes
λ, q and l with the same azimuthal order m on radiative
decay rate per solid angle may also be studied, as shown
in Fig. 4. As one may expect from the nearfield pat-
terns of higher λ, and q, analogous to l = 2, a quadrupo-
lar pattern appears for the emitted photons. Here, it is
understood that an angular segment is occupied by the
probe itself, as opposed to the 0− 2π range for the finite
volume spheroidal systems. It is further understood that
for larger particles or probe apex size retardation effects
may modify the higher order modes.

The dependence of the radiative decay rate upon the
parameter that sets the boundary, allows for control of
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FIG. 4: Comparison of the higher order modes’ radiative de-
cay rates for the three different cases described in Fig. 3. In
the case of the prolate spheroidal plasmons, the emitted radi-
ation pattern corresponds to the quadropolar charge density
oscillations.

FIG. 5: Curvature induced shift in the radiation pattern as-
sociated with the decay of plasmons excited on the hyper-
boloidal surfaces for the modes m = 0 (left) and m = 1 (right)
and q = 0.2. To facilitate comparison within the same plot
window, the case for µ1 has been multiplied by 20 (left) and
by 50 (right).

the curvature and thus the photon emission patters. As
can be seen from Fig. 5, for the m = 0 mode, the higher
the curvature of the hyperboloidal apex, the lower the
amplitude and the narrower the angular distribution of
the emitted photons. Moreover, for the m = 1 the higher
curvature while resulting in a lower amplitude does not
result in in a higher angular confinement.

VI. CONCLUSIONS

The presented quantization of charge density oscilla-
tions on the surface of geometric entities with local cur-
vature but with an extended dimension constitutes first
time results with potential for modeling quantum effects
in plasmonics. The obtained analytical expressions for
the operators associated with surface plasmon quanti-
ties, help calculating interactions with other quantized
fields, e.g., the interaction of the probe with a nearby
quantum emitter, or with the radiation field of a quan-
tum dipole. Owing to their apex symmetry and curva-

ture, the comparison of the calculated quantities show
that hyperboloidal and paraboloidal plasmons qualita-
tively exhibit similar dispersion relations and radiative
decay rates. We conclude that, the quantitative differ-
ences observed in the allowed resonance values of the di-
electric function and the emitted radiation patterns are
therefore primarily attributed to the difference in cur-
vature in the asymptotic region, away from the apex.
From a comparison with the modes excited on a prolate
spheroidal surface, for which experimentally typically
only low energy dipolar and quadrupolar eigenmodes or
their mixtures have been observed to contribute to far
field radiation in the visible spectrum, we expect that
also only low lying modes will contribute to the emission
spectra of the probe. Unlike the all discrete spectrum
of the quantum numbers associated with the spheroidal
modes, the eigenvalues characterizing the hyperboloidal
or paraboloidal plasmons along their infinite dimensions
exhibit a continuous spectrum, making a direct compar-
ison of plasmon wavevectors unclear. However, visual-
ization of the eigenmode field patterns, that is, how the
fields fluctuate for given continues eigenvalues in the case
of hyperboloids and paraboloids, can facilitate the com-
parison with the discrete eigenvalues for the spheroidal
case. For a given set of eigenmodes, photon emission from
the higher apex curvature tips occurs with a more local-
ized radiation pattern. Following the presented results
for the allowed values of the dielectric functions εml(ζ0),
εmλ(η0) and εmq(µ0), the corresponding dispersion rela-
tions and radiative decay rates can be obtained for real
materials from a comparison with the experimentally de-
termined optical properties of solids (such the compila-
tion by Hageman [28], or by Palik [29]). In summary, the
presented results can aid the design and fabrication of
tips with specific photonic and plasmonic characteristics.
For example for a gold or silver tip, such as those used in
electron emission experiments [23], using the presented
results one may determine both the fabrication design
parameters and the excitation laser wavelength and po-
larization. In such applications, a comparison of Fig. 2
and C.2 with the optical properties of, for example sil-
ver [28], indicates the availability of several resonance
modes in the visible. The results can help the analysis
of the radiation emitted from the nanotips as a result of
electron or photon scattering, which are of importance
to plasmonics in experiments such as EELS (electron en-
ergy loss spectroscopy) and SPM. For a specific mate-
rial typically employed in plasmonics such as gold and
silver, the results offer estimates of the polarization, an-
gular, and spectral properties of the emitted radiation.
In such instances, the emitted photons may be analyzed
for the specific eigenmode of charge density oscillation
(m,λ) that created them. In light of the obtained multi-
parameter dependence, any agreement with the theory
would require fabrication control of the geometric fea-
tures of the nanostructure.
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Appendix A

In Appendix A, we provide the detailed calculations
for the formulas and results claimed in section II. The
paraboloidal domain allows the parametric study of the
various scattering processes as functions of the local cur-
vature without displacement of the domain. The quasi-
static solution of the electric scalar potential near a
paraboloidal domain has been reported in [30]. The
paraboloidal coordinates (ξ, η, ϕ), are related to the rect-
angular coordinates by

x = a ξ η cosϕ, y = a ξ η sinϕ, z =
a

2
(ξ2 − η2),

(A-1)
with the corresponding scale factors

hξ = hη = a
√
ξ2 + η2 and hϕ = aξη, (A-2)

where 0 ≤ ϕ < 2π denotes the usual azimuthal angle, a >
0 is a dimensionless constant to be determined later, and
the two coordinates η, ξ ≥ 0 are such that the surfaces of
constant η > 0 and ξ > 0 describe upward and downward
paraboloids of revolution about the z-axis, respectively.

Laplacian is given by

~∇2 =
1

a2(ξ2 + η2)

[
∂2

∂ξ2
+

1

ξ

∂

∂ξ
+

∂2

∂η2

+
1

η

∂

∂η
+

(
1

ξ2
+

1

η2

)
∂2

∂ϕ2

]
. (A-3)

Assuming the ansatz [14] Φ(ξ, η, ϕ) = F (λξ)G(λη)eimϕ,
F satisfies the Bessel equation:[

d2

dξ2
+

1

ξ

d

dξ
+

(
1− m2

ξ2

)]
Fm(λξ) = 0, (A-4)

with the Bessel functions of the first and second kind
Jm(λξ) and Ym(λξ) forming a set of solutions, allowing
us to express any general solution in terms of these func-
tions. Likewise, G satisfies the modified Bessel equation:[

d2

dη2
+

1

η

d

dη
−
(

1 +
m2

η2

)]
Gm(λη) = 0, (A-5)

with now the modified Bessel Functions Im(λη),Km(λη)
forming the basis for our solutions.

Calculation of ~∇2Φ: The potential Φ could be written
as:

Φ = Θ(η0 − η)Φi(r, t) + Θ(η − η0)Φo(r, t),

where the inside and outside potentials Φi and Φo are
given by Eq. (1). The Laplacian of Φ in paraboloidal
coordinates is given by Eq. (A-3). Since the Heaviside
function depends on the coordinate η, we only need to

consider ∂Φ
∂η and ∂2Φ

∂η2 as the partial derivatives of Φ with
respect to the other coordinates ξ and ϕ can be trivially
expressed in terms the corresponding partials of Φi and
Φo, respectively. Using the fact that the derivative of
Heaviside function is the Dirac delta function δ (in the
distributional sense), one finds

∂Φ

∂η
= Θ(η0 − η)

∂Φi

∂η
+ Θ(η − η0)

∂Φo

∂η

− δ(η0 − η)Φi + δ(η − η0)Φo, (A-6)

where the last two terms of the above expression vanish
due to the fact that Φi = Φo at the boundary η = η0.
Thus

∂Φ

∂η
= Θ(η0 − η)

∂Φi

∂η
+ Θ(η − η0)

∂Φo

∂η
, (A-7)

and as a result

∂2Φ

∂η2
= Θ(η0 − η)

∂2Φi

∂η2
+ Θ(η − η0)

∂2Φo

∂η2

− δ(η0 − η)
∂Φi

∂η
+ δ(η − η0)

∂Φo

∂η
. (A-8)

Substituting Eqs. (A-7) and (A-8), together with par-
tials derivatives of Φ with respect to ξ and ϕ, into the
Laplacian Eq. (A-3) gives

~∇2Φ =
1

a2(ξ2 + η2)

[
δ(η − η0)

(
∂Φo

∂η
− ∂Φi

∂η

)
+ Θ(η0 − η)~∇2Φi + Θ(η − η0)~∇2Φo

]
. (A-9)

Treating the above expression in the sense of a distribu-
tion in η only and noting that ~∇2Φi and ~∇2Φ0 vanish for
η < η0 and η > η0, respectively, we obtain the claimed
identity Eq. (2) for the Laplacian of Φ.

From Eq. (2), one can solve for the charge density to
obtain:

σ = − 1

4πa
√
ξ2 + η2

(
∂Φo

∂η
− ∂Φi

∂η

)∣∣∣∣
η=η0

. (A-10)

The expression on the right-hand side of Eq. (A-10) can
be easily calculated from Eq. (1) as:(

∂Φo

∂η
− ∂Φi

∂η

)∣∣∣∣
η=η0

=

∑
m,p

Spm(ϕ)

∫ ∞
0

λAmλp(t)Jm(λξ)Wm(λη0) dλ, (A-11)
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where Wm(·) denotes the Wronskian given by:

Wm(z) = Im(z)K ′m(z)− I ′m(z)Km(z). (A-12)

In view of the identity Wm(z) = − 1
z (z 6= 0) for the

modified Bessel functions [14], and from Eqs. (A-10) and
(A-12) we obtain Eq. (3).

Calculation of the potential energy V : The poten-
tial energy is given by:

V =
1

2

∫
η=η0

σ Φi|η=η0
dS

=
1

2

∫ 2π

0

∫ ∞
0

σ Φi|η=η0
hξhϕ dξdϕ. (A-13)

From Eq. (1), the potential Φi|η=η0
is given by

Φi|η=η0
=
∑
m,p

Spm(ϕ)

×
∫ ∞

0

Amλp(t)Im(λη0)Km(λη0)Jm(λξ) dλ. (A-14)

Substituting Eq. (A-14) and the expressions for σ, hξ,
and hϕ from Eqs. (5) and (A-2) into the above integral
for V gives

V =
a

8π

∑
m′,p′

∑
m,p

∫ ∞
0

∫ 2π

0

Spm(ϕ)Sp
′

m′(ϕ)

×

[∫ ∞
0

Am′λ′p′(t)Im′(λ′η0)Km′(λ′η0)Jm′(λ′ξ) dλ′

×
∫ ∞

0

Amλp(t)Jm(λξ) dλ

]
ξ dϕdξ. (A-15)

Using the orthogonality relation for {Spm}m,p,∫ 2π

0

Spm(ϕ)Sp
′

m′(ϕ) dϕ = πδ̂mp, δmm′δpp′ , (A-16)

where

δ̂mp = 4δ0p + δ1p − 2 δm0δ0p, (A-17)

we can write Eq. (A-15) as:

V =
a

8

∑
m,p

δ̂mp

×
∫ ∞

0

[∫ ∞
0

Amλ′p(t)Im(λ′η0)Km(λ′η0)Jm(λ′ξ) dλ′

×
∫ ∞

0

Amλp(t)Jm(λξ) dλ

]
ξ dξ. (A-18)

Finally, in view of the orthogonality relation for Bessel
functions given by Eq. 11.59 [16]:∫ ∞

0

ξJm(λξ)Jm(λ′ξ)dξ =
δ(λ− λ′)

λ
, (A-19)

for m ≥ −1, and λ, λ′ > 0, we obtain Eq. (8).
Note that in the above calculations, we have changed

the order of integration to simplify the obtained expres-
sions. This is done in view of the Fubini’s theorem based
on the absolute integrability of the above expressions.
Our argument is based on the asymptotic behavior
of Bessel functions, see [14], Eqs. (5.11.6), (5.11.8)
and (5.11.9), and the fact that the potential, and thus
Eq. (1), is finite in the entire space. The mathematical
details, however, is beyond the scope of this paper, and
is therefore omitted. The same argument is also used
in the other cases using the asymptotic behavior of the
corresponding eigenunctions, but has been omitted in
this presentation.

Calculation of the kinetic energy T : Comparing the
expression for Ψ given by Eq. (9) with the inside po-
tential given by Eq. (1), it is clear that Ψ also satisfies

the Laplace equation ~∇2Ψ = 0. Using the vector identity
~∇Ψ̇ · ~∇Ψ̇ = ~∇(Ψ̇~∇Ψ̇) − (Ψ̇~∇2Ψ̇), together with the fact
~∇2Ψ̇ = d

dt
~∇2Ψ = 0, it follows that ~∇Ψ̇ · ~∇Ψ̇ = ~∇(Ψ̇~∇Ψ̇),

and, as a consequence,

~̇u · ~̇u =
e2

m2
e

~∇ · (Ψ̇~∇Ψ̇). (A-20)

Next, we substitute Eq. (A-20) in the expression for T
and apply Gauss’s theorem to obtain:

T =
e2n0

2me

∫
surf.

(Ψ̇~∇Ψ̇)
∣∣∣
η=η0

· n̂ dA, (A-21)

where, as in the case of potential V , the integral is taken
over the surface η = η0 with the surface area element
dA = hξhφdξdϕ. Using the formula for gradient in the
paraboloidal coordinates and noting n̂ = eη on the sur-
face, one gets

T =
e2n0

2me

∫ 2π

0

∫ ∞
0

(
Ψ̇

1

hη

∂Ψ̇

∂η

)∣∣∣∣∣
η=η0

hξhϕdξdϕ.(A-22)

Using the definition of Ψ given by Eq. (9) and the ex-
pressions for the scale factors Eq. (A-2), the right-hand
side of Eq. (A-22) can be written as:

T = aη0

e2n0

2me

∑
m,p

∑
m′,p′

∫ 2π

0

Spm(ϕ)Sp
′

m′(ϕ) dϕ

×
∫ ∞

0

[ ∫ ∞
0

Ḃmpλ(t)

ω2
mλ

Jm(λξ) Im(λη0)Km(λη0) dλ

×
∫ ∞

0

λ
Ḃm′p′λ′(t)

ω2
m′λ′

Jm′(λ′ξ)I ′m′(λ′η0)Km′(λ′η0) dλ′
]
ξ dξ.

(A-23)

Invoking the orthogonality relations Eq. (A-16) and
Eq. (A-19) in Eq. (A-23) by using a similar argument
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as the one given for the case of the potential, it follows
that

T =
aη0ω

2
p

8

∑
m,p

δ̂mp

×
∫ ∞

0

1

ω4
mλ

[
Ḃmpλ(t)

]2
Im(λη0)I ′m(λη0) [Km(λη0)]

2
dλ.

(A-24)

Now in view of Eq. (6), we have :

η0ω
2
p/ω

2
mλ =

(
λKm(λη0)I ′m(λη0)

)−1
.

This substitution in Eq. (A-24) gives Eq. (10).
Interaction Hamiltonian: Briefly, the hydrodynam-
ical formulation of the electron gas by Crowell and
Ritchie [10] yields:

~∇ ∂

∂t
Ψ(r, t) = − e

m
~∇Φ(r, t) +

β2

n0

~∇n(r, t),

~∇2Φ(r, t) = 4πen(r, t), (A-25)

~∇2Ψ(r, t) =
∂

∂t
n(r, t)/n0,

where Φ(r, t), Ψ(r, t) and n(r, t) are the electric poten-
tial, velocity potential, and electronic density, respec-
tively, in the electron gas, while n0 is the electronic den-
sity in the undisturbed state of the electron gas and β is
the propagation speed of the disturbance through elec-
tron gas. By linearizing these equations, employing per-
turbation theory, Ritchie obtained the first order inter-
action Hamiltonian Hi = 1

c

∫
J ·AdΩ, where J is the

induced current density and A is the vector potential
operator of the photon field.

Appendix B

Appendix B provides the details for the formulas and
results claimed in sections III. An arbitrary point in the
Cartesian space can be expressed in terms of the prolate
spheroidal coordinates (η, µ, ϕ) [14, 31] by

x = z0

√
(η2 − 1)(1− µ2) cosϕ,

y = z0

√
(η2 − 1)(1− µ2) sinϕ, (B-1)

z = z0 η µ,

with the corresponding scale factors:

hη = z0

√
η2 − µ2

η2 − 1
, hµ = z0

√
η2 − µ2

1− µ2
,

hϕ = z0

√
(1− µ2)(η2 − 1), (B-2)

where z0 > 0 is an overall scale factor, 1 ≤ η < ∞,
−1 ≤ µ ≤ 1, and 0 ≤ ϕ < 2π denotes the usual az-
imuthal angle. The surfaces of constant µ define hyper-
boloids of revolution about the z-axis, while the surfaces

of constant η correspond to prolate spheroids. It is of-
ten customary to use the substitutions sinh ζ = η and
sin θ = µ with 1 ≤ η < ∞, and −1 ≤ µ ≤ 1; however,
in this presentation the surfaces of constant coordinates
are no longer geometrically meaningful.

Considering a solid hyperboloid of revolution µ ≥ µ0

(µ0 > 0) with dielectric constant ε1 immersed in a
medium whose dielectric constant ε2 can be assumed
with no loss of generality to be 1, it follows that the po-
tential of the electric Φ(µ, η, ϕ) has to satisfy the Laplace

equation ~∇2Φ = 0 everywhere except on the boundary
surface µ = µ0, where the Laplacian is given by [14]:

~∇2 =
1

z2
0(η2 − µ2)

{
∂

∂η

[
(η2 − 1)

∂

∂η

]
+
∂

∂µ

[
(1− µ2)

∂

∂µ

]

+

[
η2 − µ2

(η2 − 1)(1− µ2)

]
∂2

∂ϕ2

}
. (B-3)

Assuming the ansatz [14] Φ(µ, η, ϕ) = F (η)G(µ)eimϕ,
one finds that F and G satisfy the differential equations:

d

dη

[
(η2 − 1)

dFm
dη

]
− m2

η2 − 1
Fm = c Fm, (B-4)

d

dµ

[
(1− µ2)

dGm
dµ

]
− m2

1− µ2
Gm = −cGm. (B-5)

Letting c = ν(ν+1) (see [12, 14, 32]), where ν = − 1
2 + iq

and q ∈ [0,∞), one can obtain a continuous spectrum of
real eigenvalues and eigenfunctions in terms of the asso-
ciated Legendre functions or conical functions Pm− 1

2 +iq
(z)

(denoted by Pmq(z)) of complex lower index with −∞ <
z <∞ satisfying the orthogonality relation [12]:∫ ∞

1

Pmq(η)Pmq′(η)dη =
Zmq

q tanh(πq)
δ(q − q′), (B-6)

A bounded satisfactory real-valued solution to the first
equation in Eq. (B-4) is given by Pm− 1

2 +iq
(η) (see [12,

14, 32]), whereas a pair of satisfactory real-valued solu-
tions to the second equation in Eq. (B-4) are given by
Pm− 1

2 +iq
(µ) and Pm− 1

2 +iq
(−µ) [14, 26, 33]. Avoiding the

singularity at µ = −1 [14], we shall choose the solu-
tion Pm− 1

2 +iq
(µ) for the inside region µ0 ≤ µ ≤ 1 and

Pm− 1
2 +iq

(−µ) for the outside region −1 ≤ µ ≤ µ0. Thus,

the inside and outside potentials Φi and Φo are expressed
as sums over the Fourier harmonics∫ ∞

0

Amq(t)P
m
− 1

2 +iq(η)Pm− 1
2 +iq(µ) dq eimϕ, (B-7)

and ∫ ∞
0

Bmq(t)P
m
− 1

2 +iq(η)Pm− 1
2 +iq(−µ) dq eimϕ, (B-8)

respectively, where Amq(t) and Bmq(t) are complex val-
ued amplitudes and m ∈ Z. Using the fact [34] that
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Γ( 1
2 +m− iq)Pm− 1

2 +iq
(z) = Γ( 1

2 −m− iq)P
−m
− 1

2 +iq
(z) for all

z ∈ R andm ≥ 0, it follows that one only needs to expand
Φi and Φo in terms of cosmϕ, for m = 0, 1, 2, . . . . More
precisely, we use the system Hm(ϕ) = (2 − δ0m) cosϕ
satisfying the orthogonality relation:∫ 2π

0

Hm(ϕ)Hm′(ϕ) dϕ = πδ̂0mδmm′ , (B-9)

where

δ̂0m = 1 + δ0m. (B-10)

Finally, imposing the continuity of the potential across
the boundary µ = µ0, we find the inside and outside
potentials, which are expressed in Eq. (29).

Applying the Laplacian in Eq. (B-3) to the poten-
tial Eq. (29) and using a similar argument given in
Eqs. (A-6)–(A-9), we find

~∇2Φ = − 1− µ2

z2
0(η2 − µ2)

(
∂Φo

∂µ
− ∂Φi

∂µ

)
δ(µ− µ0). (B-11)

Using the expressions for Φi and Φo in Eq. (29), we get(
∂Φo

∂µ
− ∂Φi

∂µ

)∣∣∣∣
µ=µ0

=
∑
m

Hm(ϕ)

×
∫ ∞

0

Amq(t)× Pmq(η)Wmq(µ0) dq, (B-12)

where Wmq(µ) denotes the Wronskian for the conical
functions:

Wmq(µ) = Pmq(µ)
dPmq(−µ)

dµ
− Pmq(−µ)

dPmq(µ)

dµ
.

(B-13)
The exact value of Eq. (B-13) is given by [12]:

Wmq(µ) =
2Zmq cosh(πq)

π
√

1− µ2
, (B-14)

where

Zmq = (−1)m
m∏
k=1

(
q2 +

(2k − 1)2

4

)
. (B-15)

Appendix C

Here are some relations we have used in section. IV.
The known real spherical harmonics are given by [34]:

Y plm(µ, ϕ) =

√
(2− δ0m)(2l + 1)(l −m)!

4π(l +m)!
Pml (µ)

×
[
δ1
p cos(mϕ) + δ−1

p cos(mϕ)
]
, (C-1)

with associated Legendre functions Pml (·) and orthogo-
nality relation:∫ 2π

0

∫ 1

−1

Y plm(µ, ϕ)Y p
′

l′m′(µ, ϕ) dµdϕ = δll′δmm′δpp′ .

(C-2)
Emission matrix element in prolate spheroidal case fol-

lowing the same relations as in the paraboloidal and hy-
perboloidal cases could be obtained as:

M(js)
em =

n0e
2

m0

√
~
Vωs

αlmp
2iω2

lm

Pml (ζ0)Qml (ζ0) (C-3)

×
∫ ∫

(êη · êj)Y plm(µ, ϕ)e−is·rhµhϕ dµdϕ

∣∣∣∣∣
ζ=ζ0

.

The following integral identity has been used in cal-
culation of prolate spheroidal matrix element given by
Eq. (16.127)[35]:

eik·x = 4π

∞∑
l=0

il jl(kr)

l∑
m=−l

Y ∗lm(θ, ϕ)Ylm(θ′, ϕ′) (C-4)

where jl(kr) is the Spherical Bessel function of order l
whose relation with regular Bessel function Jl(·) is given
by:

jl(x) =

√
π

2x
Jl+ 1

2
(x). (C-5)

Lastly, the relations between spherical wavevectors s′ and
s′′ in spherical coordinate are determined by taking the
following transformations:

s′ =
sx
ζ0
~i+

sy
ζ0
~j +

ζ0 sz
ζ2
0 − 1

~k, (C-6)

s′′ =
√
ζ2
0 − 1sx~i+

√
ζ2
0 − 1sy~j + ζ0 sz~k. (C-7)
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FIG. C.1: The spatial distribution of the one low and one high
lying eigenmodes of the quasistatic electric potential for the
three modeling domains investigated. For the same mode in-
dex m, optimizing the apex curvature overlap within the same
spatial zx domains, and analyzing the potential distribution,
leads to the determination of the corresponding continuous
eigenvalues λ of the paraboloid (top) and q of the hyperboloid
(middle), respectively, as well as the discrete eigenvalue l of
the prolate spheroid (bottom). The geometric parameters η0,
µ0, and ζ determines the form of the considered domains. For
proper geometric and modal adjustments, the similarities in
the potential distributions are clearly evident from the con-
tour plots. The discontinuity in the contour lines near the
symmetry axis of the hyperboloids is due to the singularity in
the conical functions there.
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FIG. C.2: Paraboloidal, hyperboloidal, and prolate spheroidal
nonretarded surface plasmon dispersion relations. The reso-
nance values of the dielectric function ε are shown for low
lying modes as a function of the continuous eigenvalue λ for
a paraboloid (top) and q for a hyperboloid (middle), and as a
function of the shape parameter ζ for a prolate spheroid. The
surfaces of the paraboloid and hyperboloids are set by the
parameter η0 and µ0, respectively, while ζ defines the form
of the spheroidal surface (bottom). The discrete modes are
denoted by m for the azimuthal oscillations and by l in the
spheroidal case.
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