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Electronic transport through a material depends on the response to local perturbations induced
by defects or impurities in the material. The scattering processes can be described in terms of phase
shifts and corresponding cross sections. The multiorbital nature of the spinor states in transition
metal dichalcogenides would naturally suggest the consideration of a massive Dirac equation to
describe the problem, while the parabolic dispersion of its conduction and valence bands would
invite a simpler Schrédinger equation description. Here, we contrast the scattering of massive
Dirac particles and Schrodinger electrons, in order to assess different asymptotic regimes (low and
high Fermi energy) for each one of the electronic models and describe their regime of validity or
transition. At low energies, where the dispersion is approximately parabolic, the scattering processes
are dominated by low angular momentum channels, which results in nearly isotropic scattering
amplitudes. On the other hand, the differential cross section at high Fermi energies exhibits clear
signatures of the linear band dispersion, as the partial phase shifts approach a non-zero value. We
analyze the electronic dynamics by presenting differential cross sections for both attractive and
repulsive scattering centers. The dissimilar behavior between Dirac and Schrédinger carriers points
to the limits and conditions over which different descriptions are required for the reliable treatment

of scattering processes in these materials.

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are mate-
rials with atoms arranged in a layered X-M-X struc-
ture, where M is a transition metal, such as Mo and
W, and X = S, Se, Te, a chalcogen. While atoms
of the same trilayer (or “monolayer”) are covalently
bonded, the interactions between trilayers take place
through weaker van der Waals forces.? These materials
exhibit drastic changes in their electronic band structure
upon easy exfoliation.2 In MoSs, for example, an electro-
luminescent response appears in the visible range up to
room temperature,24 as a consequence of the direct band
gap of its monolayer form. The structural flexibility and
semiconducting behavior of these two-dimensional TMDs
makes them suitable for a host of novel optoelectronics
applications.2 7 Moreover, the study of MoSy and related
TMDs poses a number of fundamental physical questions
of interest which enrich our knowledge of quantum prop-
erties of condensed matter.®

One interesting feature of semiconducting TMDs is
that the low energy dynamics of their charge carriers is
typically described by a minimal two-band model that
can be seen as a massive Dirac Hamiltonian in two spatial
dimensions.? This formulation takes into account lattice
symmetries, as well as spin and valley degrees of free-
dom. The Hamiltonian and corresponding eigenstates
incorporate Berry phase structure which is especially in-
teresting and important near the two direct-gap inequiv-
alent valleys in reciprocal spacel? As a consequence,
the optical response of the material encodes spin-valley
coupling features of the state, which have given rise to
long-lived polarization memory at low temperatures, !

as well as interesting spin-polarized optically-produced
electronic currents.? The Dirac character of the carriers
in these materials would also give rise to different Lan-
dau level semiclassical phases, suitable for observation in
Shubnikov-de Hass magnetotransport oscillations. 12

The two-dimensional nature of monolayer TMD sys-
tems makes them susceptible to effects introduced by the
substrates as well as intentional or ambient contamina-
tion, which can introduce charged defects/impurities or
local changes in the doping level*14 that would be ex-
pected to modulate the transport response. An interest-
ing example of this behavior was reported recently® as
the deposition of photoresponsive azobenzene molecules
was shown to produce changes in the optical and trans-
port properties. As these and similar perturbations can
be seen as local disturbances to the corresponding Hamil-
tonian of the system, it is important to study how they
affect the electronic dynamics in these materials.

Here, we introduce local perturbations on the 2D
electronic dynamics and discuss the resulting scattering
problem for carriers described by a massive Dirac for-
malism. We describe the electronic transport problem
through an analysis of the differential scattering cross
section and compare these results with those expected for
a simple parabolic-mass dispersion, as would be typically
used in semiconducting systems. The comparison of the
two approaches provides signatures of the peculiar Dirac
spinor structure which can be quantified through differ-
ences in anisotropic scattering and its energy dependence.
The two-dimensional scattering problem is characterized
in terms of the scattering phase shifts and differential
cross section and their dependence on externally control-
lable parameters. The conditions for the validity of a



parabolic or full Dirac dispersion relation are analyzed
in detail, especially by contrasting asymptotic limits of
scattering amplitudes, and the different features of their
scattering angle dependence. Although with similar en-
ergy dependence at low energy, phase shifts and corre-
sponding scattering amplitudes result in strong forward
scattering amplitudes for the massive Dirac particles, re-
flecting their spinor structure (in a manner akin to the
Klein tunneling seen in graphene, for example). At high
energies, the phase shifts for Dirac particles approach a
constant value (proportional to the scattering potential
strength), in contrast to the vanishing phase shift seen
for Schrodinger particles. The details of the different
functional behavior would have direct impact on the re-
sulting transport and elastic times, and correspondingly
different transport experiments in layered materials that
exhibit an energy gap.

II. TMD HAMILTONIAN AND SCATTERING
AMPLITUDE

The Hamiltonian describing the dynamics near the K-
valleys in the Brillouin zone of the TMD monolayer can
be written in an effective massive Dirac form?

50,2 —7'/\0'22 1sz, (1)
for small momenta q = (gs,q,) about the K, valleys,
7 = £1 (known as the K and K’ valleys, respectively),
where a is the lattice constant, t the effective hopping
integral, o; the Pauli matrices that act on the degree
of freedom corresponding to the two main d-orbitals of
transition metal atoms in the hexagonal lattice (pseu-
dospin), A plays the role of the rest mass, and 2 is the
spin splitting at the valence band due to spin-orbit in-
teraction, and s, is the Pauli matrix for spin. We note
that additional quadratic terms may appear in the effec-
tive Hamiltonian, 2618 resulting in qualitatively similar
scattering behavior in what follows.

Eigenstates of this Hamiltonian can be described as
plane wave spinor states with momentum K, + q. How-
ever, the addition of a perturbing potential V(r) gives
rise to more complex solutions and corresponding den-
sity distribution profiles. We will describe the scattering
amplitude f(0) arising from such a potential, under the
assumption of circular symmetry and smooth radial di-
rection dependence, so that intervalley scattering is neg-
ligible. One should comment that lattice parity and time
reversal symmetries impose restrictions on the scatter-
ing amplitude, similar to what has been described for
graphene systems, where a similar (but massless) Hamil-
tonian describes the carrier dynamics.t?

We consider a scalar scattering center placed at the
origin of coordinates, as represented in Fig. [0, and char-
acterized by a constant V' (r) = V within a radius L, while
vanishing elsewhere. As we assume vanishingly weak in-
tervalley scattering that is independent of spin, the oth-
erwise 8 x 8 spinor problem decomposes into four 2 x 2

Hp = at(1q,04 + qy0y) +

FIG. 1. The scattering by a central potential of incident
planes waves from the left is represented with outgoing circu-
lar waves produced by scattering. The angle of detection 0 is
also indicated with z-y defining the plane of dynamics.

block diagonal problems. In the following we focus on the
K (7 = 1) valley, and suppress the spin index in favor of
the implicit sign of the spin-orbit coupling A. We look
for solutions v satisfying simultaneously

[Hp + V(r)]y = Ev, (2)
Y(r = o00) — (;?f(}%ewq> elar 4
1 eiqr
fa(0) el cioy | 7 (3)

where q = ¢(cosfy,siné,) is the wave vector of the inci-
dent plane wave spinor at energy F, and

q(E) = % (EQ—AE—%<%—/\)>1/2 . (4)

and for real g one requires £ > E, = % or F < FE, =
A — %. The first term in Eq. (@), is the incident spinor,
while the second term represents a circular wave leaving
the potential region, with a scattering amplitude f,(6),
where @ is the angular coordinate measured with respect
to the incident direction, see Fig.[Il The differential cross
section is then defined by

o =16 )

We exploit the circular symmetry of the problem and
decompose the scattering amplitude in angular momen-
tum channels with index m,

=1
0) = = (,200m 1
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_eime , 6
p— (6)
written in terms of the corresponding phase shifts d,,,
generated by the interaction with the potential, and mod-
ifying the incident wave.

The phase shifts, as well as the normalizing constant

N,,, can be obtained from the continuity of the spinors
at the scattering center edge, ¥ where
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and

e HY (qr) + €20 Hiy (qr)
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(8)

Here, H,% 2) are the Hankel functions of first and sec-
ond kind, while .J,,, are the cylindrical Bessel functions
of first kind. The i, 0 superscripts label the region inside
and outside the scattering potential, respectively. This
condition yields

s _ Hith@D)In (L) = DHY GL) Inn@L)
DHy (L)1 (L) = Hyoy (4L) T (GL)
with

A= b82-F
T N3 (E_V)

D 1, (10)
q

and where ¢(E) = q(E — V) is the wave vector inside the
potential region. The scattered probability density can
then be calculated; an example for m = 2 is shown in Fig.
As expected, the attractive potential well, correspond-
ing to panels (a) and (b), induces a concentration of the
scattered wave within the region of the scattering well. In
contrast, for the repulsive barrier case in panels (c¢) and
(d), the amplitude is much diminished. The differences
in scattering patterns for negative and positive poten-
tial profiles appear more prominent at lower energies, as
noted in panels (a) and (c). This has repercussions in the
scattering cross section, as will be highlighted further in
the discussion below.

In order to assess the charge transport response to
perturbations in TMD systems, we obtain the scatter-
ing amplitude and phase shifts for different parameters
of the potential (depth and width), and examine their
energy dependence. As we will see below, at low ener-
gies the problem can be described in terms of an effective
mass in the Schrédinger description, as one would antic-
ipate. However, the Dirac description has strong devia-
tions from the effective mass approach even at moderate
energies. This point is interesting since the Schrédinger
equation remains the natural theoretical path to describe
quantum effects in many semiconductor systems.

III. SCHRODINGER LIMIT AT LOW
ENERGIES

For low wave vectors, one reasonable approximation for
the electronic structure of TMDs would be a parabolic
dispersion.t2 Such limit can be made evident from Eq.
@), assuming A > X and small ¢, so that

A (at)? o
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FIG. 2. Probability density of scattered wave for angular
momentum m = 2 for massive Dirac carriers. The patterns
correspond to a particle scattered by a potential well prob-
lem, V = —0.2 eV, with (a) low, 0.03eV, and (b) high, 0.3eV,
kinetic energy respectively. (¢) and (d) show similar proba-
bility density for a barrier potential, V = 0.2 eV, for the same
two energy values.

where clearly m* = £h%(A — \)/2at? is the effective
mass for electrons (4) or holes (—). [As mentioned above,
other quadratic terms may also contribute to the TMD
effective masses, 2818 although they do not affect our dis-
cussion and main conclusions below.]

In the Schrodinger parabolic dispersion, one can of
course determine the scattering amplitude in terms of
the corresponding phase shifts, as obtained from the ap-
propriate continuity conditions, so that2?

J2ios, _ Hi2 (kL) — By, Hi? (kL) 12)
B HY (kL) — HY (kL)

kJ! (kL)
kJm (kL)
and use k as the wave number in the Schriodinger de-
scription, k(E) = /2m*E/h?. As before, we define
k = k(E — V), and have added a superscript to 65 as
a reminder this is the phase shift for the parabolic dis-
persion. A comparison of Eqs. (IZ) and (@) makes it clear
that the phase shifts contain intrinsically different infor-
mation on the 2D dynamics of these different spinors.
One would anticipate this difference to be reflected in
the differential cross sections, as we see below.

where B,, =

the prime denotes the derivative,
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FIG. 3. Energy dependence of scattering phase shifts for
Dirac (continuous lines) and Schrodinger dispersion (dashed
lines). The potential energy is (a) attractive, V = —0.2eV,
and (b) repulsive, V' = 0.2eV, respectively. The width
L = 20A is kept fixed. Noticeable differences appear at lower
energies for attractive potentials; asymptotic values vanish for
Schrodinger particles, while they have a finite value for Dirac,

as in Eq. (I4).

IV. ENERGY DEPENDENCE OF PHASE
SHIFTS

Based on the expressions above for the different phase
shifts, we proceed to compare asymptotic behaviors of
the scattering problem in the Dirac or Schrodinger for-
mulations. It is useful to rewrite the phase shift expres-

sion (@) as

Jm+1 (qL)Jm(dL) B DJm-i—l(qNL)Jm(qL) .

(13)

tand,, =

with Y,,, being the cylindrical Bessel functions of second
kind. Note that each phase shift is undetermined up to
a multiple of .

We analyze first the short wavelength (high energy)
limit, ¢ — oo, such that D ~ 1. Note that in the high
energy limit, ¢ ~ q. However, since the dispersion rela-
tion is hyperbolic (becoming approximately linear at high

energy), and one finds at high energy that d,, — (§—q)L,
which results in a non-vanishing Dirac phase shift in this
limit, 2122

. LV

qli)rglo Om = prt (14)
This result reflects an interesting counterintuitive insight:
incoming electrons see the potential even when moving
at high energy. This means that in a TMD material with
electronic structure described by the 2D Dirac Hamilto-
nian, the carrier mobility may be strongly affected by
perturbations created on its surface, even at high ener-
gies.

We now analyze the long wavenumber (low energy)
phase shift, which requires careful consideration of the
sign of the potential. Notice that one should consider
both the well and barrier situations separately. For
V < E, the J,,,(gr) and Y,,(¢r) functions are convenient
solutions to the Bessel equation, whereas for a quantum
barrier at low energy, V > E, the wave vector ¢, and
consequently D, become complex. The solutions are the
modified Bessel functions of the first kind, I (finite at
the origin), and the second kind, K (singular at z = 0).
These considerations result in

2m
~28 () Gunldo), for m A0,

P~ for m = 0.

lim 6, =
q—0

(15)
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where Grnxo(do) = (1= 2227, (Go L)/ Jm41(do L))", d =

oartrys and qoat = (V2 + VA= £(5 — \)V/2 (with
a similar numerical factor G,, for m < 0). This limit
shows that the main contributing channel in the scatter-
ing process at low energy is m = 0, with higher angular
momenta contributing only weakly.

For parabolic band carriers, Eq. (IZ) can also be cast
as

J! (kL) — By, Jim (kL)

S _
tand,, = Y/ (hL) = BV (RL)" (16)

For high scattering energy this yields

2w VL
2 2k’

lim 65 = (17)

k—o00
which is substantially different from the corresponding
expression ([[4]) for Dirac scattering. Most importantly,
as the wave vector grows the carriers are scattered less
by the perturbation in the Schrédinger formulation, with
phase shifts vanishing asymptotically. ~

In the low energy regime we have k =

2m*(E —V)/h?, which becomes imaginary for
energies below the barrier. The corresponding small
wave number argument for J,, and Y,, results in

_mm (kL)?™ Fm(koL)—1
i oS — | wE (5) T mEn rm A0 o
k=0 " 2 for m =0,



where Fp,(z) = aJm(x)/mJpn(z), and ks =
(—2m*V/h?)Y/? (analytically continued for positive V/,
Jm — il,,). This expression is nearly identical to the
corresponding expression for Dirac carriers in (&), with
the same energy dependence, but for numerical factors.
The scattering phase shifts for electrons moving at low
energy vanish, as the wavelength is much smaller than
the size of the perturbation kL < 1.

The differences and similarities between Dirac and
Schrédinger formulations found above become perhaps
more noticeable in graphics. In Fig.[Blwe plot both phase
shifts 6, and 65 as function of the wave vector for a fixed
target radius L = 20A. For concreteness we consider
a MoSy monolayer, with parameters found in Ref. ﬂg]
a =3193A, t = 1.10eV, A = 1.66eV and 2\ = 0.15¢V.
As expressed by ([[H) and ([IJ]), both formulations match
at short wave vectors, with Dirac (Schrodinger) phase
shifts shown with continuous (dashed) lines. Phase shifts
are seen to differ for gL 2 3, and even earlier; this is es-
pecially true for the case of a potential well, as seen in
Fig. Bl(a). Notice also that the low-energy limit of d,, is
not necessarily zero, as we see for d;, for j = 0,1 in the
attractive potential case. From this behavior, it is pos-
sible to extract information about the number of bound
states with angular momentum m, n,,. For a short-range
attractive potential, Levinson’s theorem?? shows that a
finite number of bound states appear if the potential is
strong enough, as reflected in the corresponding phase
shift taking the value n,,m at low energy, whereas for a
repulsive potential one finds n,, = 0 always.

For high energies, the Dirac-like dynamics results in
finite phase shifts, clearly seen in both panels of Fig.
This is in contrast to the case of Schrodinger-like carriers
with high energy that exhibit vanishingly small phase
shifts. These differences would, of course, be evident in
the resulting cross sections, as we study next.

V. COMPARISON OF DIFFERENTIAL CROSS
SECTIONS

Different features for electronic transport appear by us-
ing repulsive (V' > 0) or attractive (V' < 0) potentials as
scattering centers, as could be produced in TMD systems.
This is evident in Fig. Ml(a), where a map of the differen-
tial cross section for forward scattering (6 = 0) is shown
as potential and scattering energy are varied. Although
the qualitative scattering features of Dirac-massive carri-
ers are reproduced by the Schrodinger description for an
appropriate effective mass, displayed in Fig. H(b), clear
quantitative differences emerge.

In both cases we notice the presence of resonant en-
hancement of the forward scattering for attractive poten-
tials, with overall higher amplitudes in the Dirac case. It
is also clear that the resonance separation is smaller for
Dirac than for Schrodinger particles, as one could naively
expect from wavelength quantization arguments in both
descriptions. Notice also that for repulsive potentials the
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FIG. 4. Forward differential scattering cross section, |f,(6 =
0)|2 as function of potential V' and incident kinetic energy.
(a) For massive Dirac Hamiltonian, and (b) for parabolic dis-
persion relation. L = 20A.

energy dependence is rather monotonic, with a slowly in-
creasing amplitude for higher energies. As expected, both
panels in Fig. [ show similar features at low energy, and
differ more strongly as the energy increases. For attrac-
tive potentials the presence and position of resonances
produce more subtle differences, as we will see next.
The energy dependence of the differenpt approaches
can be assessed by calculating the relative differential
forward scattering cross section defined as ||f2(0)|?
2O P1/(FP(0)? 4 1£57(0)]?). This result is displayed
in Fig. B where the 5% contour curve has been high-
lighted as reference. Notice that the forward Dirac am-
plitude is always larger than the Schrodinger one, indi-
cating further the importance of the spinor character of
the states. Moreover, as expected, the relative difference
grows in the ultrarelativistic limit of high energy, yet the
discrepancy between the two approaches depends on the
strength of the scattering center and is strongly affected
by its sign. Note that positive (repulsive) barriers pro-
duce small relative differences for small energies, while
negative (attractive) wells produce large deviations even
for low energies, due to the appearance of resonances.
Let us now examine the total scattering cross section,
obtained after angular integration of the differential cross
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FIG. 5. Relative Dirac-Schrédinger differential forward scat-
tering cross section, as function of potential V' and incident
kinetic energy, with L = 20A.

section,

Tod
Otot — / do d—g , (19)

as the radius of the perturbation potential changes. The
Dirac-massive results are shown in Fig. [f(a) for V' > 0
and in[Blb) for V' < 0. The results for Schrédinger carri-
ers are shown in Fig. Blc) and (d). Comparing different
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FIG. 6. Total cross section, calculated as in Eq. ([J), as a
function of the incident energy for (a) V = 0.2eV and (b)
V = —0.2eV, respectively. (c¢) and (d) show the same as (a)
and (b) but using the parabolic mass approximation.

panels, it is clear that the scattering probability for a
Dirac particle has a weaker energy dependence than in
the Schrodinger case. In the latter, the scattering cross

section depends strongly on energy, even for high energy
values and for both signs of V. There is a clear boundary
for repulsive potentials in both models, as the scattering
amplitude varies smoothly for E < V', before resonances
appear for £ > V. The oscillatory resonance patterns re-
flect the interference of transmitted and reflected waves
from the geometric boundaries of the scattering center.
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FIG. 7. The contrast in differential cross sections, Ao =
d"— — dge , is plotted as function of the scattering angle # and
for different kinetic energy and potential values. (a) Results
for attractive potential, V' = —0.2 eV, and (b) for barrier
V = 0.2 eV. The corresponding relative values are plotted
respectively in panels (¢) and (d)-notice different scales. The
curves in panel (c) are offset for clarity and organized for
growing incident energy from the bottom up. Notice non-
monotonic and high amplitude changes in (c¢). The radius is
kept at L =20 A.

In order to quantitatively assess and exhibit the dif-
ference of scattering amplitudes in the Dirac and the
Schrédinger descriptions, we plot in Fig IZl the differ-

ence in differential cross sections, Ao = W — dc‘l’;, as
function of the scattering angle for different energy of
incident carriers. The negative values in these plots in-
dicate a greater probability for scattering in the case of
Schrodinger carriers, as we see in Fig. [ for different signs
of V. The relative values of this difference, calculated as
(% - %)/(% + %), have been displayed in panels
(c) and (d). The main difference appears in the forward
scattering direction for both positive and negative poten-
tials. Notice the contrast grows monotonically with en-
ergy in the repulsive case (V' > 0, panel (b)). However,
the contrast for the attractive case has a non-monotonic
energy dependence. This non-monotonic trend can be
better assessed by contrasting panels (c) and (d). This
behavior also extends over the entire scattering angle
range and exhibits strong angular dependence. The vari-
ations seen in Fig.[[] as energy grows have clear enhanced
anisotropy, which would affect observables in electronic
transport experiments. Notice moreover that both de-
scriptions result in very similar non-zero backscattering
amplitudes, a result of the finite mass in the Dirac disper-



sion which negates the appearance of Klein tunneling.22
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FIG. 8. Transport cross section as a function of the radius
potential R and the incident energy E. (a) Barrier V = 0.2
eV, and (b) well potential, V' = —0.2 eV, both for the mas-
sive Dirac dynamics. Panels (c¢) and (d) show results for the
corresponding Schrédinger formulation.

In Fig. Bl the transport cross section is shown for both
dynamics as function of the potential radius and incident
kinetic energy. Fig. B(a)-(b) for the massive Dirac for-
mulation, and Fig. Blc)-(d) for parabolic mass electrons.
The transport cross section is connected with (inversely
proportional to) the scattering mean free time for a di-
luted system of scatterers, and as such could be directly
obtained from mobility measurements.t? The transport
cross section is defined as

T do
Otr = /777 ¥ (1 —cosf)db. (20)

All panels in Fig. 8 show vanishing oy, at high energy,
reflecting the fact that except for low angles at high en-
ergies, the differential cross section is small in all cases.
This would result in the physically sensible behavior of
diverging mean free path at high energies. Results for
both Dirac and Schrodinger dynamics show interference
oscillations with very similar patterns and only subtle
differences. However, one also notices that the transport
cross section at a given energy and radius is relatively
larger for Dirac particles, likely a consequence of the non-
vanishing phase shifts at high energies in that case, Eq.

Similarly, Fig. [0 shows the transport cross section
as function of kinetic energy and scattering potential
strength V. The differences are relative clear at low
energies, especially for attractive scattering potentials,
whereas they have more similar behavior for barrier po-

tentials, if again with different energy dependence, as the
parabolic mass vanishes faster with increasing energy.

1.0
0.8
0.6
0.4
02

0.0
1.0 )’

0.8
0.6
0.4
0.2

[A]

60

Energy [eV]

0.0L— %
-04-02 00 02 04

Potential Energy [eV]

FIG. 9. Transport cross section as a function of incident ki-
netic energy and potential strength V. (a) o4 calculated for
the massive Dirac problem. (b) Corresponding results for the
parabolic mass formulation. L = 20A for both plots.

VI. CONCLUSIONS

In summary, we have used scattering theory in two
dimensions to find the differential cross section gener-
ated by both repulsive and attractive potentials in an
assumed circular symmetry. We have also explored the
modulation of scattering for different potential features,
as well as different electron energies. A comparison
between Dirac and parabolic-band Schrodinger carriers
in terms of scattering phase shifts demonstrates that
both descriptions are comparable at low incident energy,
as expected. However, for high energies we find that
carriers ruled by the Dirac equation have higher proba-
bility to be found in the forward direction, which could
be seen as a remnant of the Klein paradox found in the

Dirac massless case.24
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