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We investigate the quantum optical torque on an atom interacting with an inhomogeneous elec-
tromagnetic environment described by the most general linear constitutive relations. The atom is
modeled as a two-level system prepared in an arbitrary initial energy state. Using the Heisenberg
equation of motion (HEM) and under the Markov approximation, we show that the optical torque
has a resonant and non-resonant part, associated respectively with a spontaneous-emission process
and Casimir-type interactions with the quantum vacuum, which can both be written explicitly in
terms of the system Green function. Our formulation is valid for any three-dimensional inhomo-
geneous, dissipative, dispersive, nonreciprocal, and bianisotropic structure. We apply this general
theory to a scenario in which the atom interacts with a material characterized by strong nonre-
ciprocity and modal unidirectionality. In this case, the main decay channel of the atom energy
is represented by the unidirectional surface waves launched at the nonreciprocal material-vacuum
interface. To provide relevant physical insight into the role of these unidirectional surface waves in
the emergence of non-trivial optical torque, we derive closed-form expressions for the induced torque
under the quasi-static approximation. Finally, we investigate the equilibrium states of the atom po-
larization, along which the atom spontaneously tends to align due to the action of the torque. Our
theoretical predictions may be experimentally tested with cold Rydberg atoms and superconducting
qubits near a nonreciprocal material. We believe that our general theory may find broad application
in the context of nano-mechanical and bio-mechanical systems.

I. INTRODUCTION

Optically-induced mechanical torque, originating from
the transfer of angular momentum between light and
material bodies, is a topic of research with a long his-
tory, dating back to the early 20th century1–3. The op-
tical torque exerted on a trapped atom, molecule, or a
micro-particle induces a rotation about a specific axis,
and provides additional degrees of freedom to change
the state of the considered object4,5. This process leads
to optical manipulations with a wide range of applica-
tions in physics, chemistry, biology, and medicine6–10.
In a related context, Casimir effects due to zero-point
energy fluctuations12 are attracting increasing atten-
tion for their potential application in micro- and nano-
electromechanical systems13,14. The Casimir effect was
first discovered by H. Casimir in 194811, who predicted
that two electrically-neutral metallic plates in vacuum
experience an attractive force due to the zero-point fluc-
tuations of the quantized electromagnetic field (i.e., due
to the confinement of these fluctuations by the plates).
In15,16, Casimir’s theory was then generalized to the case
of a system composed of two birefringent plates (i.e., a
system with in-plane optical anisotropy) showing, for the
first time, the emergence of a fluctuation-induced me-
chanical torque that makes the plates rotate toward a
position with minimum zero-point energy. Further inves-

tigations and generalizations are discussed in17–24.

In a completely different context, it has been known
for a few decades that optical systems with broken
time-reversal symmetry may enable strong nonrecipro-
cal wave-propagation effects. Most notably, suitably-
designed nonreciprocal structures may support purely
unidirectional surface waves on the interface with a dif-
ferent medium25. A subclass of these systems that has
been gaining increasing attention are “photonic topo-
logical insulators” with broken time-reversal symmetry
– the photonic analogue of the quantum-Hall insulators
in condensed-matter physics26 – in which unidirectional
surface waves, emerging in the bulk-mode bandgap, are
associated with a topological invariant number, a prop-
erty that makes them intrinsically robust to contin-
uous perturbations and immune to back-scattering at
discontinuities27–29. We would like to stress, however,
that the class of strongly nonreciprocal systems support-
ing unidirectional surface waves is broader than the class
of nonreciprocal photonic topological insulators, as uni-
directional surface modes may also exist outside the bulk-
mode bandgap. For the purposes of our work, we there-
fore focus on unidirectional surface modes in general,
rather than on modes with specific topological properties.
In the context of optical forces/torques, it is indeed the
possibility of having an asymmetric mode (unidirectional,
in the extreme case) that may enable qualitatively dif-
ferent opto-mechanical effects compared to conventional
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optical structures. This has recently inspired new the-
oretical studies on the lateral recoil force exerted on an
atom interacting with an interface that supports a uni-
directional surface mode30,31. In addition, the Casimir
optical torque between two nonreciprocal topological sur-
faces was recently studied in32.

In contrast to any previous quantum-optical torque
work, which focused on specific geometries in their
ground energy state, in the present paper we offer a
completely general theory of the quantum-optical torque
exerted on a two-level system (e.g., an atom, molecule,
quantum dot) interacting with a generic electromagnetic
environment, composed of materials described by the
most general linear constitutive relations. We consider
both resonant and nonresonant contributions to the me-
chanical torque, associated, respectively, with the spon-
taneous emission of an initially-excited atom, and the
fluctuation-induced Casimir torque. We then specialize
our general theory to the case of an atom near a material
with strong nonreciprocity, and provide relevant physical
insight into unusual and counter-intuitive effects enabled
by the unidirectional nature of the surface modes sup-
ported by this system.

The paper is organized as follows. In Sect. II, we
derive the optical quantum torque exerted on an atom
in a generic dispersive bianisotropic electromagnetic en-
vironment. The derivation is based on the Heisenberg
equation of motion, ignoring the effect of thermal fluc-
tuations. The Markov approximation is used to derive a
closed-form expression for the dynamics of the environ-
ment bosonic field and the atomic operators in the time
domain. To simplify the problem, the atom is modeled
as a two-level system. Using a quantized modal expan-
sion, we show that, for an atom in an arbitrary initial
state, the optical torque can be decomposed into a res-
onant and a non-resonant part. In Sect. II B, the exact
solution of the optical torque is written in terms of the
system Green function, which allows further generaliz-
ing our theory to dissipative systems. In Sect. III, we
use our theory to study the case of a three-dimensional
nonreciprocal material half-space, realized as a continu-
ous gyrotropic material (a magnetized plasma). Then,
under a quasi-static approximation, we characterize the
plasmonic modes of the system and obtain an explicit
expression for the optical torque. Finally, in Sect. IV,
we present an extensive numerical study that elucidates
the symmetry requirements to obtain non-zero optical
torque, and we explore the existence of equilibrium states
along which the atom spontaneously tends to align due
to the action of the optical torque.

II. GENERAL THEORETICAL FORMULATION

In this section, we investigate the quantum-optical
torque on a two-level system, initially prepared in an
arbitrary energy state, interacting with a generic inho-
mogeneous electromagnetic environment. The atom gets

depopulated from its initial state through spontaneous
emission. We rigorously formulate the optical torque
that the atom experiences during the emission process
in terms of the exact classical Green function of the sys-
tem, and show that the expectation of the torque can
be decomposed into a resonant term and a non-resonant
(Casimir) term.

A. Modal Expansion of optical torque

The quantum-optical torque operator is obtained from
the classical definition of torque by promoting all quan-
tities to operators34,

τ̂ = p̂g × F̂, (1)

where the six-vector F̂ = [Ê Ĥ]T contains the quantized

electromagnetic fields of the system, and p̂g = [p̂ 0̂]T is a
generalized dipole moment operator, with zero magnetic
dipole moment, such that p̂ = γ∗σ̂++γσ̂−, where γ is the
dipole transition matrix element and σ̂± the atom raising
and lowering operators. As usually done, the quantized
electromagnetic fields can be written in the form of pos-
itive and negative frequency components F̂ = F̂− + F̂+,

with F̂+ = F̂
†
− due to the reality (Hermiticity) of the

operator. We then expand the negative-frequency quan-
tized field as

F̂−(r, t) =
∑
ωnk>0

√
~ωnk

2
Fnk(r)ânk(t), (2)

where Fnk(r) represents a cavity mode normalized as35

1

2

∫
d3rF∗nk ·

∂ (ωM)

∂ω
·Fnk = 1, (3)

where ωnk is the mode oscillation frequency, and

M =

(
ε (r, ω) ξ (r, ω) /c
ζ (r, ω) /c µ (r, ω)

)
(4)

contains the material information, which relates the clas-
sical D and B fields with the classical E and H fields.
Eq. (3) indicates that the stored energy of the modes
is normalized to unity. In the modal expansion (2), ânk
is the (annihilation) bosonic field operator (â†nk is the
corresponding creation operator), which represents the

reservoir field and satisfies [ânk, â
†
nk′ ] = δk,k′ .

The total Hamiltonian of the system in the dipole ap-
proximation is

Ĥ =~ω0σ̂+σ̂− +
∑
ωnk>0

~ωnk
2

(
ânkâ

†
nk + â†nkânk

)
− p̂ · Ê(r0) (5)

where the right side can be decomposed into the atom
Hamiltonian (first term), the reservoir Hamiltonian (sec-
ond term) and the interaction Hamiltonian (third term,
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where r0 is the atom position). Using the Heisenberg

equation of motion ∂tânk = i~−1
[
Ĥ, ânk

]
for a single

atom interacting with reservoir electric field and apply-
ing the Markov approximation (i.e., the evolution of the
quantum system is “local” in time; at each time instant t,
the system’s memory of earlier times t < t′ is negligible),
it can be shown that30,33

ânk(t) ≈ânke−iωnkt

+

√
ωnk
2~
γ̃ · F∗nk(r0)σ̂−(t)

1

ωnk − ω0

+

√
ωnk
2~
γ̃∗ · F∗nk(r0)σ̂+(t)

1

ωnk + ω0
(6)

where γ̃ = [γ 0]T. The first term ânke
−iωnkt is the

free-field solution without an emitter. Using normal or-
dering, the expectation of the torque can be written as

τ̂ = 2Re
〈
p̂g × F̂−

〉
(note that, by writing the torque in

terms of F̂−, the free-field operator does not contribute

to the final expression of the torque, as F̂− acts on the
vacuum state, and ânk|0〉 = 0). Then, using Eqs. (2)
and (6) and considering

〈σ̂+(t)σ̂−(t)〉 = ρee(t), 〈σ̂−(t)σ̂+(t)〉 = 1− ρee(t)
〈σ̂+(t)σ̂+(t)〉 = 〈σ̂−(t)σ̂−(t)〉 = 0, (7)

where ρee(t) is the probability of the atom to be found
in its excited state, one can finally obtain,

τ̂ = ρee(t)τ̂ r + (1− ρee(t))τ̂n, (8)

where τ̂r and τ̂n are the resonant and non-resonant parts
of the optical torque, respectively, which can be written
in terms of the modal expansion as

τ̂ r = Re

{∑
nk>0

γ̃∗ × [(Fnk(r0)⊗ F∗nk(r0)) · γ̃]
ωnk

ωnk − ω0

}

τ̂n = Re

{∑
nk>0

γ̃ × [(Fnk(r0)⊗ F∗nk(r0)) · γ̃∗] ωnk
ωnk + ω0

}
.

(9)

In the non-pumped scenario, in which the atom is
assumed to be initially prepared in an excited state, and
there is no external excitation during the spontaneous
emission process, the excited state population decays
exponentially as ρee(t) = e−Γ11t, where Γ11 is the
spontaneous emission rate.

B. Exact solution in terms of the Green function

In this section, we express the modal expansion of the
torque in Eqs. (9) in terms of the Green function of
the system. The classical Green function for the wave
equation satisfies N ·G = ωM ·G + iIδ(r − r0), where

N =

(
0 i∇× I3×3

−i∇× I3×3 0

)
contains the spatial

derivatives, and G =

(
GEE GEH

GHE GHH

)
is a 6 × 6 dyad.

It can be shown that, in the limit of low losses, the
Green function of the system can be written in term of
the modal expansion as follows35

G = G+ + G− +
1

iω
M−1
∞ δ(r− r0), (10)

where

(−iω)G
+

=
∑
ωnk>0

ωnk
2

1

ωnk − ω
Fnk(r)⊗ F∗nk(r0)

(−iω)G
−

=
∑
ωnk>0

ωnk
2

1

ωnk + ω
F∗nk(r)⊗ Fnk(r0) (11)

are the positive and negative frequency parts of the Green
function, respectively, and M∞ is the material response
at infinite frequency. The δ-function term is associated
with the self-field, which we ignore34. Then, by compar-
ing Eq. (11) and Eqs. (9), we can write (8) as

τ̂ =2ρee(t)Re
{
γ̃∗ ×

(
−iωG+(r0, r0, ω0)

)
· γ̃
}

+ 2(1− ρee(t))Re
{[
γ̃∗ ×

(
−iωG−(r0, r0, ω0)

)
· γ̃
]∗}

.

(12)

The conjugation of the second term in the above equa-
tion can be safely dropped, since we are taking the real
part. We then replace G+ by G − G−, and by noting
that G−, defined in (11), is a complex analytic function
for Re {ω} > 0, we can invoke Cauchy’s theorem and
represent the second term of this equation as an integral
over the imaginary frequency axis,

τ̂ =2ρee(t)Re {γ̃∗ × (−iωG(r0, r0, ω0)) · γ̃}

+ 2(1− 2ρee(t)) Re

 1

2π

∞∫
−∞

dξ γ̃∗ ×
(−iωG−)ω=iξ

ω0 − iξ
· γ̃

 .

(13)

Since
∞∫
−∞

dξ γ̃ ×
(−iωG−)

ω=iξ

ω0+iξ · γ̃∗ = 0 (no poles are en-

closed by the Cauchy’s integration contour with an infi-
nite semicircle for Re {ω} > 0), we can add this term to
the integrand above without changing the result,
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τ̂ =2ρee(t)Re {γ̃∗ × (−iωG(r0, r0, ω0)) · γ̃}

+ 2(1− 2ρee(t)) Re

 1

2π

∞∫
−∞

dξ

[
γ̃∗ ×

(−iωG−)ω=iξ

ω0 − iξ
· γ̃ + γ̃ ×

(−iωG−)ω=iξ

ω0 + iξ
· γ̃∗
] . (14)

Moreover, since we take the real part of the
non-resonant term, we can conjugate the inte-

grand, and noting that
(
−iωG− (r0, r0, ω)

)
ω=iξ

=

[(
−iωG+

(r0, r0, ω)
)
ω=iξ

]∗
, we can then replace G− by

G+. This implies that we can also replace G− in Eq.
(14) by one-half of the full Green function, G/2, without
changing the result. We therefore obtain

τ̂ =2ρee(t)Re {γ̃∗ × (−iωG(r0, r0, ω0)) · γ̃}

+ 2(1− 2ρee(t)) Re

 1

4π

∞∫
−∞

dξ

[
γ̃∗ ×

(−iωG)ω=iξ

ω0 − iξ
· γ̃ + γ̃ ×

(−iωG)ω=iξ

ω0 + iξ
· γ̃∗
] , (15)

which gives the expression of the quantum-optical torque
in terms of the classical Green function of the system, for
an atom interacting with a generic inhomogeneous bian-
isotropic electromagnetic reservoir. While in the deriva-
tion above we have initially made the assumption of van-
ishing losses in order to write the fields as a sum of or-
thonormal cavity modes in Eq. (2), the final expression
in Eq. (15) is given in terms of the full system’s Green
function, not a modal expansion. Thanks to this for-
mulation, the first term of Eq. (15) is valid in all cases,
including for lossy systems, whereas the second term only
requires some minor modifications in the case of a lossy
environment, as detailed in Appendix B.

More broadly, our general theory applies to any lossy
and/or active media, and hence it can directly be ex-
tended to non-Hermitian nonreciprocal/topological sys-
tems, which are currently the subject of several studies
(e.g.,36,37). The analysis of non-Hermitian topological
media as reservoirs for quantum emitters has recently
been studied in38, and will be considered further in fu-
ture works.

III. QUASI-STATIC ANALYSIS IN A
THREE-DIMENSIONAL NONRECIPROCAL

MATERIAL ENVIRONMENT

To provide a closed-form quasi-static evaluation of Eq.
(15), we need to specialize our discussion to a system
of interest, and consider the relevant modes supported
by the structure that contribute to the torque exerted
on the atom. We consider here a scenario in which the
electromagnetic environment is a three-dimensional non-

FIG. 1. A two-level system (e.g., an atom) near the surface
of a nonreciprocal (gyrotropic) material, experiencing an op-
tical torque. The black arrow indicates the direction of the
torque, and the curved red arrow represents the direction of
the induced rotation in the xoz-plane. The radiation emitted
by an initially-excited atom may launch unidirectional surface
waves (e.g., surface plasmon polaritons, SPPs) on the surface
of the nonreciprocal material, resulting in a resonant opti-
cal torque. An additional non-resonant contribution to the
optical torque originates from quantum-vacuum fluctuations
(Casimir torque), which exists even for an atom in its ground
state.

reciprocal material half-space. As shown in Fig. 1, the
considered system is stratified in the z direction, with
a generic continuum nonreciprocal material filling the
half-space z < 0, and vacuum in the upper half-space
z > 0. An atom modeled as a two-level system with
Hamiltonian Ĥa =

∑
j=e,g Ej |j〉 〈j|, is located at z = z0

above the interface, where Ej is the energy associated
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with the excited and ground states of the atom. As a
specific example of a continuum nonreciprocal medium,
we consider a gyrotropic material with tensorial permit-
tivity ε = ε0 (εtIt + εaŷŷ + iεgŷ× I) and µ = µ0I, where
It = I− ŷŷ, and εg is a gyrotropy parameter that models
the nonreciprocal response of the material (the permit-
tivity tensor is non-symmetric if εg 6= 0).

When the atom is located electrically close to the gy-
rotropic material, z0 � λ0, where λ0 is the free-space
radiation wavelength, the dynamics of the system is
expected to be governed by the surface waves excited
on the nonreciprocal material-air interface, e.g., surface
plasmon polaritons (SPPs) if the gyrotropic material is
a magnetized plasma. This allows us to replace the
modal expansion in Eqs. (9) with its quasi-static solu-

tion Fnk ≈ [Enk 0]
T ≈ [−∇φk 0]

T
. The magnetic field

is assumed negligible, and the electric field is written in
terms of an electric potential φk that satisfies Laplace’s
equation, ∇ · (ε · ∇φk) = 0. The solutions of this quasi-
static equation are of the form

φk =
Ak‖√
S
eik‖·r

{
e−k‖z, z > 0

e+k̃‖z, z < 0
(16)

where k‖ = kxx̂ + kyŷ is the wavevector of the SPPs,

k̃‖ =
√
k2
x + (εa/εt)k2

y, S is the area of the slab, and

|Ak‖ |
2 =

2

ε0

[
k‖ +

Λ(ωθ, ωc, ωp)

2k̃‖

]−1

(17)

with Λ(ω, ωc, ωp) = ∂ω (εtω)
(
k̃2
‖ + k2

x

)
+ ∂ω (εaω) k2

y +

∂ω (εgω) 2kxk̃‖. By applying the boundary condition at
the interface (i.e., ẑ · ε · ∇φk continuous at z = 0), we
find the SPP dispersion equation

−k‖ = kxεg(ω) + k̃‖εt(ω). (18)

For a lossy magnetized plasma with bias magnetic field
along the +y-axis, the frequency-dispersive permittivity
elements are given by39

εt = 1−
ω2
p (1 + iΓ/ω)

(ω + iΓ)
2 − ω2

c

εa = 1−
ω2
p

ω (ω + iΓ)
, εg =

1

ω

ωcω
2
p

ω2
c − (ω + iΓ)

2 , (19)

where ωp is the plasma frequency, Γ the collision rate
associated with damping, ωc = −q|B0|/m the cyclotron
frequency, q = −e the electron charge, m the effective
electron mass, and B0 the static bias. As an example of
a material platform, n-doped narrow-gap semiconductors
such as n-type InSb under moderate magnetic bias act
as magnetized electron gases, with permittivity elements
consistent with (19) in the low THz range40,41. Consid-
ering the dispersive material model of biased plasma in

the limit of zero damping, the solution of Eq. (18) yields
a single branch of modes ωk, which depends only on the
angle θ of the wavevector with respect to the +x-axis,

ωk = ωθ =
ωc
2

cos(θ) +

√
ω2
p

2
+
ω2
c

4
(1 + sin2(θ)). (20)

FIG. 2. Angular direction of the dominant wavevector (red)
and group velocity (direction of energy flow) (blue) of the two
SPP beams launched on the surface of the nonreciprocal ma-
terial in Fig. 1 (biased plasma), as a function of frequency for
ωc = 0.4ωp. The dashed pink lines indicates ω− and ω+, de-
fined in the text. In this frequency range, the equifrequency
contours of the dispersion function are hyperbolic, with the
dominant wavevector of the beams determined by the hy-
perbola asymptotes. In comparison, for a typical reciprocal
hyperbolic material, the figure would have four branches for
the wavevector and group velocity, instead of two, due to the
symmetry of the equifrequency contour with respect to the
origin of k-space.

For ωc > 0, one has ω− < ωk < ω+, with

ω+ ≡ ωkx>0,ky=0 =
1

2

(
ωc +

√
2ω2

p + ω2
c

)
,

ω− ≡ ωkx<0,ky=0 =
1

2

(
−ωc +

√
2ω2

p + ω2
c

)
. (21)

In this frequency range, the equifrequency contours of
the dispersion function of the SPP are hyperbolic curves.
The hyperbolic dispersion results in two beams at ±θ
with respect to +x-axis30,31. It is important to note that
the quasi-static analysis above gives the SPP solutions for
large wavenumbers (i.e., short wavelengths), which con-
tain the dominant part of the atom-environment interac-
tion. Fig. 2 shows the angle of the dominant wavevec-
tor (red lines) and group velocity vector (blue line) of
the launched hyperbolic SPP beams with respect to the
+x-axis. Note that the group velocity direction (power
flow direction) is approximately rotated by 90 degrees
with respect to the wavevector direction, consistent with
an hyperbolic equifrequency contour for wavevectors of
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large magnitude. We also note that as frequency varies
ω− → ω+, the wavevector sweeps the entire xoy plane,
whereas the direction of power flow always remains in the
half-plane that includes the positive x-axis. This asym-
metry in the excitation of SPPs (no energy launched to-
ward the negative x-semiplane) is a consequence of break-
ing reciprocity by applying a static magnetic bias, which
enables the emergence of unidirectional surface modes.
We would like to stress that such unidirectionality is cru-
cial to have non-trivial optical torque. The torque ex-
erted on an atom is associated with a recoil force; due to
conservation of momentum, the direction of this force is
opposite to the direction of momentum release (wavevec-
tor). Therefore, in reciprocal systems in which SPP prop-
agation is symmetric in space, the symmetric release of
momentum does not lead to any net force/torque on the
emitter. Instead, nonreciprocity allows breaking these
symmetries, hence leading to non-trivial optical torque42.

In the following subsections, we use the quasi-static so-
lution of the eigenmodes in Eq. (16) and the correspond-

ing eigenfrequencies in Eq. (20) to derive a closed-form
expression for the resonant and non-resonant parts of the
optical torque in Eqs. (9).

A. Resonant term

The resonant component of the torque is given by the
first of Eqs. (9). Rewriting this for a single mode and
considering Fnk ≈ Fk = [Ek 0]T = [−∇φk 0]T gives

Fk(r) =

[
−(ik‖ − k‖ẑ)

Ak‖√
S
eik‖·r−k‖z 0

]T

. (22)

Considering the translational invariance of the system
in the xoy-plane, we can use use polar coordinates k‖ =
k‖(cos(θ), sin(θ), 0) and, by replacing ωk with ωθ, we can
transform the summation over the discrete modes in (9)

into an integral, 1
S

∑
ωk>0

→ 1
(2π)2

∫ θ=2π

θ=0
dθ
∫ k‖=+∞

k‖=0
k‖dk‖,

obtaining

τ̂ r = Re

{
1

(2π)
2

∫ θ=2π

θ=0

dθ

∫ k‖=+∞

k‖=0

dk‖k‖|Ak‖ |
2e−2k‖z0ωθγ

∗ ×
[
(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ

] 1

ωθ − ω0

}
. (23)

The integral in (23) can be re-written as

τ̂ r = Re

{
1

ε0(2π)
2

∫ θ=2π

θ=0

dθ

∫ k‖=+∞

k‖=0

k2
‖e
−2k‖z0dk‖

aθωθ [γ∗ ×Mθ]
1

ωθ − ω0

}
, (24)

where aθ ≡
∣∣Ak‖

∣∣2ε0k‖ and

Mθ =
1

k2
‖

(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ, (25)

which are only functions of θ, not of k‖. In (24), the

integral over k‖ can be evaluated as
∫ +∞

0
k2
‖e
−2k‖z0dk‖ =

1/4z3
0 ; hence, we obtain

τ̂ r =
1

4z3
0ε0(2π)2

Re

{∫ θ=2π

θ=0

dθaθωθ [γ∗ ×Mθ]
1

ωθ − ω0

}
.

(26)

Finally, the integral over θ may be written as the corre-
sponding principal value (P.V .) integral plus the contri-
bution of the two poles θ = ±θ0, for which the plasmon
frequency in Eq. (20) matches the transition frequency

of the atom (ω±θ0 = ω0),

τ̂ r =
1

4z3
0ε0(2π)2

Re

{
P.V .

∫ θ=2π

θ=0

aθωθ
[γ∗ ×Mθ]

ωθ − ω0
dθ

+
iπaθωθ
|∂θωθ|

|θ=θ0 [γ∗ ×Mθ=+θ0 + γ∗ ×Mθ=−θ0 ]

}
.

(27)

B. Non-resonant term

The non-resonant (Casimir) component of the torque
is given by the second of Eqs. (9). By rewriting it for a
single mode, and following the same procedure as for the
resonant term, it can be shown that

τ̂n =
1

4z3
0ε0(2π)2

Re

{∫ θ=2π

θ=0

dθaθωθ
γ ×M′θ
ωθ + ω0

}
, (28)

where the the principal value is not necessary due to the
absence of poles on the integration contour, and

M′θ =
1

k2
‖

(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ∗. (29)
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IV. SYMMETRIES, EQUILIBRIUM STATES,
AND STABLE/UNSTABLE PHASES

A. Optical torque and symmetry considerations

As discussed in the previous sections (see Eq. (8)),
the optical torque is composed of two components: (1)
a resonant part, τ̂ r, which is the dominant term when
the two-level atom is in its excited energy state, |e〉
(i.e., ρee(t) = 1); and (2) a non-resonant part, τ̂n, also
known as Casimir torque. The non-resonant part be-
comes dominant once the atom decays to its ground
state |g〉 (i.e., ρee(t) = 0 ). At any intermediate state
(i.e., 1 > ρee(t) > 0) both parts contribute. In this
section, to illustrate the application and validity of the
developed theory, we consider a system composed of a
two-level atom with transition frequency ω0 above an in-
terface between vacuum and a magnetized plasma with
ωc/ωp = 0.4. We compare the exact and quasi-static so-
lutions for the optical torque exerted on the atom, and
offer relevant physical insight into some interesting and
counterintuitive physical effects.

We consider first the resonant component of the op-
tical torque: the exact solution can be obtained from
Eq. (15) by assuming the atom to be in its excited state
(further details on the calculations of the “electric part”
of the Green function GEE for a gyrotropic half-space
are provided in Appendix A). The quasi-static solution
is given by Eq. (27). Fig. 3 compares the resonant
torque, normalized to N = |γ|2/16z3

0ε0π (τ̃j = τ̂j/N ,
with j = x, y, z), obtained from the exact and quasi-static
methods, for different orientations of a linearly- (left col-
umn) and circularly- (right column) polarized atom. As
clearly seen in the figure, the quasi-static and exact re-
sults are in good agreement, which confirms the validity
of the assumptions of our quasi-static analysis, namely,
the fact that the dynamics of the system is governed by
the unidirectional excitation of surface waves on the non-
reciprocal material-vacuum interface.

Interestingly, Fig. 3 (left column) shows that for a
linearly polarized atom the optical torque is non-zero
only in certain directions; in particular, the y-axis (di-
rection of the bias) seems to be a privileged direction
for the torque. These results are consistent with gen-
eral symmetry considerations applied to the considered
system in Fig. 1 biased by a magnetic field along the +y-
axis. Due to the presence of a static bias, the rotational
symmetry of the system is broken. However, our biased
system is symmetric (invariant) under a space inversion
(parity transformation) along the y-axis, Py : y → −y,
which transforms a generic magnetic field (an axial vec-
tor) as (Bx, By, Bz) → (−Bx, By,−Bz) (hence, it does
not flip the sign of the y-directed magnetic bias con-
sidered in our system). In addition, the operator Py

transforms the electric dipole moment (a polar vector)
as (γx, γy, γz)→ (γx,−γy, γz). The electric field is trans-
formed in the same way. Hence the torque (∝ γ × E) is
transformed as (τx, τy, τz)→ (−τx, τy, − τz).

FIG. 3. Resonant part of the optical torque on an initially-
excited atom located at z0 = 0.01c/ωp in the vacuum region
above the plasma-vacuum interface, with ωc/ωp = 0.4. The
atom radiates at frequency ω0, which is varied within the
frequency range [ω− ω+], given by Eq. (21). Left column:
linearly polarized atoms, with a. γ = x̂, b. γ = ŷ, and c.
γ = ẑ. Right column: circularly polarized atoms, with d.
γ = x̂+ iẑ, e. γ = x̂+ iŷ and f. γ = ŷ + iẑ.

Now we consider the particular case of a linear
dipole aligned along one of the principal coordinate axes
(x, y, or z), as in the first column of Fig. 3. It is
clear that after the transformation described above the
atom polarization stays invariant (flipping the sign of the
dipole moment does not change the linear polarization
state). Due to the system’s symmetries, the torque must
be invariant under the parity transformation, Pyτ̂ = τ̂ .
Thus, the components of the torque τx and τz, which are
odd under the transformation, must vanish for a dipole
aligned along one of the coordinate axes, meaning that
the only non-trivial torque component for a linearly po-
larized atom is τy. This fact is indeed consistent with the
results in Fig. 3.

We would like to note that the same symmetry consid-
erations also apply to any polarization state completely
contained in the xoz plane, predicting that the optical
torque is non-zero only along the y direction. This is
consistent with the results in Fig. 3-d for the case of a
circularly-polarized dipole in the xoz plane. To further
confirm these predictions, we have also calculated the
torque on an atom linearly polarized in the xoz plane
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with different angles with respect to the z-axis, as shown
in Fig. 4. Again, the only non-zero component of the
torque is τy. All these results indicate that the optical
torque will not change the plane of polarization for an
atom arbitrarily polarized in the xoz plane.

FIG. 4. Optical torque on an initially-excited atom linearly-
polarized in the xoz plane, sweeping the radiation frequency
in the range [ω− ω+] (the other parameters of the system
are given in the caption of Fig. 3). The red arrow indicates
the orientation of the dipole with respect to the z-axis. As
discussed in the text, only the y component of the torque is
non-zero, keeping the atom in the xoz plane.

For the non-resonant component of the optical torque
(Casimir torque), the exact solution is given by Eq. (15)
specialized for an atom in its ground state (hence, for a
sufficiently large time at which the spontaneous emission
process is completed). The quasi-static solution is given
by Eq. (28). We have verified that the exact and quasi-
static solutions are in good agreement for all the con-
figurations considered in Fig. 3 (linearly-polarized and
circularly-polarized atoms along the main axes/planes of
the system); for these cases the non-resonant part of the
torque is quite small. To further show the general ap-
plicability of our theory, we also considered a more com-
plicated (elliptical and oblique) dipole polarization, as
indicated in the caption of Fig. 5, which yields a larger
Casimir torque. As shown in Fig. 5, the two solutions are
in good agreement, confirming again the validity of our
quasi-static assumptions, namely, the fact that response
is dominated by unidirectional surface waves.

B. Polarization equilibrium states for
resonant optical torque

One of the most interesting aspects that can be stud-
ied with our theory is the existence of equilibrium states
for the polarization of an atom under resonant and non-
resonant torque action. In other words, are there planes
and axes along which the atom dipole moment tends to
spontaneously align?

As discussed in the previous section, the symmetries of
the system imply that, for an atom arbitrarily polarized
in the xoz plane, the only non-trivial torque component

FIG. 5. Non-resonant part of the optical torque (fluctuation-
induced Casimir torque) on an atom in its ground state, with
γ = (1+1i)x̂+ iŷ+ ẑ, sweeping the radiation frequency in the
range [ω− ω+] (the other parameters of the system are given
in the caption of Fig. 3). The three panels show the three
Cartesian components of the torque, comparing the quasi-
static solution (solid blue) with the exact solution (dashed
red).

is along the y-axis; therefore, the torque acts to rotate
the dipole in the xoz plane, but it does not change the
plane of polarization.

To understand whether the xoz plane truly represents
a stable plane for an atom in the environment considered
in Fig. 1, we perturb the initial polarization state out of
this plane. Figure 6-a shows a right-handed circularly-
polarized (RCP) atom (“right-handed” looking at the
atom toward the +y-axis) with dipole moment mostly
in the xoz plane, but with a small component along the
y-axis. When the y-component of the dipole moment is
positive (negative), a positive (negative) torque appears
along the z-axis, which tends to rotate the plane of polar-
ization out of the xoz plane. Therefore, the xoz plane is
not a stable equilibrium plane for an RCP atom. The sit-
uation is drastically different for a left-handed circularly-
polarized (LCP) atom (“left-handed” looking at the atom
toward the +y-axis). As depicted in Fig. 6-b, when the
LCP atom dipole moment is deviated toward the posi-
tive (negative) sides of the y-axis, a negative (positive)
torque along the z-axis appears, which pushes back the
plane of polarization to its equilibrium state, hence try-
ing to keep the polarization in the xoz plane. To give an
intuitive description of this effect, we note that this be-
havior is consistent with an heuristic analogy between a
CP dipole, a circulating current, and a magnetic dipole:
the equivalent magnetic dipole, orthogonal to the plane
of polarization of the CP dipole, tends to align along the
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static magnetic field (+y-axis). Depending on the sense
of rotation of the CP dipole, the equivalent magnetic
dipole will therefore be mostly parallel (LCP) or anti-
parallel (RCP) with respect to the bias direction. In the
latter case, the torque will make the atom rotate by 180o

about the z-axis, so that the dipole sense of rotation also
flips from the point of view of the bias field direction.

FIG. 6. Normalized optical torque τz, in the frequency range
[ω− ω+], exerted on an LCP atom (panel a.), and an RCP
atom (panel b.), with polarization plane tilted from the xoz
plane by a small angle δφ. The torque tends to align the
polarization plane of an LCP atom to the xoz plane, whereas
it tends to rotate the polarization plane of an RCP atom out
of the xoz plane.

Before proceeding in our discussion, it is worthwhile
to briefly summarize the main results obtained so far. If
the atom is free to rotate: (i) for any polarization, an
atom with dipole moment in the xoz plane will stay in
the xoz plane; (ii) a linearly-polarized atom with dipole
moment along the bias will remain along the bias; (iii)
an arbitrarily-oriented LCP atom will be pushed into the
xoz plane. These findings hold over the entire frequency
range where unidirectional SPPs exist, i.e., ω− ≤ ω ≤ ω+

Next, we study whether the direction of the bias it-
self provides a stable equilibrium position for a linearly-
polarized atom in this frequency range. As shown in
Fig. 3-b, when the atom is linearly-polarized along the
y-axis, the torque is identically zero. To investigate the
stability of an atom along this direction, we deviate the
polarization along the x- and z-axis, and study the re-
sulting torque on the atom. Figure 7-a shows the case
in which the polarization has a small positive (negative)
angle with respect to the +x-axis. We see that, for the
range of frequencies

ω− =
1

2

(
−ωc +

√
2ω2

p + ω2
c

)
< ω0 < ωm =

√
ω2
p

2
+
ω2
c

2
,

(30)
a positive (negative) torque along the z-axis appears,
which pushes the polarization back toward the y-axis;
conversely, for the rest of the frequency range, the sign
of the torque flips, which tends to deviate the atom po-
larization even more toward the x-axis. Similarly, if we
consider a small deviation along the z-axis, a non-zero

torque appears along the x-axis, as shown in Fig. 7-b. In
this case, within the same frequency range as in (30), a
positive (negative) torque appears for negative (positive)
deviations, which brings back the atom to its initial state
along the y-axis, whereas for the rest of the frequency
range the atom polarization is unstable and the torque
tries to increase the z-component of the dipole moment.
Therefore, for a linearly-polarized atom along the y-axis
(direction of magnetic bias), for transition frequencies
within [ω− ωm], we observe an unusually stable behavior:
the linearly-polarized electric dipole tends to align itself
along the static magnetic field direction, which is a behav-
ior typically expected from magnetic dipoles. Conversely,
for transition frequencies larger than ωm the state of po-
larization along the y-axis is unstable. The boundary
between these two regimes is the frequency ωm, at which
the momentum of the SPP modes becomes parallel to
the y-axis (bias direction) with θ = ±90o, as seen in Eq.
(20) and Fig. 2 (dashed black line in Fig. 2). Exactly
at this frequency the atom releases momentum symmet-
rically with respect to the geometry of the system, hence
the recoil force felt by the atom30,31 is minimized. Inter-
estingly, by tuning the bias, and thereby the cyclotron
frequency, this boundary frequency ωm between stable
and unstable phases can be largely tuned, which provides
an additional degree of freedom for the manipulation of
small polarized objects.

FIG. 7. Normalized optical torque components, τz (panel a.)
and τx (panel b.), in the frequency range [ω− ω+], exerted on
an atom linearly polarized in a direction slightly deviated from
the y-axis by a small angle δφ toward a. the x-axis, and b. the
z-axis. Depending on the frequency, an atom with linear po-
larization nearly parallel to the y-axis (direction of the static
bias) may exhibit stable or unstable behavior. The vertical
dashed line represents the frequency boundary between sta-
ble and unstable phases, corresponding to the vertical dashed
line in Fig. (2).

C. Polarization equilibrium states for
fluctuation-induced Casimir torque

As shown in Appendix B, the Casimir torque (non-
resonant part of the torque) can be calculated directly
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from the zero-point interaction energy30

EC = − 1

2π

∞∫
0

dξ tr
{(
−iωG

)
ω=iξ

· α̃ (iξ)
}

(31)

by taking the derivative of the energy with respect to the
spatial angle of the dipole (the energy needed to rotate
an object by an angle ϕ is τϕ). Eq. (31) is valid for
both lossless and lossy environments, and the quantity α̃
is the normalized polarizability of the two-level system.
Further details are discussed in Appendix B. Hence, since
the Casimir torque is directly determined by the angu-
lar distribution of the zero-point energy, it is possible to
find the equilibrium states of the polarization for Casimir
torque by plotting the energy as a function of the orien-
tation of the dipole. This is done in Fig. 8, where the
minima of the energy corresponds to the stable equilib-
rium positions and the maxima of the energy corresponds
to unstable equilibrium points. These results show that
an atom in its ground state above a nonreciprocal gy-
rotropic material will experience a non-zero torque if its
orientation is not along one of the stable directions in Fig.
8, namely, φ = π/2, θ = π/2 or 3π/2, corresponding to
the y-axis of the system (bias direction). Hence, if the
atom is free to move, it will gain a finite non-zero amount
of energy, in the form of kinetic energy, corresponding to
the difference between its initial state and the final state,
i.e., the minima of the Casimir energy in Fig. 8. This
energy could then be released, exactly one time, for ex-
ample in the form of a photon or phonon, and the atom
would align itself along the y-axis to minimize the zero-
point energy (note that this “extraction” of energy from
the quantum vacuum does not violate any thermodynam-
ics law: this finite amount of energy always comes from
the work done to prepare the system in a configuration
where Casimir force/torque is observed).

FIG. 8. Normalized zero-point interaction energy for a lin-
early polarized atom above a nonreciprocal (gyrotropic) mate-
rial with properties given in the caption of Fig. 3, for different
angular orientations. As indicated in Fig. 1, θ is measured
from the +x-axis and φ from the +z-axis. The derivative
of the zero-point energy, with respect to the angle, gives the
Casimir torque on the atom, as shown in Appendix B.

V. CONCLUSION

In this paper, we have investigated the quantum op-
tical torque acting on a two-level system, initially pre-
pared in an arbitrary state, interacting with a gen-
eral (nonreciprocal, bianisotropic, and dispersive) elec-
tromagnetic environment under the Markov approxima-
tion. We have rigorously shown that the optical torque
can be decomposed into resonant and non-resonant parts,
expressed explicitly in terms of the system’s Green func-
tion. When the atom is initially excited, and undergoes
a spontaneous-emission process, the resonant term dom-
inates, governed by the resonantly-excited electromag-
netic modes of the surrounding structure (e.g., guided
surface modes if the atom is above a stratified medium);
conversely, when the atom decays to its ground state, it is
the non-resonant part of the torque (fluctuation-induced
Casimir torque) that dominates the response.

We have then applied our general theory to study the
relevant case of a two-level atom above a continuous
material with strong nonreciprocity, implemented in the
form of an electric plasma biased by a static magnetic
field. For this physical system, the optical torque has
been evaluated with our exact formulation and with an
approximated quasi-static analysis. Numerical studies
confirm the emergence of non-zero torque on the atom in
specific directions, due to the excitation of unidirectional
surface plasmons on the nonreciprocal material interface.
Interestingly, we have discovered the existence of equi-
librium polarization planes and axes, determined by the
direction of the magnetic bias, along which the polarized
atom naturally tends to align, behaving analogously to
a magnetic dipole in a constant magnetic field. We have
also found that, depending on the atom energy state,
polarization, and atomic transition frequency, there are
distinct stable and unstable phases, in which the optical
torque produces a force working to change the polariza-
tion of the atom (unstable) or to keep the atom in its
initial polarization state (stable).

We expect that the theoretical predictions presented
in this paper would still be valid, at least qualita-
tively, in other types of structures that support unidirec-
tional wave propagation, as the described physical effects
mostly depend on the existence of a preferential sense of
direction in the system, rather than on its specific im-
plementation details. In this context, we would like to
note that our general theory can be applied to study
other classes of nonreciprocal and topological systems,
and, more broadly, any inhomogeneous, dissipative, dis-
persive, bianisotropic structure.

In summary, we believe that the theory and results
presented in this paper offer new relevant physical in-
sight into the electrodynamics of quantum emitters near
complex media, and may open new interesting research
directions at the intersection of different fields, including
nanophotonics, quantum optics, opto-mechanics, and the
emerging area of topological and nonreciprocal photon-
ics.
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Appendix A: Electric dyadic Green function for a three-dimensional nonreciprocal material half-space

The electric dyadic Green function GEE relates the electric field emitted by a classical dipole with its electric dipole
moment γ through the relation E = Ep + Es = −iωGEE · γ, where Ep is the primary field radiated by the dipole in
free space, and Es is the scattered field from the environment in which the dipole is located. Since the expression of
Ep is given in several textbooks, we only derive here the scattered field for the structure of interest. For an arbitrary-
polarized electric dipole (emitting atom) above the interface between a gyrotropic medium (magnetized plasma) and
vacuum, the scattered electric field above the interface can be written as30

Es =
1

(2π)2

∫ ∫
dkxdkye

ik‖·r e
−γ0(d+z)

2γ0
C
(
ω,k‖

)
· γ
ε0
, (A1)

where

C
(
ω,k‖

)
=

(
I‖ + ẑ

ik‖

γ0

)
·R
(
ω,k‖

)
·
(
iγ0k‖ẑ + k2

0I‖ − k‖k‖
)
, (A2)

with I‖ = x̂x̂ + ŷŷ and k‖ = kxx̂ + kyŷ. Here, R(ω, kx, ky) is a 2 × 2 reflection matrix that relates the tangential
(to the interface) components x and y of the reflected electric field to the corresponding x and y components of the
incident field30

R
(
ω,k‖

)
= (Y0 + Yg)

−1 · (Y0 −Yg) , (A3)

where

Y0 =
1

ik0γ0

(
−γ2

0 + k2
x kxky

kxky −γ2
0 + k2

y

)
, (A4)

and

Yg =

(
∆1k

2
t,1

k0

∆2k
2
t,2

k0
∆1kxky+iγz,1(θ1−1)ky

k0

∆2kxky+iγz,2(θ2−1)ky
k0

)
·
(
kx + iγz,1∆1 kx + iγz,2∆2

θ1ky θ2ky

)−1

(A5)

relates the tangential components of the magnetic field to the tangential components of the electric field in vacuum
and in the magnetized plasma, respectively. The parameters γz,i, i = 1, 2, with Re(γz,i) > 0 and ∆i, θi, in the
matrices above are defined in30.

Equation (A2) can be written in the following form

C
(
ω,k‖

)
= A ·R

(
ω,k‖

)
·B, (A6)

with

A = x̂x̂+ ŷŷ +
i

γ0
(kxẑx̂+ ky ẑŷ) =

 1 0 0
0 1 0
ikx
γ0

iky
γ0

0

 (A7)

B = iγ0(kxx̂ẑ + ky ŷẑ) + k2
0x̂x̂+ k2

0 ŷŷ − k2
xx̂x̂− kxkyx̂ŷ − kykxŷx̂− kyky ŷŷ =

 k2
0 − k2

x −kxky iγ0kx
−kykx k2

0 − k2
y iγ0ky

0 0 0

 . (A8)

The reflection matrix R
(
ω,k‖

)
is a 2× 2 matrix, which we write in 3× 3 form as
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R
(
ω,k‖

)
=

 R11 R12 0
R21 R22 0
0 0 0

 , (A9)

therefore,

C =

 1 0 0
0 1 0
ikx
γ0

iky
γ0

0

 ·
 R11 R12 0
R21 R22 0
0 0 0

 ·
 k2

0 − k2
x −kxky iγ0kx

−kykx k2
0 − k2

y iγ0ky
0 0 0

 =

=

 R11(k2
0 − k2

x) +R12(−kykx) R11(−kxky) +R12(k2
0 − k2

y) R11(iγ0kx) +R12(iγ0ky)
R21(k2

0 − k2
x) +R22(−kykx) R21(−kxky) +R22(k2

0 − k2
y) R21(iγ0kx) +R22(iγ0ky)

J31(k2
0 − k2

x) + J32(−kykx) J31(−kxky) + J32(k2
0 − k2

y) J31(iγ0kx) + J32(iγ0ky)

 , (A10)

where

J31 =
i

γ0
(kxR11 + kyR21)

J32 =
i

γ0
(kxR12 + kyR22). (A11)

For an atom with generic polarization, γ = γxx̂+ γy ŷ + γz ẑ, the integrand of (A1) can therefore be obtained in a
straightforward manner from the equations above.

Appendix B: Zero-point torque for lossy environment

While the Green function for a closed lossless environment is analytic everywhere in the complex frequency plane
except on the real axis, in the lossy case the Green function is usually not analytic in the lower half plane, and may
have poles on the lower-half-plane imaginary axis. Hence, our integral formulation in the main text only strictly
applies to lossless environments. Nevertheless, it is known from the fluctuation-dissipation theorem that fluctuation-
induced forces/torques are determined, in all cases, by the values of the Green function in the upper half plane12.
Therefore, if we can write the response (e.g., Casimir torque) of the system in terms of only the upper-half-plane
values of the Green function, this modified formulation would apply to both lossless and lossy cases.

From Eq. (15), the torque for the quantum-vacuum case is

τC = Re

 1

2π

∞∫
−∞

dξ

[
γ̃∗ ×

(−iωG)ω=iξ

ω0 − iξ
· γ̃ + γ̃ ×

(−iωG)ω=iξ

ω0 + iξ
· γ̃∗
] . (B1)

This result was derived under the assumption that the system is lossless. To extend it to a lossy environment, as
mentioned above, we need to rewrite the torque as an integral in the upper-half complex frequency plane.

To this end, still assuming for now that there is no dissipation, we rewrite the zero-point torque in a more compact
manner as

τC =
1

2π
Re

∞∫
−∞

dξ tr
(
α̃ (iξ)× (−iωG)ω=iξ

)
, (B2)

where

α̃ (iξ) =

(
γ̃γ̃∗

1

ω0 − iξ
+ γ̃∗γ̃

1

ω0 + iξ

)
(B3)

is the normalized polarizability of the two-level atom. For two generic (6× 6) matrices A and B, we define

tr (A×B) ≡
∑
i

ûi · (A×B) · ûi, (B4)
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where A×B = A ·
(

1× 0
0 1×

)
B is a rank 3 tensor, and 1 is the unit matrix of dimension 3. Note that tr (A×B)

is a vector.
It can be checked that α̃ (iξ) = α̃∗ (iξ) and, because of the reality of the electromagnetic field,

G∗ (r, r′, ω) = G (r, r′,−ω∗) . (B5)

Hence, G (r, r, ω) is always real-valued on the imaginary-frequency axis. These properties show that it is possible to
drop the “Re” operator in Eq. (B2).

Furthermore, we note that for a lossless system the Green function satisfies

G† (r, r′, ω) = −G (r′, r, ω∗) , (B6)

which, in conjuction with Eq. (B5), implies that

[−iωG (r, r, ω)]ω=−iξ = [−iωG (r, r, ω)]
T
ω=+iξ. (B7)

Using the above formula and α̃ (−iξ) = α̃T (iξ) in Eq. (B2), we can write the zero-point torque as an integral over
the semi-infinite section of the imaginary axis contained in the upper-half plane,

τC =
1

2π

∞∫
0

dξ
[
tr
{
α̃ (iξ)× (−iωG)ω=iξ

}
+ tr

{
α̃T (iξ)× (−iωG)

T
ω=iξ

}]
. (B8)

Taking into account that tr (A×B) = −tr
(
BT ×AT

)
, we get

τC =
1

2π

∞∫
0

dξ
[
tr
{
α̃ (iξ)× (−iωG)ω=iξ

}
− tr

{
(−iωG)ω=iξ × α̃ (iξ)

}]
(B9)

Finally, this result may be spelled out as follows

τC =
1

2π

∞∫
0

dξ

(
1

ω0 − iξ
γ̃∗ × (−iωG)ω=iξ · γ̃ +

1

ω0 + iξ
γ̃ × (−iωG)ω=iξ · γ̃

∗
)

− 1

2π

∞∫
0

dξ

(
1

ω0 − iξ
γ̃∗ · (−iωG)ω=iξ × γ̃ +

1

ω0 + iξ
γ̃ · (−iωG)ω=iξ × γ̃

∗
)
. (B10)

This formula gives the zero-point torque as an integral of the system’s Green function evaluated in the upper half of
the complex frequency plane, and thereby it can be used to evaluate the torque of generic lossy photonic systems.

For completeness, next we prove that the zero-point torque [Eq. (B10)] can be directly written in terms of the
zero-point energy of the system30. The formula given in Ref.30 is only valid for lossless systems, but it can be extended
to lossy systems using an approach similar to the one used above for the torque, obtaining

EC = − 1

2π

∞∫
0

dξ

(
1

ω0 − iξ
γ̃∗ · (−iωG)ω=iξ · γ̃ +

1

ω0 + iξ
γ̃ · (−iωG)ω=iξ · γ̃

∗
)
, (B11)

which corresponds to Eq. (31).
As an example, we consider that the atom polarization is linear, and we calculate the torque along the z-

direction. Hence, we can write γ = γ(cos(θ), sin(θ), 0) (θ is measured from the +x-axis, see Fig. 1). Since
∂θ = γ(−sin(θ), cos(θ), 0) = ẑ × γ, and noting that the Green function is independent of the dipole orientation, it
follows that

−∂θEC =
1

2π

∞∫
0

dξ

(
1

ω0 − iξ
ẑ × γ̃∗ · (−iωG)ω=iξ · γ̃ +

1

ω0 + iξ
ẑ × γ̃ · (−iωG)ω=iξ · γ̃

∗
)

+
1

2π

∞∫
0

dξ

(
1

ω0 − iξ
γ̃∗ · (−iωG)ω=iξ · ẑ × γ̃ +

1

ω0 + iξ
γ̃ · (−iωG)ω=iξ · ẑ × γ̃

∗
)
. (B12)
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By comparing this formula with Eq. (B10), we see that, as expected, ẑ · τC = −∂θEC .
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