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Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev (SYK) model,

which is a solvable 0 + 1 dimensional model of a non-Fermi liquid, we develop a solvable, infinite-

ranged random-hopping model of fermions coupled to fluctuating U(1) gauge fields. In a specific

large-N limit, our model realizes a gapless non-Fermi liquid phase, which combines the effects of

hopping and interaction terms. We derive the thermodynamic properties of the non-Fermi liquid

phase realized by this model, and the charge transport properties of an infinite-dimensional version

with spatial structure.
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I. INTRODUCTION

A number of models of strange metals have been been constructed1–11 by connecting together ‘quantum islands’,

in which each island has random all-to-all interactions between the electrons i.e. each island is a 0+1 dimensional

SYK model.12–15 Some of these models1,5,9,10 exhibit ‘bad metal’ behavior above some crossover temperature, with

a resistivity which increases linearly with temperature (T ), and has a magnitude (in two dimensions) which is larger

than the quantum unit of resistance h/e2. These models can be useful starting points for understanding a variety

of experiments above moderate values of T , and they also predict1,12 the frequency independent density fluctuation

spectrum observed in recent electron scattering experiments.16 However, some of the most interesting and puzzling

observations exhibit17–19 linear-in-T resistivity down to vanishingly small T , with a resistivity which is much smaller

than h/e2. Kondo-like two-band SYK models have been proposed for such behavior,9,10 in which a band of itinerant

electrons acquires marginal-Fermi liquid behavior20 upon Kondo exchange scattering off localized electrons in SYK

islands. The holographic models of strange metals have a structure very similar to these Kondo-SYK models.21–23

A possible shortcoming of the two-band SYK-Kondo models9,10 is that density of itinerant carriers is ‘small’.

In other words, only the itinerant electrons carry current and exhibit marginal-Fermi liquid behavior, while the

localized electrons in SYK islands only act as a background ‘bath’ of incoherent electrons which dissipates current

from the itinerant electrons. This behavior does not appear to be in accord with estimates of the magnitude of the

linear-in-T resistivity as T → 0.19

In this paper, we shall propose and solve a SYK-like model which exhibits strange metal resistivity as T → 0, and

in which the density of itinerant fermions is ‘large’. We shall examine a model of fermions coupled to an emergent,

dynamic, U(1) gauge field. We shall show that a solvable SYK-like large N limit exists, in which the electrons are

in N clusters with M sites per cluster (M/N is fixed as the large N limit is taken): see Fig. 1. The DC conductivity

FIG. 1. A cartoon of our model. It consists of N clusters indexed by i, j, ..., each of which contains M sites indexed by

α, β, .... Random hopping occurs between all possible pairs of intra-cluster and inter-cluster sites, but only inter-cluster hops

are coupled to dynamic U(1) gauge fields Aij . The model is solved in the M,N →∞ limit, with M/N fixed.

of our model is presented in Eq. (49), and the resistivity varies as T 2x as T → 0, with the exponent x dependent

only upon M/N and the particle-hole asymmetry parameter E , as shown in Eq. (23) and Fig. 3. In the limit of

small M/N , 2x ∼ 1 (see Fig. 3), and then we have nearly linear-in-T resistivity.

The problem of a finite density of fermions coupled to an emergent gauge field appears in many different physical
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contexts. The most extensively studied case is that related to compressible quantum Hall states in a half-filled

Landau level.24 These studies begin with assumption that the fermions form a Fermi surface, and Landau damping

from the fermions leads to an overdamped gauge propagator. The effects of the gauge coupling and the disorder

are then treated perturbatively. The presence of disorder has a relatively modest effect in inducing a diffusive form

for the gauge propagator. In the present paper we shall take a random all-to-all form of the fermion propagator,

and show that this allows for an exact treatment of the gauge fluctuations. The local criticality exhibited by our

model is expected to eventually crossover at low enough T to more generic finite-dimensional behavior, but there

is no theory yet for such a fixed point with strong disorder and interactions.

The physical context most appropriate for our proposed connection to observations on the overdoped cuprates17,19

is the theory of an ‘algebraic charge liquid’ (ACL)25 of spinless fermionic chargons coupled to an emergent gauge

field. Specifically, in a SU(2) gauge theory of optimal doping quantum criticality,26–29 it has been proposed that

there could be an overdoped phase with a large density of fermionic chargons coupled to a deconfined SU(2) gauge

field. For simplicity, this paper will consider the U(1) gauge field case, although the properties of the SU(2) case

are expected to be very similar.

We will begin in Section II by defining the model and computing its saddle point equations in the large N

limit. The properties of the single fermion Green’s function as a function of frequency, temperature, and chemical

potential will be described in Section III. The thermodynamics will be described in Section IV, and we will describe

a higher-dimensional generalization which allows us to compute transport properties in Section V.

Appendix A describes an extension of our model in which the condensation of a charge 2 Higgs field leads to

a metallic phase in which the fermions carry Z2 gauge charges. The Higgs condensate quenches the gauge field

fluctuations, and the transport is therefore Fermi-liquid like. The Higgs condensate also reduces the density of

low-energy fermionic excitations, and so we may view this transition as a model26–29 of optimal doping criticality

from the overdoped side (no Higgs condensate) to the underdoped side (Higgs condensate present).

II. MODEL AND LARGE-N LIMIT

We study a model of N clusters, each with M flavors of fermions, with infinite-ranged random hopping between

the clusters that is coupled to fluctuating U(1) gauge fields. It is given by

H = − 1

(MN)1/2

N∑
ij=1

M∑
αβ=1

[
tαβij e

iAijf†iαfjβ + (MN)1/2µδαβij f
†
iαfiα

]
, � tαβij t

βα
ji �=� |tαβij |

2 �= t2, Aji = −Aij .

(1)

where N,M → ∞ and M/N is an O(1) quantity. The tαβij are complex gaussian random variables and � .. �
denotes disorder-averaging; all disorder averages other than the ones explicitly shown above are zero. The clusters

are indexed by i, and the sites (flavors) within a cluster, are indexed by α. A cartoon of our model is shown in

Fig. 1.

As in the analysis of the SYK models,4,14 we average over realizations of disorder. Doing so formally requires

introducing replicas; however we assume, like in the SYK models, that there is no replica-symmetry breaking,

restricting to replica-diagonal configurations and suppressing the then trivial sum over replicas. We introduce
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bilocal (in time) fields G and Σ, obtaining the Euclidean action

S =

∫
dτ

N∑
i=1

M∑
α=1

f†iα(τ)(∂τ + iA0
i (τ) + µ)fiα(τ) + t2

M

N

∫
dτdτ ′

N∑
ij=1,i≤j

ei(Aij(τ)−Aij(τ ′))Gj(τ − τ ′)Gi(τ ′ − τ)

−M
∫
dτdτ ′

N∑
i=1

Σi(τ − τ ′)

[
Gi(τ

′ − τ)− 1

M

M∑
α=1

fiα(τ ′)f†iα(τ)

]
. (2)

The partition function is given by Z =
∫
DfDf†DADGDΣ e−S , and τ denotes Euclidean time. Unbounded integrals

denote integration over the full range of the pertinent variable. Integrating out the Lagrange multipliers Σi followed

by the Gi restores the pure disorder-averaged action. In the M → ∞ limit, the integrals over the Σi enforce the

definitions of Gi on each cluster i. The disorder averaged action is gauge-invariant under the transformations

Aij(τ)→ Aij(τ) + θi(τ)− θj(τ), fiα(τ)→ fiα(τ)eiθi(τ), A0
i (τ)→ A0

i (τ)− ∂τθi(τ), (3)

with Gi(τ − τ ′)→ Gi(τ − τ ′)ei(θi(τ)−θi(τ ′)) and Σi(τ − τ ′)→ Σi(τ − τ ′)ei(θi(τ)−θi(τ ′)). The propagators of the scalar

potentials A0
i will be screened due to the finite density of fermions;30 fluctuations of the A0

i will be hence unable to

inflict any singular self energy on the fermions at low energies, and we will thus simply ignore the A0
i .

Examining the disorder-averaged action, after integrating out the fermions, does not immediately suggest a large-

N saddle-point for the Gi, but a simple large N limit does turn out to exist. The reason is that there are enough

(M) sites per cluster to self-average the cluster Green’s function Gi, so that the solution will have Gi that don’t

depend on i, even though there are N clusters. This can be seen easily when the coupling to the gauge fields is

turned off. Then we know the standard result for the fully-averaged Green’s function Gavg of the full large-MN

random matrix exactly, but can also express it as

Gavg(τ − τ ′) =
1

MN

N∑
i=1

M∑
α=1

〈fiα(τ)f†iα(τ ′)〉 =
1

N

∑
i

Gi(τ − τ ′). (4)

Then, the second term of (2) may be written as

M
t2

2

∫
dτdτ ′Gavg(τ − τ ′)

N∑
i=1

Gi(τ
′ − τ). (5)

Since there are now appropriate prefactors of M everywhere in all terms in S after integrating out the fermions,

we can take functional derivatives with respect to Gi and Σi (remembering that Gavg contains Gi) and write down

the saddle-point Σi(τ − τ ′) = t2Gavg(τ − τ ′) and Gi(iωn) = 1/(iωn + µ − Σi(iωn)), which are independent of i,

indicating that the cluster-averaged (over M sites) Green’s function is the same as the fully averaged (over MN

sites and clusters) Green’s function at large-M,N . Another way to see this qualitatively is that the distribution

for G’s averaged over M sites is the convolution of M distributions for the single-site G’s. For Gaussians, this

would imply that its variance is 1/M th of that of the single-site distribution, which, although much larger than the

variance of the fully averaged G (which is 1/(MN)th of that of the single-site distribution), should still be small as

M →∞.

Turning the gauge fields back on, we expand out the exponentials to quadratic order (assuming that monopoles

are irrelevant and there is no confinement transition, so the compactness of the gauge fields isn’t important; we will
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discuss this further at the end of Sec. IV) and obtain,

S =

∫
dτ

N∑
i=1

M∑
α=1

f†iα(τ)(∂τ + iA0
i (τ) + µ)fiα(τ)

+ t2
M

N

∫
dτdτ ′

N∑
ij=1,i≤j

[
1 + i(Aij(τ)−Aij(τ ′))−

1

2
A2
ij(τ)− 1

2
A2
ij(τ

′) +Aij(τ)Aij(τ
′)

]
Gj(τ − τ ′)Gi(τ ′ − τ)

−M
∫
dτdτ ′

N∑
i=1

Σi(τ − τ ′)

[
Gi(τ

′ − τ)− 1

M

M∑
α=1

fiα(τ ′)f†iα(τ)

]
. (6)

This expanded-out action is also gauge-invariant under the previously mentioned transformation, up to quadratic

order in the gauge fields and their shifts. The terms linear in Aij in the second line of the above vanish, and the

A2
ij terms can be reorganized,

S =

∫
dτ

N∑
i=1

M∑
α=1

f†iα(τ)(∂τ + iA0
i (τ) + µ)fiα(τ) +

T

2

∑
Ωm

N∑
ij=1,i≤j

Aij(iΩm) [Πij(iΩm)−Πij(iΩm = 0)]Aij(−iΩm)

+ t2
M

N

∫
dτdτ ′

N∑
ij=1,i≤j

Gj(τ − τ ′)Gi(τ ′ − τ)

−M
∫
dτdτ ′

N∑
i=1

Σi(τ − τ ′)

[
Gi(τ

′ − τ)− 1

M

M∑
α=1

fiα(τ ′)f†iα(τ)

]
, (7)

with

Πij(iΩm) = 2t2
M

N

∫
dτeiΩmτGi(τ)Gj(−τ). (8)

We proceed to integrate out the fermions and the gauge fields. Normally, integrating out the gauge fields requires

gauge-fixing in order to avoid overcounting redundant configurations. However, in the large-N limit here, we have

O(N2) gauge variables Aij , but only O(N) constraining variables θi. The space of gauge field configurations is then

∼ RN2

, whereas the space occupied by configurations redundant to a single configuration, generated by shifting the

O(N2) Aij ’s by N θi’s is ∼ RN . Therefore the space of unique gauge configurations is ∼ RN2

/RN , which at leading

order in large-N is approximately RN2

. Thus, we can just naively integrate out the Aij in the large-N limit, and

the corrections from gauge-fixing will not affect the free energy and the saddle-point values of G and Σ at leading

order in the large-N limit. After integrating out, we obtain

TS = −MT
∑
ωn

N∑
i=1

ln [iωn + µ− Σi(iωn)] +
T

2

∑
Ωm 6=0

N∑
ij=1,i<j

ln [Πij(iΩm)−Πij(iΩm = 0)]

+ t2
M

N
T
∑
ωn

N∑
ij=1,i≤j

Gj(iωn)Gi(iωn)−MT
∑
ωn

N∑
i=1

Σi(iωn)Gi(iωn). (9)

where, as mentioned earlier, we neglect the time components of the gauge fields. Varying with respect to Gi(iωn)

and Σi(iωn), produces a site-uniform saddle-point described by (after dropping site-dependent subscripts)

Σ(iωn) = t2G(iωn) + t2T
∑

Ωm 6=0

G(iωn + iΩm)−G(iωn)

Π(iΩm)−Π(iΩm = 0)
,

Π(iΩm) = 2t2T
M

N

∑
ωn

G(iωn)G(iωn + iΩm), G(iωn) =
1

iωn + µ− Σ(iωn)
. (10)
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FIG. 2. Diagrammatic representation of the fermion (Σ) and regularized gauge field (Π̃ = Π(iΩm)−Π(iΩm = 0)) self-energies

for the Dyson equation (10). The black lines are fermion propagators, the red lines are gauge field propagators, and the

dashed blue lines are contractions of the gaussian random variables tαβij coming from the disorder average. These are the

only diagrams that contribute in in the large-M,N limit.

These equations can also be derived diagrammatically starting from (1) in the large-M,N limit, and expanding the

exponential to quadratic order after disorder-averaging (Fig. 2).

Note that the zero Matsubara frequency component of Aij does not contribute to the action (7) or (9) even at

T 6= 0. The gauge field contribution to the fermion self energy Σ(iωn) in (10) thus doesn’t involve the zero Matsubara

frequency component of the gauge field propagator. This is because, as far as the fermions are concerned, the zero

Matsubara frequency components are just static phase shifts of the tαβij , and have already been accounted for

while disorder averaging. This absence of the zero frequency components has consequences for the thermodynamic

properties of the saddle-point solution, and certain modifications have to be made to ensure that the saddle-point

is thermodynamically stable (see Sec. IV). However, these modifications do not affect the saddle-point solution to

be detailed in the next section above some energy scale which can be made arbitrarily small.

If we consider fluctuations (δGi(iωn), δΣi(iωn)) about the saddle-point action that do not amount to simply

changing a gauge, the kernel of their action at quadratic order is given by K̂ij = K̂(1)δij + K̂(2), where K̂(1,2) are

matrices in (δG, δΣ) and frequency space. Here K̂(1) is of order M , coming from the fermion determinant and

ΣG terms of (9), and K̂(2), which comes from the other two terms is of order 1. Then, diagonalizing K̂ in i, j

and (δG, δΣ) space produces O(N) fluctuation eigenmodes with eigenvalues that are O(M). Integrating over these

N modes yields a sub-leading O(N) contribution to the free energy, and each of these modes also has an O(M)

stiffness that suppresses its fluctuations. Hence, the saddle-point described by (10) is well-defined.

III. SINGLE-PARTICLE PROPERTIES

A. Zero temperature

We solve for the fermion and gauge field propagators at T = 0. We set µ = 0 (corresponding to half-filling, see

Sec. III B for µ 6= 0), and start with an ansatz for G in the IR at T = 0,

G(τ) = −C sgn(τ)

t1−x|τ |1−x
, G(iωn) = −2iCtx−1 sin

(πx
2

)
Γ(x)sgn(ωn)|ωn|−x, 0 < x <

1

2
, C > 0. (11)

We then obtain

Π(iΩm)−Π(iΩm = 0) = −4(M/N)C2t2x sin(πx)Γ(2x− 1) |Ωm|1−2x
. (12)
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FIG. 3. Plot of the exponent x giving the frequency scaling of the IR fermion self-energy, vs 2M/N , at half-filling.

This the the fermion self-energy

Σ(iωn) =
iN
√
π22x−1 sin

(
πx
2

)
csc2(πx)

2MCxΓ(2x− 1)Γ
(

1
2 − x

) sgn(ωn)t1−x |ωn|x + t2G(iωn)

[
1−

∫
dΩm
2π

1

Π(iΩm)−Π(iΩm = 0)

]
. (13)

The integral over Ωm contains contributions from frequencies outside the regime of validity of the IR solution, and

hence requires a UV completion in order to be evaluated. We assume that the UV completion is such that the

term in square brackets evaluates to zero, which we will justify below; the vanishing of the square bracketed term

is also confirmed by our numerical analysis of the UV complete theory below. Then, using G(iωn) = −1/Σ(iωn),

we find that we cannot determine C (it cancels between the LHS and RHS of the equation), but we can determine

the universal exponent x by solving

1/x− 2

1 + sec(πx)
=

2M

N
, (14)

with x vs 2M/N plotted in Fig. 3. The fact that we can’t determine C purely from the IR properties indicates that

it is non-universal.

We now justify the vanishing of the term in square brackets in (13): Suppose it didn’t exactly vanish, and∫
dΩm/(Π(iΩm)−Π(iΩm = 0)) = 1− ν, where ν � 1. Then, this leaves behind a term νt2G(iωn) in the expression

for Σ(iωn), which, scaling as sgn(ωn)|ωn|−x, is more relevant at low energies than the other term in Σ(iωn). We

can then try to ignore the other term in the IR. The Dyson equation becomes

Σ(iωn) = νt2G(iωn), G(iωn) =
1

iωn − Σ(iωn)
, (15)

This equation is solved in the IR by the random-matrix solution G(iωn) = −isgn(ωn)/(ν1/2t). This solution then

modifies the gauge field propagator in the IR, with Πnew(iΩm)− Πnew(iΩm = 0) = (2/π)(M/N)(|Ωm|/ν). We can

then write using (10)

Σ(iωn) = −i(t/ν1/2)sgn(ωn) + iν1/2t

∫ Λ

−Λ

dΩm
2π

sgn(ωn)− sgn(ωn + Ωm)

(2/π)(M/N)|Ωm|
, (16)

where Λ is a “critical window” over which the IR solution is valid. This then gives a singular self-energy

Σ(iωn) = −i(t/ν1/2)sgn(ωn)

(
1 +

Nν

2M
ln

(
|ωn|
Λ

))
→ −i(t/ν1/2)sgn(ωn)

(
|ωn|
Λ

)Nν
2M

, (17)
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We have thus recovered a power-law self-energy without explicitly assuming ν = 0 to begin with. Repeated iterations

of (10) then converge the exponent of the power-law to the value defined by (14).

The Dyson equations (10) are not fully UV-complete, and do not contain enough information to determine the

gauge field propagator at high frequencies. In order to solve them numerically, we need a UV-complete set of

equations. We do this by adding a “Maxwell” term to the gauge field action

S → S +
1

2g2

∫
dτ

N∑
ij=1,i≤j

(∂τAij(τ) +A0
i (τ)−A0

j (τ))2, (18)

with a gauge coupling g, and the A0
i ’s may be ignored due to the aforementioned screening. This then adds a term

Ω2
m/g

2 to Π(iΩm)− Π(iΩm = 0) in (10). Note that (18) contains only “electric” kinetic terms for the gauge fields

and no “magnetic” terms that are functions of the sums of gauge link variables Aij around closed loops. We will

discuss the effects of adding magnetic terms in Sec. IV.

The numerical solution was then performed by starting with free fermion and gauge field Green’s functions

G0(iωn) =
1

iωn + µ
, D0(iΩm) =

g2

Ω2
m

, (19)

and then iterating the Dyson equations (10) in the MATLAB code gd.m.31 We found that the t2G(iωn) term in Σ(iωn)

indeed cancels out as T → 0, and a power-law scaling of G(iωn) is obtained in the IR, with the exponent given by

(14). This cancellation of the t2G(iωn) term holds even for µ 6= 0, leading to the results in Sec. III B. A T = 0

numerical solution of the real time version of the Dyson equations (performed in gdrealtime0.m32) also yields the

appropriate analytically continued version of (11) for the retarded Green’s function in the IR,

GR(ω) = −2iCtx−1 sin
(πx

2

)
Γ(x)(−iω)−x. (20)

At the saddle point, we have the effective action for the fluctuations of the Aij fields

SASP = t2
M

N

∫
dτdτ ′

N∑
ij=1,i≤j

Aij(τ)

[
G(τ − τ ′)G(τ ′ − τ)− δ(τ − τ ′)

∫
dτ ′′G(τ − τ ′′)G(τ ′′ − τ)

]
Aij(τ

′) (21)

Under the scaling τ → bτ , we have G(τ)→ bx−1G(τ) from (11), which then implies Aij(τ)→ b−xAij(τ) from (21).

Corrections to (21) coming from the expansion of ei(Aij(τ)−Aij(τ ′)) beyond quadratic order in (2) are of the form∫
dτdτ ′cn>2(Aij(τ)− Aij(τ ′))n>2G(τ − τ ′)G(τ ′ − τ). The above scaling then implies that c(n>2) → b(n−2)xc(n>2),

so these terms are irrelevant, and their coefficients become small in the IR as b→ 0, allowing us to ignore them.

B. Deviations from half-filling

For µ 6= 0, the IR Green’s function develops a spectral asymmetry, with G(−τ < 0) = −e−2πEG(τ > 0) at T = 0;

G(τ > 0) = − C(E)

t1−xτ1−x , G(τ < 0) =
C(E)e−2πE

t1−x|τ |1−x
. (22)

The polarization Πij(τ) and the gauge field propagator however remain symmetric about τ = 0. The real part

of the self energy satisfies Re[Σ(iωn → 0)] = µ, cancelling the chemical potential in the Green’s function. The

t2G(iωn) term in the self-energy Σ(iωn) still cancels out as before. However, interestingly, the exponent x of the

power-law scaling depends on the asymmetry parameter E and is given by the solution to

(1/x− 2)(cosh(2πE)− cos(πx))

tan(πx) sin(πx)
=

2M

N
. (23)
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This relation can be determined from the Dyson equation (10) following Ref.,12 and gives x → 1/2 as E → ±∞
regardless of M/N .

As in the SYK models,4,14 the relationship between E and µ is nonuniversal, and depends on the values of UV

details. However, following Ref.,33 a universal relationship between the asymmetry parameter and the filling can

be determined: The filling q0 can be written as

q0 = i

∫ ∞
−∞

dE

2π
GF (E)eiE0+

, (24)

where

GF (E) ≡
∫ ∞
−∞

dE1

2π

ρf (E1)

E1 − E − i0+sgn(E1)
(25)

is the Feynman Green’s function, with ρf (E1) ≡ −2Im[GR(E1)] the fermion spectral function. As in Ref.,33 we

have

q0 =
1

π
(arg[GR(0−)]− arg[GR(−∞)]) + iP

∫ ∞
−∞

dE

2π

∂EG
R(E)

GR(E)
eiE0+

− iP
∫ ∞
−∞

dE

2π
GF (E)∂EΣF (E)eiE0+

, (26)

where P denotes the Cauchy principal value. Obtaining the low-energy forms of GR(E) and hence ρf (E) from (22),

and using GR(E → ±∞) = 1/(E + i0+), this can then be written as

q0 = 1 +
x

2
+ arg[−i sin(π(x/2− iE))e−iπx/2]− iP

∫ ∞
−∞

dE

2π
GF (E)∂EΣF (E)eiE0+

. (27)

The remaining integral needs to be computed carefully using the Dyson equation (10) and the methods described

in Appendix A of Ref..33 We obtain

q0 = 1 +
x

2
+ arg[−i sin(π(x/2− iE))e−iπx/2]− 2Nκ(x)Γ2(x) sin(2πx) sinh(2πE)

MΓ(2x− 1)
, (28)

where κ(x) =
∑6
i=1 Ii(x), with

I1 = −cot(πx)Γ(1− x)Γ(2x)

16π2Γ(1 + x)
, I2 = −csc(πx)Γ(2x)(γE + ψ(1 + x))

16π2Γ(x)Γ(1 + x)
,

I3 = − e
iπx

16π3

∫ −1

−∞
dY1

∫ 0

−∞
dY2

Y −x1 (−Y2)2x−1

(Y1 + Y2)(1 + Y1 + Y2)
,

I4 =
1

16π3

∫ 0

−1

dY1(−Y1)−x(Y1 + 1)2x−1

− 2F1

(
1, 1− 2x; 2− 2x; Y1

Y1+1

)
2x− 1

− ln(Y1 + 1) + γE + ψ(1− 2x)

 ,

I5 = −e
iπxxΓ(1− x)

16π3Γ(2− x)

∫ 0

−∞
dY1

∫ 0

−∞
dY2

θ(−Y1 − Y2 − 1)

(Y1 + Y2)2
Y −x1 (−Y2)2x−1

2F1

(
1, 1− x; 2− x;− 1

Y1 + Y2

)
,

I6 = − eiπxx

16π3(1 + x)

∫ 0

−∞
dY1

∫ 0

−∞
dY2 θ(Y1 + Y2 + 1)Y −x1 (−Y2)2x−1

2F1 (1, 1 + x; 2 + x;−(Y1 + Y2)) , (29)

where ψ is the digamma function, θ is the Heaviside step function, 2F1 is a hypergeometric function,34 and γE is

the Euler-Mascheroni constant. κ(x → 1/2) = −1/(16π), and κ(x → 0) ∝ −1/x2 (see Fig. 4b). Putting together

(23), (28) and (29), we see that q0 is a smooth function of E that decreases monotonically from 1 to 0 as E is swept

from −∞ to ∞ (see Fig. 4a). This dependence of q0 on E also agrees quantitatively with that obtained from the

numerical solutions of (10), in which q0 is given by q0 = G(τ = 0−) and e−2πE = Im[GR(ω = 0−)]/Im[GR(ω = 0+)].
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FIG. 4. (a) Plot of the filling q0 vs the asymmetry parameter E for 2M = N . (b) Plot of the function −κ(x) defined in (29)

vs the self-energy exponent x.

C. Nonzero temperature

The regularized IR Dyson equations (10) can be written in the time domain using two-time notation as (see

Ref.14)

−
∫
dτ3G(τ1, τ3)Σ̃(τ3, τ2) = δ(τ1, τ2), Σ̃(τ1, τ2) = t2νG(τ1, τ2) + t2G(τ1, τ2)D(τ2, τ1)∫

dτ3D(τ1, τ3)Π̃(τ3, τ2) = δ̃(τ1, τ2), Π̃(τ1, τ2) = 2t2
M

N

(
G(τ1, τ2)G(τ2, τ1)− δ(τ1, τ2)

∫
dτ3G(τ1, τ3)G(τ3, τ2)

)
,

(30)

where

ν = 1− lim
2→1

[D(τ1, τ2) +DUV(τ1, τ2)], (31)

and δ̃(τ1, τ2) = δ(τ1, τ2) − L−1
τ , where Lτ is the length of the time domain (L−1

τ = T at a finite temperature T ).

The chemical potential µ has been absorbed into Σ to regularize it to Σ̃. We split the gauge field propagator into

an IR piece D and a UV piece DUV. The UV piece is not determined by (30), and is not sensitive to rescalings of

τ . The reason that the δ̃ appears instead of just a δ is because the action (7) doesn’t contain zero frequency modes

of Aij . As a result, D here doesn’t contain a zero frequency mode either, and consequently the pertinent delta

function should be modified to remove its zero frequency mode. On a time domain of infinite size (such as at zero

temperature), the zero frequency mode occupies a measure zero subspace, and then there is no difference between

δ̃ and δ.

The equations (30) are not invariant under a general set of reparametrizations with τ = f(σ) and an arbitrary

function h,14

G(τ1, τ2)→ h(σ1)/h(σ2)

(f ′(σ1)f ′(σ2))a
G(σ1, σ2), Σ̃(τ1, τ2)→ h(σ1)/h(σ2)

(f ′(σ1)f ′(σ2))1−a Σ̃(σ1, σ2),

D(τ1, τ2)→ (f ′(σ1)f ′(σ2))2a−1D(σ1, σ2), Π̃(τ1, τ2)→ (f ′(σ1)f ′(σ2))−2aΠ̃(σ1, σ2), (32)

because of the second term in the expression for Π̃, and additionally because ν and L−1
τ can be nonzero. However,

they can still be scale invariant under τ → bτ iff

G→ b−2aG, Σ̃→ b2a−2Σ̃, D → b4a−2D, Π̃→ b−4aΠ̃, ν → b4a−2ν. (33)
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FIG. 5. (a) Plot of the scaling form of the fermion self-energy C−1(0)t1−xFΣ(ωn/T, 0) ≡ −Im[Σ(iωn)]/T x vs ωn/(πT )

obtained by numerical solution of the imaginary-time Dyson equations for different values of T . For all curves, t = g2 = 1,

2M = N and µ = 0 (corresponding to x = 0.230651 from (14)). The curves collapse onto one another at low frequencies,

confirming a universal low-energy scaling form. The deviations from universality at higher frequencies and temperatures

occur because of the finite size of the critical window Λ over which the low-energy solution is valid. (b) Plot of the quantity

ν(T )/T 2x vs T for the same values of parameters. This clearly shows ν(T ) ∝ T 2x over a large range of temperatures.

Note that a is not determined by these equations, but we choose 2a = 1−x due to the particular power-law scaling

of Sec. III A that is selected when the UV-complete equations are solved.

Now consider applying the scale transformation at a finite temperature. Since τ ∈ [0, 1/T ), this also scales

T → T/b, leaving Tτ invariant. (30) is then compatible with a scaling solution (reverting back to one-time

notation) G(τ) ∝ T 1−xFG(τT ) (and corresponding expressions for D, Σ̃ and Π̃) iff ν ∝ T 2x. To check that we

indeed get this behavior of ν, we use the definition (31) of ν, the fact that DUV is not affected by rescalings of T

at low T � Λ, and the scaling form for D(τ) ∝ T 2xFD(τT ), to obtain

ν(T )− ν(0) = lim
T→0

lim
τ→0

[T 2xFD(τT )]− lim
τ→0

T 2xFD(τT ), (34)

which gives ν(T ) ∝ T 2x when ν(0) = 0, which we already established in Sec. III A. Thus, the low-energy Dyson

equations in the gauge field problem are fully consistent with a scaling solution at small finite temperatures. Our

numerical solution confirms this (Fig. 5a), and we also find ν(T ) ∼ T 2x numerically at small T (Fig. 5b).

The IR fermion Green’s function in the gauge field case does not have a conformally remapped form at T 6= 0, as

the equations (30) are not invariant under (32) with τ = tan(πTσ)/T , but instead obeys

G(iωn, T ) =
C(E)

t1−xT x
FG

(ωn
T
, E
)
, FG(y → 0, E) ∝ y0, FG(y →∞, E) ∝ 1

yx
. (35)

We can only compute the scaling function FG numerically. The self-energy also satisfies a low-energy scaling form

Im[Σ(iωn)] = −C−1(E)t1−xT xFΣ(ωn/T, E). However, the scaling function FΣ again differs from the conformal

scaling function for the same exponent x (corresponding to the self-energy Σc(iωn) = −1/Gc(iωn) derived from

the conformal Green’s function Gc(τ) = −(Cπ1−x/t1−x)(T/ sin(πT |τ |))1−x), as can be seen by comparing universal

ratios such as n31 ≡ Im[Σ(3iπT )]/Im[Σ(iπT )] with their corresponding conformal values (see Table I).
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Ratio T = 10−4 T = 10−5 T = 10−6 Conformal

n31 1.3680 1.3703 1.3709 1.2607

n53 1.1363 1.1382 1.1387 1.1224

n75 1.0845 1.0862 1.0865 1.0800

n97 1.0611 1.0626 1.0629 1.0594

TABLE I. Comparision of numerical values of ratios nab ≡ Im[Σ(iaπT )]/Im[Σ(ibπT )] in the gauge field problem at different

temperatures with those derived from the conformal Green’s function Gc(τ) = −(Cπ1−x/t1−x)(T/ sin(πT |τ |))1−x). As T

is reduced, these ratios converge to universal values that differ significantly from the conformal ones at low energies, which

implies that the scaling function FΣ (or FG) is not the conformal one, and that the local criticality in the gauge field model

is different from the SYK universality class. The values of other parameters used are the same as those used in Fig. 5, but

these universal low-energy ratios are insensitive to the values of t and g2 as T → 0 within numerical tolerances.

IV. THERMODYNAMICS

In this section we describe the thermodynamic properties of the saddle-point solution described in the previous

two sections at low temperatures. We specialize to the case of half-filling, with µ = 0. This allows for temperature

derivatives of the free energy at a constant fermion density of half-filling to be the same as its temperature derivatives

at constant zero chemical potential, which are easier to evaluate. We do not expect any of the qualitative features

discussed here to be modified away from half-filling.

The free energy can be written down from (9) evaluated at the saddle-point. It is

F = −T lnZ = MNT
∑
ωn

ln

[
iωn

iωn − Σi(iωn)

]
−MNT ln 2 + t2

MN

2
T
∑
ωn

G2(iωn)−MNT
∑
ωn

Σ(iωn)G(iωn)

+
N2T

4

∑
Ωm 6=0

ln [Π(iΩm)−Π(iΩm = 0)] , (36)

where we added and subtracted the free fermion contribution, so that the frequency sum involving the logarithm

converges and we may evaluate it numerically. The term on the second lime represents the gauge field contribution.

Setting this aside for the moment, and numerically evaluating the fermion contribution using the saddle point of

the UV complete action with the electric “Maxwell” term (18), we obtain Ff/(MN) ≈ −c0(M/N) + Tc1(M/N)

as T → 0. This implies that the fermion contribution to the specific heat Cf = −T∂2Ff/∂T 2 vanishes at low

temperatures and the fermions make a constant negative contribution Sf = −∂Ff/∂T to the total entropy. Since

the fermions and gauge fields are highly entangled, we of course need to add the gauge field contribution to obtain

the full physical free energy and associated thermodynamic quantities. We can write

FA =
N2T

4

∑
Ωm 6=0

ln

[
Π(iΩm)−Π(iΩm = 0)

Π(iΩm, T = 0)−Π(iΩm = 0, T = 0)

]
+
N2T

4

∑
Ωm 6=0

ln [Π(iΩm, T = 0)−Π(iΩm = 0, T = 0)] ,

(37)

where we have added and subtracted a term that is evaluated using the zero temperature functional form of Π, but

evaluated at the Matsubara frequencies corresponding to a particular temperature. Since Π(iΩm) − Π(iΩm = 0)

obeys a quantum-critical scaling form, the first term becomes F (1)
A /(MN) = −NT4M

∑
m 6=0 ln[(2πm)1−2xFD(2πm)].

We find numerically that FD(2πm) = 1/(2πm)1−2x+O(1/m2) for m� 1 in the scaling limit, so this sum converges

at large m, and leads to F (1)
A /(MN) ∼ −T , which doesn’t contribute to the specific heat and provides a constant

contribution to the entropy at low temperatures.
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The second term of (37) can be computed by zeta-function regularization using the result (12):

F (2)
A

MN
=
NT

4M

∑
m 6=0

ln

[
−4

M

N
C2t2x sin(πx)Γ(2x− 1) |2πm|1−2x

T 1−2x

]

= −NT
4M

ln

[
−4

M

N
C2t2x sin(πx)Γ(2x− 1)T 1−2x

]
. (38)

This produces the dominant contribution to the low-temperature specific heat,

C
MN

≈
C(2)
A

MN
= −T

∂2F (2)
A

∂T 2
=

(1− 2x)N

4M
, (39)

which is positive and extensive. In the limit of M/N → ∞, where x → 0 and the non-Fermi liquid solution turns

into a noninteracting random matrix solution, this large contribution to the specific heat vanishes as it should, and

in the opposite limit of M/N → 0, where x→ 1/2, it blows up as 1/
√
M/N , as can be seen by applying (14).

The free energy contribution F (2)
A also leads to the dominant contribution to the low-temperature entropy

S(2)
A /(MN) = −∂F (2)

A /∂T ∝ (1 − 2x)(N/(4M)) lnT . This is negative at low T , which indicates that our the-

ory is incomplete: extra degrees of freedom must be present in a physical theory in order to offset this entropy.

The reason this happens is that our theory is missing all information about the zero-frequency modes of the Aij .

In any sensible electromagnetic lattice gauge theory, these modes will contribute to physical static magnetic field

configurations that cost energy: Exciting a single link Aij will lead to nonzero magnetic fluxes through all pla-

quettes containing that link, and a magnetic “Maxwell” term acting on these fluxes will contribute to the action,

even if they are static. However such terms are not generated in our theory by integrating out the fermions in the

large-N ,M limits. In order to generate these terms we need to appeal to some heavy degrees of freedom that couple

to the gauge fields in such a way that integrating out these degrees of freedom will produce magnetic “Maxwell”

terms.

Assuming this is the case, we write down the simplest possible gauge and time-reversal invariant magnetic

“Maxwell” action that is appropriate for an all-to-all interacting theory without any spatial structure. It is

SB =
m2
B

2(N − 2)

∫
dτ
∑
4ijk

(Aij(τ) +Ajk(τ) +Aki(τ))2, (40)

where the sum runs over all possible unique triangles. The kernel of this quadratic action has (N − 1)(N − 2)/2

degenerate eigenvectors with eigenvalue m2
B(1 + 2/(N − 2)) and N − 1 degenerate eigenvectors with eigenvalue

0. The zero-eigenvalued eigenvectors are all pure gauge and can each be gauge-transformed to the configuration

Aij = 0; they correspond to the state in which the flux through all triangles is zero, and thus do not contribute

anything to the free energy. In the large-N limit, the thermodynamic fraction of modes residing on a single links

Aij have negligible overlap with the zero-eigenvalued eigenvectors. This permits the approximation, exact in the

infinite-N limit

SB ≈
m2
B

2

∫
dτ

N∑
ij=1,i≤j

A2
ij(τ). (41)

We assume that m2
B is much smaller than −4(M/N)C2 sin(πx)Γ(2x − 1)t2xT 1−2x. Then including this term just

adds

F (3)
A =

N2

4
T lnm2

B (42)

to (36). This term doesn’t contribute to the specific heat, but offsets the leading contribution to the entropy to a

large positive value S(2)+(3)
A /(MN) = (N/(4M)) ln(−4(M/N)C2 sin(πx)Γ(2x− 1)t2xT 1−2x/m2

B).
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For −4(M/N)C2 sin(πx)Γ(2x − 1)t2xT 1−2x � m2
B , the fermions effectively end up coupling to gapped bosonic

modes. The low-energy Dyson equation then reads

Σ(iωn) = t2G(iωn)

1− T
∑

Ωm 6=0

1

m2
B + Π(iΩm)−Π(iΩm = 0)

+ t2T
∑

Ωm 6=0

G(iωn + iΩm)

m2
B + Π(iΩm)−Π(iΩm = 0)

,

Π(iΩm) = 2t2T
M

N

∑
ωn

G(iωn)G(iωn + iΩm), G(iωn) =
1

iωn + µ− Σ(iωn)
. (43)

The term in square brackets no longer cancels at T = 0, as increasing the denominator of the boson propagator by

adding a mass makes its value smaller than the zero-mass case. This leaves behind a νt2G(iωn) term in Σ(iωn),

leading to a renormalized random-matrix solution at the lowest energies. The second term in the first line of

(43) vanishes at small external frequencies ωn, as G(iΩm) is odd in Ωm and the denominator is a constant at low

frequencies (for nonzero chemical potential, this sum just produces a constant that is absorbed by µ). These points

can be easily verified by numerically solving the UV-completed version of (43) using the MATLAB code gd.m.31 The

lowest energy state then has a vanishing entropy and specific heat. Henceforth, we shall assume that we are only

interested in energy scales larger than the small m2
B , treating it as an IR regulator much smaller than T , and focus

on the non-Fermi liquid.

We also checked numerically that the compressibility MN∂q0/∂µ|T , where q0 = G(τ = 0−) asymptotes to a

nonzero constant as T → 0. This justifies our rationale of ignoring the time components A0
i of the gauge fields in

the IR, as their propagators are screened by this compressibility.

Finally, from the point of view of the magnetic “Maxwell” terms, the model behaves like a U(1) gauge theory

in a large (O(N)) number of dimensions. Possible magnetic monopoles arising due to the compactness of the U(1)

gauge group then source nonzero fluxes through a large number of plaquettes, leading to O(N) increases in the

free energy through the magnetic Maxwell terms, while not coupling to the fermions by virtue of being a static

background. Thus, the configuration in which no monopoles exist should be a stable saddle-point, and monopole

operators are irrelevant.

V. TRANSPORT

In order to consider transport properties of this model, we need to make appropriate modifications. First, we

need some spatial structure. This can be achieved by defining the clusters indexed by i, j to lie on the sites of an

N -dimensional hypercubic lattice, with each cluster then having 2N neighbors. The fermions hop between nearest

neighbor clusters, coupling to gauge fields Aij that live on the bonds of the lattice. Second, for an external probe

gauge field to drive a current, it must couple to a different charge from the one that the internal gauge fields Aij

couple to: If they coupled to the same charge, then turning on the probe field only amounts to shifting the values

of Aij , and the path integral over Aij trivially absorbs these shifts, rendering the partition function immune to the

probe field. If we view the fermions as chargons arising from fractionalization in an ACL, we can divide the flavors

indexed by α, β into equal fractions of two species that couple to the internal gauge field with opposite charges, but

which couple to the external probe gauge field with equal charges, which is a single-axis version of the SU(2) case

discussed in Ref..35 Then, our modified version of (1) reads

H′ = − 1

(2MN)1/2

∑
〈ij〉

M∑
αβ=1

∑
ss′=±

[
tαβij f

†
iαse

iAijσ
z
ss′ fjβs′ + (2MN)1/2µδαβij δss′f

†
iαsfiαs

]
,

� tαβij t
βα
ji �=� |tαβij |

2 �= t2. (44)
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This has a U(1) gauge invariance under fiαs(τ)→
∑
s′=± e

iθi(τ)σz
ss′ fiαs′(τ) and Aij(τ)→ Aij(τ) + θi(τ)− θj(τ).

Performing the same manipulations as before, we obtain

S′ =

∫
dτ
∑
i

M∑
α=1

∑
s=±

f†iαs(τ)(∂τ + isA0
i (τ) + µ)fiαs(τ)

+ t2
M

2N

∫
dτdτ ′

∑
〈ij〉

∑
ss′=±

[(
1− 1

2
A2
ij(τ)− 1

2
A2
ij(τ

′) +Aij(τ)Aij(τ
′)

)
δss′ + i(Aij(τ)−Aij(τ ′))σzss′

]

×Gjs′(τ − τ ′)Gis(τ ′ − τ)−M
∫
dτdτ ′

∑
i

∑
s=±

Σis(τ − τ ′)

[
Gis(τ

′ − τ)− 1

M

M∑
α=1

fiαs(τ
′)f†iαs(τ)

]
, (45)

as before, the time integrations kill the term proportional to σz in the second line of the above. This action then

leads to a saddle-point symmetric in s described by (10), with the IR solution (11). Similar arguments for invariance

under gauge-fixing at large-N and stability of the saddle-point as before apply.

We now perturb the action (45) with a diagonal probe field, so that Aij(τ)σzss′ → Aij(τ)σzss′ + Ξij(τ)δss′ where

Ξij(τ) = δj,i+x̂Ξ(τ), which corresponds to applying an electric field E = −(dΞ(τ)/dτ)x̂ in the x̂ direction. The

perturbed action reads

S′Ξ = −M
∑
i

∑
s=±

Tr ln[∂τ + µδ(τ, τ ′)− Σis(τ, τ
′)]

+ t2
M

2N

∫
dτdτ ′

∑
〈ij〉

∑
ss′=±

[(
1− 1

2
(Aij(τ)−Aij(τ ′))2

)
δss′ + i(Aij(τ)−Aij(τ ′))σzss′

]
Gjs′(τ, τ

′)Gis(τ
′, τ)

+ t2
M

2N

∫
dτdτ ′

∑
〈ij〉

∑
s=±

[
i(Ξij(τ)− Ξij(τ

′))− 1

2
(Ξij(τ)− Ξij(τ

′))2

]
Gjs(τ, τ

′)Gis(τ
′, τ)

− t2 M
2N

∫
dτdτ ′

∑
〈ij〉

∑
ss′=±

(Aij(τ)−Aij(τ ′))(Ξij(τ)− Ξij(τ
′))σzss′Gjs′(τ, τ

′)Gis(τ
′, τ), (46)

where we integrated out the fermions and neglected the A0
i as before. With the perturbed partition function

Z ′Ξ =
∫
DADGDΣ e−S

′
Ξ[A,G,Σ], we then obtain the current-current correlator

〈Jx(τ)Jx(τ ′)〉 =
1

Z ′Ξ=0

δ2Z ′Ξ
δΞ(τ)δΞ(τ ′)

∣∣∣∣∣
Ξ=0

=

∫
DADGDΣ

e−S
′
Ξ=0[A,G,Σ]

Z ′Ξ=0

(
δS′Ξ[A,G,Σ]

δΞ(τ)

δS′Ξ[A,G,Σ]

δΞ(τ ′)
− δ2S′Ξ[A,G,Σ]

δΞ(τ)δΞ(τ ′)

) ∣∣∣∣∣
Ξ=0

.

(47)

The only term that survives after integrating out the fields (which makes G and Σ take their saddle-point values) is

〈Jx(τ)Jx(τ ′)〉 = −V t2M
N

[
G(τ − τ ′)G(τ ′ − τ)− δ(τ − τ ′)

∫
dτ ′′G(τ − τ ′′)G(τ ′′ − τ)

]
, (48)

where V is the system volume (number of sites in the hypercubic lattice). The right-hand-side of (48) automatically

contains the sum of the paramagnetic and diamagnetic terms.

This gives rise to the DC conductivity, employing the scaling forms derived in Sec. III C,

σDC
xx = − 1

V
lim

Ωm→0

〈JxJx〉(iΩm)

Ωm
∼ M

N

(
t

T

)2x

, (49)

and the optical conductivity

σxx(Ω� T ) = −2(M/N)C2 sin(πx)Γ(2x− 1)

(
it

Ω

)2x

. (50)
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As discussed in Sec. II, since the saddle-point value of G is gauge-independent at leading order in large-N , this

answer for the conductivity is correctly gauge-invariant at leading order in large-N . Since the critical solution (35)

is in general valid only for T � t, the DC conductivity (49) is never parametrically in a bad-metallic regime of

σDC � 1 within the energy window of validity of the non-Fermi liquid solution.

VI. DISCUSSION

We have constructed a model of a disordered non-Fermi liquid phase of fermions at a finite density coupled to

gapless fluctuating U(1) gauge fields, in a solvable large-N limit. In this non-Fermi liquid phase, both the fermion

and photon Green’s functions are gapless, and decay as power-laws of time at long times. The power-law exponents

are continuously tunable within a finite range, and, interestingly, depend upon the filling fraction of the fermions.

A special feature of our model is that the non-Fermi liquid phase arises under the combined effect of hopping

and interaction terms, in contrast to the purely interacting SYK models. In the SYK models, the addition of

quadratic hopping terms results in a weakly-interacting Fermi liquid solution in the infrared.5 However, unlike the

SYK models, in which the interaction between the fermions is instantaneous in the large-N limit, the interaction

between fermions in our model is retarded, mediated by gapless bosonic modes with singular propagators at low

energies, leading to non-Fermi liquid behavior even in the presence of hopping terms.36

Our model only possesses scale invariance in the infrared, and not the much more comprehensive time reparametriza-

tion invariance of the SYK models. At nonzero temperatures, this lack of time reparametrization symmetry in

our model results in different finite temperature fermion Green’s functions from the conformal ones that appear

in the generalized set of SYKq models with 1 < q/2 < 2-body interactions.4,37 Consequently, we do not expect

our model to have as direct a holographic connection to AdS2 gravity as the SYK models, or to display maximal

chaos.13–15,23,37 However, due to the quantum-critical scaling of the Green’s functions, we still expect the Lyapunov

exponent for many-body quantum chaos to be an O(1) number times kBT/~, similar to other models of fermions

strongly coupled to fluctuating gauge fields.38

The dynamic photon modes cause our model to have a much larger Hilbert space than the SYK models, which

only have fermions. This appears to allow for a finer spacing of the low-lying many-body energy levels than in the

SYK models (which have a level spacing of ∼ e−N 39), leading to parametrically larger values of entropy and specific

heat at low temperatures, that are dominated by contributions from the photon modes.

We can view our model as a toy model of an ACL,25,35 which is a candidate for the strange metal regime of

the cuprate superconductors. This is an effective theory in which electrons are fractionalized into gapless fermionic

chargons which carry their charge (but not spin), and gapped bosonic spinons that do not affect the low-energy

fluctuations of the chargons. By defining our model on an N -dimensional hypercubic lattice, we obtain non-Fermi

liquid charge transport properties, with a sub-linear power-law-in-temperature resistivity. The exponent of the

power-law is continuously tunable as a function of the filling, and can approach linear-in-temperature for certain

parameter ranges. This non-Fermi liquid has a ‘large Fermi surface’, i.e. all M flavors of fermions are active and

contribute to transport. This is in contrast to the SYK/Kondo-lattice models of non-Fermi liquids proposed in

Refs.,9,10 where only the itinerant fermions contribute to transport.

For future work, it would be interesting to see if some of the strategies employed here can be extended to

construct solvable models of fermions at finite density and with quenched disorder interacting with gauge fields in

2 + 1 dimensions. Such models would of course be more realistic candidates for describing the phase diagram of the

cuprates. It would also be interesting, if possible, to consider Higgs transitions out of ACLs in such models into

weakly interacting ‘pseudogap’ phases with a reduced number of active fermions,27,35 along the lines of the analysis
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in Appendix A.
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Appendix A: Higgs transition from the U(1) ACL to a Z2 ACL

We consider a Higgs transition that breaks the U(1) gauge invariance down to Z2 in the ACL of Sec. V. This is

expected to be a toy model of the optimal doping transition in the cuprates without a symmetry-breaking order

parameter, from the overdoped to the underdoped side.26–29 We modify the fermion-gauge field hamiltonian to

H′′1 = − 1

(2MN)1/2

∑
〈ij〉

M∑
αβ=1

∑
s=±

[
tαβijsf

†
iαse

isAijfjβs + (2MN)1/2µδαβij f
†
iαsfiαs

]
, � tαβijst

βα
jis �=� |tαβijs|

2 �= t2.

(A1)

We have now broken the + ↔ − pseudospin symmetry since the hopping matrix elements tαβijs are uncorrelated

between s = ±. However, this symmetry is restored upon disorder-average as the variances of the tαβijs are the same

for s = ±. This will allow us to easily write down saddle-point equations in the higgsed phase, as the 4-Fermi

term produced by disorder-averaging will not have decompositions in the 〈f†+f−〉 channel that would prevent its

decomposition exclusively into the Gi’s. As before, the addition of Maxwell terms and time components for the

gauge fields to H′′1 is implied.

Now we add complex scalar Higgs fields Hi defined on each site i of the N -dimensional hypercube into the mix.

These fields are charge 2 under the U(1) gauge field, with Hi → Hie
2iθi under the U(1) gauge transformation.

H′′2 =
∑
i

[
Mr|Hi|2 + gH

(
Hi

M∑
α=1

f†iα+fiα− + h.c.

)]
− tH

2

∑
〈ij〉

[
H∗i Hje

2iAij + h.c.
]
. (A2)

The addition of coupling to time components of the gauge fields to H′′2 is implied. The couplings of the Higgs fields

to the fermions are non-random, but a large-M,N saddle-point can still be defined as was done in Ref.,40 which

had non-random couplings to a superconducting order parameter. To see this, we disorder-average the action of

H′′1 +H′′2 and then expand the exponentials to quadratic order as before (ignoring the screened time components

of the gauge fields),

S′′ =

∫
dτ
∑
i

M∑
α=1

[∑
s=±

f†iαs(τ)(∂τ + µ)fiαs(τ) + gH

(
f†iα+(τ)Hi(τ)fiα−(τ) + h.c.

)]

+ t2
M

2N

∫
dτdτ ′

∑
〈ij〉

∑
s=±

[(
1− 1

2
A2
ij(τ)− 1

2
A2
ij(τ

′) +Aij(τ)Aij(τ
′)

)
+ is(Aij(τ)−Aij(τ ′))

]

×Gjs(τ, τ ′)Gis(τ ′, τ)−M
∫
dτdτ ′

∑
i

∑
s=±

Σis(τ, τ
′)

[
Gis(τ

′, τ)− 1

M

M∑
α=1

fiαs(τ
′)f†iαs(τ)

]

+M

∫
dτ
∑
i

[
|∂τHi(τ)|2 + r|Hi(τ)|2

]
− tH

2

∫
dτ
∑
〈ij〉

[
H∗i (τ)

(
1 + 2iAij(τ)− 2A2

ij(τ)
)
Hj(τ) + h.c.

]
. (A3)
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We now integrate out the fermions and gauge fields

S′′ = −M
∑
i

Tr ln

(
∂τ + µδ(τ, τ ′)− Σi+(τ, τ ′) gHHi(τ)δ(τ, τ ′)

gHH
∗
i (τ)δ(τ, τ ′) ∂τ + µδ(τ, τ ′)− Σi−(τ, τ ′)

)
+M

∫
dτ
∑
i

[
|∂τHi(τ)|2 + r|Hi(τ)|2

]
+

1

2

∑
〈ij〉

Tr ln

[
−∂

2
τ

g2
+ Π̃ij(τ, τ

′) + 2tH(H∗i (τ)Hj(τ) + h.c.)δ(τ, τ ′)

]
− tH

2

∫
dτ
∑
〈ij〉

[H∗i (τ)Hj(τ) + h.c.]

+ t2
M

2N

∫
dτdτ ′

∑
〈ij〉

∑
s=±

Gjs(τ, τ
′)Gis(τ

′, τ)−M
∫
dτdτ ′

∑
i

∑
s=±

Σis(τ, τ
′)Gis(τ

′, τ),

Π̃ij(τ, τ
′) = t2

M

N

∑
s=±

[
Gis(τ

′, τ)Gjs(τ, τ
′)− 1

2
δ(τ, τ ′)

∫
dτ ′′ (Gis(τ, τ

′′)Gjs(τ
′′, τ) +Gis(τ

′′, τ)Gjs(τ, τ
′′))

]
. (A4)

where we threw out some terms that do not contribute to first-order variations at the saddle-point we will obtain.

In addition to the saddle-point for Gis and Σis, this action also has a saddle-point for Hi. Fluctuations of Hi about

this saddle point are suppressed by the large-M limit. The combined saddle-point equations obtained by varying

Gis, Σis and Hi about an i, s-uniform solution with constant |H(τ)| = |H| are

Σ(iωn) = t2G(iωn) + t2T

∫
dΩm
2π

G(iωn + iΩm)−G(iωn)

Ω2
m/g

2 + Π̃(iΩm) + 4tH |H|2
, G(iωn) =

iωn + µ− Σ(iωn)

(iωn + µ− Σ(iωn))2 − g2
H |H|2

,

H

[
r − N

M
tH +

∫
dωn
2π

g2
H

(iωn + µ− Σ(iωn))2 − g2
H |H|2

+
2N

M

∫
dΩm
2π

tH

Ω2
m/g

2 + Π̃(iΩm) + 4tH |H|2

]
= 0,

Π̃(iΩm) = 2t2
M

N

∫
dωn
2π

G(iωn)(G(iωn + iΩm)−G(iωn)). (A5)

Saddle-points for which H is static in time with a spatially uniform magnitude but spatially varying phase are

gauge-equivalent to the uniform solution, and yield the same fermion Green’s function. For r between NtH/M and

rc ≡ −
N

M
tH −

∫
dωn
2π

g2
H

(iωn + µ− Σ(iωn))2

∣∣∣∣∣
H=0

, (A6)

the equations (A5) have a solution with a Higgs condensate |H| 6= 0, with |H| vanishing as r → rc. In this higgsed

phase, the only remaining gauge redundancy is a Z2 gauge transformation of f → −f . The condensate renders the

low-energy fluctuations of the gauge fields non-singular, which causes the low-energy fermion Green’s function and

self-energy to take on a random-matrix form G(iωn),Σ(iωn) ∼ isgn(ωn) for gH |H| � t. The reasoning behind this

is the same as that for the solution of (43), and the random-matrix like solution at low energies can easily be verified

by solving (A5) numerically using the MATLAB code gdHiggs.m.41 Relative to the non-Fermi liquid U(1) ACL phase,

the low-energy fermion density of states ∼ Im[GR(ω)] is thus depleted, akin to a ‘pseudogap’ phase. Furthermore,

the resistivity in the higgsed phase, following from (48), becomes Fermi-liquid like, with ρDC
xx ∼ ρ0 + ρ1T

2.

Fig. 6 shows the onset of the Higgs condensate, with r− rc ∼ |H|2 as |H| → 0, indicating a continuous transition

with exponent ν = 1/2 as T → 0. Also shown is the comparison of free energies of the |H| 6= 0 solution and the

H = 0 solution of (A5) for values of r that allow for the higgsed phase; this shows that the |H| 6= 0 saddle point is

indeed energetically favorable as T → 0.
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FIG. 6. (a) Plot of r as a function of |H| in the higgsed phase, obtained from numerical solution of (A5) in the T → 0 limit.

The orange line fits the numerical data with r = rc+h2|H|2 +h3|H|3, so r− rc ∼ |H|2 as |H| → 0. The values of parameters

used are t = tH = g2 = gH = 1, 2M = N and µ = 0. (b) Plot of the free energies per fermionic degree of freedom of the

|H| 6= 0 solution (orange) and H = 0 solution (blue) of (A5). The weak first-order behavior at very small |H| is due to a

small finite T = 10−5 in the numerics, and disappears as T → 0. The values of other parameters used are the same as in (a).
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