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Hidden-order phase transition in the heavy-fermion superconductor URu2Si2 exhibits the mean-field-like
anomaly in temperature dependence of heat capacity. Motivated by this observation, here we explore the impact
of the complex order parameter fluctuations on the thermodynamic properties of the hidden order phase. Specif-
ically, we employ the mean-field theory for the hidden order which describes the hidden order parameter by an
average of the hexadecapole operator. We compute the gaussian fluctuation corrections to the mean-field theory
equations including both the fluctuations due to ‘hidden order’ as well as antiferromagnetic order parameters.
We find that the gaussian fluctuations lead to the smearing of the second-order transition rendering it to become
the first-order one. The strength of the first-order transition is weakly dependent on the strength of underlying
antiferromagnetic exchange interactions.

PACS numbers: 71.27.+a

I. INTRODUCTION

Virtually every textbook on thermodynamics and statistical
physics includes the discussion of the first and second order
phase transitions. The latter are defined by the discontinuity
of the second derivative of free energy at some critical tem-
perature Tc. The defining feature of the second-order phase
transitions is that the low temperature ordered phase has lower
symmetry than the high-temperature disordered one and one
can conveniently introduce the order parameter to describe
the transition.1 Therefore, it is usually possible to associate
the physical observable (and the corresponding susceptibility)
with the order parameter by identifying what symmetry has
been broken by transitioning into the ordered phase: for ex-
ample, the time-reversal symmetry corresponds to a state with
finite magnetization while breaking of the global U(1) gauge
symmetry signals an onset of superconductivity.

Given the remarkable success in our understanding of the
phase transitions and advances in experimental techniques,
a relative ease with which one can identify the symmetry of
the low-temperature state is almost always taken for granted.
The intriguing exception to this state of affairs was furnished
by the observation of the second-order phase transition in
URu2Si2 at temperature Tc ≈ 17.5 K and zero pressure.2–4

The phase below Tc is not antiferromagnetic order but some
unknown non-magnetic, non-structural order, it only become
antiferromagnetic order through a first order phase transition
at larger pressure.5–8 Different theoretical models have been
proposed to describe the “hidden” ordered phase e.g. spin-
density wave,9–11 orbital currents,12 helicity order13 and mul-
tipole order.14–18 Indeed, despite more than thirty years of
intensive theoretical and experimental research, the consen-
sus on the nature of the broken symmetry state has not been
reached yet, (for details on competing theories of hidden or-
der and recent experimental efforts we would like to refer the
reader to an excellent recent review paper by Mydosh [19] and
references therein).

Experimentally, one of the intriguing features of the
hidden-order phase transition is a sharp – mean-field-like –
discontinuity in the temperature dependence of the heat capac-
ity. If we were to entertain an idea that the hidden order phase

transition is governed by the itinerant degrees of freedom, we
would find that the corresponding ‘hidden-order’ susceptibil-
ity must become logarithmically divergent with temperature.
Then an analogy with the conventional superconductivity im-
mediately comes to mind for the superconducting transition
in elemental metals has also sharp jump in the heat capacity
at the critical temperature and, consequently, the supercon-
ductivity is fairly accurately described by the BCS mean-field
theory.20 In fact, Kos, Millis and Larkin have demonstrated
that although the gaussian fluctuation corrections to the BCS
mean-field equations due to the amplitude and phase fluctua-
tions are logarithmically diverging, the corresponding diver-
gences cancel each other out in the mean-field equations21

making the BCS mean-field approximation very accurate (see
also Ref. [22] for a related discussion). Interestingly, most
recently Hoyer and Schmalian have shown that similar can-
cellation of the logarithms does not happen for the case of the
charge-density-wave transition (CDW) and spin-density-wave
(SDW) transition in one or three spacial dimensions, which
naturally renders the mean-field treatment of those transitions
uncontrolled.23 The only exception is the SDW transition in
two dimensions with the perfectly nested Fermi surface.23 In
view of these theoretical considerations along with the recent
experimental results,19 it seems perfectly reasonable to us to
think that the hidden order transitions is likely driven by the
local and not itinerant degrees of freedom.

Recenly, Haule and Kotliar (HK) have employed the com-
bination of the density functional theory together with the
dynamical mean-field theory to put forward a theory for the
hidden-order transition, which is governed by the local 5f or-
bital degrees of freedom.24 The corresponding order param-
eter is a complex function, whose real part accounts for the
hidden order phase: it is determined by the average of the
hexadecapole operator and corresponds to an excitonic mix-
ing between the two lowest lying states originating from the
uranium 5f non-Kramers doublets which are split by the crys-
talline electric fields. The imaginary part of the order param-
eter accounts for an antiferromagnetic order which emerges
when the external pressure is applied. In their follow-up
paper,16 Haule and Kotliar have developed a Landau-Ginzburg
description of hidden order state with the complex order pa-
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rameter.
Motived by these developments, in this paper we present

the results of our calculations of the gaussian fluctuation cor-
rections to the mean-field theory equations of the complex
‘hidden-order’ parameter. We find that in the vicinity of the
hidden-order transition the gaussian fluctuations of the real
and imaginary parts of the complex order parameter render the
transition to become first order: at the critical temperature the
absolute value of the order parameter changes abruptly from
zero to some finite value which is close to the mean-field value
calculated at T = 0. By calculating the dependence of the
critical temperature on the value of the antiferromagnetic ex-
change interaction, we also find that the gaussian fluctuations
have generically substantial effect on the value of the mean-
field critical temperature: the critical temperature is decreased
approximately by a factor of two.

Our paper is organized as follows. In the next Section we
introduce the microscopic model to describe the hidden-order
transition. Section III provides the summary for the mean-
field approximation of our model. The derivation of the gaus-
sian fluctuation corrections to the mean-field equations are
presented in Section IV. Finally, Section V is devoted to dis-
cussion of our results and conclusions. Throughout the paper
we use the units ~ = kB = 1.

II. MODEL

Following the discussion in Ref. [16], we consider uranium
ion in 5f2 valence configuration corresponding to a state with
the total angular momentum J = 4. As a result of the crys-
talline electric fields, the nine-fold degeneracy is lifted. The
first principles calculations24 showed that the two lowest lying
state is a non-Kramers doublet which can be written as a lin-
ear combination of the eigenvectors of the angular momentum
operator Ĵz:

|γ0〉 =
i√
2

(|4〉 − | − 4〉) ,

|γ1〉 =
cosφ√

2
(|4〉+ | − 4〉) + sinφ|0〉,

(1)

where φ is some parameter whose specific value will not be
important for our subsequent discussion. Since we are con-
sidering only two states (1), it is convenient to represent them
using the fermionic creation operators |γa〉 = f̂†a |vac〉. We
write the model Hamiltonian Ĥ in terms of the fermionic op-
erators as follows:

Ĥ = −∆z

∑
iab

f̂†iaσ
z
abf̂ib

− 1

2

∑
ij,ab

∑
α=x,y

uαij

(
f̂†iaσ

α
abf̂ib

)(
f̂†jcσ

α
cdf̂jd

)
.

(2)

Here the summations are performed over the lattice sites ~ri
and the fermionic states a, b = 0, 1, 2∆z is the energy
splitting between the states |γ0〉 and |γ1〉, couplings uxij and

uyij account for the interaction between the two-level sys-
tems and σx, σy and σz are Pauli matrices. The exchange
coupling uxij drives the hidden-order transition with the or-
der parameter ψx(~ri) = 〈f̂†i0f̂i1 + f̂†i1f̂i0〉, which is pro-
portional to the matrix element of the hexadecapole operator
(ĴxĴy + ĴyĴx)(Ĵ2

x − Ĵ2
y ) hence the name ‘hexadecapole or-

der’. Lastly, the exchange couplings uyij accounts for the an-
tiferromagnetic correlations along the z axis and, in principle,
may lead to antiferromagnetic order described by the expec-
tation value ψy(~ri) = i〈f̂†i0f̂i1 − f̂

†
i1f̂i0〉 ∝ 〈1|Ĵz|0〉. Lastly,

we mention that in the case when external magnetic field is
applied, the model Hamiltonian would contain an extra term
HZ = −∆y

∑
f̂†iaσ

y
abf̂ib.

For our subsequent analysis of the model (2), it will be con-
venient to use the path integral formulation. Since we are es-
sentially dealing with the spin-1/2 operators in the fermionic
representation, we can use the method by Popov and Fe-
dotov who developed the path integral formalism for spin
systems.25 The constraint which excludes double occupation
on each site due to the Pauli principle,

∑
a f̂
†
iaf̂ia = 1, is taken

into account by introducing the complex chemical potential
µpf = −iπT/2. Thus, the action for our problem reads

S =

β∫
0

dτ

{∑
ia

f ia

(
∂

∂τ
− µpf

)
fia +H(f, f)

}
, (3)

where f ia(τ) and fia(τ) are mutually independent Grass-
mann variables. The partition function is determined by

Z =

∫
D[f, f ]e−S . (4)

We proceed by performing the Hubbard-Stratonovich trans-
formation by introducing the local bosonic fields ~Φj(τ)

which couple linearly to the fermionic fields ~bi(τ) =∑
ab f ia(τ)~σabfib(τ):

e
1
2

∑
uαijbiαbjα =

1

C

∫
D~Φe−

1
2

∑
Φαi J

α
ijΦ

α
i +

∑ ~Φj ·~bj , (5)

where the summations are performed over repeated indices,
Jαij = [uα]−1

ij and C = 4π2det[ux]det[uy]. The resulting ac-
tion becomes gaussian for the fermionic fields. Performing an
integration over the fermionic fields yields:

S[~Φ] =
1

2

β∫
0

dτ
∑

Φαi J
α
ijΦ

α
i − Tr log Ĝ−1, (6)

where the matrix Ĝ−1 is defined by

Ĝ−1(~rj , τ) = (∂τ − µpf)σ0 −∆zσ
z + ~Φj(τ) · ~σ, (7)

where σ0 is a unit matrix. In the next Section we will analyze
the action (6) using the mean-field theory.
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III. REVIEW OF THE MEAN-FIELD THEORY

The mean-field theory for the hidden order corresponds to
the saddle-point approximation to Eq. (6):

~Φj(τ) = ~ψ. (8)

At the saddle point the action is proportional to the free en-
ergy. Minimizing the free energy with respect to ψx and ψy
yields the following mean-field equations:

1

2

∑
j

Jxijψx = T
∑
νm

ψx

(νm + πT
2 )2 + ∆2

z + ~ψ2
,

1

2

∑
j

Jyijψy = T
∑
νm

ψy

(νm + πT
2 )2 + ∆2

z + ~ψ2

(9)

and the summation is carried over the fermionic Matsubara
frequencies νm = πT (2m+ 1). For our purposes, it will suf-
fice to consider the case when the second mean-field equation
(9) has only trivial solution, ψy = 0. This implies that the
ground state has purely real (hexadecapole) order parameter,
ψx 6= 0.

To make further progress, some assumptions about the ex-
change couplings uxij must be made. Let us consider the sim-
plest case of nearest neighbor interactions

uxij = Uxδj,i±δ (10)

where ~ri±δ denotes the positions of the nearest neighbors. As-
suming the periodic boundary conditions, for the inverse of
the matrix Jxij it obtains∑

j

Jxij =
1

2Ux
. (11)

Note that in this equations the summation extends over all lat-
tice sites.

Given (10), we can easily perform the summations over the
Matsubara frequencies, so the equation which determines the
temperature dependence of the order parameter reads√

∆2
z + ψ2

x

2Ux
= tanh

(
β
√

∆2
z + ψ2

x

)
, (12)

where β = 1/T . For the critical temperature one finds

T (mf)
c =

2∆z

log
(

2Ux+∆z

2Ux−∆z

) , (13)

which, given the choice (10), implies that the exchange cou-
pling constant must satisfy Ux > ∆z/2. At temperatures just
below the critical temperature for the order parameter we find

ψx(t) ≈ 2∆z

√
2βc∆z√

sinh(2βc∆z)− 2βc∆z

√
t, (14)

where βc = 1/T
(mf)
c and t = (T

(mf)
c −T )/T

(mf)
c � 1. Finally,

for the free energy (normalized by the number of lattice sites)
we have

F0 =
ψ2
x

4Ux
− T log

[
2 cosh(

√
∆2
z + ψ2

x/T )
]

(15)

and the heat capacity is

Cmf(T ) =
β2(∆2

z + ψ2
x − Tψx

dψx
dT )

cosh2(β
√

∆2
z + ψ2

x)
. (16)

Expression (14) allows one to evaluate the jump of the heat
capacity at T = Tc:

∆Cmf(Tc) =
2(βc∆z)

3

cosh2(βc∆z) [sinh(2βc∆z)− 2βc∆z]
. (17)

This result agrees with the corresponding expression in Ref.
[16]. It obviously allows one to obtain an estimate for the
value of the parameter ∆z as well the value of the exchange
constant Ux.

IV. GAUSSIAN FLUCTUATION CORRECTIONS

The fluctuations of the order parameter ψx as well as ψy
will modify the mean-field equations above. To study fluctua-
tions we write

~Φj(τ) = ~ψ + ~ηj(τ). (18)

We insert this expression into (6) and then expand the re-
sulting actions in powers of ~ηj(τ). Since the linear in ~ηj(τ)
term vanishes, so the first non-zero term in the action will be
quadratic in ~η. Restricting the expansion to quadratic order,
for the action it formally obtains:

S[~Φ] = S0[~ψ] + S2[~η]. (19)

Here the first term is (6) evaluated within the saddle-point ap-
proximation, while the remaining term describes the effect of
fluctuations at the gaussian level:

S2[~η] =
1

2

β∫
0

dτ
∑
ij

ηia(τ)
[
Jaijδab + Πab(τ)

]
ηjb(τ), (20)

where

Πab(iν) = T
∑
iω

Tr
[
Ĝ0(iω + iν)σ̂aĜ0(iω)σ̂b

]
(21)

and Ĝ0(τ) can be obtained from (7) by replacing ~Φj with its
saddle-point value.

Since the action (19) is gaussian, we can formally integrate
out the fluctuating fields ~ηj . For the fluctuation correction to
the free energy we found

F2(~ψ) = TTr log
[
1̂ + Ĵ−1 · Π̂

]
. (22)

Here the elements of matrix Ĵ−1 can be conveniently written
in momentum representation

Ĵ−1 =

(
Ux(p) 0

0 Uy(p)

)
(23)
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FIG. 1: Critical temperature Tc of the hidden-order transition plotted
in the units of the mean-field critical temperature Tmf

c for Nb = 6.
The reduction in the values of Tc is due to gaussian fluctuations
which increase with an increase in the value of antiferromagnetic
exchange coupling Uy .
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FIG. 2: (Color online) Free energy dependence on the value of the
order parameter calculated at various temperatures.

and the momentum dependence of both Ux(p) and Uy is ob-
tained from

Ua(p) =
1

Nb

∑
j

ua0je
ip·rj (24)

and Nb equals to the number of the nearest neighbors. Note
that parameter 1/Nb serves as a control parameter of the the-
ory: when Nb → ∞ the contribution of gaussian fluctuations
to the free energy vanishes. Finally, we remind the reader that
in the calculation of Uy(p) we have to take into account that
uyi,i±δ changes sign for the nearest neighbors along the z axis.
Calculation of the trace in (22) is straightforward:
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FIG. 3: (Color online) Temperature dependence of the order param-
eter ψx in the presence of gaussian fluctuations and at the mean-field
level for Nb = 6. Gaussian fluctuations lead to a sudden change
of the order parameter at Tc: the second-order mean-field transition
becomes the first-order transition.

F2(~ψ) = 2T

∫
d3p

(2π)3
log

 sinh (βRp)

sinh
(
β
√

∆2
z + ψ2

x

)
 . (25)

Here the momentum integrals are performed over the first
Brillouin zone and function Rp is defined by

R2
p = ∆2

z + ψ2
x −

Ux(p)∆2
z tanh(β

√
∆2
z + ψ2

x)√
∆2
z + ψ2

x

− Uy(p)
√

∆2
z + ψ2

x tanh(β
√

∆2
z + ψ2

x)

+
∆2
zUx(p)Uy(p) tanh2(β

√
∆2
z + ψ2

x)

∆2
z + ψ2

x

.

(26)

From this expression it is clear that despite the fact that in the
hidden order state ψy = 0, the antiferromagnetic fluctuations
contribute the free energy.

The free energy is given by the sum of F0 and F2, Eqs.
(15,25) and we can determine the fluctuation corrections to
critical temperature and order parameter. Given the momen-
tum dependence of the functions Ux(p) and Uy(p), the cal-
culation of the momentum integrals will have to be performed
numerically. In Fig. 1 we present the calculation of the critical
temperature as a function of antiferromagnetic exchange cou-
pling Uy . Perhaps not very surprisingly we find that to contri-
bution of the gaussian fluctuations grows with an increase in
Uy leading to an overall suppression of Tc.

In Fig. 2 we show the dependence of the free energy on the
order parameter ψx at various temperatures. The most sur-
prising result we find that exactly at T = Tc the free energy
has double minimum. In Fig. 3 we show the temperature de-
pendence of the order parameter. In agreement with the free
energy calculation, we find that fluctuations have a profound
effect on the order parameter: they drive the mean-field tran-
sition to become the first-order one. The strength of the first
order transition is obviously determined by Nb.
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V. CONCLUSIONS

In this paper we have computed the gaussian fluctuation
corrections to the mean-field theory of the hidden-order tran-
sition with the complex order parameter. Under an assumption
of nearest neighbors interactions, we found that gaussian fluc-
tuations drive the transition first-order. It is certainly possible
that including the fluctuations beyond the gaussian approxi-
mation will make the transition weakly first order or will lead
to the cancellation of the gaussian correction rendering the
transition second order as manifested by experiments. How-
ever, our results clearly show that fully consistent mean-field

theory of the hidden order transition still awaits its develop-
ment.
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