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The dual fermion (DF) method allows for calculating corrections due to non-local correlations
relative to an effective impurity model. Choosing the impurity as that of a dynamical mean field
theory (DMFT) solution at self-consistency is popular, and the corrections from dual fermion theory
are physically meaningful. We investigate the effect of choosing the impurity instead in a self-
consistent manner and find for the two dimensional Hubbard model an exponential increase of the
correlation length and susceptibility at low temperatures. There are pronounced differences for the
two self-consistency schemes that are discussed in the literature; the self-consistent DF solution can
even be more metallic than the DMFT solution.

I. INTRODUCTION

Strongly correlated electron systems pose some of the
greatest challenges in modern solid state theory. The
strong interplay between the electrons in such systems
causes a multitude of interesting phenomena, such as
superconductivity and interaction-driven metal-insulator
transitions. While the underlying physics is interest-
ing, the complexity also makes finding reliable analytic
or even numerical solutions notoriously hard. Dynam-
ical mean field theory (DMFT)1–3 has become a well
established tool for treating purely local correlation ef-
fects. Based on this success, multiple methods for ex-
tending DMFT and including non-local correlation ef-
fects as well have been proposed. On the one hand
there are cluster extensions of DMFT such as the dynam-
ical cluster approximation (DCA) and cellular DMFT
(CDMFT)4. On the other hand there are Feynman-
diagrammatic extensions5 such as the dynamical vertex
approximation (DΓA)6, the dual fermion method (DF)7,
the DMFT to functional renormalization group8, the
non-local expansion scheme9, the one-particle irreducible
approach (1PI)10, and the triply irreducible local expan-
sion (TRILEX)11.

In this work, we study the two-dimensional Hubbard
model on a square lattice with nearest neighbor hopping.
At half-filling eminent questions are antiferromagnetism,
pseudogaps and the metal-insulator transition. From
the Mermin-Wagner theorem12 we know that truly long-
range antiferromagnetic ordering only sets in at zero tem-
perature T = 0, for perfect nesting there is antiferromag-
netism at arbitrarily weak interactions U . DMFT on the
other hand gives a finite Néel temperature TN with mean-
field critical behavior for the susceptibility and correla-
tion length: χ ∼ (T − TN )−1, ξ ∼ (T − TN )−0.5. One of
the successes of the diagrammatic extensions of DMFT is
to show instead (around the TN of DMFT) a crossover to
an exponentially increasing susceptibility13,14 χ ∼ ea/T

and correlation length15 ξ ∼ eb/T with non-universal pa-
rameters a and b. This way the Mermin-Wagner theorem
is eventually fulfilled with exponentially large correlation
lengths instead of long-range order.

These long correlation length have, on the other hand,
a strong impact on the metal-insulator transition. Here

DMFT yields a first-order Mott-Hubbard metal-insulator
transition with a second-order critical end-point3, inde-
pendent of dimension and hence also in two-dimensions.
Cluster DMFT with a finite 4 × 4 momentum (k) grid
also gives a first-order transition, but with at a reduced
Uc and opposite slope of the transition line because now
the metallic instead of the insulating phase in DMFT has
the larger entropy.16 Similar results have been obtained
using other methods that include short range correla-
tions only, such as the variational cluster approximation
(VCA)15 or second-order DF (DF(2)).17

But in DΓA15, taking into account long-range cor-
relations of hundreds of sites, the paramagnetic phase
is always insulating for low enough temperatures, i.e.,
Uc = 0. The reason for this are the aforementioned long-
range antiferromagnetic correlations. Even though there
is no true antiferromagnetic order yet, the exponentially
large correlation length leads to a quasi-order so that the
paramagnetic spectral function has essentially the same
gap as the antiferromagnetic phase. Due to perfect nest-
ing on a square lattice Hubbard model, antiferromag-
netism and hence the gapped low-T paramagnetic state
exist all the way down to Uc = 0. A similar behav-
ior is also observed in ladder DF18, the two-particle self-
consistent theory (TPSC)19,20, and the nonlinear sigma
model approach21,22. Also numerical results point in
the same direction: extrapolated lattice quantum Monte
Carlo (QMC) data15 show a similar insulating self-energy
as DΓA; CDMFT23 and DCA24–26 suggest at least a re-
duction of Uc with increasing cluster size. Against this
trend, TRILEX yields an even larger Uc than DMFT27.

Let us emphasize that the physics of the metal-
insulator caused by long-range antiferromagnetic spin
fluctuations is distinctively different from that of Mott-
Hubbard transition. It is not a first-order transition but
a crossover where (with decreasing T ) a gap first develops
at the antinodal and at lower T at the nodal point. That
is with decreasing temperature, we first have a paramag-
netic metal at elevated temperatures, then a pseudogap
and eventually a paramagnetic insulator.

In this paper, we study the two-dimensional Hubbard
model within the DF approach. Usually DF calculations
are based on the local problem that arises as the solu-
tion of a converged DMFT problem. Here, we do lad-
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der DF not only with inner self-consistency (updating
the DF self-energy and Green’s function) but also with
outer self-consistency, which has been studied in parallel
to this work using second order DF(2)17 instead of lad-
der DF in our work. We show that the two variants for
the outer self-consistency [Eqs. (7) and (8) below] lead
to very different results, and that for the self-consistency
condition Eq. (8) we can even get a metallic DF solution
for large U ’s where DMFT already yields an insulator.
We also demonstrate the exponential scaling of the cor-
relation length in DF, which is the cornerstone for having
a paramagnetic insulator at small U and low T .

II. RECAPITULATION OF THE METHOD

We study the half-filled Hubbard model on a square
lattice

H = −t
∑
〈ij〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (1)

Here, c†iσ (ciσ) creates (annihilates) an electron on site
i with spin σ; 〈ij〉 denotes the summation over nearest
neighbors only, U is the local Coulomb repulsion and t
the hopping amplitude. In the following 4t ≡ 1 sets our
unit of energy.

We employ the standard ladder dual fermion
method5,7. That is, we truncate the dual fermion inter-
action expansion on the two-particle vertex level. Note
that a full self-consistent calculation with three-particle
corrections is beyond present computational resources,
but higher interaction-order terms are not necessarily
negligible28. Hence, we calculate at least selected three-
particle diagrams as an error estimate after convergence
of the two-particle approach, in the same way as in
Ref. 28.

A workflow diagram with inner and outer self-
consistency is given in Fig. 1. The calculation is started
with the impurity problem of the converged DMFT so-
lution, which yields a local full two-particle vertex Floc
taking the place of an interaction for the dual fermions
and a DMFT self-energy Σloc. The latter yields a k-
dependent physical (DMFT) Green’s function

Glockν =
1

iν − εk − Σlocν + µ
(2)

and a non-interaction DF Green’s function

G̃0,kν = Glockν −
∑
k

Glockν , (3)

where we implicitly assumed a normalization
∑

k = 1.
The next step in Fig. 1 is to calculate the interact-

ing DF vertex F̃ as the series of ladder diagrams with
building blocks Floc and interacting DF Green’s function

G̃. The latter is first set to G̃0 and then determined
self-consistently from the DF self-energy Σ̃ of the ladder

diagrams. This self-consistent solution of the ladder in
dual space is called inner self-consistency and has been
routinely employed in DF calculations before5.

After we have achieved a converged solution in dual
space, the dual self-energies are used as self-energy cor-
rections for the real fermions. Here, we do not make use
of the dual fermion mapping7

∆Σk =
Σ̃k

1 +Glocν Σ̃k
, (4)

with four-vector notation k = (k, ν). Instead, the dual
self-energies are directly applied as corrections to the real
fermion self-energies,

∆Σk = Σ̃k. (5)

In principle, Eq. (4) is an exact mapping–but only if
local vertices of arbitrary order are considered in DF.
If this is not the case, Eq. (5) has certain advantages
since the correction of Eq. (4) cancels at least partially
with three-particle vertex diagrams that are not consid-
ered in standard DF. For a more detailed discussion see
Ref. 29. Whether to use Eq. (4) or Eq. (5) remains an
issue of ongoing debate. The difference between the two

approaches becomes significant when both Glocν and Σ̃k
become large. In our calculations, the difference for the
final self-energies was found to be very small, the hy-
bridization after the first iteration step, but not at self-
consistency, changes considerably for larger U . In a stan-
dard DF this correction together with the local impurity
self-energy yields the physical self-energy

Σk = Σlocν + ∆Σk . (6)

Here, we go beyond this standard scheme and recal-
culate the impurity vertex Floc and non-interacting DF

G̃0 in a so-called outer self-consistency loop, see Fig. 1.
Two ways to do this outer self-consistency loop have been
proposed5. Route (i) has been previously employed and
requires that

(i)
∑
k

G̃k,ν = 0. (7)

Here, we predominately follow another route (ii) instead.
Route (ii) assumes that the new local impurity Green’s
function is given by the momentum-average over the
physical Green’s functions:

(ii) Glocnew,ν =
∑
k

1

iν − εk − Σlocν −∆Σk + µ
. (8)

This impurity Green’s function in turn gives a new im-
purity hybridization function

∆new,ν =
1

Glocnew,ν
− iν + Σlocν − µ, (9)

where, Σloc is the impurity self-energy from the previ-
ous iteration. This ∆new defines a new impurity model,
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Defines dual problem:

Extract real self-energy 
corrections

Inner self-consistency:
Iterated ladder calculations and 
self-energy updates in dual space

Outer self-consistency: 
Update of impurity bath

DMFT
Impurity 
problem

FIG. 1. Workflow of the self-consistent DF approach. As an
initial starting point we solve an impurity problem at DMFT
self-consistency. This provides an initial DF interaction Floc

and non-interacting Green’s function G̃0. In an inner self-
consistency loop the DF Fermion ladder equations are solved,
which yield self-energy corrections for the real fermions. In an
outer self-consistency loop also the hybridization function is
updated and a new impurity model is solved. This procedure
is iterated until full self-consistently, i.e., until the impurity
problem does not change any more.

which we solve using the w2dynamics30,31 continuous-
time quantum Monte Carlo impurity solver in the hy-
bridization expansion. This way we obtain a new Floc
and impurity self-energy Σloc. With these we continue
with Eq. (2) above until self-consistency. Let us remark
that the repeated recalculation of the two-particle vertex
Floc is the computational bottleneck when doing outer
self-consistency.

Please note that outside the well-investigated half-
filled case, the dual corrections can change the occupation
of the system as calculated from the real fermion Green’s
functions. Both self-consistency schemes, (i) and (ii), do

not fulfill the Hartree condition Σk
ν→∞−→ U

2 n where n is
the occupation given by the physical Green’s functions
of Eq. (8).

III. RESULTS

Let us start by providing an overview in Fig. 2 of
which points we calculated in DF with inner and outer
self-consistency. We consider the half-filled Hubbard

FIG. 2. Data points in the phase diagram of the two-
dimensional Hubbard model for which DF calculations with
outer self-consistency have been performed (4t ≡ 1). The
different symbols mark data points for which convergence
was achieved automatically without further modifications
(green crosses), convergence was achieved after averaging the
hybridization function of previous iterations (blue crosses)
and no convergence was achieved (red crosses). The anti-
ferromagnetic ordering temperature TN in DMFT from
Kuneš32 is given for comparison (gray line).

model on a square lattice at relatively weak interaction
(U = 1 ≡ 4t), in the DMFT strongly correlated metal-
lic (U = 2) and DMFT insulating phase (U = 3). In
all cases we lower the temperature so that antiferromag-
netic spin fluctuations and DF corrections become larger
around the DMFT Néel temperature. Similar to ladder
DF with inner self-consistency only18, convergence at low
temperatures is not always achieved and for some param-
eters convergence was only achieved after averaging the
new hybridization function with the previous one using
a mixing factor (under relaxation) , see Fig. 2.

A. Updated impurity hybridization and self-energy

Fig. 3 shows the change of the impurity model with
outer self-consistency or more precisely the change of its
hybridization function. We find that when demanding
a vanishing dual Green function [scheme (i)], the outer
self-consistency leaves the hybridization function ∆new′

essentially unchanged with respect to the DMFT solution
∆DMFT . Shown is only the first iteration but subsequent
iterations are visually not distinguishable from the first
iteration on the scale of the figure.

In contrast scheme (ii), which requires consistency be-
tween the impurity Green’s function and the k-integrated
lattice Green’s function for the real fermions, shows a
very different hybridization function after the first it-
eration (∆new) but also after convergence (∆conv). In
particular at low-frequencies the hybridization function
is quite considerably enhanced. Fig. 4 shows that the
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FIG. 3. Hybridization function for U = 1 and β = 20 at
half-filling. Depicted are the initial hybridization function at
DMFT self-consistency ∆DMFT , the updated hybridization
function after one iteration if consistency of the local Green’s
function is demanded ∆new [scheme (ii), Eq. (8), the dashed
line is for the case when the DF self-energy mapping Eq. (4) is
employed instead of (5)], the updated hybridization function
after one iteration if non-locality of the dual Green’s func-
tion is demanded ∆new′ [scheme (i) first iteration, Eq. (7)]
and hybridization function at outer self-consistency after self-
consistency of the local Green’s function ∆conv [scheme (ii)].

same tendency but to a larger quantitative extent also
holds for U = 3. Here the hybridization function is even
changed from a vanishing hybridization in the low fre-
quency limit in DMFT and scheme (i) to a finite one in
outer-self-consistency scheme (ii).

The enhanced hybridization corresponds to a more
metallic bath or more bath states at low energies. This
allows the electrons at the impurity to better evade each
other, therefore reducing the imaginary part of the im-
purity self-energy as can be seen in Fig. 5. While the dif-
ference between using the self-consistency condition (i)
[Eq. (7)] or (ii) [Eq. (8)] is substantial, the differences
for the two self-energy mappings Eq. (4) and Eq. (5)
are minute at self-consistency. See ∆conv vs. ∆conv(4)
in Figs. 3 and 4. The first update of ∆ for larger U is
different, but eventually both schemes converge towards
similar impurities. For all parameters considered also
the changes between the physical Green’s functions are
rather small for the different self-energy mappings. Since
the present paper focuses on the different self-consistency
schemes we will not discuss the differences Eq. (4) vs Eq.
(5) any further.

B. Local Green’s functions

As for the impurity Green’s function at low frequen-
cies, the enhanced hybridization and reduced self-energy
compete in their effect. While the reduced self-energy
leads to an increase of the local Green’s function at low

FIG. 4. Same as Fig. 3 but for U = 3 and β = 10. Note
that, while the first iteration changes between application of
Eq. (4) and Eq. (5), the converged solution hardly changes.

FIG. 5. Imaginary part of the impurity self-energy for U = 1
and β = 20 at half-filling. Depicted are the self-energy at
DMFT self-consistency ΣDMFT and the impurity self-energy
at outer self-consistency Σconv [scheme (ii)].

frequencies, the stronger hybridization suppresses it. De-
pending on the parameter regime, the effect on the spec-
tral function of the local system changes.

In Fig. 6 we provide continuations of the local Green’s
functions, calculated with the maximum entropy method.
The large impact of the outer self-consistency condi-
tion can be seen when comparing to the initial DMFT
Green’s function. Note that the impurity spectrum at
self-consistency corresponds to the lattice spectrum for
scheme (ii) [see Eq. (8)]. For U = 1, the non-local cor-
relations lead to a more insulting behavior of the DF
solution. On the other hand, for U = 3, the DF solution
is —at least at β = 10— metallic with a three-peak spec-
trum, while the DMFT solution is already in the Mott
insulating phase.

This is counter-intuitive since one expects non-local
spin fluctuations to result in a more insulting solution. It
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is a consequence of the larger (more metallic) hybridiza-
tion function in scheme (ii), see Fig. 4, which pushes the
U = 3 impurity model into the metallic phase. The ori-
gin of the larger hybridization in turn is that, because
of the k-dependent DF self-energy, the spectrum at oc-
cupied and unoccupied k-points is pushed further away
from each other, as we will see in the next section. In
an impurity model we can only describe this larger spec-
tral width at fixed U if we have a larger hybridization
function.

C. Comparison to DCA

Since it is doubtful whether these results of outer-self-
consistency scheme (ii) are describing the correct physics,
we have compared the results with DCA Green’s func-
tions and self-energies on the Matsubara axis, see Fig. 7
and 8, respectively. The DCA yields an insulating spec-
trum as is indicated by a vanishing Gloc for frequency
ν → 0 in Fig. 7 and a divergent Σ for ν → 0 in Fig. 8.
This is qualitatively and even quantitatively the same be-
havior as in DMFT as well as in DF without outer self-
consistency (and also the outer self-consistency scheme
(i) hardly changes the hybridization and hence this re-
sult). Clearly DF with outer self-consistency scheme (ii)
is off.

This puts severe doubts on the self-consistency scheme
(ii). A possibility is that third-order diagrams cure this
effect as they provide an extra term proportional to
1/(iν) which, in principle, could provide a more insulat-
ing solution again. But without further modifications the
outer-self-consistency scheme (ii), requiring that the im-
purity Green’s function equals the physical Green’s func-
tion, does not properly work at large U . Let us also note,
that employing the translation from DF self-energies to
real ones using Eq. (4) instead of Eq. (5) hardly affects
the results since either the self-energy or the Green’s
function in the denominator of Eq. (4) is small for the
converged solution.

D. DF and physical self-energies

Next, let us discuss the resulting self-energies, real as
well as dual ones. The imaginary part of the impurity
self-energies Σloc was already shown in Fig. 5 and is found
to be consistently reduced by the employed outer self-
consistency scheme. Σloc already represents the major
contribution to the self-energy for the real fermions, with
the dual fermion self-energy shown in Fig. 9 yielding only
quantitatively smaller corrections. Note that the physical
self-energies are just given by the sum of Fig. 5 and Fig. 9
according to Eq. (6).

We also find that the change of Σloc throughout the it-
erations is quantitatively larger than the corrections due
to the dual fermion calculations themselves. The dual
self-energies for k-points on the Fermi-edge lead to en-

FIG. 6. Interacting density of states for selected sets of pa-
rameters at DMFT self-consistency (blue line) and DF outer
self-consistency (green line).

FIG. 7. Local Green’s functions for U = 3 and β = 10 within
DF [scheme (i)], DF ′ [scheme (ii)] and DCA with cluster sizes
4, 8, 16, 18 and 32 (indiscernible on the scale of the figure).

hanced scattering and reduce the contribution of these
states to the low-frequency spectral function. For points
sufficiently far from the Fermi-edge the sign of the imag-
inary part of the dual self-energy changes from negative
to positive, corresponding to a reduction of the scattering
rate. Also, the dual corrections pick up a real part, shift-
ing the states such as k = (0, 0) and k = (π, π) further
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FIG. 8. Self-energies for nodal and antinodal k-points for
U = 3 and β = 10 within DF [scheme (i)], DF ′ [scheme
(ii)] and DCA with cluster sizes 4, 8, 16 and 32 (which lie
essentially on top of each other).

FIG. 9. Dual self-energies for different k-points for U = 1 and
β = 20 at inner self-consistency only (left; DMFT impurity
problem) and inner and outer self-consistency (right). Imag-
inary parts are depicted as full lines and real ones as dashed
lines. Additionally, momentum-independent three particle

corrections Σ
3

are given, with “+”-symbols for the real and
“×”-symbols for the imaginary part.

away from the Fermi energy. Consequently, the overall
width of the spectrum is enhanced.

E. Susceptibilities and correlation lengths

Let us finally turn to the DF susceptibilities and
correlation lengths and their change with outer self-

consistency shown in Fig. 10. We focus here on the
vertex contribution to the susceptibility which becomes
dominant for T . 0.07 (U = 1) and T . 0.1 (U = 2).
Only plotting the vertex contribution has the advantage
that the exponential behavior can be seen up to higher
temperatures. The additional bare bubble susceptibil-
ity has a weaker temperature dependence and hence be-
comes dominant/obfuscates the exponential behavior of
the vertex contribution. At low interaction values, the
outer self-consistency scheme (ii) is found to reduce the
antiferromagnetic susceptibility for the antiferromagnetic
q-point (π, π). Also, correlations lengths extracted from
the width of the (vertex part of the) magnetic susceptibil-
ities on a q-mesh are shorter when based on the impurity
with outer-self-consistent local Green’s functions com-
pared to the calculation based on the DMFT impurity.
A similar trend is found for the inner self-consistency:
it suppresses the antiferromagnetic susceptibility which
otherwise would diverge at the DMFT TN (because the
Green’s function becomes more damped with inner self-
consistency). In the case of outer self-consistency the
physical reason is the enhanced hybridization strength.
Because it also gives—unphysically—a more metallic so-
lution at large U , it is however doubtful whether this is
an artifact of the self-consistency scheme (ii).

Plotting vertex contributions to the susceptibility and
correlation lengths on a logarithmic scale as a function of
the inverse temperature β, as it is done in Fig. 10 (right)
shows a clear linear trend which translates into the ex-
ponential scaling χ ∼ ea/T and ξ ∼ eb/T , both with and
without outer self-consistency. This is the first time that
exponentially large correlation lengths have been demon-
strated also for DF.

IV. CONCLUSION

We have shown that enforcing outer self-consistency
requiring the physical and the impurity Green’s function
to be equivalent [scheme (ii)] changes the results of dual
fermion calculations not only quantitatively, but in some
cases also has a qualitative effect and causes new phenom-
ena, such as the appearance of a three-peak metallic spec-
trum at U = 3, above the Uc of the DMFT Mott transi-
tion. The reason for this is the larger hybridization func-
tion of the self-consistent impurity problem which needs
to accommodate a larger spread of the spectral function
because the k-dependent DF self-energy pushes states
further away from the Fermi energy. The self-consistency
scheme (i), which requires a purely non-local interacting
dual Green’s function, on the the hand, hardly changes
the hybridization function so that corrections due to the
outer self-consistency scheme (i) are small when using
the ladder DF approach. This poses pressing questions
about the best outer self-consistency scheme and its un-
derlying impurity problem. Our results indicates that
scheme (ii) might be inferior but for a conclusive answer
further benchmarks against independent methods, such
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FIG. 10. Left: (Inverse) vertex con-
tribution to the antiferromagnetic sus-
ceptibility (χ − χ0) and correlation
length ξ extracted from it a func-
tion of temperature for U = 1 (up-
per panel) and U = 2 (lower panel)
at half-filling. The light symbols de-
note the results obtained from the ini-
tial DMFT impurity model at inner
dual self-consistency only (in); the
dark symbols those after outer self-
consistency is achieved. Right: Same
as left but on a logarithmic scale and
as a function of β = 1/T . The cor-
relation length is measured in lattice
spacings (l.s.) and the remaining sus-
ceptibilities are in units of µ2

B .

as cluster Monte-Carlo simulations are called for.
Another important result of our paper is that the DF

approach also yields an exponential scaling of the correla-
tion length at low temperatures for the two dimensional
Hubbard model. We were able to demonstrate this by
focusing on the vertex contribution to the susceptibility,
which becomes dominant for low enough temperatures.
This reaffirms the scenario that the paramagnetic phase
is always insulating at low enough temperatures and for
a lattice with perfect nesting15,19,20, essentially because
the spectrum looks (almost) like that of the antiferro-
magnetic ground state if the correlation lengths are that
large. In contrast, for second-order DF(2) with outer self-
consistency a finite Uc was found.17 With the strongly in-
creasing correlation length in our ladder DF calculations,
one might also expect that the metallic DF solution at
U = 3 eventually becomes insulating due to strong anti-
ferromagnetic spin fluctuations, but only at much lower
temperatures.
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