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We study state-sum constructions of G-equivariant spin-TQFTs and their relationship to Matrix
Product States. In the Neveu-Schwarz, Ramond, and twisted sectors, states of the TQFT are
generalized Matrix Product States. Our results are applied to the classification of fermionic Short-
Range-Entangled phases with a unitary symmetry G to determine the group law on the set of such
phases. Interesting subtleties appear when the total symmetry group is a nontrivial extension of G
by fermion parity.
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I. INTRODUCTION AND OVERVIEW

Recently the problem of classifying Short-Range-
Entangled (SRE) phases of matter has attracted consid-
erable attention. A powerful approach for 1d systems is
the Matrix Product State representation of ground states
(see1 for a review). For bosonic systems with a symmetry
G, this leads to a classification of SRE phases in terms
of group cohomology of G2,3. Fermionic systems in 1d
are related to bosonic systems with a Z2 symmetry via
the Jordan-Wigner transformation. This enables one to
classify 1d fermionic SRE phases of matter as well3,4.

There is a conjectural classification of SRE phases in all
dimensions5,6 (see also7) based on entirely different ideas.
In the case of bosonic (resp. fermionic) SRE phases
phases with an internal finite symmetry G in d spatial
dimensions, the conjecture says that they are classified
by the torsion part of the (d + 1)-dimensional oriented
cobordism (resp. spin-cobordism) of BG with U(1) coef-
ficients. Here BG is a certain infinite-dimensional topo-
logical space known as the classifying space of G. This
conjecture is partially explained by the recently proved
mathematical theorem8 which states that oriented (resp.
spin) (d+ 1)-dimensional cobordism groups classify uni-
tary invertible oriented (resp. spin) Topological Quan-
tum Field Theories in d+ 1 space-time dimensions. This
is only a partial explanation, because the relation be-
tween SRE phases and TQFTs remains conjectural. In
1d, one could hope for a more direct connection between
the cobordism/TQFT data and the MPS data.

For bosonic SRE phases in 1d the connection between
the MPS approach and the cobordism/TQFT approach
has been recently clarified9,10. In particular, it has been
shown in10 that an MPS representation of ground states
naturally arises from an annulus diagram in a TQFT.
The goal of this paper is to extend this observation to
spin-TQFTs and the associated fermionic MPS.

Let us describe the structure of the paper and the
main results. In section 2, we review the state-sum con-
struction of spin-TQFTs in two space-time dimensions
from Z2-graded algebras following11,12. We also show
that stacking fermionic systems together corresponds to
taking the supertensor product of the corresponding alge-

bras. This gives a very clean and simple derivation of the
spin-statistics relation in the topological case. In section
3, we evaluate the annulus diagram and show that it gives
rise to a generalized MPS both in the Neveu-Schwarz and
the Ramond sector. In section 4 we work out the com-
muting projector Hamiltonian starting from the TQFT
data describing an invertible spin-TQFT. We show that
for a nontrivial spin-TQFT the resulting Hamiltonian de-
scribes the Majorana chain3. In section 5, we discuss
G-equivariant spin-TQFT and G-equivariant fermionic
MPS. We show that fermionic SRE phases with a symme-
try G times the fermion parity are in 1-1 correspondence
with invertible G-equivariant spin-TQFTs, and that the
TQFT data give rise to fermionicG-equivariant MPS. We
also discuss the case when the symmetry is a nontrivial
extension G of G by fermion parity, which is related to
G-Spin TQFTs. In all cases we determine the group law
on the set of fermionic SRE phases. Finally, we discuss
in some detail fermionic SRE phases with symmetry Z2.

While this paper was in preparation, a preprint of
Ref.13, which also describes G-equivariant fermionic
MPS, appeared on the arXiv.

II. SPIN-TQFTS

A. Z2-graded semi-simple algebras

The algebraic input for the fermionic state-sum con-
struction is a Z2-graded semisimple Frobenius algebra
A11,12.21 A Frobenius algebra is a finite-dimensional al-
gebra over C with a non-degenerate symmetric scalar
product η : A ⊗ A → C satisfying η(a, bc) = η(ab, c)
for all a, b, c ∈ A. A Z2-grading on A is a decomposition
A = A+ ⊕A− such that

A+ ·A+ ⊂ A+, A− ·A− ⊂ A+,

A− ·A+ ⊂ A−, A+ ·A− ⊂ A−. (1)

Equivalently, a Z2-grading is an operator F : A → A
such that F2 = 1 and F(a)·F(b) = F(a·b). The operator
F is called fermion parity and is traditionally denoted
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(−1)F . We also assume that the scalar product η is F-
invariant:

η(F(a),F(b)) = η(a, b). (2)

Note that F defines an action of Z2 on A which makes
A into a Z2-equivariant algebra. This observation is the
root cause of the bosonization phenomenon: there is a 1-
1 map between 1+1d phases of bosons with Z2 symmetry
and 1+1d phases of fermions. For now, we use this fact to
describe the classification of Z2-graded simple algebras.
Namely, since the only proper subgroup of Z2 is the triv-
ial one, and H2(Z2, U(1)) = 0, a simple Z2-graded alge-
bra is isomorphic either to End(V ) for some Z2-graded
vector space V = V+⊕V−, or to C`(1)⊗End(V ) for some
purely even vector space V = V+

10. Here C`(1) denotes
the Clifford algebra with one generator, i.e. an algebra
with an odd generator Γ satisfying Γ2 = 1.

As explained in10, the bosonic phase depends only on
the Morita-equivalence class of A. The choice of V does
not affect the Morita-equivalence class of the algebra,
so there are only two Morita equivalence classes of Z2-
graded algebras: the trivial one, corresponding to the
algebra C, and the nontrivial one, corresponding to the
algebra C`(1). In the bosonic case, the former one cor-
responds to the trivial gapped phase with a Z2 symme-
try, while the latter one corresponds to the phase with a
spontaneously broken Z2.

The fermionic interpretation is different. As briefly
mentioned in12 and discussed in more detail below, the
algebra C`(1) describes a gapped fermionic phase which
is equivalent to the nontrivial Majorana chain. This is in
accord with the intuition that fermion parity cannot be
spontaneously broken.

B. Spin structures

A spin structure on an oriented manifold enables one to
define a spin bundle. For a 1d manifold X, a spin bundle
is a real line bundle L plus an isomorphism L⊗L→ TX.
Thus a spin bundle is a square root of the tangent bun-
dle. Since TX is trivial, such L are classified by elements
of H1(X,Z2). Since H1(S1,Z2) = Z2, there are two pos-
sible spin structures on a circle, called the R (Ramond)
an NS (Neveu-Schwarz) spin structures in the string the-
ory literature. The R structure corresponds to a trivial
L, while NS structure corresponds to the “Möbius band”
L. In other words, if we give L a metric and compute
the holonomy of the unique connection compatible with
it along S1, we get 1 for the R case, and −1 for the NS
case.

For an oriented 2d manifold Σ, we can regard TΣ as
a complex line bundle, and then a spin bundle on Σ is
a complex line bundle S equipped with an isomorphism
S ⊗ S → TΣ. One can show that such an S always
exists. If S and S′ are two spin bundles, they differ by a
line bundle which squares to a trivial line bundle on Σ.
The latter are classified by elements of H1(Σ,Z2). Thus

there are as many spin structures as there are elements
of H1(Σ,Z2). But in general there is no natural way to
identify elements of H1(Σ,Z2) with spin structures.22

It is easy to see that a spin structure s on an oriented
2d manifold Σ induces a spin structure on any oriented
1d manifold γ embedded into Σ. Define σs(γ) = +1 if the
induced structure is of the NS type and σs(γ) = −1 if the
induced structure is of the R type. That is, σs(γ) is the
negative of the holonomy of the connection corresponding
to the induced spin structure. It is easy to show that
σs(γ) depends only on the homology class of γ and thus
defines a function σs : H1(Σ,Z2)→ Z2. With more work,
one can show that this function satisfies

σs([γ] + [γ′]) = σs([γ])σs([γ
′])(−1)〈[γ],[γ′]〉. (3)

That is, it is a quadratic Z2-valued function on H1(Σ,Z2)
whose corresponding bilinear form is the intersection
pairing on H1(Σ,Z2). In fact, it is a theorem of Atiyah14

that for a closed Σ the spin structure is determined by
such a quadratic function, and that any such quadratic
function determines a spin structure. Note that the ra-
tio of two such quadratic functions is a linear function
on H1(Σ,Z2), or equivalently an element of H1(Σ,Z2).
Thus we recover the result that two spin structures differ
by an element of H1(Σ,Z2).

We record for future use another property of the func-
tion σs:

σs+a([γ]) = (−1)
∫
γ
aσs([γ]), (4)

where a is an arbitrary element of H1(Σ,Z2). Thus
σs([γ]) is an affine-linear function of s and a quadratic
function of [γ].

We will also need a version of this result for the case
when Σ has a nonempty boundary. As in the case of
equivariant TQFT, it is convenient to choose, along with
a spin structure s, a point on every connected compo-
nent of ∂Σ and a normalized basis vector for the real
spin bundle L at this point. This simplifies the gluing
of spin manifolds. We will denote by ∂0Σ the set of all
marked points, and will call a spin structure on Σ to-
gether with a trivialization of L at ∂0Σ a spin structure on
the pair (Σ, ∂0Σ). The group H1(Σ, ∂0Σ;Z2) acts freely
and transitively on the set of spin structures on (Σ, ∂0Σ).
Despite this, there is no canonical way to identify spin
structures with elements of H1(Σ, ∂0Σ;Z2). To get an
algebraic description of spin structures, one can proceed
as follows15. First, note that H1(Σ, ∂0Σ;Z2) can be iden-
tified with H1(Σ∗,Z2), where Σ∗ is a closed oriented 2d
manifold obtained by gluing a sphere with holes onto Σ.
This identification depends on the choice of a cyclic order
of the set of boundary circles of Σ. Thus the intersection
form on H1(Σ∗,Z2) induces a non-degenerate symmetric
bilinear form on H1(Σ, ∂0Σ;Z2). There is also an identi-
fication of the set of spin structures on (Σ, ∂0Σ) and the
set of of spin structures on Σ∗15. Thus the set of spin
structures on (Σ, ∂0Σ) can be identified with the set of
Z2-valued quadratic functions on H1(Σ, ∂0Σ;Z2) refining
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the intersection form. This identification still depends on
a choice of a cyclic order on the set of boundary circles of
Σ. One can determine which spin structure is induced on
any particular connected component of ∂Σ by evaluating
this quadratic function on the closed curve wrapping that
component.

C. State-sum construction of the spin-dependent
partition function

To define the partition function of a spin-TQFT on
a closed oriented 2-manifold Σ with a spin structure, we
choose a skeleton of Σ, i.e. a trivalent graph Γ on Σ whose
complement is homeomorphic to a disjoint union of disks.
Equivalently, one may think of Γ as the Poincaré dual of
a triangulation T of Σ.23 For every vertex v ∈ Γ, let Γ(v)
denote the edges containing v. Orientation of Σ gives rise
to a cyclic order on Γ(v) for all v. This is sufficient to
produce the partition function of a bosonic TQFT based
on the algebra A, but in order to construct the fermionic
partition function, we need to choose an actual order on
Γ(v). We can do it by picking one special edge e0(v) ∈
Γ(v) for every v. We also choose an orientation for each
edge of Γ. (In Ref.12 both an orientation of edges and a
choice of e0(v) arose from a branching structure on T , but
here we follow Ref.11 and choose them independently.)
These choices are called a marking of Γ.

We also need to describe a choice of spin structure on
Σ. This is a cellular 1-cochain s valued in Z2 (i.e. an as-
signment of elements of Z2 to edges of Γ) with cobound-
ary a certain 2-cocycle w2 whose cohomology class is the
second Stiefel-Whitney class [w2](Σ). Following Ref.11,
we write the constraint δs = w2 as

(δs)(f) = 1 +K +D mod 2. (5)

where f is a particular cell in Σ\Γ, K is the number of
clockwise oriented edges in ∂f , and D is the number of
vertices v for which the counterclockwise-oriented curve
homologous to ∂f in Γ enters v through e0(v). Two so-
lutions s, s′ of this constraint are regarded equivalent,
s ∼ s′, if s− s′ = δt for some 0-cochain t. Two solutions
s, s′ define isomorphic spin structures on Σ if and only if
s ∼ s′11,12. Thus we recover the fact that the number of
distinct spin structures on Σ is equal to |H1(Σ,Z2)|.

One can give an explicit description of the holonomy
function σs(γ) corresponding to the 1-cochain s in terms
of the marking of Γ along a closed oriented curve γ; see
eq. (3.45) of Ref.11. This formula can be written as

σs(γ) = −(−1)s(γ)+K+D+L, (6)

where K is the number of edges anti-aligned with γ, D
is the number of special edges through which γ enters a
vertex, and L is the number of special edges to the left
of γ. For example, when γ is a counterclockwise-oriented
curve bounding a single cell in Σ\Γ, L vanishes, and so,
by (5), we have σs(γ) = +1. One can show that this

function depends only on the homology class of γ and is
a quadratic refinement of the intersection form.

Choose a basis ei in A whose elements are eigenvectors
of F . Let ηij = η(ei, ej). Since η is non-degenerate, it has
an inverse ηij . Let Cijk denote the structure constants
of A. Define Cijk = ηilC

l
jk. It can be shown that the

tensor Cijk is cyclically symmetric10. Denote by (−1)βi

the eigenvalue of F corresponding to ei.
Now we can explain the recipe for computing the par-

tition function for a surface Σ with a marked skeleton Γ
and a spin structure s. Each edge of Γ is colored with
a pair of basis vectors ei ∈ A, and we have a factor of
Cijk for each vertex and ηij for each edge. Since A is Z2-
graded, ηij vanishes unless βi = βj , and Cijk vanishes
unless βi + βj + βk = 0. Hence the function β : ei 7→ βi
on the set of edges of Γ defines a mod-2 1-cycle on Σ. The
contribution of a particular coloring of Γ is the product
of all Cijk and ηij , the spin-dependent sign factor

(−1)s(β) = (−1)
∑
e s(e)β(e), (7)

and the Koszul sign σ0(β). The partition function is
obtained by summing over all colorings. Note that

Zferm(A, η) =
∑
β

Zbose(A, β)σs(β), (8)

where Zbose(A, β) is the sum over all colorings with a
fixed 1-cycle β. Using the isomorphism H1(Σ,Z2) '
H1(Σ,Z2), one can interpret β as a Z2 gauge field on a
dual triangulation and Zbose(A, β) as the partition func-
tion of a bosonic system with a global Z2 symmetry
coupled to β. Equation (8) is a manifestation of the
bosonization phenomenon.

It remains to explain how the Koszul sign σ0(β) is eval-
uated. Consider a vertex whose edges are labeled by
i, j, k starting from the special edge and going counter-
clockwise. Assign to it an element Cv = Cijkei ⊗ ej ⊗ ek
in A ⊗ A ⊗ A. Tensoring over vertices, we get an ele-
ment CΓ of A⊗3N , where N is the number of vertices of
Γ. Now consider an oriented edge of Γ labeled by i, j. It
corresponds to an ordered pair of factors in CΓ. Permute
the factors of CΓ until these two are next to each other
and in order, keeping track of the fermionic signs

ei ⊗ ej 7→ (−1)βiβjej ⊗ ei (9)

one incurs in the process, and then contract using the
scalar product η. Continuing in this fashion, we are left
with the product of all Cijk and ηij times a sign. This
sign is the Koszul sign σ0(β). It is clear that it depends
on the coloring of Γ only through the 1-cycle β. Note
that the elements Cv as well as the pairs of factors for
each edge are all even, so one does not need to order the
set of vertices or the set of edges. One can also define
σ0(β) as a Grassmann integral, as was originally done
in16. The product of the Koszul sign σ0(β) and the spin-
dependent factor (−1)s(β) is nothing but the quadratic
function σs(β)12.



4

One can show11,12 that the partition function thus de-
fined depends only on the spin surface (Σ, s) and not the
skeleton Γ, its marking, or the particular 1-cochain rep-
resenting s. Finally, it is clear that if A is purely even,
both the Koszul sign and the spin-dependent sign fac-
tor are trivial, and the partition function reduces to the
bosonic partition function associated with A.

D. Stacking and the supertensor product

It is interesting to determine the behavior of the parti-
tion function under stacking systems together. Given
a pair of fermionic systems encoded in a pair of Z2-
graded Frobenius algebras A1, A2, stacking these sys-
tems together gives us a system with a partition function
Zferm(A1, η)Zferm(A2, η). It turns out that

Zferm(A1, η)Zferm(A2, η) = Zferm(A1 ⊗̂A2, η), (10)

where ⊗̂ is the supertensor product of Z2-graded alge-
bras. Let us recall what this means. The usual tensor
product of algebras A1⊗A2 obeys the multiplication rule

(a1 ⊗ a2) · (a′1 ⊗ a′2) = (a1 · a′1)⊗ (a2 · a′2). (11)

If the algebras A1, A2 are Z2-graded, A1 ⊗ A2 is also
Z2-graded in an obvious way. On the other hand, for
the supertensor product the multiplication is defined as
follows:

(a1 ⊗̂a2) ·(a′1 ⊗̂a′2) = (−1)|a2|·|a′1|(a1 ·a′1)⊗̂(a2 ·a′2), (12)

where (−1)|a| is the fermionic parity of a.
To derive (10), we first note that

Zbose(A1, β1)Zbose(A2, β2) = Zbose(A1 ⊗A2, β1, β2),
(13)

where we used the fact that the stacking of two bosonic
systems with symmetry Z2 has a symmetry Z2 ×Z2 and
thus can be coupled to a pair of Z2 gauge fields β1, β2.
Next, it is easy to see that

Z(A1 ⊗̂A2, β1, β2) = (−1)〈[β1],[β2]〉Z(A1 ⊗A2, β1, β2).
(14)

These two identities together with (3) imply (10).
As an illustration, consider A = C`(1). Since apart

from 1 this algebra has a single odd basis element γ, β
completely determines the coloring of Γ. With the proper
normalization of Zbose, one gets

Zferm(s) = 2−b1(Σ)/2
∑
[β]

σs([β]). (15)

The r.h.s. is called the Arf invariant of the spin structure
s and is denoted Arf(s). One can show that it takes
values ±1. If we stack two such systems together, we will
get the partition function which is 1 for all spin structures
and all Σ, i.e. a trivial spin-TQFT.

It is easy to see that C`(1) ⊗̂ C`(1) is the Clifford al-
gebra with two generators, C`(2). This algebra is non-
trivial, but it is Morita-equivalent to the trivial algebra
C. One can show that, just as in the bosonic case10, spin-
TQFT constructed from A depends only on the Morita
equivalence class of A. This explains why the spin-TQFT
corresponding to C`(2) is trivial.

We see that A = C`(1) corresponds to a nontrivial
SRE phase in the fermionic case (it is its own inverse).
On the other hand, C`(1)⊗C`(1) is a commutative alge-
bra isomorphic to a sum of two copies of C`(1). Therefore
the bosonic phase corresponding to C`(1) is not invert-
ible. This example illustrates that bosonization does not
preserve the stacking operation.

E. Including boundaries

When Σ has a non-empty boundary, Γ is allowed to
have univalent vertices which all lie on the boundary ∂Σ.
Let M be the number of boundary vertices. For every
vertex v we color each element of Γ(v) with a basis vector
of A, so that a vertex on the boundary has only a single
label. As before, the weight of each coloring is a product
of three factors: the product of Cijk over all trivalent
vertices and ηij over all edges, the Koszul sign, and the
spin-dependent sign. When summing over colorings, the
labels of the boundary vertices remain fixed. The result
of the summation can be interpreted as a value of a map

ZΓ(Σ) : A⊗M → C, (16)

on a particular basis vector in A⊗M .

It is implicit here that the map depends on the spin
structure on every connected component of ∂Σ. It can be
read off from the function σs(γ) evaluated on the bound-
ary components. The spin structure is Neveu-Schwarz if
σs = 1 and Ramond if σs = −1.

We can also consider open-closed spin-TQFT, i.e. spin-
TQFT in the presence of topological boundary condi-
tions (branes). Such boundary conditions are encoded
in Z2-graded modules over A. A Z2-graded module
over a Z2-graded algebra A is a Z2-graded vector space
U = U+⊕U− with the structure of an A-module T : A→
End(U) such that T (A+)U± ⊆ U± and T (A−)U± ⊆ U∓.
Equivalently, U is an A-module equipped with an invo-
lution P such that T (F(a)) = PT (a)P−1.

For each boundary component of Σ, choose a Z2-
graded A-module U and a homogeneous basis fUµ of U .
Label each boundary edge with a basis vector of U . The
weight of the coloring is a product of the C’s and η’s
and a sign σs(β), as well as a module tensor Tµνi for
each boundary vertex. The sign is computed as before as
a product of the spin-structure-dependent sign and the
Koszul sign.
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III. FERMIONIC MPS

A. Fermionic Matrix Product States and the
annulus diagram

In this section, we will extract MPS wavefunctions
from the spin-TQFT by considering the special case when
Σ is an annulus. Take one of the boundary circles to be a
source cut boundary and the other to be a brane bound-
ary corresponding to a Z2-graded A-module U with ac-
tion T (a) ∈ End(U). Choose a triangulation of Σ. It was
shown in10 that one can deform the skeleton to look like
Figure 1.

Give the skeleton a marking and spin signs that models
the spin structure on Σ. It is convenient to make the
choices shown in Figure 1. The sign on the N -to-1 edge
is +1 if the spin structure induced on the boundary circles
is NS and −1 if it is R. To get the sign (7), we insert a
factor of P for each +1.

Following the procedure detailed in Section II to eval-
uate the diagram in Figure 1, one finds

Z(ΣT,NS) =
∑

I={ik,µk,µ̄k}

σ0(βI)× T µ̄N i1µ1T µ̄1i2µ2

× · · ·T µ̄N−1iNµN δµ1µ̄1δµ2µ̄2

× · · ·PµN µ̄N 〈i1i2 · · · iN |
(17)

in the NS sector and

Z(ΣT,R) =
∑

I={ik,µk,µ̄k}

σ0(βI)× T µ̄N i1µ1T µ̄1i2µ2

× · · ·T µ̄N−1iNµN δµ1µ̄1δµ2µ̄2

· · · δµN µ̄N 〈i1i2 · · · iN | (18)

in the R sector, where the Koszul sign is given as a
Grassmann integral

σ0(βI) =

∫
dθ
|µ1|
1 dθ̄

|µ̄1|
1 dθ

|µ2|
2 dθ̄

|µ̄2|
2 · · · dθ|µN |N dθ̄

|µ̄N |
N

× dθ|i1|i1
dθ
|i2|
i2
· · · dθ|iN |iN

θ̄
|µ̄N |
N θ

|i1|
i1
θ
|µ1|
1 θ̄

|µ̄1|
1 θ

|i2|
i2
θ
|µ2|
2

× · · · θ̄|µ̄N−1|
N−1 θ

|iN |
iN

θ
|µN |
N . (19)

Evaluating the integral amounts to reordering the vari-
ables in the integrand to match the ordering in the mea-
sure while recording the sign

θs11 θ
s2
2 = (−1)s1s2θs22 θ

s1
1 . (20)

Moving θ̄
|µ̄N |
N across the integrand gives a sign (−1)|µ̄N |.

Then moving each θ
|ik|
ik

to the right gives a sign +1.
Therefore the total sign is

σ0(βI) = (−1)|µ̄N |. (21)

Noting that δµnµ̄N (−1)|µ̄N | = Pµnµ̄N , we find that the
MPS wavefunctions take the forms

〈ψT,NS | = Z(ΣT,NS)

=
∑

i1,i2,··· ,iN

Tr[T (ei1)T (ei2) · · ·T (eiN )] 〈i1i2 · · · iN |

(22)

and

〈ψT,R| = Z(ΣT,R)

=
∑

i1,i2,··· ,iN

Tr[PT (ei1)T (ei2) · · ·T (eiN )] 〈i1i2 · · · iN | .

(23)

More general states, called generalized MPS, on the
closed chain are obtained from the spin-TQFT by in-
serting a local observable on the brane boundary of the
annulus. Such observables are parametrized by linear
maps X : U → U and can be either even or odd; that is,
PX = XP or PX = −XP , respectively.

The NS sector MPS resulting from the insertion of X
has conjugate wavefunction〈

ψXT,NS
∣∣ =

∑
i1···iN

tr
[
X†T (ei1) · · ·T (eiN )

]
〈i1 · · · iN | .

(24)
In the R sector,〈

ψXT,R
∣∣ =

∑
i1···iN

tr
[
PX†T (ei1) · · ·T (eiN )

]
〈i1 · · · iN | .

(25)
Note that the generalized MPS corresponding to the triv-
ial observable X = 1 are the states 〈ψT | (22)(23).

The state
∣∣∣ψXT,NS/R〉 has the same fermionic parity as

the observable X since

F⊗N
〈
ψXT,NS(R)

∣∣∣
=
∑

Tr
[
(P )X†T (F · ei1) · · ·T (F · ein)

]
〈i1 · · · in|

=
∑

Tr
[
(P )PX†PT (ei1) · · ·T (ein)

]
〈i1 · · · in|

= (−1)|X|
〈
ψXT,NS(R)

∣∣∣ . (26)

B. Parent Hamiltonians

Hamiltonians appear in TQFT as cylinders. There is
one for each of the NS and R sectors. To be precise, the
Hamiltonian is the linear map

HNS(R) = 1− Z(CNS(R)), (27)

where CNS(R) denotes the cylinder with NS (R) spin
structure. The composition of two cylinder cobordisms
is again a cylinder, so Z(C) is a projector, and therefore
so is H. Ground states are those with eigenvalue 1 un-
der Z(C). It is convenient to specialize to the case of a
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−1

−1

−1

−1−1

−1

−1

µ̄k

ik

µk+1

−1

−1

+1 or −1

Figure 1: Black arrows are edge orientations, and red arrows are special edges. All of the spin signs are −1 except
possibly the one on the N -to-1 edge, which is +1 in the NS sector and −1 in the R sector.

(a) Skeleton of an annulus with cut boundaries (b) An annulus with one brane and one cut boundary

Figure 2

single site, N = 1. Since these Hamiltonians arise from
a topologically-invariant theory, properties of the N = 1
system must hold more generally. Consider the skeleton
of the cylinders depicted in Figure 2.

By exploiting (8), we will not need the full machinery
of lattice spin structures to understand the Hamiltoni-
ans and their ground states. The path integrals for the
cylinders can be expressed as a sum over the four relative
1-cycles β1, . . . , β4 depicted in Figure 3. The first colored
diagram corresponds to the trivial cycle β1 and has no
odd labels, so its sign is trivial, σs(β1) = 1. The sec-
ond one corresponds to the equator of the cylinder and
comes with the sign σ(β2) := η, which is +1 in the NS
sector and −1 in the R sector. The relative cycles β3 and
β4 sum to β2 and have intersection number 1, where the
intersection pairing is defined by gluing another annulus
onto the annulus, to get a torus C∗ = T 2, as explained
in Section II B. Therefore (3) says there is a relative sign

σs(β3)σs(β4) = σs(β3 + β4)(−1)〈β3,β4〉

= σs(β2)(−1) = −η. (28)

One can choose a spin structure on the closed space
C∗ = T 2 such that σs(β3) = 1; this amounts to fix-
ing trivializations of the spin structures induced on each
component of ∂C at the univalent vertices.

Similarly, an even MPS can be expressed as the sum
in Figure 4, where σ1 = 1 and σ2 = η, and an odd MPS
as the sum in Figure 5 with σ1 = 1 and σ2 = η.

Now we are ready to argue that the parent Hamilto-
nian has a generalized MPS

〈
ψXT
∣∣ a ground state if X

supercommutes with T (a); that is, if an even observable
satisfies

XT (a) = T (a)X ∀a ∈ A, (29)

and an odd observable satisfies

XT (a) = (−1)|a|T (a)X ∀a ∈ A. (30)

Linear maps satisfying these conditions are called even
and odd Z2-graded module endomorphisms.

The maps C3 and C4 correspond to diagrams with odd
legs, and so annihilate even states 〈ψeven|. Therefore

Z(C) 〈ψeven| = 1
2 (C1 + ηC2)(〈ψ1|+ η 〈ψ2|). (31)

By the sequence of diagram moves depicted in Figures 6,
8, 9, and 10, one can show that

C1 〈ψ1| = 〈ψ1| , C2 〈ψ1| = ηX 〈ψ2| ,
C1 〈ψ2| = 〈ψ2| , C2 〈ψ2| = ηX 〈ψ1| , (32)

where ηX denotes the sign due to commuting X with odd
T (a). According to the rule (29), ηX = 1, so

Z(C) 〈ψeven| = 1
2 (1 + ηX) 〈ψeven| = 〈ψeven| . (33)

Similarly, the cylinder acts on odd states as

Z(C) 〈ψodd| = 1
2 (C3 − ηC4)(〈ψ3|+ η 〈ψ4|). (34)

Commuting X with the vertex gives 〈ψ4| = ηX 〈ψ3|,
which means 〈ψodd| = (1 + ηηX) 〈ψ3|. According to the
rule (30), ηX = −1, so the only odd ground state in the
NS sector is 〈ψ| = 0. This agrees with17.

In the Ramond sector, one can have nonzero odd
ground states. The sequence of moves of Figures 11 and
12 shows

C3 〈ψ3| = 〈ψ3| , C4 〈ψ3| = 〈ψ3| , (35)

so

Z(C) 〈ψodd| = 1
2 (1−η) 〈ψodd| = 〈ψodd| (in the R sector).

(36)
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Z(C) = 1
2
σ1 + 1

2
σ2

+ 1
2
σ3 + 1

2
σ4

Figure 3: The cylinder partition sum Z(C) factors as a signed sum of four colored diagrams:
σ(β1)C1 + σ(β2)C2 + σ(β3)C3 + σ(β4)C4 = C1 + ηC2 + C3 − ηC4. Magenta lines indicate odd edges.

〈ψeven| = σ1

X
+ σ2

X

Figure 4: 〈ψeven| = σ(β1) 〈ψ1|+ σ(β2) 〈ψ2| = 〈ψ1|+ η 〈ψ2|

Therefore
〈
ψXT
∣∣ is indeed a ground state of HNS(R) pro-

vided X is a Z2-graded module endomorphism.
Next we argue that every ground state of H of the

form (24) or (25) for arbitrary X can be written as a
generalized MPS where X supercommutes with T . A
result of Ref.17 (c.f. eq 3.18) implies that

Z(CNS) |ij〉 = (−1)|i||j|+|i|Z(CNS) |ji〉 (37)

and

Z(CR) |ij〉 = (−1)|i||j|Z(CR) |ji〉 . (38)

In Appendix B, we rederive this result in the Novak-
Runkel formalism. Then, since |X| = |i|+ |j|,

Z(CNS) Tr[XT (ei)T (ej)] |ij〉
= (−1)|i||X|Z(CNS) Tr[T (ei)XT (ej)] |ji〉 (39)

and

Z(CR) Tr[PXT (ei)T (ej)] |ij〉
= (−1)|i||X|Z(CR) Tr[PT (ei)XT (ej)] |ji〉 . (40)

For ground states, i.e. eigenstates of Z(C) with eigen-
value 1, this means that X supercommutes with T .

It turns out that all ground states of H can be written
as generalized MPS. As discussed in10, in a unitary the-
ory T is an isometry with respect to some inner product
on A and the standard inner product

〈M |N〉 = Tr
[
M†N

]
M,N ∈ End(V ) (41)

on End(V ). For an orthogonal basis {ei} of A,
Tr
[
T (ei)

†T (ej)
]

= δij . Consider the case N = 1. An
arbitrary state

〈ψ| =
∑
i

ai 〈i| (42)

can be written in generalized MPS form (24)(25) if one
takes

XNS =
∑
j

ajT (ej)
† or XR =

∑
j

ajPT (ej)
†. (43)

Thus generalized MPS with supercommuting X are the
only ground states. Neither the number of generalized
MPS nor the number of ground states depends on N ;
thus, the argument extends to all N .

A consequence of supercommutativity and (26) is that
there are no odd ground states in the NS sector. Suppose
that X is an odd observable. For a ∈ A−, the matrix X†

anticommutes with T (a), so the coefficient Tr
[
X†T (a)

]
vanishes. For a ∈ A+, the matrix X†T (a) maps U±
to U∓ and so also vanishes in the trace. Therefore the
state (24) is zero for odd X, which is to say that the NS
sector does not support odd states. The argument fails
for the state (25); generically, the R sector supports both
even and odd states. The lack of odd states in the NS
sector can also be seen directly from (37), which implies
|C |ij〉 | = |i|+ |j| = 0.

C. Stacking fermionic MPS

Bosonization establishes a 1-1 correspondence between
1d bosonic systems with Z2 symmetry and 1d fermionic
systems. In the gapped case, the corresponding topo-
logical phases are described by the same algebraic data,
namely by a Z2-graded algebra A. But bosonization does
not preserve a crucial physical structure: stacking sys-
tems together. From the mathematical viewpoint, either
bosonic or fermionic topological phases of matter form
a commutative monoid (a set with a commutative as-
sociative binary operation and a neutral element, but
not necessarily with an inverse for every element), but
bosonization does not preserve the monoid structure (i.e.
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〈ψodd| = σ3

X
+ σ4

X

Figure 5: 〈ψodd| = σ(β3) 〈ψ3|+ σ(β4) 〈ψ4| = 〈ψ3|+ η 〈ψ4|

C1(ψ1) =

X

=

X

=

X

=

X

=
X

= ψ1

Figure 6: Diagrammatic proof of C1〈ψ1| = 〈ψ1|. The topmost line represents the physical boundary, with module
indices living on it. The others are depicted in Appendix A.

it does not preserve the product). A well-known exam-
ple is given by the fermionic SRE phases: the non-trivial
fermionic SRE phase (the Majorana chain) is mapped to
the bosonic phase with a spontaneously broken Z2. The
former one is invertible, while the latter one is not. Both
phases correspond to the algebra C`(1).

In the bosonic case, it was shown in10 that, given two
algebras A1 and A2 with bosonic Hamiltonians H1 and
H2, the tensor product system A1⊗A2 has a Hamiltonian
H1 ⊗ 12 + 11 ⊗ H2. That is, stacking bosonic systems
together corresponds to the tensor product of algebras.

On the other hand, in section 2.4 we have shown
that for fermionic systems stacking corresponds to the
supertensor product (12). We can now see that the
supertensor product rule is consistent with the way
fermionic generalized MPS are defined (while the usual
tensor product is not).

Suppose H1 is the Hamiltonian for the MPS sys-
tem built from a Z2-graded algebra A1 that acts on
a Z2-graded module U1 by T1. Its ground states are
parametrized by Z2-graded module endomorphisms X1

of U1. Consider stacking H1 with a second system H2

defined by T2 : A2 → End(U2) with ground states
parametrized by X2. The stacked system is the MPS
system with physical space A1 ⊗ A2 and Hamiltonian
H = H1 ⊗ 12 + 11 ⊗H2. It has bond space U1 ⊗U2 and
MPS tensor T = T1 ⊗ T2.

The ground states are generalized MPS, and so cor-
respond to Z2-graded endomorphisms of the module
U1 ⊗ U2. Since the MPS tensor is T = T1 ⊗ T2, the
state

〈
ψXT
∣∣ is trivial unless X is of the form X1⊗X2. We

also know that X supercommutes with T :

(X1 ⊗X2)(T1 ⊗ T2)

= (−1)(|X1|+|X2|)(|T1|+|T2|)(T1 ⊗ T2)(X1 ⊗X2) (44)

There are two ways one might define the composition
of tensor products of operators24:

(X1 ⊗X2)(T1 ⊗ T2) = X1T1 ⊗X2T2 (45)

and

(X1 ⊗̂X2)(T1 ⊗̂ T2) = (−1)|X2||T1|X1T1 ⊗̂X2Y2 (46)

Since X1 supercommutes with T1 and X2 with T2, only
the second notion (46) of composition is consistent with
(44). The composition rule is an algebra structure on
End(U1) ⊗ End(U2) and pulls back by T to an algebra
structure on A1 ⊗A2 given by the rule (12).

An important assumption in this argument is that iso-
morphic TQFTs correspond to equivalent gapped phases.
Assuming this is true, we can easily see that the group
of fermionic SRE phases is isomorphic to Z2. Indeed, one
can easily see that a phase which is invertible must cor-
respond to an indecomposable algebra (i.e. the algebra
which cannot be decomposed as a sum of algebras). Since
all our algebras are semisimple, this means that invert-
ible phases must correspond to simple algebras. It is
well-known that there are exactly two Morita-equivalence
classes of Z2-graded algebras: the trivial one and the
class of C`(1). The square of the nontrivial class is
the trivial class. Hence the group of invertible fermionic
phases is isomorphic to Z2. In the next section we will
show explicitly that C`(1) corresponds to the nontrivial
Majorana chain.
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IV. HAMILTONIANS FOR FERMIONIC SRE
PHASES

A. The trivial SRE phase

An example of a system in the trivial phase is the triv-
ial Majorana chain3. On a circle, this system has only
bosonic states: one in the NS sector and one in the R
sector. We will now demonstrate that this is the same
phase as the MPS system built out of the Clifford algebra
C`(2) = End(C1|1).

The algebra A = C`(2) is expressed in terms of its odd
generators as C[x, y]/(x2 − 1, y2 − 1, xy+ yx). Let A act
on U = C1|1 by

T : x 7→ [σx]± , y 7→ [σy]± (47)

where [·]± denotes a matrix in the homogeneous basis of
U . This action is graded and faithful. The fermion parity
operator P acts by σz.

The even ground states of this system are parametrized
by matrices that commute with σx, σy, and σz. Thus X
is proportional to the identity 1. The corresponding NS
sector state has the wavefunction Tr[T (ei1) · · ·T (eiN )].
There is also an even state in the R sector given by
Tr[PT (ei1) · · ·T (eiN )].

The odd ground states are parametrized by matrices
that commute with T (a) – in particular, T (xy) = σz –
and anticommute with P = σz. This is impossible, so
there are no odd states in either sector.

In summary, the ground states of the A = C`(2) MPS
system are a bosonic one in the NS sector and a bosonic
one in the R sector, just like the ground states of the
trivial Majorana chain.

One can show that the MPS parent Hamiltonian
(c.f.10,18) is a nearest-neighbor Hamiltonian with the two-

body interaction HT = −
∑4
α=1 |vα〉 〈vα| where

v1 = 1⊗ 1− x⊗ x− y ⊗ y − xy ⊗ xy
v2 = 1⊗ x+ x⊗ 1 + y ⊗ xy − xy ⊗ y
v3 = 1⊗ y + y ⊗ 1 + xy ⊗ x− x⊗ xy
v4 = 1⊗ xy + xy ⊗ 1 + x⊗ y − y ⊗ x

(48)

It is not obvious that HT is equivalent to the Hamiltonian
of the trivial Majorana chain

H =
∑
j

(a†jaj − 1) (49)

but it should be possible to construct an LU transforma-
tion between the two Hamiltonians (after some blocking),
as the systems have the same spaces of ground states and
so lie in the same phase.

B. The nontrivial SRE phase

An example of a fermionic system in a nontrivial
SRE phase is the Majorana chain with a two-body

Hamiltonian3

Hj =
1

2

(
−a†jaj+1 − a†j+1aj + a†ja

†
j+1 + aj+1aj

)
(50)

This system has one bosonic and one fermionic ground
state on the interval arising from one Majorana zero
mode at each end. In the continuum limit this system
becomes a free Majorana fermion with a negative mass.
In the NS sector there is a unique ground state which is
bosonic, while in the R sector there is a unique ground
state which is fermionic (this is most easily seen from the
continuum field theory).

In order to get this phase from a spin TQFT, we let
A = C`(1). To see the full space of ground states, we
need a faithful graded module over A. Let U = U+⊕U−,
where each U± is spanned by a single vector u±. Let A
act on U by

T : Γ 7→ [σx]± = u+ ⊗ u∗− + u− ⊗ u∗+. (51)

In other words, U is A regarded as a module over itself.
The even ground states of this system are parametrized

by matrices that commute with P = [σz]± and
T (Γ) = [σx]±. Such matrices are proportional to 1.
The corresponding NS sector state has wavefunction
Tr[T (ei1) · · ·T (eiN )]. There is no even state in the R
sector as the trace Tr[PT (e1) · · ·T (eiN )] vanishes.

The odd ground states are parametrized by matrices
that anticommute with P and T (Γ). Such matrices X
are all proportional to [σy]±. By the general argument
of Section III B, we know that the NS sector has no odd
states. The wavefunction Tr

[
PX†T (ei1) · · ·T (eiN )

]
de-

fines an odd state in the R sector.
In summary, the ground states of the A = C`(1) MPS

system are a bosonic one in the NS sector and a fermionic
one in the R sector, just like the ground states of the
nontrivial Majorana chain.

We can also observe the equivalence of the two sys-
tems from the standpoint of Hamiltonians. We build the
MPS parent Hamiltonian for the A = C`(1) system by
following Ref.10,18. The adjoint P = T † is given by

P : 2u±⊗u∗± 7→ 1⊗1+Γ⊗Γ , 2u±⊗u∗∓ 7→ 1⊗Γ+Γ⊗1
(52)

With respect to the inner products on A and U for which
1 and Γ and u+ and u− are unit vectors, the graded
module structure T is an isometry, so the left inverse P+

is simply T . Putting these pieces together, we find

HT = |11〉 〈ΓΓ| − |1Γ〉 〈Γ1| − |Γ1〉 〈1Γ|+ |ΓΓ〉 〈11| (53)

where |ab〉 〈cd| denotes the element a ⊗ b ⊗ c∗ ⊗ d∗ ∈
End(A⊗A). In terms of the annihilation operators aj =√

2 |1〉 〈Γ|j and their adjoints, the hopping (top row) and

pairing (bottom) terms look like

a†j ⊗ aj+1 = 2 |Γ1〉 〈1Γ| a†j+1 ⊗ aj = 2 |1Γ〉 〈Γ1|

a†j ⊗ a
†
j+1 = 2 |ΓΓ〉 〈11| aj+1 ⊗ aj = 2 |11〉 〈ΓΓ|

(54)
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so the Hamiltonians (50) and (53) agree. The variables
aj satisfy fermionic anti-commutation relations. For ex-
ample,

{aj , aj+1} = (a⊗ 1)(1⊗ a) + (1⊗ a)(a⊗ 1)

= a⊗ a+ (−1)|a||a|a⊗ a = 0 (55)

if we are careful to use the fermionic tensor product (12).
The other relations can be checked similarly.

V. EQUIVARIANT SPIN-TQFT AND
EQUIVARIANT FERMIONIC MPS

A. (G, p)-equivariant algebras and modules

Let (G, p) be a finite supergroup, i.e. a finite group G
with a distinguished involution p ∈ G called fermion par-
ity. We assume the involution p is central in G, which
means that there are no supersymmetries. Every su-
pergroup (G, p) arises as a central extension of a group
Gb ' G/Z2 of bosonic symmetries by Z2 = {1, p}; that
is, there is an exact sequence

1→ Z2
i−→ G b−→ Gb → 1. (56)

A trivialization of (G, p) is a function t : G → Z2 such
that t ◦ i is the identity on Z2. Given a trivialization,
one can encode the multiplication rule for G in terms of
the product on Gb and a Z2-valued group 2-cocycle ρ of
Gb. Consider the following product on the set Gb × Z2

(denoted Gb ×ρ Z2). For ḡ, h̄ ∈ Gb, f, f ′ ∈ Z2,

(ḡ, f) · (h̄, f ′) = (ḡh̄, ρ(ḡ, h̄) + f + f ′) (57)

Denote ḡ := b(g). The map b×ρ t : g 7→ (ḡ, t(g)) defines

a group isomorphism G ∼−→ Gb ×ρ Z2; that is,

g · h = (ḡ, t(g)) · (h̄, t(h)) = (ḡh̄, ρ(ḡ, h̄) + t(g) + t(h))

= (ḡh, t(gh)) = gh, (58)

if and only if

ρ(ḡ, h̄) = t(gh) + t(g) + t(h). (59)

Suppose t′ is another trivialization. Since t = t′ on the
image of i and the sequence (56) is exact, the map t− t′
defines a 1-cochain of Gb. Thus, upon replacing t with
t′, ρ is modified by the coboundary δ(t− t′), so only the
cohomology class [ρ] of c is an invariant of the extension.
If [ρ] is trivial, G is isomorphic to the direct product group
Gb × Z2 and we say the extension splits; in general, this
is not the case. Some discussions of fermionic phases
in the physics literature assume that (G, p) is split, but
we will consider both cases simultaneously. Note that3

considered both cases as well.
An action R of (G, p) on a vector space V endows it

with a distinguished Z2-grading

V± = {v ∈ V : R(p)v = ±v}. (60)

Centrality of p ensures that R(g) is even with respect to
this grading, for all g ∈ G. A (G, p)-equivariant Frobenius
algebra is a Frobenius algebra (A,m, η) with an action of
(G, p) that satisfies

m(R(g)a⊗R(g)b) = R(g)m(a⊗ b) (61)

and

η(R(g)a,R(g)b) = η(a, b) (62)

for all a, b ∈ A, g ∈ G. As was true for the special case
G = Z2, there are two notions of tensor product of these
algebras: the usual one that forgets the distinguished Z2-
grading and a supertensor product (12) that remembers
it. In both cases, the symmetry acts on the product as

R(g)(a1 ⊗ a2) = R1(g)a1 ⊗R2(g)a2 (63)

which is a special case of the rule

(φ1 ⊗ φ2)(a1 ⊗ a2) = (−1)|φ2||a1|φ1(a1)⊗ φ2(a2) (64)

for φ1 ⊗ φ2 ∈ End(A1)⊗ End(A2), where we have taken
R(g) = R1(g)⊗R2(g).

We have argued in10 that bosonic phases with symme-
try G are classified by G-equivariant symmetric Frobe-
nius algebras and that stacking of phases corresponds to
the usual tensor product of their algebras. Here we will
argue the fermionic analog: (G, p)-equivariant symmetric
Frobenius algebras classify fermionic phases with symme-
try (G, p), for which stacking is governed by the superten-
sor product. In this language, bosonization means taking
a (G, p)-equivariant algebra to a G-equivariant algebra by
forgetting the distinguished involution p. Generically, if
G has more than one central involution, this map is many-
to-one.

An equivariant module over a (G, p)-equivariant alge-
bra A is vector space V with compatible actions of A
and (G, p); that is, for every a ∈ A, we have a lin-
ear map T (a) ∈ End(V ) such that T (a)T (b) = T (ab),
and for every g ∈ G, a linear map Q(g) such that
Q(g)Q(h) = Q(gh). The compatibility condition reads

T (R(g)a) = Q(g)T (a)Q(g)−1 (65)

Note that T automatically respects the Z2-grading.
For a review of the classification of equivariant algebras

and modules, we refer the reader to the prequel10, which
compiles some algebraic facts from19,20. There are two
classes of algebras that will be especially useful in the
present context, as they describe fermionic SRE phases.
One class of algebras is those of the form End(U) for a
projective representation U of G. Each pair (Q,U) has
an associated class [ω] ∈ H2(G, U(1)) that measures the
failure of Q to be a homomorphism:

Q(g)Q(h) = exp(2πiω(g, h))Q(gh). (66)

Each [ω] defines a Morita class of algebras and therefore
a phase. Equivariant modules over End(U) are all of
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the form U ⊗W , where W is a projective representation
with class −[ω]. When G can be written as Gb×{1, p} for
some group Gb of bosonic symmetries, another class of
equivariant algebras is those of the form End(Ub)⊗C`(1)
for a projective representation (Ub, Qb) of Gb. The group
Gb acts by conjugation on End(Ub). It also acts on the
generator of C`(1) by

ḡ : Γ 7→ (−1)β(ḡ)Γ, (67)

where β : Gb → Z2 is a homomorphism. Up to Morita-
equivalence, algebras of this type depend only on the
1-cocycle β and the 2-cocycle α on Gb corresponding
to the projective representation Qb. While the bosonic
phases built from these algebras have a broken Z2, their
fermionic duals are nonetheless SRE phases.

B. Equivariant fermionic MPS

Let (G, p) be a supergroup acting on the physical space
A by a unitary representation R. A (G, p)-invariant MPS
tensor is a map T : A 7→ End(U) such that T (a)T (b) =
T (ab) and

T (R(g)a) = Q(g)T (a)Q(g)−1 (68)

where the linear maps Q(g) ∈ End(U) form a projective
representation of (G, p) on U . For X ∈ End(U) satisfying
the supercommutation rule (29) or (30), the conjugate
generalized MPS is〈

ψXT
∣∣ = TrU [XT (ei1) · · ·T (eiN )] 〈i1 · · · iN | (69)

in the NS sector and〈
ψXT
∣∣ = TrU [PXT (ei1) · · ·T (eiN )] 〈i1 · · · iN | (70)

in the R sector, where P denotes Q(p). More generally,
we can insert Q(g) instead of P :〈

ψXT
∣∣ = TrU [Q(g)XT (ei1) · · ·T (eiN )] 〈i1 · · · iN | (71)

These are twisted sector states. When G = Gb × {1, p},
states with twist Q(ḡ, 1) correspond to NS spin struc-
ture on a circle and a Gb gauge field of holonomy ḡ,
while states with twist Q(ḡ, p) correspond to the R spin
structure on a circle and a Gb gauge field of holonomy ḡ.
When G is non-split, one does not have spin structures
and gauge fields, but a G-Spin structure, as discussed in
Section V E.

Note that End(U) carries a genuine (not projective)
action of (G, p). By arguing as in (26), one can show
that

〈
ψXT
∣∣ transforms under (G, p) in the same way as X.

C. Fermionic SRE phases and their group
structure

In this section, we restrict our attention to fermionic
SRE phases, i.e. topological fermionic phases that are in-
vertible under the stacking operation. These phases form

a group under stacking. According to3, if the symmetry
group G splits as Gb × Z2, each fermionic SRE phase
corresponds to an element of the set

(α, β, γ) ∈ H2(Gb, U(1))×H1(Gb,Z2)× Z2. (72)

If Gb = {1}, the two elements (0, 0, 0) and (0, 0, 1) cor-
respond to the trivial and nontrivial Majorana chains, re-
spectively. More generally, elements of the form (α, β, 0)
correspond to fermionic SRE phases that remain invert-
ible after bosonization, while the bosonic duals of the
fermionic SREs (α, β, 1) are not SREs (they have a spon-
taneously broken Z2 but unbroken Gb).

If G does not split, we claim that fermionic SRE phases
are classified by pairs (α, β), where β ∈ H1(Gb,Z2), and
α is a 2-cochain on Gb with values in U(1) satisfying
δα = 1

2ρ ∪ β, i.e. for ḡ, h̄, k̄,∈ Gb,

α(ḡ, h̄) + α(ḡh, k̄) = α(h̄, k̄) + α(ḡ, h̄k) +
1

2
ρ(ḡ, h̄)β(k̄)

(73)
Here ρ is the 2-cocycle on Gb which encodes the multipli-
cation in G. Certain pairs (α, β) correspond to equivalent
SRE phases. Namely, adding to α an exact 2-cochain
gives an equivalent SRE. Also, if we add to the 2-cocycle
ρ a coboundary of a 1-cochain µ, α is shifted by 1

2µ ∪ β.
This classification can be understood from the stand-

point of bosonization. Recall that G-invariant bosonic
SREs are classified by group cohomology classes [ω] ∈
H2(G, U(1)) and arise from algebras of the form A =
End(U) where U is a projective representation of class
[ω]. Unlike the linear maps R(g) of a genuine represen-
tation, the Q(g) can be either even or odd with respect
to P := Q(p). Using (66) and the centrality of p, it
can be shown that Q(g) and Q(gp) have the same par-
ity ω(p, g)− ω(g, p); thus, one can define β(ḡ) := |Q(g)|.
The function β is clearly a homomorphism, and so de-
fines a Z2-valued group 1-cocycle of Gb. Given a trivial-
ization t, one can re-express ω in terms of β and a U(1)-
valued group 2-cochain α of Gb satisfying δα = 1

2ρ∪β as

follows:25

ω(g, h) = α(ḡ, h̄) +
1

2
t(g)β(h̄). (74)

Using (59), one can verify that (73) is equivalent to the
cocycle condition for ω. We prove in Appendix C that
(74) defines an isomorphism between H2(G, U(1)) and
the set of pairs (α, β), up to coboundaries.

When G does not split, it is impossible to break Z2

without breakingGb = G/Z2, so all fermionic SRE phases
arise as fermionized bosonic SRE phases. Then the anal-
ysis above agrees with the result of3 that, in the non-
split case, fermionic SREs are classified by elements of
H2(G, U(1)) (modulo identifications).

But when G splits, it is possible to break G and still
get an invertible fermionic phase. One can break G down
to any subgroup H such that the quotient G/H is a Z2

generated by p. Any such subgroup takes the form Hβ =
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{g ∈ G : t(g) = β(ḡ)} for some homomorphism β : Gb →
Z2, and all homomorphisms give such a subgroup. This
gives rise to a second class of fermionic SPTs - those
whose bosonic duals are not invertible.

The algebras corresponding to these phases are of the
form A = End(Uβ) ⊗ C`(1) for some projective repre-
sentation (Uβ , Qβ) of Hβ . Let h ∈ Hβ , M ∈ End(Uβ),
m ∈ Z2. The subgroup and quotient act on A as

R(h) : M ⊗ Γm 7→ Qβ(h)−1MQβ(h)⊗ Γm, (75)

R(p) : M ⊗ Γm 7→ (−1)mM ⊗ Γm (76)

This action is a special case of the more general rule
discussed in Section 4.3 of10. In terms of G,

R(g) = R(ḡ, β(ḡ)) ·R(p)t(g)+β(ḡ) :

M ⊗ Γm

7→ (−1)m(t(g)+β(ḡ))Qβ(ḡ, β(ḡ))−1MQβ(ḡ, β(ḡ))⊗ Γm

(77)

as claimed in (67) (after setting t(ḡ, 1) = 0). Note
that β, which encodes the action of the symmetry on
fermions, can be offset by changing the trivialization t,
i.e. the splitting isomorphism G ∼−→ Gb × Z2. As a
projective representation, Qβ is characterized by a class
[α] ∈ H2(H,U(1)) ' H2(Gb, U(1)).

We have shown that (G, p)-equivariant fermionic SRE
phases can be characterized by pairs (α, β) and - if G is
split - an additional Z2 label γ that represents a C`(1)
factor in the algebra. This parameterization is useful for
discussing stacking of fermionic phases, which is differ-
ent from the standard group structure on H2(G, U(1))
(the latter describes bosonic stacking). First, since
C`(1) ⊗̂ C`(1) ' C`(2) is Morita-equivalent to C, the
γ parameters must simply add up under stacking. Sec-
ond, if we consider two phases with parameters (α1, β1, 0)
and (α2, β2, 0) corresponding to two G-equivariant alge-
bras (Q1, U1) and (Q2, U2), the supertensor product is a
G-equivariant algebra (Q,U), where U = U1 ⊗̂ U2 and
Q = Q1 ⊗̂Q2. We can easily compute:

Q(g)Q(h) = (Q1(g) ⊗̂Q2(g))(Q1(h) ⊗̂Q2(h))

= (−1)β2(ḡ)β1(h̄)Q1(g)Q1(h) ⊗̂Q2(g)Q2(h)

= (−1)β2(ḡ)β1(h̄)e2πiα1(ḡ,h̄)(−1)t(g)β1(h̄)

× e2πiα2(ḡ,h̄)(−1)t(g)β2(h̄)Q1(gh) ⊗̂Q2(gh)

= exp

(
2πi(α1 + α2 +

1

2
β2 ∪ β1)

)
(ḡ, h̄)

× (−1)t(g)(β1+β2)(h̄)Q(gh). (78)

Thus the group structure in this case is

(α1, β1, 0) + (α2, β2, 0)

= (α1 + α2 +
1

2
β1 ∪ β2, β1 + β2, 0). (79)

Note that β1∪β2 differs from β2∪β1 by an exact term, and
thus the difference between them is inessential. Based on
these two special cases it is easy to guess that the group
structure induced by stacking is

(α1, β1, γ1) + (α2, β2, γ2)

= (α1 + α2 +
1

2
β1 ∪ β2, β1 + β2, γ1 + γ2). (80)

This is verified in Appendix D
The set of triples (α, β, γ) with this group law is

isomorphic to the spin-cobordism group Ω2
Spin(BGb)

12.

This agrees with the proposal of6 about the classification
of fermionic SRE phases. In the non-split case, the group
structure is given by the same formulas, except that γ is
set to zero, and α is not closed, but satisfies the equation
δα = 1

2ρ ∪ β.
If G splits, the isomorphism G ' Gb×Z2 may be taken

as part of the physical data. This means that one fixes
the action of Gb on fermions as well as on bosons. Alter-
natively, if one regards this isomorphism as unphysical,
one only fixes the action of Gb on bosons, while the action
on fermions is fixed only up certain signs. So far we have
been taking the former viewpoint. If we take the latter
viewpoint, we also need to understand how the parame-
ters (α, β, γ) change when we change the action of Gb on
fermions. Given a particular action of ḡ ∈ Gb, any other
action which acts in the same way on bosons differs from
it by pµ(ḡ), where p is fermion parity and µ : Gb → Z2

is a homomorphism. If we define Q̃(ḡ) = Q(ḡ)Pµ(ḡ), we
have

Q̃(ḡ)Q̃(h̄) = exp
(
2πiα(ḡ, h̄)

)
(−1)µ(ḡ)β(h̄)Q̃(ḡh̄), (81)

and

PQ̃(ḡ)P−1 = (−1)β(ḡ)Q̃(ḡ). (82)

This implies that for γ = 0 the parameter β is unchanged,
while α 7→ α+ 1

2µ∪β. For γ = 1 the situation is different,
since fermion parity acts trivially on U , and thus α is
not modified. But it acts nontrivially on the generator
of C`(1), so that the new Gb transformation multiplies it
by (−1)β(ḡ)+µ(ḡ). Thus β 7→ β+µ. Thus if we do not fix
the action of Gb on fermions, all fermionic SRE phases
with γ = 1 and a fixed [α] are equivalent. This agrees
with3.

D. Two examples with Gb = Z2

Let us consider the case Gb = Z2 = {1, b}. There are
two extensions of Gb by fermionic parity ZF2 = {1, p}:
one is Z2 × Z2 = Z[b]/(b2)× Z[p]/(p2); the other is Z4 =
Z[b, p]/(b2 − p).

First take G = Z2 × Z2. Consider algebras of the
form A = End(U), where U is a projective represen-
tation of G. Each is characterized by a class [ω] ∈
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H2(Z2 × Z2, U(1)) = Z2. The two options for [ω] have
cocycle representatives

ω0(g, h) = 0 and ω1(g, h) =
1

2
g2h1 (83)

where g = (g1, g2), h = (h1, h2). On the bosonic side
of the duality, we think of ω0 as describing the trivial
phase and ω1 as describing a nontrivial SRE. Alterna-
tively, one can replace each ω by a pair (α, β). There is
only the trivial [α] ∈ H2(Z2, U(1)). There are two β’s:
β0(b) = 0 and β1(b) = 1. These correspond to ω0 and
ω1, respectively, as

ωi(g, h) =
1

2
t(g)βi(b(h)) (84)

where t(g) = g2 and b(h) = h1. On the fermionic side,
β0 describes a trivial phase and β1 a nontrivial SRE.

Now consider breaking the symmetry down to any of
the three Z2 subgroups of G; this means considering
algebras A = IndGH(End(U)) for projective representa-
tions U of the unbroken H = Z2. Since H2(Z2, U(1))
is trivial, the only possibility (up to Morita equivalence)
is A = C`(1), graded by G/H. On the bosonic side,
each choice of H is a different non-invertible phase. As
fermionic phases, the Gb-graded C`(1) is a symmetry-
broken phase, while the ZF2 -graded C`(1) is a nontrivial
Majorana-chain phase (0, β0, 1). Breaking down to the
diagonal Z2 gives a p-graded C`(1) on which the bosonic
symmetry acts non-trivially, i.e. (0, β1, 1).

Now take G = Z4. The extension class is represented
by the 2-cocycle ρ(b, b) = 1. There is only the trivial
class [ω] ∈ H2(Z4, U(1)) = {1}. Meanwhile, there are
two β’s: β0 and β1 as before. They satisfy ρ∪β0 = 0 and
ρ∪ β1(b, b, b) = 1. The trivial α is the unique solution to
δα = ρ∪β0, and one can show that there are no solutions
to δα = ρ∪β1. In summary, there is only one pair (α, β)
- it’s the trivial one.

Consider breaking the only subgroup ZF2 . The cor-
responding algebra is the Gb-graded C`(1), which, as
before, describes a symmetry-broken phase in both the
bosonic and fermionic pictures.

E. State-sum for the equivariant fermionic theory

In Section III A, we observed that fermionic MPS arise
from the state-sum for a spin-TQFT evaluated on an an-
nulus diagram. A similar story can be told about equiv-
ariant fermionic MPS. Now we will define a state-sum
for equivariant spin-TQFTs and recover the MPS (71) as
states on an annulus.

We will focus on the case where the total symmetry
group G splits as a product of Gb and Z2 and then in-
dicate the modifications needed in the non-split case. A
Gb-equivariant spin-TQFT is defined in the same way
as an ordinary spin TQFT, except that spin manifolds

bosonic (H,ω) (α, β, γ) fermionic
trivial (G, ω0) (0, β0, 0) trivial
BSRE (G, ω1) (0, β1, 0) FSRE

SB (Gb, 1) (0, β0, 1) FSRE
SB (〈bp〉, 1) (0, β1, 1) FSRE
SB (ZF

2 , 1) n/a SB
SB (1,1) n/a SB

(a) Phases with G = Z2 × Z2

bosonic (H,ω) (α, β) fermionic
trivial (G, ω0) (0, β0) trivial

SB (ZF
2 , 1) n/a SB

SB (1,1) n/a SB

(b) Phases with G = Z4

Figure 7: Phase classification for the Gb = Z2 symmetry
groups

are replaced with spin manifolds equipped with princi-
pal Gb-bundles. Since Gb is finite, a Gb-principal bun-
dle is completely characterized by its holonomies on non-
contractible cycles. We will denote by A the collection of
all holonomies. When working on manifolds with bound-
aries, it is convenient to fix a marked point and a trivial-
ization of the bundle at the this point on each boundary,
so that the holonomy around each of these circles is a
well-defined element of Gb rather than a conjugacy class.

The algebraic input for the state-sum construction is
Gb×Z2-equivariant semisimple Frobenius algebra A. The
geometric data are a closed oriented two-dimensional
manifold Σ equipped with a Gb-bundle and a spin struc-
ture. To define the state-sum, we also choose a marked
skeleton Γ, then a trivialized Gb-bundle can be repre-
sented as a decoration of each oriented edge with an el-
ement g ∈ Gb. Reversing an edge orientation replaces g
with g−1. We impose a flatness condition: the product
of group labels around the boundary of each 2-cell is the
identity. Equivalently, we can use the dual triangulation
Γ∗: each dual edge is labeled by a group element, and the
flatness condition says that the cyclically-ordered prod-
uct of group elements on dual edges meeting at each dual
vertex is the identity. One can think of the dual edges as
domain walls and the dual edge labels as the Gb trans-
formations due to moving across them.

The state-sum is defined as follows. Given a skeleton
with a principal bundle, color the edges with pairs of el-
ements ei of some homogeneous basis of A. The weight
of a coloring is the product of structure constants Cijk
over vertices (with indices cyclically ordered by orien-
tation) and terms R(g)ikη

kj over edges times the spin-
dependent Koszul sign σs. The partition sum is the sum
of the weights over colorings; the holonomies A, which
represent a background gauge field, are not summed over.

To incorporate brane boundaries, choose a Gb × Z2-
equivariant A-module U for each boundary component.
Color the boundary edges by pairs of elements fUµ of a
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homogeneous basis of U - one for each vertex sharing the
edge. The weight of a coloring is the usual weight times
a factor of T iµν for each boundary vertex and Q(g)µν for
each boundary edge.

As in the non-equivariant case, the partition sum is a
spin-topological invariant. It also does not depend on the
choice of trivialization of the principal bundle; in other
words, it is gauge invariant. Invariance is ensured by the
equivariance conditions (61), (62), and (65). In fact, one
can evaluate the partition function in a closed form when
the boundary is empty. Let A = End(U)⊗C`(1) for some
projective representation of Gb with a 2-cocycle α, and
the action of Gb on C`(1) determined by a homomorpism
β : Gb → Z2. It is easy to see that the partition func-
tion factorizes into a product of the partition function
corresponding to End(U) and the partition function cor-
responding to C`(1). The former factor is the partition
function of a bosonic SRE phases, i.e. exp

(
2πi

∫
Σ
α
)

10.
The latter one is essentially the Arf invariant, modified
by additional signs from the edges e for which β(e) = 1:

2−b1(Σ)/2
∑

[a]∈H1(Σ,Z2)

σs(a)(−1)
∑
e∈a β(A(e)). (85)

Using the property (4), the definition of the Arf invariant,
and the identity Arf(s+a) = Arf(s)σs(a)14, we can write
this as

Arf(s+ β(A)) = Arf(s)σs(β(A)). (86)

Thus partition function of the fermionic SRE with the
parameters (α, β, 1) is

exp

(
2πi

∫
Σ

α

)
σs(β(A))Arf(s). (87)

Tensoring with another copy of C`(1) multiplies this by
another factor Arf(s), so that the partition function of
the fermionic SRE with the parameters (α, β, 0) is

exp

(
2πi

∫
Σ

α

)
σs(β(A)). (88)

We can also recover the equivariant MPS wavefunc-
tions from the state sum. First suppose A = End(U),
i.e. the parameter γ = 0. An equivariant module over
A is of the form M = U ⊗W , where (U,Q) and (W,S)
have projective actions of G characterized by opposite
cocycles. Consider the annulus where one boundary is
a brane boundary labeled by M and the other is a cut
boundary. We work with a skeleton on the annulus such
that each boundary is divided into N intervals, and let
gi,i+1 denote the group label between vertices i and i+1.
A computation similar to that of Section III A gives the
state

〈ψT | =
∑

TrU⊗W [T (ei1)Q(g12) · · ·T (eiN )Q(gN1)]

× 〈i1 · · · iN | (89)

which, after performing gauge transformations and LU
transformations, can be put in the form

〈ψT | =
∑

TrU⊗W [Q(g)T (ei1) · · ·T (eiN )] 〈i1 · · · iN |
(90)

where g = g12 · · · gN1. Since Q = Q ⊗ S and T (ei) has
the form T (ei)⊗ 1W , the trace factorizes:

〈ψT | = TrW [S(g)]
∑

TrU [Q(g)T (ei1) · · ·T (eiN )]

× 〈i1 · · · iN | . (91)

Up to normalization, this is the MPS (71).
The case A = End(Uβ) ⊗ C`(1) is similar. An inde-

composable module over A is of the form U ⊗W ⊗ V ,
where U and W carry projective Hβ actions of oppo-

site cocycles and V = C1|1 is the C`(1)-module consid-
ered in Section IV B. The action of G is determined by
Q(h) = Qβ(h)⊗S(h)⊗1 and Q(p)(M⊗u±) = ±M⊗u±.
The argument proceeds as before, with the trace over W
factoring out. We are left with an expression of the form
(71) where the trace is over U ⊗ V , the most general
indecomposable MPS tensor over A.

Let us now discuss the non-split case. If G is a non-
trivial extension of Gb by fermion parity, it is no longer
true that a G-equivariant algebra defines a Gb-equivariant
spin-TQFT. Rather, it defines a G-Spin TQFT6. A G-
Spin structure on a manifold X is a Gb gauge field A
on X together with a trivialization of the Z2-valued 2-
cocycle w2− ρ(A), where ρ(A) is the pull-back of ρ from
BGb to X and w2 is a 2-cocycle representing the 2nd

Stiefel-Whitney class of X. Now, if X is a Riemann sur-
face Σ, [w2] is always zero, so [ρ(A)] must be trivial too.
Instead of choosing a trivialization of w2 − ρ(A), we can
choose a trivialization s of w2 and a trivialization τ of
ρ(A). That is, we choose Z2-valued 1-cochains s and
τ such that δs = w2 and δτ = ρ(A). These data are
redundant: we can shift both s and τ by ψ ∈ H1(Σ,Z2).

We can now proceed as in the split case. Instead
of a triple (α, β, γ) we have a pair (α, β) where β ∈
H1(Gb,Z2) and α is a 2-cochain on Gb with values in
U(1) satisfying δα = 1

2ρ ∪ β. These data parameterize
a 2-cocycle on G. As shown above, the pairs (α, β) and
(α + 1

2µ ∪ β, β) correspond to the same 2-cocycle on G,

for any µ ∈ H1(Gb,Z2). The partition function is evalu-
ated exactly in the same way as in the split case, except
that α is no longer closed, and an extra correction fac-
tor is needed to ensure the invariance of the partition
function under a change of triangulation or a Gb gauge
transformation. This correction factor is

(−1)
∫
Σ
τ∪β(A) (92)

where τ is a trivialization of ρ(A) which is part of the def-
inition of the G-Spin structure on Σ. Thus the partition
function is

exp

(
2πi

∫
Σ

α(A)

)
(−1)

∫
Σ
τ∪β(A)σs(β(A)). (93)
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Using (4) one can easily see that the partition func-
tion is invariant under shifting both τ and s by any
ψ ∈ H1(Σ,Z2). One can also see that the partition
function is invariant under shifting α by 1

2µ ∪ β for any

µ ∈ H1(Gb,Z2) if we simultaneously shift τ 7→ τ +µ(A).
Returning to the split case, we can examine the effect

of treating the isomorphism G ' Gb × Z2 as unphysical.
Every two such isomorphisms differ by a homomorphism
µ : Gb → Z2. The effect this has on the data (α, β, γ)
has been described in section V C:

α 7→ α+(1−γ)
1

2
µ∪β, β 7→ β+γµ, γ 7→ γ. (94)

Using the properties of σs and the Arf invariant, it is
easy to check that the partition function is unaffected
by these substitutions if we simultaneously shift the spin
structure:

s 7→ s+ µ(A). (95)

This can be interpreted as a special case of an equivalence
relation between different spin structures which define
the same G-Spin structure.
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Appendix A: Diagrams for the ground states

These diagrams are used in the argument of Section
III B.

C2(ψ1) =

X

=

X

=

X

= ηX

X

= ηX
X

= ηXψ1

Figure 8: Diagrammatic proof of C2〈ψ1| = ηX〈ψ2|.
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C1(ψ2) =

X

=

X

=

X

=

X

=
X

= ψ2

Figure 9: Diagrammatic proof of C1〈ψ2| = 〈ψ2|.

C2(ψ2) =

X

=

X

=

X

= ηX

X

= ηX
X

= ηXψ1

Figure 10: Diagrammatic proof of C2〈ψ2| = ηX〈ψ1|.
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C3(ψ3) =

X

=

X

=

X

= ηX

X

= ηX
X

= ηXψ4 = ψ3

Figure 11: Diagrammatic proof of C3〈ψ3| = 〈ψ3|.

C4(ψ3) =

X

=

X

=

X

=

X

=
X

= ψ3

Figure 12: Diagrammatic proof of C4〈ψ3| = 〈ψ3|.

Appendix B: Necessity of supercommutativity

This appendix is a derivation the results (37) and (38)
from the lattice spin formalism introduced in Section II.
Consider acting on the state |ij〉 with the cylinder map
Z(C); this is represented in the top diagram of each col-
umn of Figure 13. To manipulate these diagrams into
the diagrams at the bottom of each column, one applies
a series of “moves” that are like Pachner moves but are
compatible with the lattice spin structure (see11 for de-
tails). Finally, one unbraids the legs at the cost of a sign
(−1)|i||j|.
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(a) NS sector: Cij = (−1)|i||j|+|i|Cji (b) R sector: Cij = (−1)|i||j|Cji

Figure 13: A proof of equations (37) and (38). Arrows denote edge directions, magenta line segments denote special
edges, and black dots denote spin signs +1, i.e. insertions of F .

Appendix C: Description of ω in terms of pairs (α, β)

Start with some [ω] ∈ H2(G, U(1)). We denote by ḡ
either an element of Gb or the corresponding element in
G whose t(g) = 0, i.e. (ḡ, 0). A general element of G then
takes the form of either ḡ or ḡp.

Given an arbitrary ω, we can shift it by a coboundary
δB where B ∈ C1(Z2, U(1)) such that B(0) = 0 and
B(p) = 1

2ω(p, p) so that our new ω satisfies ω(p, p) = 0.

Then we can add a coboundary δA with A ∈ C1(G,Z2)
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satisfying A(ḡp) = A(ḡ)−ω(ḡ, p) to ω to make ω(ḡ, p) = 0
for all ḡ ∈ Gb.

Evaluating the 3-cochain δω on (ḡ, p, p), (ḡ, h̄, p), and
(ḡp, h̄, p), and using the fact that δω = 0, we see that
changing the second argument of ω by p does not affect
its value, i.e. ω(g, h) = ω(g, hp), ∀g, h ∈ G.

Then, evaluating δω on (ḡ, p, h̄) gives ω(ḡp, h̄) =
ω(ḡ, h̄)+ω(p, h̄). Defining α(ḡ, h̄) := ω(ḡ, h̄) and β(ḡ) :=
ω(p, ḡ), ω = α + t ∪ β, and we can check that δβ = 0
and hence δα = −δt∪ β = ρ∪ β. With our gauge choice,
one can show that this definition of β is consistent with
β(ḡ) = |Q(g)|. The residual gauge freedom which shifts
ω by a coboundary δλ for λ which is a pull-back from Gb.
This leaves β invariant but shifts α by a Gb-coboundary.
Hence α ∼ α+ δλ, and we see that equivalence classes of
ω correspond to equivalence classes of pairs (α, β) satis-
fying δα = ρ ∪ β and δβ = 0 with (α, β) ∼ (α+ δλ, β).

When G splits, ρ is trivial and we have δα = 0, so
the set of equivalence classes of α is H2(Gb, U(1)). The
set of equivalence classes of β is of course H1(Gb,Z2).
This confirms H2(G, U(1)) ' H2(Gb, U(1))×H1(Gb,Z2),
which we already knew from more abstract arguments.

Appendix D: Derivation of the group law for
fermionic SRE phases

In the body of the paper we derived the supertensor
product of two G-graded algebras of the form End(Ui),
i = 1, 2, where (Qi, Ui) is a projective representation of
G = Gb×Z2. This allowed us to determine the group law
for γ = 0 SRE phases. Here we compute the supertensor
product for G-equivariant algebras involving a C`(1) fac-
tor and determine the group law in the remaining cases.

Let (Q1, U1) be a projective representation of G
with a 2-cocycle parameterized by a pair (α1, β1) ∈
Z2(Gb, U(1)) × Z1(Gb,Z2). We will denote Q1(p) = P ,
so that

Q1(g)Q1(h) = exp(2πiα1(g, h))Q1(gh),

PQ1(g)P−1 = (−1)β1(ḡ)Q1(g). (D1)

Let (Q2, U2) be a projective representation of Gb with a
2-cocycle α2 ∈ Z2(Gb, U(1)), i.e.

Q2(g)Q2(h) = exp(2πiα2(g, h))Q2(gh) (D2)

The vector space U2 is regarded as purely even. Let β2 :
Gb → Z2 be a homomorphism. Let A1 be the algebra
End(U1) with the obvious G action. Let A2 = End(U2)⊗
C`(1), and define a G action on it as follows:

g : M ⊗ Γm 7→ (−1)mβ2(g)Q2(g)MQ2(g)−1 ⊗ Γm, (D3)

and

p : M ⊗ Γm 7→ (−1)mM ⊗ Γm. (D4)

where M ∈ End(U2),m ∈ Z2.

The first claim is that A1 ⊗̂A2 is isomorphic (as a Z2-
graded algebra) to A12 = End(U1 ⊗ U2) ⊗ C`(1), where
both U1 and U2 are regarded as purely even. The iso-
morphism is given by

JW : M1 ⊗̂M2 ⊗̂ Γm 7→M1P
m ⊗M2 ⊗ Γm+|M1| (D5)

We denoted it JW to indicate that it is a version of the
Jordan-Wigner transformation. It is easy to check that
the map preserves the product as well as grading, and its
inverse is

JW−1 : M1 ⊗M2 ⊗ Γm 7→M1P
m+|M1| ⊗̂M2 ⊗̂ Γm+|M1|

(D6)
Thus the parameter γ for A12 is 1.

Next we compute the action of Gb on A12 induced by
the isomorphism JW . We get:

JW ◦ g ◦ JW−1 :

M1 ⊗M2 ⊗ Γm

7→ (−1)(β1(ḡ)+β2(ḡ))(m+|M1|)Q1(g)M1Q1(g)−1

⊗Q2(g)M2Q2(g)−1 ⊗ Γm. (D7)

To bring this Gb-action to the standard form, we define
Q̃1(g) = Q1(g)P β1(g)+β2(g)iβ1(g).26 Then the Gb-action
on End(U)⊗ C`(1) takes the form

M1 ⊗M2 ⊗ Γm 7→(−1)m(β1(ḡ)+β2(ḡ))Q̃1(g)M1Q̃1(g)−1

⊗Q2(g)M2Q2(g)−1 ⊗ Γm. (D8)

Thus the parameter β for A12 is β1 + β2. Finally, it
is easy to check that the matrices Q̃1(g)⊗Q2(g) form a
projective representation of Gb with a 2-cocycle

α(g, h) = α1(g, h) + α2(g, h) +
1

2
β1(h)β2(g). (D9)

We conclude that the group law for the parameters
(α, β, γ) obeys

(α1, β1, 0) + (α2, β2, 1) = (α1 +α2 +
1

2
β1 ∪β2, β1 +β2, 1).

(D10)
The last case to consider is γ1 = γ2 = 1. The al-

gebrs to be tensored are A1 = End(U1) ⊗ C`(1) and
A2 = End(U2)⊗ C`(1), where (Q1, U1) and (Q2, U2) are
projective representations of Gb with 2-cocycles α1 and
α2. The group Gb acts as follows on the generators of
the two Clifford algebras:

g : Γi 7→ (−1)βi(ḡ)Γi, i = 1, 2. (D11)

It is easy to see that C`(1) ⊗̂C`(1) = C`(2), and that
C`(2) ' End(C2). The isomorphism sends Γi to σi, i =
1, 2, and the action of p on C2 is given by the Pauli matrix
σ3 = −iΓ1Γ2. Thus

A12 = A1 ⊗̂A2 ' End(U1 ⊗ U2 ⊗ C2), (D12)

where U1 and U2 are regarded as purely even. Thus the
γ parameter for A12 is 0.
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The group Gb acts on U1 ⊗ U2 by Q1 ⊗ Q2. This is
a projective action, with a 2-cocycle α1 + α2. There is
no canonical choice of the projective Gb action on C2

which induces the action (D11) on C`(2) ' End(C2).
One possible choice is

g : v 7→ Γ
β2(ḡ)
1 Γ

β1(ḡ)
2 v, v ∈ C2. (D13)

Any other choice differs from this one by a scalar factor
exp(λ(g)) which changes the corresponding 2-cocycle by
a coboundary. Using the action (D13), the corresponding
2-cocycle is 1

2β1(ḡ)β2(h̄). The net result is that the Gb
action on U1 ⊗ U2 ⊗ C2 is projective with a 2-cocycle

α1 + α2 + 1
2β1 ∪ β2. We also compute:

(−iΓ1Γ2)Γ
β2(ḡ)
1 Γ

β1(ḡ)
2

= (−1)β1(ḡ)+β2(ḡ)Γ
β2(ḡ)
1 Γ

β1(ḡ)
2 (−iΓ1Γ2). (D14)

This implies that the parameter β for A12 is β1 + β2.
We have shown that for the special case γ1 = γ2 = 1

the group law says

(α1, β1, 1) + (α2, β2, 1) = (α1 +α2 +
1

2
β1 ∪ β2, β1 + β2, 0)

(D15)
This completes the proof of (80).
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