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We introduce a laser control scenario to transiently transform an insulating heterojunction into
a conducting one on a femtosecond timescale. The scenario is based on opening Landau-Zener
quantum tunneling channels for electron transfer between two adjacent semiconductors via Stark
shifts induced by non-resonant lasers of intermediate intensity (non-perturbative but non-ionizing).
Through quantum dynamics simulations we demonstrate the robustness of the approach and its
utility for controlling electron dynamics at interfaces.

A general goal in our quest to control matter and en-
ergy is the design of laser control strategies1–4 to ma-
nipulate electronic properties and electron dynamics. In
addition to its interest at the fundamental level, lasers
permit ultrafast manipulation5–11 opening new ways to
design electronics and photoelectronic actuators that op-
erate in a femto to attosecond timescale.

In this Letter, we propose a laser control scenario
to transiently turn a perfect composite insulator into a
conducting one on a femtosecond timescale. The sce-
nario is based on using Stark shifts induced by non-
resonant light of intermediate intensity (non-perturbative
but non-ionizing) to open quantum tunneling pathways
for electron transfer between two adjacent semiconduc-
tors. Below, the scenario is demonstrated by solving the
time-dependent Schrödinger equation for a model tight-
binding heterojunction, and explained through Landau-
Zener tunneling theory. These results demonstrate a gen-
eral route for control of electron dynamics at interfaces,
and illustrate the power of Stark based strategies for con-
trol of matter9,11–14.

Control through the Stark effect is a form of Hamil-
tonian control, based on shifting energy levels through
non-resonant light11–13,15–18. As a mechanism of laser
control of electrons it has the advantage of being robust
to decoherence11,19 because it does not exploit the frag-
ile coherence properties of electronic superposition states.
This feature is crucial as electronic decoherence in matter
is remarkably fast20–23, making traditional coherent con-
trol schemes based on interference effects to be of limited
applicability19. While Stark control of electron dynamics
at the metal-dielectric interface has been recently demon-
strated9,11,14, Stark schemes across the semiconductor-
semiconductor interface represents an unexplored fron-
tier in the laser control of electron dynamics.

The use of light to modify the electronic properties of
bulk materials is a subject of considerable current inter-
est. Recent progress includes schemes to create light-
induced dynamical gaps24–27 that modify the transport
properties28, and scenarios to modify the optical prop-
erties10,29. The scheme proposed here differs from these
previous efforts in that it focuses on the effect of light on
the effective interfacial coupling between materials.

As a model system we consider a heterojunction com-

posed of two adjacent one-dimensional two-band tight-
binding semiconductors (Fig. 1a), and focus on the ex-
emplifying case in which the two materials have no spec-
tral overlap, the interface is atomically sharp and band
bending does not play a role (Model 1 in Fig. 2a). This
guarantees that the heterojunction behaves as a perfect
insulator to an applied voltage or to resonant photoexci-
tation as there is no path for exchange of electrons be-
tween the two materials. However, the identified scheme
is general and can apply to more complex interfaces.

The basic concept behind the proposed scenario is il-
lustrated in Fig. 1. Through Stark effects, the electric
field of light distorts the electronic structure of the het-
erojunction (Fig. 1b). This deformation leads to tran-
sient resonances between electronic eigenstates of mate-
rial A and B. When a valence band (VB) eigenstate of
one material (say A) enters into transient resonance with
a conduction band (CB) eigenstate of the other mate-
rial (B), A→B tunneling electron transfer across the het-
erojunction occurs. These quantum tunneling pathways
for electron transfer are particularly effective when the
eigenstates involved are both localized at the interface
(Fig. 1d), leading to a significant avoided crossing in the
energy level diagram as a function of increasing electric
field (Fig. 1c).

To demonstrate this concept, we solve the time-
dependent Schrödinger equation for a model heterojunc-
tion in the presence of few cycle non-resonant light. The
model Hamiltonian is given by

Ĥ = ĤA + ĤB + ĤAB, (1)

where Ĥi is the Hamiltonian for material i = A or B,
and ĤAB the interfacial coupling between the semicon-
ductors. Each material is modeled as a two-band tight-
binding chain with Ni = 50 unit cells (100 sites) in dipole
interaction with a laser field E(t)

Ĥi =

2Ni∑
n=1

(hinn+ |e|E(t)xn)â†nân+

2Ni∑
〈n,m〉

hinm(â†nâm+h.c.),

(2)
where 〈n,m〉 denotes nearest-neighbors, and h.c. her-
mitian conjugate. Here ân (â†n) annihilates (creates)
a fermion in site n and satisfies the usual fermionic
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FIG. 1. Laser-induced electron tunneling across interfaces
through Stark shifts. (a) Scheme of a heterojunction com-
posed of two adjacent two-band semiconducting materials
A and B. Under the influence of a non-resonant laser field,
(b) the laser-dressed eigenenergies of the heterojunction (ob-

tained by diagonalizing Ĥ [Eq. (1)] for a fixed electric field
E0) fan out as the laser field amplitude E0 increases resulting
in multiple trivial and avoided crossings. Avoided crossings
between levels that belong to different materials, such as that
signaled by the colored lines in (b) and detailed in (c), open
tunneling pathways for electron transfer. The crossing in (c)
is between a VB level of A (with eigenfunction AΨ0

VB) and a
CB level of B (BΨ0

CB). These crossing are particularly effec-
tive when the wave functions of the dressed states spatially
overlap at the interface (n =100-101, in this case) as in (d)
leading to significant energy gap ∆AB at the avoided crossing.

anticommutation relations. Each unit cell has two
Wannier functions with alternating on-site energies
(hinn = hievenδn,even + hioddδn,odd), in tight-binding cou-
pling among them (hin,n+1 = tievenδn,even + tioddδn,odd).
Here xn denotes the position of each Wannier function
along the junction, and |e| the electron charge. The in-
teraction between the semiconductors at the interface is
given by ĤAB = −tAB(â†2NA

â2NA+1 + h.c.), where tAB is
the interfacial tight-binding coupling. For definiteness,
we choose a lattice constant of a = 5.0 Å and a distance
between sites in each cell of 1.7 Å in both materials. The
interfacial distance is aAB =7.7 Å and tAB =0.2 eV. The
remaining tight-binding parameters are defined in Fig. 2.

The vector potential associated with the electric field
E(t) = −Ȧ(t) of amplitude E0 employed in the simu-

lations is of the form A(t) = E0

ω e
−(t−tc)2/2τ2

sin(ω(t −
tc) + φ). This form guarantees that E(t) is an ac-source

as
∫∞
−∞E(t)dt = A(−∞) − A(∞) = 0. In the simu-

lations, we employ few cycle lasers of central frequency
~ω =0.5 eV, carrier envelope phase φ = 0, width τ =5.85
fs, centered around tc =50 fs (see Fig. 2). A few-
cycle laser is chosen to suppress the onset of dielectric
breakdown10,30,31 even for moderately strong fields. In
turn, the frequency is chosen to be far detuned from any
electronic transition such that Stark effects, and not near-
resonance photon absorption, dominate the dynamics.

Since the Hamiltonian of Eq. (1) is a single parti-
cle operator, the electronic properties of this system are
completely characterized by the electronic reduced den-
sity matrix ρnm(t) = 〈ψ(t)| â†nâm |ψ(t)〉, where |ψ(t)〉 is
the many-body wavefunction. The dynamics of ρnm is

determined by i~ d
dtρnm(t) =

〈[
â†nâm, Ĥ

]〉
, with initial

condition ρnm(0) =
∑N
ε 〈ε|n〉〈m|ε〉f(ε). Here |ε〉 are the

single particle eigenstates of Ĥ at t = 0, and f(ε) the
initial distribution function that takes values of 0 or 1
depending of the initial occupation of each |ε〉. These
equations are numerically integrated using the Adams-
Moulton method32.

Figure 2c shows the charge transfer dynamics induced
by a few-cycle laser pulse (upper panel) across the insu-
lating heterojunction (Model 1, Fig. 2a). The amount of
charge that is transferred from material A to B at time

t is quantified by QA→B(t) = −|e|
∑NA

n=1

∫ t
0
dt′(ρnn(t′)−

ρnn(0)). As shown, once the laser amplitude reaches cer-
tain threshold intensity population is transferred from A
to B. At that intensity the Stark shifts induced by the
laser generate transient resonances between VB eigen-
states of material A and the CB eigenstates of material
B. Therefore, quantum tunneling channels are opened be-
tween A and B allowing for electrons flux from A to B,
and turning this insulating heterojunction into a tran-
sient conductor on a femtosecond timescale.

Figure 2d shows the net charge transferred QA→B(∞)
by laser pulses of varying amplitude. We observe three
regions in the response. In region I (E0 ≤ 0.076 V/Å)
while the laser induces several crossings these transient
resonances are between levels that have no significant
spatial overlap and, thus, do not lead to appreciable
charge transfer. In region II (0.076 < E0 . 0.5 V/Å,
intensity 7.7× 1010 < I0 . 3.3× 1012 W/cm2), the tran-
sient resonances that lead to charge transfer are mainly
due to avoided crossings between levels in the VB of A
and the CB of B. As the laser amplitude increases, more
crossing between levels with significant spatial overlap
occur leading to an increase in the transferred charge.
Figure 1c details the most effective of these crossings,
which is between the lowest energy level of the VB of
A and the highest energy level of the CB of B. Notice
that due to the localization of the energy levels by the
interaction with the laser pulse, the wavefunctions over-
lap at the interface (see Fig. 1d). In region III (E0 & 0.5
V/Å), the laser is intense enough to induce crossings be-
tween the VB of B and the CB of A that lead to B→A
charge transfer and large Zener interband tunneling33 in
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FIG. 2. Femtosecond charge transport dynamics across an
insulating heterojunction induced by non-resonant few cycle
laser pulses through the Stark-based scenario in Fig. 1. The
scenario is tested in (a) a perfectly insulating heterojunction
(Model 1) with no spectral overlap (tight-binding parameters
hA
odd = 1.0 eV, hA

even = 7.0, hB
odd = −3.0 eV, hB

even = 3.0
eV, tiodd = tieven = 3.0 eV, i =A,B) and (b) a partially insu-
lating heterojunction (Model 2) with partial spectral overlap
(hA

odd = 1.0 eV, heven
A = 4.0 eV, hB

odd = 0.0 eV, hB
even = 3.0

eV, tiodd = 2.25 eV tieven = 3.0 eV). For Model 1, these pa-
rameters yield a 3.7 eV bandwidth for each band and 6 eV
bandgap; for Model 2, 3.9 eV bandwidth and 3 eV bandgap.
(c) Charge transfer dynamics from A→B induced by the laser
pulse in the top panel for both models. (d) Net charge trans-
fer induced by lasers of varying amplitude E0. Note that the
effect is robust to model parameters and laser intensities.

each material. The competition between these processes
leads to a complicated dependence of the effect on laser
amplitude.

To further demonstrate the robustness of the control
scheme on laser parameters, we quantified the net trans-
ferred charge induced by lasers with three different fre-
quencies (~ω = 0.05, 0.5 and 1.0 eV) but the same num-

ber of cycles (τ =
√

2π/ω). As shown in Fig. 3, in the
regime in which there is an appreciable effect (E0 >0.076
V/Å), decreasing the frequency of the laser increases the
amount of charge that is transferred. The reason for this
is because lowering frequency increases the time in which
the relevant energy levels in the two materials are near
resonance, thus enhancing the effectiveness of the tun-
neling mechanism.

Figures 4a-b illustrate the dependence of the effect on

FIG. 3. Dependence of the Stark control on laser parameters
for the insulating heterojunction (Model 1). The plot shows
the net charge transferred using three laser pulses with differ-
ent frequencies and the same number of cycles as a function of
the laser amplitude. In region II (cf. Fig. 2), the magnitude
of the effect increases with decreasing frequency.

the strength of the interfacial tight-binding coupling tAB

(with ~ω = 0.5 eV). As shown, increasing tAB monoton-
ically increases the magnitude of the effect for all laser
amplitudes considered, as it enhances the tunneling prob-
ability across the interface. Figure 4c shows the depen-
dence of the effect on the interfacial distance aAB for
fixed interfacial tight-binding coupling [tAB = 0.2 eV,
E0 = 0.3 V/Å (I0 = 1.2×1012 W/cm2), ~ω =0.5 eV]. As
shown, the amount of charge that is transferred generally
increases as the interfacial distance increases. To under-
stand this, consider a minimal single band model per ma-
terial in the heterojunction. In the presence of a strong
electric field, the energy eigenstates transition from de-
localized states to localized Wannier-Stark (WS) states.
The energy of the WS state localized at site m of material
i =A,B with position xm is given by εim

∼= εi0 + xm|e|E,
where εi0 is the energetic center of the band. The electric
field at which there is a crossing between a level localized

at site m of A and site n of B is E =
εA0 −ε

B
0

xm−xn
. As aAB

increases, xm − xn increases leading to a decrease in the
E required to induce the crossing. Thus, increasing aAB

generally increases the charge transfer because the same
laser pulse can induce more crossings contributing to the
effect.

To test the effectiveness of the scenario in a hetero-
junction with partial spectral overlap, we quantified the
control in a second model, in which both the VBs and
CBs of the two materials overlap by 2.9 eV (Model 2, Fig.
2b). As shown in Fig. 2, the scenario is also robust in
this model. With respect to Model 1, the reduced 3 eV
bandgap of Model 2 leads to an effect with larger mag-
nitude for E0 ≤0.4 V/Å (I0 ≤ 2.1 × 1012 W/cm2) and
a reduction in the range of electric field amplitudes for
which A→B interband tunneling dominates the dynam-
ics. In fact, for E0 & 0.25 V/Å (I0 & 8.3× 1011 W/cm2)
the laser pulse is intense enough to induce crossings be-
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FIG. 4. Dependence of the Stark control on the interfacial
parameters. (a,b) Influence of the interfacial tight-binding
coupling tAB on the magnitude of the effect for different laser
amplitudes. (c) Impact of the interfacial distance aAB for a
fixed interfacial coupling tAB =0.2 eV.

tween the VB of B and the CB of A that leads to B→A
charge transfer and a complicated dependence of the ef-
fect on laser amplitude.

To demonstrate that quantum tunneling dominates the
dynamics in the computational observations, we model
the dynamics using a rate equation with transition prob-
abilities determined by Landau-Zener (LZ) theory34,35.
We focus on Region II of Model 1 (Fig. 2d) where only
the VB of material A and the CB of B play a prominent
role in the photoinduced process. We thus consider a
minimal model in which the single-particle states in the
VB of A and the CB of B are the only states allowed to
exchange charge from time t to time t+ ∆t as

ηBl (t+ ∆t) = ηBl (t) + (ηAk (t)− ηBl (t))PkA→lB(t), (3)

where ηαl is the population of the lth level of material
α =A or B, and PkA→lB(t) = PlB→kA(t) is the LZ tun-
neling probability

PkA→lB(tcrossing) = 1− e−β
kA
lB , (4)

with

βkAlB =
2π(∆kA

lB )2

~|d/dt(εAk (E(t))− εBl (E(t)))|t=tcrossing
, (5)

at the crossing time, and zero otherwise. Here ∆kA
lB is the

energy gap between the kth VB level of A and the lth
CB level of B at the avoided crossing, and εil the energies
of the associated diabatic states. For strong laser fields,
the Stark shifted energies vary linearly with the electric

field such that
dεil
dt = M i

l
dE(t)
dt . In calculating Eq. (3),

the slopes M i
l are determined by linear regression around

the relevant avoided crossing.

Figure 5 compares the charge transfer dynamics ob-
tained by the LZ rate equation with that from the time-
dependent Schrödinger equation for two laser frequen-
cies (~ω = 0.05 and 0.5 eV), and maximum field am-
plitude E0 =0.21 V/Å. In both cases the rate equation
based on LZ tunneling reproduces the qualitative features
of the charge transfer dynamics obtained through quan-
tum dynamics. Note that LZ rate equation reproduces
quantitatively the simulated charge transfer rate for all
transitions except the ones around tω/2π ≈ 1.0 which
it overestimates. The overestimation arises because LZ
theory requires the diabatic energies to change linearly
with time 36 in the crossing region, and that condition is
not satisfied around tω/2π ≈ 1.0 where the electric field
of light is near a maximum. When the variation of the
oscillating electric field of the laser can be well approx-
imated by a linear function of time in the crossing, the
LZ rate equation quantitatively reproduces the dynam-
ics. These results indicate that the charge transfer is due
to interband LZ quantum tunneling across the interface
induced by Stark shifts.

To demonstrate that the scenario survives even in the
presence of decoherence, we repeated the LZ rate com-
putations but with the modified transition probability,

P incoh
kA→lB(tcrossing) = (1 − e−2β

kA
lB )/2, that has been iso-

lated for the LZ process in the presence of strong de-
coherence37–39. As can be seen in Fig. 5 (black dashed
lines), the decoherence has a very mild influence in the
scenario for the two laser frequencies considered because
the control is in the regime in which βkAlB is small for most
crossings where P incoh

kA→lB numerically coincides with that
in Eq. (4).

In conclusion, we have introduced a novel Stark-based
laser control scenario to manipulate electronic dynam-
ics at material interfaces. The scenario is based on us-
ing non-resonant light of intermediate intensity to cre-
ate transient resonances between conduction and valence
band levels of two different adjacent materials, that open
tunneling channels for electron transport across their in-
terface. The scenario was employed to transiently trans-
form an insulating heterojunction into a conducting one
on a femtosecond timescale. Quantum dynamics simula-
tions demonstrate that in the regime where Stark effects
dominate the dynamics, the effect is robust to changes
in the laser frequency and amplitude. The scheme can
be employed for the development of ultrafast electronics
and optical actuators.
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FIG. 5. Comparison of Landau-Zener rate theory (red dashed
lines) with the full quantum dynamics (red solid lines), and
effect of decoherence. The plots show the A→B transferred
charge induced by the laser (E0 =0.21 V/Å) for two central
frequencies (~ω = 0.05 and 0.5 eV). Note the LZ rate equa-
tions reproduce the basic features of the quantum dynamics,
indicating that the effect is due to quantum tunneling pro-
cesses induced by Stark shifts. Introducing decoherence to
the LZ rate equations (black dashed lines) has a minor effect
on the dynamics.
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