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Recently, realizing new fermions, such as type-I and type-II Dirac/Weyl fermions in condensed
matter systems, has attracted considerable attention. Here we show that the transition state from
type-I to type-II Dirac fermions can be viewed as a “type-III” Dirac fermion, which exhibits unique
characteristics, including a Dirac-line Fermi surface with nontrivial topological invariant and critical
chiral anomaly effect, distinct from previously known Dirac semimetals. Most importantly, we
discover Zn2In2S5 is a type-III Dirac semimetal, characterized with a pair of Dirac points in the
bulk and Fermi arcs on the surface. We further propose a solid-state realization of the black-hole-
horizon analogue in inhomogeneous Zn2In2In5 to simulate black hole evaporation with high Hawking
temperature. We envision that our findings will stimulate researchers to study novel physics of type-
III Dirac fermions, as well as astronomical problems in a condensed matter analogue.

a. Introduction. The conception of topology1–3 has
been known in condensed matter physics since 1980s.
However, it is until recently that we have witnessed
an exponential growth in the field of topological phases
of mater in the last decade; thanks to the introduc-
tion of concept of topological insulators (TIs)4 and their
proposition5 and confirmation6 in real material systems.
This effective route to discovering TIs from theoretical
conception to computational material proposition and to
experimental confirmation has been followed by the dis-
covery of other topological materials, such as topological
crystalline insulator7–9, Dirac semimetal10–13, and most
recently Wyel semimetal14–17. Depending on the geome-
try of Dirac cone, there are type-I and type-II Dirac/Weyl
semimetals18–22. Interestingly, it has been shown that
the interface or the “transition state” from type-I to type-
II has distinctly different topological properties23–25,
which we will call it a “type-III” semimetal.Both type-
I and type-II Dirac/Weyl semimetals have been exper-
imentally confirmed in real materials11,13,17,19,21; how-
ever, so far type-III Dirac/Weyl semimetal remains a
theoretical conception. Here, we will fill this outstand-
ing gap by proposing a type-III semimetallic phase in
Zn2In2S5.

Topological semimetals host interesting new types of
fermions as low-energy quasiparticles. They not only ex-
hibit novel physical properties such as topological surface
states10–18, large linear magnetoresistance26–28 and chi-
ral anomaly29–34, but also offer a versatile platform for
simulating relativistic particles of high-energy physics as
well as “new particles” that have no counterparts in high-
energy physics. The type-III Dirac semimetal has been
theoretically proposed for realizing a solid-state analogue
of block hole horizon23–25. To this end, we will again fill
the gap by devising a material platform, an inhomoge-
neous Zn2In2S5, to simulate Hawking radiation at the
black-hole horizon. Especially we suggest a high Hawk-
ing temperature associated with the analogous black-hole
horizon in Zn2In2S5 to ease the experimental observation,
in contrast to the low Hawking temperature in previously

proposed black-hole-horizon analogues.35–39

We will first highlight the key features of the type-III
Dirac semimetals, including their unique Dirac-line Fermi
surface with nontrivial topological invariant and critical
chiral magnetic effect, in distinction from those of type-I
and type-II Dirac semimetals. Then we will present ev-
idence that Zn2In2S5 is the first candidate material for
realizing the type-III Dirac fermions. Based on effective
Hamiltonian analysis and first-principles calculations, we
show novel properties of Zn2In2S5 including critical chi-
ral magnetoresponse and Fermi arcs. Finally we will de-
scribe a solid-state realization of the black-hole-horizon
analogue in inhomogeneous Zn2In2S5, to simulate black
hole evaporation with a relatively high Hawking temper-
ature.

b. The concept of type-III Dirac/Weyl point. Topo-
logical Dirac and Weyl semimetals are characterized
with fourfold and twofold linear band crossings at the
Fermi level (the so-called Dirac and Weyl points), re-
spectively. They can be further classified into two types
by fermiology. The type-I Dirac/Weyl semimetals have
a typical conical dispersion and point-like Fermi surface
[Fig. 1(a)]10–13,16,17. The type-II Dirac/Weyl semimetals
have an overtilted cone-shape band structure, possess-
ing both electron and hole pockets that contact at the
type-II Dirac/Weyl point [Fig. 1(b)]18–22. The type-III
Dirac semimetal is distinct from both type-I and type-
II semimetals.41 As illustrated in Fig. 1(c), the type-III
Dirac point is also a protected band crossing point, but
appears at the contact of a line-like Fermi surface. Un-
like Fermi surfaces of other topological semimetals, such
a unique line-like Fermi surface, so-called Dirac line, is
protected by a topological invariant which is an integer
only for the relatively rare Dirac line.

Since a Dirac point can be viewed as the merge of a
pair of Weyl points with opposite chirality, we start by
considering a general 4×4 Hamiltonian composed of two



2

TABLE I. Comparison among three types of Dirac semimetals.

Type-I Type-II type-III
Dispersion Dirac cone Overtilted Dirac cone Critical Dirac cone
Fermi surface Point-like Electron & hole pockets Dirac line (with N2 = 1)
DOS(EF ) Vanishing Parabolic peak Finite
Surface Fermi Arc X X X

Chiral anomaly Along all direction Anisotropic, inside a cone
region40

Except for the critical plane
[41]

Black hole analogue Outside Inside Horizon
Typical materials Na3Bi10, Cd3As2

12 PtTe2
20,21, VAl3

22 Zn2In2S5 (this work)

N  = 1

I II III
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FIG. 1. (a) Type-I Dirac point with a point-like Fermi sur-
face. (b) Type-II Dirac point is the contact point between
electron and hole pocket. (c) Type-III Dirac point appears
as the touching point between Dirac lines. The Dirac line
is described by the topological invariant N2 = 1. The light
blue semitransparent plane corresponds to the position of the
Fermi level, and the black solid/dashed lines mark the bound-
ary of hole/electron pockets. (d)-(f) Fermi surfaces of three
types of Dirac semimetals.

2× 2 Hamiltonian describing Weyl points for simplicity,

H(k) =

(

h(k) 0
0 h∗(−k)

)

(1)

with

h(k) = v · kσ0 +
∑

i,j

kiAijσj , (2)

where σj are Pauli matrices and σ0 is the identity ma-
trix. The energy spectrum of a Weyl point is E±(k) =
∑

i viki ±
√

∑

j (
∑

i kiAij)
2
= T (k) ± U(k). It is well-

known that if there exists a direction for which T > U ,
the band crossing point is a type-II Dirac point, other-
wise it is type-I. If and only if for a particular direction

k̂ that T (k̂) = U(k̂), but T (k̂) < U(k̂) for other direc-
tions, the Dirac points are connected by a line-like Fermi
surface as for the type-III Dirac semimetal. It is distinc-
tively different from the type-I point-like Fermi surface
or the type-II hyperbolic Fermi surface (coexistence of
electron and hole pockets). The Dirac line is protected
by the combination of topology and symmetry, and can
be described by a topological invariant24,

N2 =
1

4πi
Tr[K

∮

c

dlh(k)−1∂lh(k)], (3)

where C is a contour enclosing the Dirac line in momen-
tum space. Here the symmetry operator K depends on
the direction of the Dirac line; for the Dirac line along kz
direction, K = σz (see Supplemental Material42). The
topological invariant is actually a winding number of
phase around the line, and it stabilitzes the Dirac line in
the sense that the integral is integer, N2=1 only for type-
III semimetal. The Dirac line with a nonzero winding
number is an analogue of the vortex line in superfluids37.
Interestingly, the Dirac cone band structure is tilted

exactly with a flat band without dispersion along the
particular direction of En(k)=0, which serves as a char-
acteristic feature of type-III Dirac cone. The apparent
qualitative distinction between the Fermi surface and
band dispersion of the type-III and those of other types of
Dirac cones lead to significant differences in their physical
properties, such as critical chiral magnetoresponse40. In
particular, the chiral anomaly appears in a type-III Dirac
semimetal for almost all the directions of magnetic field.
Only when the direction of magnetic field is exactly per-
pendicular to the tilt, the Landau levels collapse due to
open semiclassical cyclotron orbit having no chiral zero
mode (see Supplemental Material42). We note that also
different from Type-I and -II Dirac fermions which exist
over a wide range of “phase” space (tilting angle), the
type-III exists only at a fixed tilting angle so that in this
sense it is less robust than the Type-I and -II.
Furthermore, the type-III Dirac semimetal can also

be viewed as the critical state of Lifshitz transition be-
tween type-I and type-II24. It was investigated recently
as a solid-state realization of black-hole-horizon analogue
based on inhomogeneous topological semimetals23–25. So
far, however, no material system is known to be a type-III
Dirac semimetal. Next, we will demonstrate Zn2In2S5 to
be the first type-III Dirac semimetal, and how to realize
its black-hole-horizon analogue.
c. The type-III Dirac semimetal state in Zn2In2S5.

Zn2In2S5 has a layered structure consisting of nonuple
layers stacked together along the z-direction42. Each
nonuple layer consists of two In and two Zn layers which
are sandwiched by S layers alternately, and every In or
Zn atom lies in the center of a terahedron or octahedron
of S atoms. The coupling is strong between atomic layers
within the nonuple layer but much weaker between adja-
cent nonuple layers. By different stacking of these basic
building blocks, two kinds of Zn2In2S5 arise, i.e., AB-
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FIG. 2. Band structures of (a)-(c) Zn2In2S5(R3m) and (d)-(f)
Zn2In2S5(P63mc). (b) and (e) The zoom-in band structures
along Γ-A of Zn2In2S5(R3m) and Zn2In2S5(P63mc), respec-
tively. (c) and (f) The in-plane band dispersions around the
Fermi level of Zn2In2S5(R3m) and Zn2In2S5(P63mc), respec-
tively.

stacked hexagonal structure with P63mc symmetry and
ABC-stacked rhombohedral structure with R3m symme-
try.

We first calculated the band structure of Zn2In2S5. As
shown in Fig. 2(a) and 2(d), there are flat bands along
the Γ-A direction near the Fermi level. Meanwhile, an-
other band disperses upward crossing the flat bands in
between Γ and A. The upward dispersive band crosses
with the upper flat band but avoids crossing with the
lower flat band [Fig. 2(b) and 2(e)]. The band cross-
ings occur in both materials, because the two crossed
bands belong to different irreducible representations of
the crystal symmetry group. For Zn2In2S5(R3m), the
two bands belong to 2D Λ4 and 1D Λ5 /Λ6 represen-
tations, respectively, as distinguished by C3v symmetry
around the kz axis. The different representation pro-
hibits hybridization between them, resulting in a pair
of 3D Dirac points at ±(0.254, 0.254, 0.254) (in units of
2π/a). For Zn2In2S5(P63mc), the upper flat band and
the upward dispersive band belong to 2D ∆9 and ∆7,
respectively, of the C6v symmetry. One unique feature
of the P63mc structure is that there are actually adja-
cent double Dirac points (0, 0,±0.306) and (0, 0,±0.308)
[in units of (2π/a, 2π/a, 2π/c)] with an energy differ-
ence of 1.0 meV. This is because there are actually
two flat ∆9 bands that are close to each other but not
exactly degenerate [see inset of Fig. 2(e)]. Since nei-
ther R3m nor P63mc structure has inversion symmetry,
these Dirac semimetals have fourfold degenerate Dirac
points, but with splitting of in-plane band dispersions
away from Dirac points [Fig. 2(c) and 2(f)]. This is
an unique feature of Zn2In2S5, which is different from
other Dirac semimetals that require both time-reversal
and inversion symmetries. Additionally, we also inves-
tigate the strain effect on the electronic structure and
found that the position of type-III Dirac points in the
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FIG. 3. (a) The projected surface density of states for the
(100) surface of Zn2In2S5(R3m) where the nontrivial topo-
logical surface states originating from the surface projection
of bulk Dirac point are clearly visible. (b) and (c) Con-
stant energy contours of the (100) surface and the bulk at
E = EF − 25, EF and EF + 25 meV, respectively. The green
arrows and crosses mark two pieces of Fermi arcs and the
surface projection of bulk Dirac points, respectively.

kz axis can be effectively tuned by external strain. As
the two structures share similar electronic properties, we
take Zn2In2S5(R3m) as an example hereafter.
To further reveal the nature of the type-III Dirac

points, we fit first-principles results to a low-energy effec-
tive model42. Neglecting the insignificant tiny splitting
induced by inversion symmetry breaking, the quasiparti-
cles are described by a pair of Weyl Hamiltonian in the
vicinity of one Dirac point,

hc
± = c⊥(kxσx ± kyσy) + c‖δkzσz + vδkzσ0, (4)

where δkz = kz − kcz , with kcz = 0.102 Å−1. The param-
eters c⊥ =2.29 and v=−c‖ =1.36 eVÅ, indicating that

there exists a flat band along k̂z direction. It is straight-
forward to derive the topological invariant usingK=±σz

in Eq. (3) and find that N2 =1. We thus conclude that
Zn2In2S5 is a type-III Dirac semimetal.
The topological nature of the type-III Dirac point in

Zn2In2S5 is also confirmed by calculating the Z2 topo-
logical invariants which are well-defined in the kz=0 and
kz=π planes. For the kz=0 plane, Z2=1; while for the
kz = π plane, Z2 =0. Therefore, a band order inversion
between Λ4 and Λ5 + Λ6 bands must occur along the kz
direction [see Fig. 2(b)], resulting in a band gap closure
at the Dirac point.
Topological surface states and Fermi arcs are expected

to appear on side surfaces of Zn2In2S5. Figure 3 shows
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the projected surface DOS for the (100) surface of a semi-
infinite Zn2In2S5(R3m) system. It is seen that the topo-
logical surface state emanates from one projection of bulk
Dirac point on the (100) surface, as shown in Fig. 3(a).
The Fermi surface contains two pieces of half-circle Fermi
arcs, as shown in Fig. 3(b), touching at two singularity
points where the surface projections of bulk Dirac points
appear. Due to the flat Dirac-line Fermi surface, the
shape of electron and hole pockets varies rapidly with the
increasing chemical potential. All these characteristics
should be experimentally observable by modern angle-
resolved photoemission spectroscopy technique.
d. The black-hole horizon analogue. Now we discuss

the possibility of realizing a solid-state analogue of black-
hole horizon in Zn2In2S5. So far, various black-hole ana-
logues have been proposed43, such as a sonic black hole
for sound wave propagating in flowing liquid35 and a
black-hole/white-hole pair in superfluid Helium with a
moving vierbein domain well36,37. In Eq. (4), the last
term is the same as the Doppler shift for quasiparticles
under a Galiean transformation to a moving frame of
reference with a velocity v. In general relativity, a rel-
ativistic quasiparticle in 3+1 dimensional spacetime can
be described by the line element ds2 = gµνdx

µdxν , where
gµν is the inverse (covariant) metric describing an effec-
tive curved spacetime in which the relativistic quasipar-
ticles propagate44. To obtain a spacetime interpretation,
we derive an effective covariant metric gµν according to
Eq. (4)42:

gµν =









−(1− v2/c2‖) 0 0 −v/c2‖
0 1/c2⊥ 0 0
0 0 1/c2⊥ 0

−v/c2‖ 0 0 1/c2‖









, (5)

which has a similar form of the acoustic metric of Unruh’s
sonic black hole35,43.
Now let’s assume that the dragging velocity v = v(z)

depends on the spacial z coordinate in an inhomogeneous
Zn2In2S5 system, which can, in principle, be realized by
controllable (tunable) structural distortion. As the met-
ric has translation invariance in the x- and y-direction,
for simplicity we make a dimension reduction to the 1+1
dimensional spacetime by ignoring the coordinates x and
y. As a result, the corresponding linear element becomes

ds2 = −

(

1−
v2(z)

c2‖

)

dτ2 +
dz2

c2‖ − v2(z)
. (6)

By performing a coordinate transformation: τ = t +
∫ z

dzv(z)/(c2‖ − v2(z)), we obtain an effective line ele-

ment that shares the same form of the radial part of the
Schwarzschild line element for gravitational black holes44.
Similar to the Schwarzschild metric which has a singu-
larity at the Schwarzschild radius corresponding to an
event horizon, the above matric also has a horizon (zh),
where the dragging velocity equals to the local “speed of
light” for quasiparticles: v(zh) = ±c‖. The correspond-
ing “Newtonian gravitational field” at horizons is given

Black hole horizon

20

a b

FIG. 4. (a) Schematic illustration of the solid-state analogue
of black hole horizon in an inhomogeneous Zn2In2S5 with
controllable structural distortion. The red arrows indicate
quasiparticle propagating directions in each region. (b) The
dependence of the dragging velocity v on the z coordinate.

by: Eg(zh) =
v(zh)
c2
‖

dv
dz

∣

∣

zh
. According to the fitted param-

eters of Eq. (4), assuming v(z) > −c‖ (v(z) < −c‖) in the
region z > zh (z < zh), an inhomogeneous Zn2In2S5 sys-
tem can be derived (see Fig. 4). Hence all quasiparticles
in the upper region (z > zh) move upward, and cannot
cross the z=zh plane, which indicates that this plane is
the black-hole horizon. Consequently, the inner observers
living in the lower region (z < zh) cannot obtain any in-
formation from the upper region (z > zh) if they can only
use the relativistic quasiparticles for communication.
A black hole can slowly radiate away its mass by emit-

ting a thermal flux at the horizon, as pointed out by
Hawking45. The analogous model presented above not
only suggests a new route to simulating an event hori-
zon, but also facilitates the realization of the Hawking
radiation analogue in dynamically inhomogeneous type-
III Dirac semimetals. Although this model is static in
equilibrium, the dissipation process right after the cre-
ation of the black hole horizon analogue is similar to the
process of Hawking radiation23–25. The corresponding
Hawking temperature can be determined by the “surface
gravity” at the horizon Eg(zh)

37,43:

TH =
~c‖

2πkB
Eg(zh) =

~

2πkB

dv

dz

∣

∣

∣

∣

zh

, (7)

where kB and ~ are the Boltzmann and the reduced
Planck constants, respectively. Obviously, TH may reach
high temperature as long as the gradient of the drag-
ging velocity is sufficiently large across the horizon. As
the dragging velocity v is a material-dependent parame-
ter which can be effectively tuned by strain and chemical
doping46,47, a high value of TH is expected in inhomoge-
neous Zn2In2S5.
e. Discussion. In conclusion, many recently emerg-

ing condensed matter analogs of high-energy particles are
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not real high-energy particles themselves, but quasipar-
ticles of low-energy electronic excitations. But they have
provided really interesting physics topics of study, which
are of tremendous interests to both fields of condensed
matter and particle physics. For the case we studied
here, the causal structure of the type-III Dirac semimetal
is identical to the causal structure of a black hole in the
presence of fermions, although not the black hole itself.
It is interesting to note that this analogy to black hole by
electronic fluid is different from the ones made previously
by neutral fluid35, because quantum effects are encoded
already through DFT calculations in the present case.
So some form of analogous “Hawking radiation” will

definitely occur. In addition, other novel astrophysical
phenomena such as gravitational lensing effect47, gravity
wave48, and cosmological constant problem36 can also be
explored in type-III Dirac semimetals.
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