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We develop a rigorous quantum-mechanical theory of the nonlinear optical process of difference
frequency generation of surface plasmon-polaritons in Landau-quantized graphene. Although for-
bidden in the electric-dipole approximation, the second-order susceptibility is surprisingly high,
equivalent to the bulk magnitude above 10−3 m/V. We consider the graphene monolayer as a non-
linear optical component of a monolithic photonic chip with integrated pump fields. The nonlinear
power conversion efficiency of the order of tens µW/W2 is predicted from structures of 10 − 100
µm size. We investigate a variety of waveguide configurations to identify the optimal geometry for
maximum efficiency.

I. INTRODUCTION

Many of the unique transport, thermal, and opti-
cal properties of graphene stem from the fact that
its low-energy excitations are massless Dirac fermions
[1]. Among its numerous applications is the use of
graphene as an optoelectronic and plasmonic material.
Graphene was shown to support highly-confined sur-
face plasmon modes [2, 3]; it has relatively long-lived
plasmon-polariton modes due to large intrinsic carrier
mobilities and doping tunability [4–6], excellent electro-
optic tunability [7], and large third-order and second-
order optical nonlinearity [5, 10–13]. The latter is sur-
prising since graphene is a centrosymmetric medium for
low-energy in-plane excitations. Therefore, its in-plane
second-order nonlinear response should be zero in the
electric dipole approximation [14]. However, for obliquely
incident or in-plane propagating electromagnetic (EM)
fields, inversion symmetry is broken by nonzero wavevec-
tor components in the plane of graphene, and the second-
order nonlinearity is nonzero and actually quite large
[12, 13, 15–17]. It is enabled by effects of the spatial
dispersion, or, in real space, by nonlocal effects beyond
the electric dipole approximation. A particularly large
value of χ(2) equivalent to the bulk value of ∼ 10−3

m/V per monolayer [13] is reached at low frequencies,
for the processes of frequency down-conversion to the
terahertz range such as difference frequency generation
(DFG) [12, 13, 18–20] or parametric down-conversion
[16].

A strong magnetic field transverse to the graphene
layer splits the continuous conical electron dispersion
into a discrete set of non-equidistant Landau levels (LLs)
[21]. The magnetic field does not break the inversion
symmetry, so the DFG process remains forbidden in
the electric dipole approximation. However, a strong
magnetic field creates resonant transitions for all EM
fields and enhances the electron density of states through
the LL degeneracy. Both effects enhance optical non-
linearity [11, 22]. Further enhancement of the nonlin-
ear generation efficiency is possible when the DFG sig-

nal is frequency- and phase-matched to surface plasmon-
polaritons in graphene.

This work focuses on DFG in Landau-quantized
graphene, particularly on the nonlinear generation of
surface plasmon polaritons. In Section II we derive
the dispersion equation for surface plasmon-polaritons in
Landau-quantized graphene. In Section III We calcu-
late the second-order nonlinear susceptibility and gener-
ated DFG signal power. For calculations of the Poynting
flux of nonlinearly generated surface plasmon-polaritons,
we focus on the monolithically integrated photonic chip
geometry, including graphene as a nonlinear material
and a dielectric waveguide or cavity with strong vertical
confinement for the pump electromagnetic (EM) fields.
We obtain analytic expressions for the DFG plasmon
power and present its dependence on various parameters.
We investigate a variety of waveguide configurations to
identify the optimal geometry for maximum DFG effi-
ciency. Our results can be easily extended to other (non-
waveguide) geometries of the pump beams delivery and
overlap.

II. DISPERSION OF SURFACE
PLASMON-POLARITONS IN

LANDAU-QUANTIZED GRAPHENE

We consider two possibilities for integrating a mono-
layer of graphene of area S into a dielectric waveguide
or cavity; see Fig. 1a and Fig. 1b. There is a uniform
magnetic field in the z-direction B = ezB.

The dielectric constants of the waveguide layers ε1, ε2,
and ε3 will be taken as air, GaAs, and AlAs (respec-
tively) or air, Si, and SiO2 (respectively) for numerical
examples below. However, many other combinations of
the cladding and core layer materials are possible with
the same qualitative results. The pump modes partici-
pating in the DFG are guided by the waveguide core ε2
and are counterpropagating in the x-direction to provide
phase matching to surface plasmon-polaritons (SPPs)
supported by graphene at the difference frequency. This
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(a) Graphene is located at the
interface z = −d/2 of dielectrics
with dielectric constants ε2 and

ε3.
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(b) Graphene is located at the
center of the waveguide core

with dielectric constant ε2 in the
z = 0 plane.

Figure 1. A sketch of integrated waveguide geometries.

arrangement (ε1 6= ε2 6= ε3) is what we refer to as the
asymmetric waveguide. The special case where ε1 = ε3
(both are air) is what we will call the symmetric waveg-
uide.

Note that the effect of disorder in adjacent dielectric
layers can be detrimental for carrier mobility and opti-
cal transition linewidth in graphene. Many groups found
it beneficial to encapsulate graphene between hexagonal
boron nitride (hBN) layers. Early theoretical work in-
dicated the possibility of opening the gap in graphene
on hBN substrate [23], although subsequent experiments
have not found any gap [24, 25].This issue is not directly
relevant to our study, so we will assume that graphene
has an undistorted Dirac-cone electron dispersion at low
energies and sufficiently high quality to have inter-LL
transitions clearly resolved. We will neglect the thick-
ness of dielectric hBN layers or any other encapsulating
layers in the calculations of EM modes assuming that
they are of nm thickness. They can be easily taken into
account if needed.

A. Surface charge density for Landau-quantized
graphene

The surface charge density for graphene in a magnetic
field is given by

ρ(r) = −e
∑
α,β

ραβψ
∗
β(r)ψα(r) (1)

where e is the elementary charge, ραβ is the density
matrix, ψα(r) are the energy eigenstates for Landau-
quantized graphene near the Dirac point as given in Ap-
pendix A, i.e. ψα(r) = ψnk(r). They form a complete
set and are orthonormal in the area S. The vector r is in
the graphene plane. The index α is a shorthand notation
for electron quantum numbers n, k in a magnetic field.

Next we evaluate the spatial Fourier transform of the
surface charge density,

ρ(r) =
∑
q

ρqe
iq·r, ρq =

1

S

∫
d2r e−iq·rρ(r), (2)

where q is in the plane of graphene. Substituting Eq. (1)
into the integral in Eq. (2) gives

ρq = − e
S

∑
α,β

Fβα(−q)ραβ (3)

where Fβα(−q) = 〈β|e−iq·r|α〉. Assuming that q is di-
rected along x, we obtain

Fβα(−q) = 〈n, k′|e−iqx|m, k〉
= 〈n, k′|e−iqx|m, k′ + q〉 δk,k′+q ≡ F̃nk′m(−q)δk,k′+q.

(4)

The matrix element F̃nk′m(−q) is calculated in Appendix
B.

One needs to solve the density matrix equation for
ραβ to obtain the Fourier component of the surface
charge density ρq. We assume that the electric field of a
graphene SPP in the plane of graphene is described by a
scalar potential Φ(r, t) = Re[Φqe

iq·r−iωqt]. The density
matrix equation in the rotating wave approximation is

ρ̇αβ +
i

~
(Eα − Eβ)ραβ + ραβγαβ

=− i

~
(eΦqe

iq·r−iωqt)αβ(fα − fβ) (5)

=⇒ ραβ(t) =
−eFαβ(q)(fα − fβ)

~(ωαβ − ωq − iγαβ)
Φqe

−iωqt. (6)

Here and below γαβ is the phenomenological line broad-
ening for a transition between states |α〉 and |β〉, fα =
ραα is the occupation number of a given state. The
line broadenings are determined by scattering on im-
purities and other disorder, electron-phonon scattering
and electron-electron scattering. A rigorous treatment
of scattering would require one to incorporate scattering
rates for nonequilibrium carriers directly into the density
matrix equations coupled with Maxwell’s equations for
all interacting fields. This will make the problem heavily
numerical and this is far beyond the scope of this pa-
per. Here we focus on the physical mechanism of DFG
in a magnetized graphene and we keep the line broaden-
ings as phenomenological parameters to obtain analytic
expressions for the second-order nonlinear susceptibility
and DFG efficiency. The scattering rates for Landau-
quantized graphene were calculated e.g. in [26–28].

At high concentrations of nonequilibrium carriers the
processes of electron-electron scattering and in partic-
ular resonant Auger scattering become important and
even dominant in Landau-quantized graphene. As was
shown in [28, 29], this can strongly affect the conditions
for reaching inverted Landau-level distributions and las-
ing. However, in our case we assume that the Rabi fre-
quencies of the pump fields are smaller than the carrier
relaxation rate, so the optical population transfer is not
important.
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B. Dispersion relation for graphene surface
plasmon-polaritons

The dispersion relation for SPPs in the quasi-
electrostatic regime q >> ωq/c is obtained by using
Gauss’ law in 2D, the solution of the Laplace equation in
a uniform dielectric (see also [12]),

(ε2 + ε3)qΦq = 4πρq, (7)

and the relationship between the surface charge density
and polarization, which is the definition of the surface
linear susceptibility,

ρq = −q2χ‖(ωq, q)Φq. (8)

The above two equations yield the dispersion relation

D(ωq, q) = 1 +
4πq

ε2 + ε3
χ‖(ωq, q) = 0. (9)

Using Eqs. (3), (6), and (8) one arrives at the expression
for the surface linear susceptibility,

χ‖(ωq, q) = − e2

Sq2

∑
α,β

(fα − fβ)|Fαβ(q)|2

Eα − Eβ − ~ωq − i~γαβ
. (10)

Inserting Eq. (10) into Eq. (9), results in the dispersion
relation for a SPP in Landau-quantized graphene

D(ωq, q) = 1− 4πe2

(ε2 + ε3)Sq

∑
α,β

(fα − fβ)|Fαβ(q)|2

Eα − Eβ − ~ωq − i~γαβ
.

(11)
To avoid cumbersome expressions we consider resonant

three-wave mixing when both pump modes and the dif-
ference frequency signal are resonant to three cascaded
inter-LL transitions and form a closed loop, as shown in
Fig. 2. Then it is enough to consider three Landau lev-
els |−n〉, |n− 1〉, and |n+ 1〉 which we relabel |1〉, |2〉,
and |3〉, respectively. The pump fields at frequencies ω1

and ω2 are coupled to electric-dipole allowed transitions
|1〉 → |3〉 and |1〉 → |2〉 which obey the selection rules
∆|n| = ±1. However, the difference-frequency transition
|2〉 → |3〉, or |n− 1〉 → |n+ 1〉, does not and is therefore
electric-dipole forbidden. This is another manifestation
of the fact that DFG is electric-dipole-forbidden in mono-
layer graphene.

We assume for definiteness that the Fermi level is some-
where between states |2〉 and |3〉 but separated by more
than kBT from state |3〉, see Fig. 2. The total degener-
acy per Landau level scales as ∼ 1011B cm−2, where B is
the magnetic field in Tesla. This means that for typical
magnetic fields of a few Tesla assumed in the numeri-
cal estimates below the doping density required to fill
the first two Landau levels does not exceed 1012 cm−2.
There should be no problem with achieving this level of
doping.

The pump modes are TE-polarized and counterpropa-
gating, in order to satisfy phase-matching conditions for a

DFG of SPPs. Their frequencies are resonant with tran-
sitions |1〉 → |3〉 and |1〉 → |2〉, respectively, i.e. ω1 ≈ ω31

and ω2 ≈ ω21.
Using the states given above and the fact that f3k ≈ 0

the dispersion relation (11) becomes

D(ωq, q) = 1 +
ωo(q)

ω32 − ωq − iγ32
= 0 (12)

where

ωo(q) =
4πe2(NF /S)ξ(q)

(ε2 + ε2)~q
, ξ(q) =

∑
k |F̃3k2(q)|2

κ
(13)

where κ = 2S/πl2B is the Landau level degeneracy, lB =√
~c/(eB), NF = fFκ is the number of particles in a

completely filled Landau level, and fF = f2k′ . It follows
from Eq. (12) that

Re[ωq] = ω32 + ωo(q), Im[ωq] = −γ32. (14)

  

Figure 2. A sketch of Landau levels in graphene (not to
scale) superimposed on the Dirac cone and the resonant DFG
scheme. The pump fields E± are coupled to electric-dipole al-
lowed Landau level transitions. The difference frequency field
is resonant to a dipole-forbidden transition.

For a dipole-forbidden transition |2〉 → |3〉
|F̃3k2(q)|2 ∝ qa>2 when q is small. For large q the quan-

tity |F̃3k2(q)|2 goes to zero too.

III. DIFFERENCE-FREQUENCY GENERATION
OF SPPS IN LANDAU-QUANTIZED GRAPHENE

A. Nonlinear charge density and second-order
susceptibility

In the presence of the pump fields generating the po-
larization at the difference frequency, the surface charge
density needs to be expanded to include nonlinear terms,

ρq = ρlq + ρnlq . (15)
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Here we identify the linear part as the one linearly pro-
portional to the electric field, ρlq = −q2χ‖(ωq, q)φq (com-
pare with Eq. (8)), where φq is the harmonic of the scalar
potential of the SPP field and the nonlinear term as ρnlq .
By inserting Eq. (15) into Eq. (7) one can solve for φq in
terms of the nonlinear part of the charge density ρnlq ,

φq =
4πρnlq

(ε2 + ε3)qD(ωq, q)
. (16)

To derive the expression for the nonlinear charge den-
sity we express the Fourier component of the nonlinear
surface charge density ρnlq in terms of its matrix elements
as done in Eq. (3). Following [30], we obtain the equa-
tion for the density matrix element ρ3k2(k−q), which cor-
responds to the transition |3〉 → |2〉,

ρ̇3k2(k−q) + iω32ρ3k2(k−q) + γ32ρ3k2(k−q)

= −i
d∗21E

(2)∗
− (−d/2)eiω2t

~
ρ3k1(k−q1). (17)

Here and in all equations below the pump fields

E
(1)∗
+ , E

(2)∗
− are taken on the graphene monolayer located

at z = −d/2. Therefore, below we omit the argument
−d/2 in the pump fields. Furthermore, q = q1+q2, where
q1,2 are the projections of wavevectors of the optical fields
on the graphene plane.

We see that the density matrix for the transition
|3〉 → |2〉 depends on the linear perturbation of the ma-
trix element for the transition |3〉 → |1〉. There is no
contribution from the density matrix for the transition
|2〉 → |1〉 because states |1〉 and |2〉 are below the Fermi
level and assumed fully occupied. Consequently, the dif-
ference in their population is zero. We will assume that
the pump field is not strong enough to cause significant
population transfer, which means that its Rabi frequency
should be smaller than the electron relaxation rate. On
the other hand, we do keep a resonant Fourier harmonic
of the nonlinear density perturbation in Eq. (15) which
has a frequency and wave number equal to those for the
surface plasmon wave, i.e. the one which matches the
dispersion relation of a surface plasmon. It is this com-
ponent which is responsible for the DFG effect.

The density matrix element for the |3〉 → |1〉 transi-
tion in Eq. (17) can be solved within the electric dipole
approximation,

ρ̇3k1(k−q1) + iω31ρ3k1(k−q1) + γ31ρ3k1(k−q1)

= i
d31E

(1)
+ e−iω1t

~
fF , (18)

or ρ3k1(k−q1)(t) =
e−iω1tfF

ω31 − ω1 − iγ31

d31E
(1)
+

~
. (19)

Inserting Eq. (19) into Eq. (17) yields:

ρ3k2(k−q)(t) = − e−i(ω1−ω2)tfF
(ω32 − (ω1 − ω2)− iγ32)(ω31 − ω1 − iγ31)

×
d31d

∗
21E

(1)
+ E

(2)∗
−

~2
.

(20)

We are now equipped with almost all the pieces to express
the amplitude of the SPP field in terms of the pump field
amplitudes. The last piece of information we need is the
expression for ρnlq which is obtained from Eqs. (3), (4),
and (20),

ρnlq (t) =
(NF /S)ζ(q)e−iωdt

(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)

×
ed31d

∗
21E

(1)
+ E

(2)∗
−

~2
, (21)

where ωd = ω1 − ω2, and ζ(q) =
∑
k′ F̃2k′3(−q)/κ. The

matrix elements entering the expression for ζ(q) are eval-
uated in Appendix B.

Note that the second-order nonlinear susceptibility
χ(2) can be extracted from Eq. (21) by using ρnlq =

−iq · P nl
q = −iqχ(2)E+E

∗
−:

χ(2)(ωq, q) =
i

q

(NF /S)ζ(q)

(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)

ed31d
∗
21

~2
.

(22)
As shown in Appendix B, one can derive an analytic

expression for the matrix element ζ(q) for any set of three
LLs participating in a three-wave mixing process. The re-
sulting analytic expression for χ(2) gives explicit depen-
dence on all relevant parameters. For example, when the
LL numbers involved in a resonant DFG process are -3,
2, and 4, and the n = 2 Landau level is completely occu-
pied, the factor (NF /S)ζ(q) in Eq. (22) is approximately
equal to 0.235q2, where we used Eq. (B10) obtained in
the limit lBq � 1. The latter is valid since q = q1 + q2

scales as (vF /c)(1/lB) times a numerical factor of the or-
der of 10. Therefore, the magnitude of χ(2) scales linearly
with q.

Furthermore, the dipole moments of the pump transi-
tions are roughly evF /ω1,2 ∝ elB , so the peak value of

χ(2) scales as 1/
√
B: |χ(2)| ∝ vF

c

e3lB
~2γ31γ21

at resonance.

For B = 1 T, |χ(2)| ' 2 × 10−7 in CGS units. If the
line broadening is dominated by impurity scattering, the
scattering rates γ21,31 ∝

√
B [26, 27] and |χ(2)| scales as

1/B3/2.
Note that Eq. (22) looks “almost” like an expression for

the second-order susceptibility of a three-level medium
with 2D density given by the total degeneracy per Lan-
dau level, 2/(πl2B). An important difference is an extra
factor qlB � 1. This small factor is due to the fact
that second-order processes are forbidden in graphene
in the electric-dipole approximation. Just for the sake
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of comparison with nonlinear crystals, we can divide by
graphene monolayer thickness to get the “bulk” magni-

tude of |χ(2)
3D| ∼ 3 × 10−3 m/V, which is a very large

number. Of course the resulting DFG power depends on
the magnitude of the surface (2D) χ(2), as well as the
overlap of modes with graphene and the sample size.

Finally, the expression of the field amplitude of the
SPP mode can be obtained by substituting Eq. (21) into
Eq. (16),

φq =
4π

(ε2 + ε3)qD(ωq, q)

×
ed31d

∗
21E

(1)
+ E

(2)∗
− (NF /S)ζ(q)

~2(ω32 − ωd − iγ32)(ω31 − ω1 − iγ31)
. (23)

After making use of Eq. (12) and some straightforward
manipulations one arrives at the final expression for the
Fourier harmonic of the scalar potential of the SPP field:

φq =
4πe(NF /S)ζ(q)

(ε2 + ε3)q

×
(d31d

∗
21E

(1)
+ E

(2)∗
− )/~2

(ω32 + ω0(q)− (ω1 − ω2)− iγ32)(ω31 − ω1 − iγ31)
.

(24)

As is clear from Eq. (24), the excitation of the SPP
mode at frequency ωq given by Eq. (14) is most efficient
when the difference frequency ωd = ω1 − ω2 of the two-
color pump field is in resonance with ωq, i.e. ωd = ωq.

B. Poynting Flux in a SPP Mode

In the quasi-electrostatic approximation the time
derivative of the magnetic field of the electromagnetic
wave is negligible. In order to calculate the Poynting flux
of the transverse magnetic (TM) SPP mode we need to
go beyond the quasi-electrostatic approximation. Using
Maxwell’s equations (see also [12]), we derive all required
components of the electric and magnetic fields starting
from the tangential component of the electric field, that
is, the field along the x-axis of the graphene monolayer:

Exq(z = −d/2) ≡ Eoxq = −iqφq; (25)

Ex(x, z, t) = Eoxqe
iqx−iωqt

{
e−p2(z+d/2) z > −d/2
e+p3(z+d/2) z < −d/2

,

(26)

Ez(x, z, t) = ± iq

p2,3
Ex(x, z, t), (27)

By(x, z, t) = ∓ iωqε2,3
cp2,3

Ez(x, z, t), (28)

where p2,3 =
√
q2 − ε2,3ω2

q/c
2 > 0 is the inverse con-

finement length in the z-direction. In ± or ∓ the top

sign corresponds to z > −d/2 and the bottom sign cor-
responds to z < −d/2.

The Poynting flux is then

S =
c

8π
(E ×B∗) (29)

= ex
ωqq

3

8π
|φq|2

{
ε2
p22
e−2p2(z+d/2), z > −d/2

ε3
p23
e+2p3(z+d/2), z < −d/2

(30)

To calculate the power in the SPP mode at the differ-
ence frequency, we integrate the Poynting flux Eq. (29)
over the differential area exdydz → exLydz, assuming
that a graphene sample is uniform in the y-direction. The
power is then

PDFG =
Lyωqq

3|φq|2

16π

(
ε2
p3

2

+
ε3
p3

3

)
. (31)

In the approximation q � ωq/c we can write p2,3 ≈ q,
q3(ε2/p

3
2 + ε3/p

3
3) ≈ ε2 + ε3. Using this approximation

along with Eq. (24) gives the final expression for the SPP
power:

PDFG =
πLy(ω1 − ω2)

ε2 + ε3

[
e(NF /S)

q

]2

×

∣∣∣∣∣ (d31d
∗
21E

(1)
+ E

(2)∗
− /~2)ζ(q)

(ω32 + ωo(q)− (ω1 − ω2)− iγ32)(ω31 − ω1 − iγ31)

∣∣∣∣∣
2

.

(32)

This expression was derived for the graphene monolayer
at the interface of the dielectric waveguide core and
cladding. Similar formulas can be obtained for any other
location of graphene.

  

Figure 3. The DFG frequency resonant to the transition be-
tween Landau-level numbers 2 and 4 as a function of the mag-
netic field strength.

Figures 4-6 illustrate the dependence of the DFG power
on various parameters for different waveguide compo-
sitions and locations of the graphene monolayer. The
structure width Ly is chosen to be 100 µm. The power
scales linearly with Ly. For the plots we choose the ini-
tial state |1〉 in Fig. 2 to have the Landau level index
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Figure 4. DFG power per 1 W2 of the pump power as a
function of the waveguide core thickness for the magnetic field
strength 1T. In the legend of the plot “middle” means that
graphene is in the middle of the core dielectric ε2; “interface”
means that graphene is located at the interface of dielectrics
ε2 and ε3. ”1T” and ”3T” stands for 1 and 3 Tesla magnetic
field.

  

Figure 5. DFG power per 1 W2 as a function of core thickness
for the magnetic field strength 3 T. A higher magnetic field
is chosen to avoid THz absorption in Si.

n = −3. Then the states |2〉 and |3〉 coupled to state |1〉
by electric dipole-allowed pump transitions have Landau
level numbers |n| − 1 = 2 and |n| + 1 = 4, respectively.
The DFG frequency corresponding to the transition be-
tween these states is in the THz range; see Fig. 3. The
pump wavelengths are in the mid-infrared; for example,
at B = 1 T they are 10.9 µm and 9.1 µm. All frequen-
cies scale as

√
B. The pump powers are assumed to be

1 W each, so that the plots actually show DFG power
conversion efficiency in µW/W2.

Figures 4 and 5 show the dependence of the DFG
power on the thickness of the waveguide core for differ-

  

Figure 6. The DFG power per 1 W2 as a function of the mag-
netic field for several waveguide structures and geometries.
In the legend of the plot “middle” means that graphene is in
the middle of the core dielectric ε2; “interface” means that
graphene is located at the interface of dielectrics ε2 and ε3.

  

Figure 7. Absorption length for pump field intensity and DFG
plasmon-polaritons as a function of the magnetic field for a
symmetric GaAs waveguide with graphene at the interface.
The core thickness is 0.06λ1.

ent positions of the graphene sheet and different waveg-
uide materials at a fixed magnetic field. The DFG power
depends on the magnitude of the in-plane components
of the pump fields on graphene and the localization of
the optical pump power. There is an optimal waveguide
thickness which maximizes the DFG power for a given to-
tal power in the pump fields. For wider waveguide cores
the in-plane component of the pump field amplitude on
graphene gets smaller, whereas for narrower waveguides
the pump field mode gets delocalized. Figures 4 and 5
also indicate that it is beneficial to place graphene in the
middle of the waveguide core.

With increasing magnetic field the peak DFG power in
Eq. (31) scales as

√
B, provided the pump wavelengths

are tuned in resonance with corresponding transitions.
This dependence is illustrated in Fig. 6 for a particular
choice of waveguide structures and geometries. Note that
the choice of particular pump and DFG transitions for a
given magnetic field is strongly influenced by absorption
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Figure 8. Absorption length for pump field intensity and DFG
plasmon-polaritons as a function of core thickness for a sym-
metric GaAs waveguide with graphene at the interface. The
magnetic field is 1T.

in the waveguide materials. For example, one should ob-
viously avoid reststrahlen bands in all waveguide layers.

The DFG power can be further enhanced by stacking
several monolayers together. However, there is a trade-off
between the nonlinear conversion efficiency and absorp-
tion in graphene. We calculated the absorption of both
pump and difference frequency modes.

The simplest way to calculate the absorption of the
SPP mode is to solve its dispersion equation Eq. (12)
for a complex wavenumber q as a function of a real fre-
quency ω, i.e. as a boundary-value problem. Then the
absorption length of the plasmon field intensity is

labs =
1

2
Imq ' 1

2
γ32

(
∂[ωo(q)]

∂q

)−1

, (33)

assuming |Imq| � |Req|.
Among the two pump fields, the strongest absorption

is experienced by the one at frequency ω1 resonant with
transition |1〉 → |3〉, because state |1〉 is below the Fermi
level whereas state |3〉 is above the Fermi level. Its ab-
sorption length can be found from the linear conductivity
calculated in Appendix D and the Poynting flux calcu-
lated in Appendix C:

1

labs(ω1)
=

1

8

Re [σ+−(ω1)]
∣∣∣E(1)

y (z = −d/2)
∣∣∣2〈

Φ
(1)
S

〉 . (34)

The dependence of the absorption length from the
magnetic field and the waveguide core thickness is shown
in Figs. 7 and 8, assuming exact resonance with corre-
sponding LL transitions and the linewidth of 1012 s−1.
This is a rather small linewidth corresponding to a high-
quality graphene encapsulated in hBN. Therefore we
probably overestimate the absorption rate for most sam-
ples and the actual absorption length is longer. In any

case, for structures longer than the pump absorption
length the pump field mode should be excited by a beam
coupled from the top rather than from the facet, in order
to reduce the propagation length.

In conclusion, we investigated an electric-dipole-
forbidden process of THz difference frequency generation
in Landau-quantized graphene. The second-order sus-
ceptibility turned out to be surprisingly high, equivalent
to the bulk magnitude of about 3 × 10−3 m/V. We ap-
plied the formalism to the DFG of THz surface plasmon-
polaritons in graphene integrated into a dielectric waveg-
uide or cavity with strong vertical confinement of the op-
tical pump modes. The DFG power conversion efficiency
of the order of tens µW/W2 is predicted from structures
of size around 100 µm. Analytic expressions for the DFG
power are obtained and the results are presented for dif-
ferent structure geometries, composition, and magnetic
field strengths. Other three-wave mixing processes in a
Landau-quantized graphene, such as sum-frequency gen-
eration or parametric down-conversion can be analyzed
following the same approach.
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Appendix A: Eigenstates, optical matrix elements,
and selection rules for Landau-quantized graphene

For graphene in a constant external magnetic field
p → π = p + eA/c, where p is the canonical momen-
tum, π is the gauge-invariant kinetic momentum and A
is the vector potential that generates the magnetic field
B = ∇×A. The effective mass low-energy Hamiltonian
(neglecting the spin degree of freedom) is then [21]

HB
Ξ = ΞvFσ · π, (A1)

where σ is the vector of Pauli matrices and Ξ = ±1 de-
pending on the valley. Assuming that the magnetic field
B = ezB is perpendicular to the plane of the graphene
sheet and using the Landau gauge A = −exyB, the
eigenfunctions [32] are

ψKnk(r) =
Cn√
L
eikx


sgn(n)i|n|−1φ|n|−1,k(y)

i|n|φ|n|,k(y)
0
0

 (A2)

and

ψK
′

nk (r) =
Cn√
L
eikx


0
0

i|n|φ|n|,k(y)
sgn(n)i|n|−1φ|n|−1,k(y)

 (A3)
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where

φ|n|,k(y) =
H|n|((y − kl2B)/lB)√

2|n||n|!
√
πlB

exp

[
−1

2

(
y − kl2B
lB

)2
]

(A4)
with energy eigenvalue [32, 33]

En = sgn(n)~ωc
√
|n|; (A5)

L2 is the area of the system, n = 0,±1,±2, ... is the Lan-
dau level index, ωc =

√
2vF /lB is the cyclotron frequency,

lB =
√
c~/eB is the magnetic length, H|n|((y−kl2B)/lB)

are the Hermite polynomials, Cn = 1 for n = 0 and 1/2
otherwise. Henceforth, all calculations will be carried out
using the effective mass low-energy Hamiltonian (A1) in
the vicinity of the K point (Ξ = +1) and its eigenfunc-
tions (A2).

The Hamiltonian for graphene in a magnetic field and
an optical field is [11, 34]

H = HB +Hopt = vFσ · π + vFσ ·
eAopt(t)

c
(A6)

Hopt is the interaction Hamiltonian.
Note that the wavefunction (A2) can be written as

ψn,k(r) = 〈r|n, k〉. We’ll make use of the state ket for
graphene in a magnetic field |n, k〉 which will at times be
written as |α〉 for convenience.

We utilize the notation above in calculating the optical
matrix element for transitions between the LLs resonant
with the optical field (in the electric dipole approxima-
tion)

〈n, k′|Hopt|m, k〉 = vF
eAopt(t)

c
· 〈n, k′|σ|m, k〉 . (A7)

It is convenient to change to the circular polarization
basis e± ≡ 1/

√
2(ex ± iey), termed left-circularly polar-

ized (LCP) and right-circularly polarized (RCP), respec-
tively. The following relations holds true: e± · e± =
0 and e± · e∓ = 1. In the e± basis Re[Aopt] =
c/iωopt(e+E+(t) + e−E−(t)) + c.c., where E±(t) =

1/
√

2((Ex/2) ∓ i(Ey/2))e−iωoptt. Similarly, the vector
of Pauli matrices in the e± basis is σ = e+σ

+ + e−σ
−

where

σ+ =

(
0 0√
2 0

)
, σ− =

(
0
√

2
0 0

)
. (A8)

For a transition between Landau levels m and n reso-
nant with the optical field (ωnm ≈ ωopt ≡ ω) we obtain

〈n, k′|Hopt|m, k〉 = δkk′
√

2vFCnCm(e−sgn(n)δ|n|−1,|m|

+ e+sgn(m)δ|n|+1,|m|) ·
(
e
e+E+(t) + e−E−(t)

iω
+ c.c.

)
〈n, k′|Hopt|m, k〉 = δkk′

√
2vF eCnCm

iω
×

(sgn(n)E+(t)δ|n|−1,|m| + sgn(m)E−(t)δ|n|+1,|m|) + c.c.

(A9)

Equation (A9) gives the selection rules for optical tran-
sitions between adjacent Landau levels i.e. ∆|m| = ±1
[22, 34–36]. Furthermore, the transition |m| → |n| ± 1
couples to the RCP/LCP component of the optical field,
respectively. From Eq. (A9) one also obtains the magni-
tude of the dipole moment [37]

|dnm| =
√

2CnCm
evF
ω
. (A10)

Appendix B: Calculation of the matrix element
Fnkmk′(q)

Using the wavefunctions Eq. (A2) with Eq. (A4) the
matrix element Fnkmk′(q) can be calculated as

Fnkmk′(q) = 〈n, k|eiqx|m, k′〉 (B1)

Fnkmk′(q) =
CnCm
L

∫
dx ei(k

′−(k−q))x

×
∫
dy
(

sgn(n)i−|n|+1φ|n|−1,k(y), i−|n|φ|n|,k(y)
)

×
(

sgn(m)i|m|−1φ|m|−1,k′(y)
i|m|φ|m|,k′(y)

)
Fnkmk′ =

CnCm
L

Lδk′,k−qi
|m|−|n|

×
∫
dy [sgn(n)sgn(m)φ|n|−1,k(y)× φ|m|−1,k−q(y)

+ φ|n|,k(y)× φ|m|,k−q(y)]

Fnkmk′ = CnCmi
|m|−|n|δk′,k−q[sgn(n)sgn(m)

×
〈
φ|n|−1,k

∣∣φ|m|−1,k−q
〉

+
〈
φ|n|,k

∣∣φ|m|,k−q〉]. (B2)

Here ∫
dx ei(k

′−(k−q))x = Lδk′,k−q. (B3)

Introducing the notation

Fnkmk′ = F̃nkmδk′,k−q (B4)

and comparing equations (B2) and (B4) we see that

F̃nkm = CnCmi
|m|−|n|[sgn(n)sgn(m)

×
〈
φ|n|−1,k

∣∣φ|m|−1,k−q
〉

+
〈
φ|n|,k

∣∣φ|m|,k−q〉]. (B5)

We also have

sgn(n)sgn(m) =

{
+1 intraband transitions

−1 interband transitions
. (B6)

In the main text we have the states labeled in the follow-
ing way: |1〉 = |−|m|〉, |2〉 = ||m| − 1〉, |3〉 = ||m|+ 1〉.
With this labeling, the second-order nonlinear suscepti-
bility and the corresponding SPP field contain the matrix
element F3k2k′ = F̃3k2δk′,k−q. So for the initial state of
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m 6= 0 we have

F3k2k′ →
F|m|+1,k,|m|−1,k′ = δk′,k−qC|m|+1C|m|−1i

|m|−1−(|m|+1)

×
[〈
φ|m|+1−1,k

∣∣φ|m|−1−1,k−q
〉

+
〈
φ|m|+1,k

∣∣φ|m|−1,k−q
〉]

F3k2k′ → F|m|+1,k,|m|−1,k′ = −δk′,k−qC|m|+1C|m|−1

×
[〈
φ|m|,k

∣∣φ|m|−2,k−q
〉

+
〈
φ|m|+1,k

∣∣φ|m|−1,k−q
〉]

(B7)

For the initial state m = −3 we have

F|m|+1,k,|m|−1,k′ →

F4k2k′ = −1

2
δk′,k−q [〈φ3,k|φ1,k−q〉+ 〈φ4,k|φ2,k−q〉]

F̃4k2 = −1

2
[〈φ3,k|φ1,k−q〉+ 〈φ4,k|φ2,k−q〉] (B8)

The analytic expression for F̃4k2 is

F̃4k2(q) = −

[
24(2 +

√
2)− 4(4 +

√
2)l2Bq

2 + l4Bq
4

128
√

3

]
× l2Bq2e−(l2Bq

2/4) (B9)

F̃4k2(q) ≈ −

[
24(2 +

√
2)

128
√

3

]
l2Bq

2, (B10)

where in the last expression we assumed that lBq � 1.
This is always a good approximation since q = q1 + q2

scales as (vF /c)(1/lB) times a number of the order of 10,
if the LL numbers involved in the DFG process are not
too high: around 2-4.

The factor ζ(q) in the main text is defined as follows:

ζ(q) =
1

κ

∑
k′

F̃2k′4(−q) (B11)

where κ = 2S/πl2B and lB =
√
c~/eB. From Eq. (B9) we

see that F̃2k′4(−q) is independent of k′ and can be taken
out of the sum. Next we use:∑

k′

→ 4LxLy/2πl
2
B = κ (B12)

using Eq. (B12) in Eq. (B11) we find

ζ(q) = F̃ ∗4k′2(q) ∝ l2B ∝ 1/B. (B13)

Appendix C: Normalization of pump fields

We begin by considering the waveguide structure
where the interfaces are at z = d/2 and z = −d/2.
The thickness of the core layer is d and a monolayer
of graphene is located at the interface z = −d/2. The
dielectric constant is then:

εj =


ε1 z > d/2

ε2 −d/2 < z < d/2

ε3 z < −d/2.
(C1)

We have two counter propagating TE polar-
ized pump fields in the waveguide E1,2(x, z, t) =
Re[(0, E1,2

y (z), 0)e±iq1,2x−iω1,2t].
Both pump fields obey the wave equation (in each re-

gion of the waveguide indexed by j):

(∇2 − εj
c2
∂2
t )El

j(x, z, t) = 0 (C2)

=⇒
d2Eljy(z)

dz2
= λjlE

l
jy(z). (C3)

Here the eigenvalue determining the confinement of the
pump field to the core layer of the waveguide is

λjl =


+κ2

1l z > d/2

−α2
l −d/2 < z < d/2

+κ2
3l z < −d/2

(C4)

where

κ(1,3)l =

√
q2
l − ε1,3

ω2
l

c2
(C5)

αl =

√
ε2
ω2
l

c2
− q2

l (C6)

with the confinement condition n1,3 < neff < n2 where
n2
j ≈ εj for small losses. The solution to the eigenvalue

equation (C3) along with the continuity of the tangential
component Ejy(z) of the pump fields at interfaces z =
±d/2 gives:

Eljy(z) = Alfjl(z) (C7)

fjl(z) =


cos(αld/2− φl)e−κ1l(z−d/2) z > d/2

cos(αlz − φl) −d/2 < z < d/2

(cos(αld/2 + φl)e
κ3l(z+d/2) z < −d/2

(C8)
We will drop the index j for derivations that follow while
keeping in mind that the field profile fjl(z) is a piecewise
function. Next we find the amplitude A by normalizing
the average Poynting flux 〈ΦS〉 to 1 W. We will drop the
superscript l of the fields.

Let F represent E and B. We can write the field F as
F = Re[FRe

−iωt] = 1
2 (FRe

−iωt + F ∗Re
iωt), where FR =

Foe
ik·r. For a TE polarized field ER = (0, Ey(z), 0)eiqx,

BR = (Bx(z), 0, Bz(z))e
iqx. The time average of the

Poynting flux is:

〈ΦS〉 =
c

8π

∫
dA ·Re[ER ×B∗R] (C9)

or, for the pumps propagating along the x-direction,

〈ΦS〉 =
c

8π

∫
dydz Re[Ey(x, z)B∗z (x, z)] (C10)

We will assume that the fields are uniform along y, so
integration over y results in multiplying by the length of
the waveguide in the y-direction, Ly.
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From Maxwell equations for a TE mode

B∗z (x, z) =
cq

ω
E∗y(x, z). (C11)

The Poynting flux for TE pump fields is therefore〈
ΦlS
〉

=
qlLyc

2

8πωl

∫ ∞
−∞

dz |Ely(z)|2 (C12)

Finally, we normalize the Poynting flux 〈ΦS〉 as 〈ΦS〉 =
Po, where Po is the input pump power. This gives

Al =

√
Po

qlLyc2

8πωl
Fl

(C13)

where

Fl =

∫ ∞
−∞

dz |fl(z)|2. (C14)

Appendix D: Linear conductivity of
Landau-quantized graphene

Linear conductivity of Landau-quantized graphene has
been calculated a number of times before. Here we sum-
marize one approach to the derivation, which is based
on the density matrix equation where the Hamiltonian is
given by Eq. (A6),

ρ̇αβ =
i

~
[ρ,H]αβ − γαβραβ

=
i

~
(Hββ −Hαα)ραβ +

i

~
(ραα − ρββ)Hαβ − γαβραβ

(D1)

ραβ is the density matrix element, γαβ is the phenomeno-
logical decay term. The states |α〉 are eigen-states of the
Hamiltonian HB , i.e. HB |α〉 = Eα |α〉. In the dipole
approximation (D1) becomes:

ρ̇αβ(t) = i(−ωαβ + iγαβ)ραβ(t)− 1

i~
(fα − fβ)

× evFσαβ ·
(
E

iωl
e−iωlt + c.c.

)
(D2)

where fα = ραα is 1 if the state |α〉 is occupied or 0 if
it’s unoccupied; ωαβ = (Eα−Eβ)/~, E = e+E+ +e−E−.
In the rotating wave approximation

ραβ(t) =
i(fα − fβ)evFσαβ ·E
~ωl(ωl − ωαβ + iγαβ)

e−iωlt (D3)

≡ ραβ(ωl)e
−iωlt. (D4)

Note that the term

evF
iωl

σαβ ·Ee−iωlt = 〈α|Hopt|β〉 ;

the equality holds when we drop the complex conjugate
part of Hopt. The right-hand side of the equation above

was calculated in Eq. (A9). We extract the following
terms from Eq. (A9) for the Pauli matrix elements de-
fined in Eq. (A8):

σ+
αβ = 〈α|σ+|β〉 = CnCmδk,k′

√
2sgn(m)δ|n|,|m|−1 (D5)

σ−αβ = 〈α|σ−|β〉 = CnCmδk,k′
√

2sgn(n)δ|n|−1,|m|. (D6)

The optical conductivity of graphene can be obtained
from the expectation value of the 2D current density
〈j(t)〉.

〈j(t)〉 = tr(ρ(− e
S
v)) = − e

S

∑
α

∑
β

ραβ(t)vβα

= − e
S

∑
α

∑
β

ραβ(t)vFσβα (D7)

〈j(t)〉 = −i e
2v2
F

S~ωl

∑
α

∑
β

(fα − fβ)(σαβ ·E)σβα
(ωl − ωαβ + iγαβ)

e−iωlt

(D8)

=
〈
j(ωl)e

−iωlt
〉
. (D9)

In the component form

〈jp(ωl)〉 = −i e
2v2
F

S~ωl

∑
r 6=p

∑
α

∑
β

(fα − fβ)σpβασ
r
αβ

(ωl − ωαβ + iγαβ)
Ep

(D10)

≡
∑
r 6=p

σprcon(ωl)Ep, (D11)

where the indices p and r span over +,−.
There are four components of the conductivity tensor

that we need to calculate: σ++
con, σ−−con , σ+−

con, and σ−+
con.

The first two of them are equal to zero. The only nonzero
elements are

σ+−
con(ωl) = −i e

2v2
F

S~ωl

∑
α

∑
β

(fα − fβ)σ+
βασ

−
αβ

(ωl − ωαβ + iγαβ)

= − ie
2v2
F

~ωl
1

πl2B

∑
m

f|m|+1 − fm
ωl − ω|m|+1,m + iγ|m|+1,m

. (D12)

σ−+
con(ωl) = −i e

2v2
F

S~ωl

∑
α

∑
β

(fα − fβ)σ−βασ
+
αβ

(ωl − ωαβ + iγαβ)

= − ie
2v2
F

~ωl
1

πl2B

∑
m

f|m|−1 − fm
ωl − ω|m|−1,m + iγ|m|−1,m

(D13)

σ+−
con couples to the E+ component of E and σ−+

con cou-
ples to the E− component of E. The TE-polarized pump

fields in our problem areE1,2 = (E
(1,2)
+ +E

(1,2)
− )e−iω1,2t+

c.c.. We also have ω|m|+1,−|m| resonant with ω1 and
ω|m|−1,−|m| resonant with ω2. For definiteness let’s as-
sume the initial state is m = −3 so ω1 is resonant with
ω4,−3 and ω2 with ω2,−3. If we select only the resonant
frequency then the conductivity becomes:

σ+−
con(ω1) = − ie

2v2
F

~ω1

1

πl2B

f4 − f−3

ω1 − ω4,−3 + iγ4,−3
(D14)
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where we expect f4 = 0 and f−3 = 1. Note that σ+−(ω1)

couples to E
(1)
+ .

Similarly,

σ−+
con(ω2) = − ie

2v2
F

~ω2

1

πl2B

f2 − f−3

ω2 − ω2,−3 + iγ2,−3
, (D15)

where we expect f2−f−3 ' 0 since both states are below
the Fermi level.
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