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Spontaneous decay of a quantum emitter near a plasmonic nanostructure
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Department of Physics, Jackson State University, Jackson, MS 39217 USA

We develop a theory for spontaneous decay of a quantum emitter (QE) situated near metal-
dielectric structure supporting localized surface plasmons. If plasmon resonance is tuned close to
the QE emission frequency, the emission is enhanced due to energy transfer from QE to localized
plasmon mode followed by photon emission by plasmonic antenna. The emission rate is determined
by intimate interplay between the plasmon coupling to radiation field and the Ohmic losses in metal.
Here we develop plasmon Green function approach that includes plasmon’s interaction with radia-
tion to obtain explicit expressions for radiative decay rate and optical polarizability of a localized
plasmon mode in arbitrary plasmonic nanostructure. Within this approach, we provide consistent
definition of plasmon mode volume by relating it to plasmon mode density, which characterizes the
plasmon field confinement, and recover the standard cavity form of the Purcell factor, but now for
plasmonic systems. We show that, for QE placed at ”hot spot” near sharp tip of a small metal
nanostructure, the plasmon mode volume scales with the metal volume while being very sensitive
to the proximity to the tip. Finally, we derive the enhancement factor for radiated power spectrum
for any nanoplasmonic system and relate it to the Purcell factor for spontaneous decay rate. We
illustrate our results by numerical example of a QE situated near gold nanorod tip.

I. INTRODUCTION

Rapid advances in nanoplasmonics during past decade
opened up avenues for extremely high energy concen-
tration and transfer on length scale well below the
diffraction limit [1–3]. Optical interactions between
dye molecules or semiconductor quantum dots, hereafter
reffered to as quantum emitters (QEs), and localized
plasmons in metal-dielectric structures underpin major
phenomena in plasmon-enhanced spectroscopy such as
surface-enhanced Raman scattering (SERS) [4], plasmon-
enhanced fluorescence and luminescence [5–11], strong
QE-plasmon coupling [12–23], and plasmonic laser [24–
26]. On theory side, however, despite significant progress
in various aspects of plasmonics, a consistent description
of spontaneous decay a QE near plasmonic nanostructure
characterized by dispersive and lossy dielectric function
is still a subject of active debate [27–36].
Spontaneous decay of a QE near photonic or plasmonic

resonator can be strongly modified due to additional en-
ergy transfer (ET) channel provided by the QE coupling
to cavity or plasmonic modes [37]. If the mode frequency
ωm is tuned close to the QE emission frequency, the QE
decay rate can be greatly enhanced relative to free-space
decay rate γr

0 . The modified rate is usually presented as
γ = γr

0 + γet = γr
0 (1 + Fp), where γet is ET rate between

QE and resonant mode whereas Fp is the Purcell factor
characterizing the decay rate enhancement [38]. For QE
coupled to cavity mode, the Purcell factor has the form

Fp =
γet
γr
0

=
6πQm

k3Vm

, (1)

where Qm is the mode quality factor, Vm is the mode
volume and k = ω/c is the light wave vector (ω and
c are frequency and speed of light). For photonic cav-
ities, the mode volume at some point r is defined as
Vcav =

∫

dV ε(r)|Em(r)|2/[ε(r)|Em(r)|2], where Em(r)
is the mode electric field and ε(r) is (lossless) dielectric

function, and is usually interpreted as the volume that
would confine the mode at given field intensity.

Spontaneous decay of a QE coupled to plasmonic res-
onator has been addressed within several approaches [29–
36] aiming to obtain the corresponding Purcell factor in
the form (1). While the plasmon quality factor is well
defined as Qm = ωm/γm, where γm is the plasmon decay
rate, there has been active debate as to how unanbigu-
ously define the plasmon mode volume for QE located
outside a metal nanostructure characterized by complex
dispersive dielectric function [36, 39–49]. For open sys-
tems, straightforward analogies with photonic cavities do
not apply and more rigorous, albeit less intuitive, nu-
merical methods based on modal expansion of Maxwell
equations’ solutions are often employed [44, 49].

Here we develop another approach more suitable for
nanoplasmonic systems which extends the quasistatic ap-
proximation, valid for system scale below the diffraction
limit, to incorporate the plasmon coupling to radiation
field in a consistent way. Specifically, if the system size
L is much smaller than the photon wavelength λ then,
on the far field scale r ≫ λ, interaction of localized plas-
mon mode with radiation field is analogous to that of a
point-like emitter with dipole moment Pm =

∫

dV Pm,
where Pm(r) is the electric polarization vector of plas-
mon mode. On the other hand, on the near field scale
L ≪ λ, QE decay involves ET to plasmon at a rate γet de-
termined by the plasmon local density of states (LDOS)
[50]. Subsequently, some part of transferred energy is ra-
diated away by the plasmonic antenna while the rest is
dissipated in metal due to the Ohmic losses. An accu-
rate treatment of spontaneous decay requires matching
the balance between transferred and dissipated energy in
the near field to the radiated energy in the far field. As
we show in this paper, this is accomplished by including
the plasmon coupling to radiation field into the plasmon
Green function, which defines the LDOS, in a way that
ensures energy flux conservation across the scales.
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In the preceding paper [50], we derived the plasmon
Green function for arbitrary metal-dielectric system with
Ohmic losses included, but without coupling to the radia-
tion field, in order to describe plasmonic enhancement of
Forster ET between donors and acceptors. In this paper,
we extend our approach to include the plasmon coupling
to radiation field, and derive explicit expression for the
plasmon radiative decay rate γr

m. By incorporating γr
m

into the plasmon Green function, we obtain optical po-
larizability of plasmonic system describing its response
to an external field in the way that satisfies energy flux
conservation. We then turn to spontaneous decay of a
QE coupled to plasmonic resonator and derive the Pur-
cell factor for decay rate in the form (1), where the mode
volume is identified as the inverse of plasmon mode den-
sity that characterizes plasmon field confinement at the
QE position. We show that near sharp tip of small metal
nanostructure, where the plasmon field is strongly con-
fined (hot spot), the mode volume scales with the metal
volume but, at the same time, is very sensitive to the QE
distance to metallic tip. Finally, we derive enhancement
factor for radiated power spectrum, which describes, e.g.,
plasmonic enhancement of fluorescence near metal nanos-
tructures [5–11], and establish general relation between
the enhancement and Purcell factors.
The paper is organized as follows. In Sec. II we re-

visit our derivation of the plasmon Green function [50]
by using different method that makes its generalization
more convenient. In Sec. III, we extend this approach
by including the plasmon coupling to radiation field into
Green function, and derive explicit expressions for radia-
tive decay rate and optical polarization of any nanoplas-
monic system. In Sec. IV, we derive the plasmon LDOS,
plasmon mode density, and plasmon mode volume, as
well as evaluate the plasmon mode volume near sharp
tip of metal nanostructure. In Sec. V, we derive the
Purcell factor for spontaneous decay of a QE coupled to
plasmonic resonanor and obtain explicit expression for
the power spectrum enhancement factor. In Sec. VI, we
illustrate our results numerically for a QE situated neat
the tip of Au nanorod. A summary of our results is pro-
vided in Sec. VII, and some details of our calculations
are outlined in the Appendix.

II. SPONTANEOUS DECAY AND PLASMON

GREEN FUNCTION

Consider an excited QE with dipole matrix element
and orientation µ and n, respectively, located at some
position r near metal-dielectric structure described by
complex dielectric function ε(ω, r) = ε′(ω, r) + iε′′(ω, r)
and surrounded by homogeneous medium with dielectric
constant εs. We set εs = 1 for now, but will restore it
when discussing numerical examples. The full decay rate
of a QE in electromagnetic environment has the form [37]

γ =
8πω2µ2

c2~
Im

[

n·Ḡ(ω; r, r)·n
]

, (2)

where Ḡ(ω; r, r′) is the dyadic Green dyadic for Maxwell
equation satisfying ∇×∇× Ḡ− (ω2/c2)ε Ḡ = I. For a
QE in free space, the decay rate is determined by imagi-
nary part of free-space Green function Ḡ0(ω; r, r

′) at the
QE position, Im[Ḡ0(ω; r, r)] = (ω/6πc)I, yielding

γr
0 =

4µ2ω3

3~c3
. (3)

For systems with characteristic size below the diffraction
limit, it is convenient to use rescaled Green function,

D̄(ω; r, r′) =
4πω2

c2
Ḡ(ω; r, r′), (4)

which, in the near-field limit, represents the sum of direct
and plasmon terms, D̄ = D̄0 + D̄pl [50]. The full decay
rate (2) takes the form γ = γr

0 + γet, where

γet =
2µ2

~
Im

[

n·D̄pl(ω; r, r)·n
]

(5)

is QE-plasmon ET rate.

A. Plasmon Green function: lossless case

For metal-dielectric system with characteristic size
smaller than the radiation wavelength, the fields and fre-
quencies of plasmon modes are determined by quasistatic
Gauss law [3]

∇·[ε′(ωm, r)∇Φm(r)] = 0, (6)

where the potentials Φm(r), which define the mode elec-
tric fields as Em(r) = −∇Φm(r), satisfy the standard
boundary conditions across metal-dielectric interfaces.
The mode fields, which we chose to be real, are orthog-
onal,

∫

dVEm(r) ·En(r) = δmn

∫

dVE2
m(r), and regular

inside the structure while falling off rapidly outside it.
In our preceeding paper [50], the plasmon Green func-

tion in the presence of Ohmic losses was derived by
expressing it through complex eigenvalues of operator
∇ · [ε(ω, r)∇]. In this section, we give a more transpar-
ent derivation without resorting to eigenvalue problem,
which permits its generalization to include, in the next
section, the plasmon coupling to radiation field.
The Green function S(ω; r, r′) for quasistatic poten-

tials satisfies equation

∇·[ε(ω, r)∇S(ω; r, r′)] = 4πδ(r − r′), (7)

for arbitrary frequency ω. In free space (ε = 1), the qua-
sistatic Green function is independent of frequency and
has the form S0(r− r′) = −1/|r− r′|; the corresponding
dyadic Green function for fields, given by ∇∇′S0(r−r′),
coincides with (real part of) free-space electromagnetic
Green function (4) in the near-field limit. After splitting
S into free-space and plasmon parts, S = S0 + Spl, we
obtain equation for Spl:

∇·
[

ε(ω, r)∇Spl(ω; r, r
′)
]

= −∇·
[

[ε(ω, r)− 1]∇S0(ω; r, r
′)
]

. (8)
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Assume, for a moment, that dielectric function ε(ω, r) is
lossless (ε′′ = 0). For real ε, the Green function can be
expanded in terms of eigenmodes of Eq. (6) as

Spl(ω; r, r
′) =

∑

m

Sm(ω)Φm(r)Φm(r′), (9)

where coefficients Sm(ω) are found as follows. Applying
to Eq. (8) the integral operator

∫

dV ′Φm(r′)∆′, and using
the relation
∫

dV ′Φm(r′)∆′Spl(ω; r, r
′) = −SmΦm(r)

∫

dVE2
m(r)

(10)
for the left hand side, and the relation

∫

dV ′Φm(r′)∆′S0(ω; r, r
′) = 4πΦm(r) (11)

for the right hand side, we obtain

Sm∇·
[

ε(ω, r)∇Φm(r)
]

= 4π
∇·

[

[ε(ω, r)− 1]∇Φm(r)
]

∫

dVE2
m(r)

.

(12)
Finally, multiplying Eq. (12) by Φm(r) and integrating
the result over r, we obtain

Sm(ω) =
4π

∫

dVE2
m(r)

− 4π
∫

dV ε(ω, r)E2
m(r)

. (13)

For real ε(ω, r), the Green function (9) with coefficients
(13) is exact for any metal-dielectric structure with eigen-
modes defined by Eq. (6). The first term in Eq. (13) en-
sures that Sm = 0 in the limit ω → ∞ (or, in free space
with ε = 1), while the second term develops a pole, due
to the Gauss law (6), as |ω| approaches ωm.

B. Plasmon Green function: including the losses

For complex dielectric function, the plasmon poles in
the Green function move into lower half of complex fre-
quency plane. We assume that the mode quality factors
Qm is sufficiently large and so, in the first order in 1/Qm,
the eigenmodes Φm in the Green function expansion (9)
are unchanged while the coefficients Sm in Eq. (13) are
now complex. Expanding the dielectric function near ωm,

ε(ω, r) ≈ ε′(ωm, r) +
∂ε′(ωm, r)

∂ω2
m

(

ω2 − ω2
m

)

+ iε′′(ω, r),

(14)
the coefficients (13) take the form

Sm(ω) =
ω2
m

2Um

1

ω2
m − ω2 − iωγnr

m (ω)
, (15)

where

Um =
ωm

16π

∫

dV
∂ε′(ωm, r)

∂ωm

E2
m(r)

=
1

16π

∫

dV
∂[ωmε′(ωm, r)]

∂ωm

E2
m(r) (16)

is the plasmon mode energy [51], and the rate

γnr
m (ω) =

2ωm

∫

dV ε′′(ω, r)E2
m(r)

ω
∫

dV [∂ε′(ωm, r)/∂ωm]E2
m(r)

(17)

describes nonradiative plasmon decay at frequency ω. In-
troducing the power dissipated by the plasmon mode due
to nonradiative (Ohmic) losses as [51]

Wnr
m (ω) =

ω

8π

∫

dV ε′′(ω, r)E2
m(r), (18)

the frequency-dependent nonradiative plasmon decay
rate (17) can be written in the form

γnr
m (ω) =

ω2
m

ω2

Wnr
m (ω)

Um

, (19)

which is convenient for extension in the next section.
The quasistatic dyadic Green function for the electric

fields is given by D̄pl(ω; r, r
′) = ∇∇′Spl(ω; r, r

′), where
Spl(ω; r, r

′) is given by Eq. (9) with coefficients Sm(ω)
given by Eq. (15), and has the form

D̄pl(ω; r, r
′) =

∑

m

ω2
m

2Um

Em(r)Em(r′)

ω2
m − ω2 − iωγnr

m (ω)
. (20)

Note that the coefficients (15) are obtained by calculat-
ing the residues at the plasmon poles of function Sm(ω),
given by Eq. (13), and the Green function (20) is obtained
by summing up the contributions from all poles. Since
the plasmon Green function is analytic in the complex
frequency plane except isolated poles in the lower half-
plane [for local dielectric function ε(ω, r)], the expression
(20) is valid for all frequencies. The functional form of
the decay rate (17) along with modes’ orthogonality en-
sures that D̄pl(ω; r, r

′) obeys the optical theorem [52]

∫

dV ε′′(ω, r)D̄∗

pl(ω; r, r
′)D̄pl(ω; r, r

′′)

= 4πImD̄pl(ω; r
′, r′′), (21)

which, in the absence of radiation, implies that system’s
energy intake (right-hand side) is dissipated via Ohmic
losses (left-hand side) [53].
In the following, we assume that QE’s interaction with

plasmonic system is dominated by a single mode and,
accordingly, keep only the resonant term in Eq. (20),

D̄m(ω; r, r′) =
ω2
m

2Um

Em(r)Em(r′)

ω2
m − ω2 − iωγm(ω)

, (22)

where γm(ω) = γnr
m (ω) for quasistatic case. For well-

defined plasmon mode, i.e., if the quality factor is suffi-
ciently large (ωm/γm ≫ 1), the contribution from nega-
tive frequencies is small and the plasmon Green function
near the resonance takes the form [50]

D̄m(ω; r, r′) =
ωm

4Um

Em(r)Em(r′)

ωm − ω − iγm/2
, (23)
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where γm = Wm/Um is the plasmon decay rate at plas-
mon frequency [with Wm ≡ Wnr

m (ωm) in the quasistatic
case]. Note that single-mode Green functions (22) and
(23) satisfy the optical theorem (21) as well (the latter
with ω = ωm). Finally, since only metallic regions with
dispersive dielectric function ε(ω) = ε′(ω) + iε′′(ω) con-
tribute to Um and Wnr

m , the standard plasmon decay rate
due to nonradiative losses in metal is recovered,

γnr
m =

2ε′′(ωm)

∂ε′(ωm)/∂ωm

. (24)

In the next section, we generalize our approach to include
plasmon interaction with the radiation field.

III. INTERACTION OF PLASMON MODE

WITH RADIATION FIELD

In this section, we demonstrate that the quasistatic
Green function (22) can be extended to incorporate the
plasmon coupling to radiation field by including plas-
mon’s radiative decay rate into full decay rate as follows
[compare to Eq. (19)]:

γm(ω) =
ω2
m

ω2

Wm(ω)

Um

, (25)

where Wm(ω) = Wnr
m (ω) +W r

m(ω) is the full dissipated
power, which now includes radiated power W r

m(ω) that
determines plasmon’s radiative decay rate as

γr
m(ω) =

ω2
m

ω2

W r
m(ω)

Um

. (26)

Below, we derive explicit expressions for radiated power
W r

m(ω) as well as for optical polarizability of a plasmon
mode characterizing plasmonic system’s response to an
external field.

A. Radiative decay of plasmon mode

We start with noting that emission of light from a plas-
monic system with characteristic size much smaller than
the radiation wavelength can be treated similarly to a
point dipole. The frequency-dependent polarization vec-
tor of plasmon mode (6) is Pm(ω, r) = χ′(ω, r)Em(r),
where χ(ω, r) = [ε(ω, r)− 1] /4π is plasmonic system’s
susceptability that vanishes outside the system (we as-
sume, for simplicity, that dielectric constant of outside
medium is unity). Note that, in the plasmon spectral
domain ε′′(ω)/ε′(ω) ≪ 1, the radiation and scattering by
a plasmonic dipole are determined, within our approxi-
mation, by the real part of susceptibilty χ′ = (ε′ − 1)/4π
whereas its imaginary part χ′′ = ε′′/4π determines the
Ohmic losses (18). The electric field generated by plas-
monic system’s oscillating polarization vector is given by

Em(ω, r) =

∫

dV ′ D̄0(ω; r, r
′)·Pm(ω, r′), (27)

where D̄0(ω; r, r
′) = (4πω2/c2)Ḡ0(ω; r, r

′) is the free-
space dyadic Green function. The power dissipated by
the plasmon mode via radiation is given by [37]

W r
m(ω) =

ω

2
Im

∫

dV Em(ω, r)·Pm(ω, r) (28)

=
ω

2
Im

∫

dV

∫

dV ′Pm(ω, r)·D̄0(ω; r, r
′)·Pm(ω, r′),

where integration takes place over the plasmonic system
volume. Replacing the free-space Green function by its
near-field limit, ImD̄0(ω; r, r

′) = (2ω3/3c3)I, we obtain

W r
m(ω) =

ω4

3c3
P

2
m(ω), (29)

where

Pm(ω) =

∫

dV Pm(ω, r) =
1

4π

∫

dV [ε′(ω, r)− 1]Em(r)

(30)
is plasmon’s dipole moment. Same result is obtained
by integrating Poynting’s vector S = (c/8π) |Em(ω, r)|2
over remote surface enclosing the system. Note that plas-
mon’s radiated power (29) coincides with that of a point
dipole Pm(ω), and that, for small systems, radiation of
higher-order multipoles is suppressed [37]. By including
the radiated power (29) into full dissipated power, the
radiative decay channel is incorporated, through the de-
cay rate (25), within the plasmon Green function (22) in
a way that ensures energy flux conservation (see below).
Near plasmon resonance, the plasmon decay rate in the

Green function (23) takes the form γm = γnr
m +γr

m, where
the plasmon radiation rate is obtained by normalizing the
radiated power with the mode energy,

γr
m =

W r
m

Um

=
ω4
m

3c3
P

2
m

Um

, (31)

which, upon using Eqs. (16) and (30), takes the form

γr
m =

ω4
m

3πc3

[∫

dV (ε′ − 1)Em(r)
]2

∫

dV (∂ωmε′/∂ωm)E2
m(r)

, (32)

where we denoted W r
m ≡ W r

m(ωm), Pm ≡ Pm(ωm) and,
under the integral, ε ≡ ε(ωm, r). Correspondingly, the
plasmon radiation efficiency ηm has the form

ηm =
γr
m

γm
=

ζm
1 + ζm

, (33)

where the parameter

ζm =
γr
m

γnr
m

=
ω3
m

6πc3

[∫

dV (ε′ − 1)Em(r)
]2

∫

dV ε′′E2
m(r)

, (34)

characterizes plasmon’s radiative decay rate vs. nonra-
diative one. Note that, for small nanoplasmonic systems,
γnr
m should also include the Landau damping rate [54].
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As an example, for dipole surface plasmon in a spheri-
cal nanoparticle of radius a, a straightforward calculation
recovers the radiative decay rate as (see Appendix)

γr
sp =

4ω3
spa

3

c3∂ε′(ωsp)/∂ωsp

, (35)

and, correspondingly, ζsp = 2ω3
spa

3/c3ε′′(ωsp), where the
plasmon frequency ωsp is given by ε′(ωsp) = −2.
Finally note that, in contrast to field-independent non-

radiative decay rate (24), the radiative decay rate (32)
does depend on the plasmon filed distribution in the sys-
tem, albeit not on its overall magnitude. Such ”nonan-
alytic” field dependence of γr

m, which is present in the
Landau damping rate as well [54], reflects the fact that,
in contrast to a point dipole, the local fields vary appre-
ciably on the plasmonic system scale.

B. Optical polarizability of a plasmonic system in

the external field and energy flux conservation

Here we show that the plasmon Green function that
incorporates the Ohmic and radiation losses ensures the
standard relation between plasmon’s absorption, scatter-
ing and extinction cross sections, σabs + σsc = σext, and
derive the optical polarizability of plasmon mode which
describes plasmonic system’s resonant response to an ex-
ternal field. For frequency close to the plasmon reso-
nance, we use the single-mode plasmon Green function
(22) and, accordingly, omit non-resonant contributions.

1. Extinction cross section and energy flux conservation

Consider response of a plasmonic system to incident
monochromatic field Eie

−iωt that is uniform on the sys-
tem scale. The electric field scattered by the plasmonic
system has the form

Esc(ω, r) =

∫

dV ′χ′(ω, r′)D̄(ω; r, r′)·Ei, (36)

where D̄(ω; r, r′) is the dyadic Green function (4). The
power absorbed by plasmonic structure is

Pabs(ω) =
ω

8π

∫

dV ε′′(ω, r)|Esc(ω, r)|2, (37)

where we disregarded nonresonant direct field absorption.
Inside the plasmonic system, for each mode, we replace
D̄(ω; r, r′) in Eq. (36) with the plasmon Green function
D̄m(ω; r, r′), given by Eq. (22), and obtain

Pabs(ω) = Wnr
m (ω)|Sm(ω)|2[Pm(ω)·Ei]

2, (38)

where the functions Sm(ω), Wnr
m (ω), and Pm(ω) are

given by Eqs. (15), (18) and (30), respectively. Normal-
izing Pabs(ω) by incident energy flux Si = (c/8π)E2

i , we

obtain the mode absorption cross section

σ
(m)
abs (ω) =

4πω

c

ω2
m

2Um

ωγnr
m (ω) [e·Pm(ω)]2

(ω2
m − ω2)2 + ω2γ2

m(ω)
, (39)

where plasmon decay rates γnr
m (ω) and γm(ω) are given

by Eqs. (19) and (25), respectively, and unit vector e is
the incident field polarization.
To obtain scattering cross section, we extract the far

field contribution from Eq. (36) with help of the Dyson
equation for dyadic Green function,

D̄(ω; r, r′) = D̄0(ω; r, r
′) (40)

+

∫

dV1χ
′(ω, r1)D̄0(ω; r, r1)·D̄(ω; r1, r

′).

Keeping only the resonance (second) term and replacing
D̄(ω; r1, r

′) with the plasmon Green function (22), we

integrate the energy flux S = (c/8π) |Esc(ω, r)|2 over re-
mote surface enclosing the system. Using far field asymp-
totics D̄0(ω; r) ∼ (ω/c)2(eikr/r) (I − r̂r̂), we obtain

Psc(ω) = W r
m(ω)|Sm(ω)|2[Pm(ω)·Ei]

2, (41)

where W r
m(ω) is given by Eq. (29). Normalizing Psc(ω)

by Si, we obtain the mode scattering cross section

σ(m)
sc (ω) =

4πω

c

ω2
m

2Um

ωγr
m(ω) [e·Pm(ω)]2

(ω2
m − ω2)2 + ω2γ2

m(ω)
, (42)

where the plasmon radiative decay rate γr
m(ω) is given

by Eq. (26). Adding σ
(m)
sc (ω) and σ

(m)
abs (ω) together, we

obtain the mode extinction cross section as

σ
(m)
ext (ω) =

4πω

c

ω2
m

2Um

ωγm(ω) [e·Pm(ω)]2

(ω2
m − ω2)2 + ω2γ2

m(ω)
, (43)

where we used the relation γm(ω) = γnr
m (ω) + γr

m(ω),
which, in this case, implies the energy flux conservation:

σ
(m)
abs (ω) =

γnr
m (ω)

γm(ω)
σ
(m)
ext (ω), σ(m)

sc (ω) =
γr
m(ω)

γm(ω)
σ
(m)
ext (ω).

(44)
The full cross sections σabs, σsc and σext are obtained by
summing up Eqs. (39), (42) and (43) over all modes.

2. Optical polarizability of plasmonic system

We can now obtain optical response functions of plas-
monic system by using the standard relation

σext(ω) =
4πω

c
Im[e·ᾱ(ω)·e], (45)

where ᾱ(ω) =
∑

m ᾱm(ω) is optical polarizabily dyadic,
which characterizes plasmonic system’s response to an
external field. From Eq. (43), the plasmon mode polar-
izability is obtained explicitly as

ᾱm(ω) =
ω2
m

2Um

Pm(ω)Pm(ω)

ω2
m − ω2 − iωγm(ω)

. (46)
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The mode polarizability (46) can be split into scattering
and absorbing parts as (suppressing ω-dependence)

ᾱ′′

m =
γr
m

γm
ᾱ′′

m +
γnr
m

γm
ᾱ′′

m, (47)

where the first term represents the scattering contribu-
tion and satisfies the relation

γr
m

γm
ᾱ′′

m =
2

3

(ω

c

)3

ᾱm ·ᾱ∗

m. (48)

Since ᾱm is proportional to plasmonic system’s volume,
the scattering is suppressed for small systems. In this
case, the extinction is dominated by the absorption,
which is given by the second term in Eq. (47). Near
the resonance, the mode polarizability takes the form

ᾱm(ω) =
ωm

4Um

PmPm

ωm − ω − iγm/2
, (49)

and, after summing up over all modes, can be used to
characterize linear response of any plasmonic system sup-
porting well-defined plasmon modes.
Radiative decay contribution into full polarizability,

α(ω) = Tr[ᾱ(ω)], can be expressed in general form in
terms of quasistatic polarizabilities α̃m(ω). Taking the
trace of Eq. (46), α(ω) can be written as

αm(ω) =
α̃m(ω)

1− i 2ω
3

3c3 α̃m(ω)
, (50)

where

α̃m(ω) =
ω2
m

2Um

P
2
m(ω)

ω2
m − ω2 − iωγnr

m (ω)
(51)

is plasmon polarizability without radiative decay. The
relation (50) is similar to that for dipole polarizability
of spherical particles [27] but, in fact, it holds for any
nanoplasmonic system. In a similar manner, αm(ω) can
be shown to satisfy the optical theorem

α′′

m(ω) =
2

3

(ω

c

)3

|αm(ω)|2 + α̃′′

m(ω)
∣

∣1− i 2ω
3

3c3 α̃m(ω)
∣

∣

2 , (52)

where first and second terms in the right hand side de-
scribe, respectively, scattering and absorption.
For a nanosphere with α̃m(ω) = a3[ε(ω)−1]/[ε(ω)+2],

by expanding ε(ω) near ωsp, we obtain from Eq. (50)

αsp(ω) =
3a3

∂ε′(ωsp)/∂ωsp

1

ωsp − ω − iγsp/2
, (53)

where γsp = γnr
sp + γr

sp is the plasmon full decay rate
with nonradiative and radiative contributions given by
Eqs. (24) and (35), respectively. Same result is obtained
directly from Eq. (49) (see Appendix).
The approach developed in this section will be used in

the rest of this paper to describe spontaneous decay of a
QE coupled to plasmonic resonator.

IV. PLASMON LDOS, MODE DENSITY AND

MODE VOLUME

We are now in position to derive the plasmon LDOS
that accounts for both Ohmic and radiative losses. On
length scale below the diffraction limit, surface plasmons
are mostly electronic excitations interacting weakly with
the radiation field. In this section we show that, within
our approach, the plasmon mode volume can be defined
in natural way as the inverse of plasmon mode density,
which describes plasmon mode confinement in local re-
gion. We derive explicit expression for the plasmon mode
volume at a hot spot near sharp metal tip and show that
it scales with the metal volume while being highly sensi-
tive to the distance to the tip.

A. Mode volume for plasmonic systems

The standard expression for electromagnetic LDOS,
ρ(ω, r) = (2ω/πc2) ImTr[Ḡ(ω; r, r)], can be written in
terms of rescaled Green dyadic (4) as

ρ(ω, r) =
1

2π2ω
ImTr D̄(ω; r, r). (54)

Near plasmon resonance, using the plasmon Green dyadic
(23), we obtain the plasmon LDOS as

ρm(ω, r) =
1

4π2Wm

E2
m(r)

1 + 4Q2
m(ω/ωm − 1)2

, (55)

where the plasmon quality factor is given by

Qm =
ωm

γm
=

ωmUm

Wm

, (56)

and dissipated power Wm = Wnr
m +W r

m incorporates all
plasmon damping channels. As function of frequency,
the LDOS has Lorentzian shape and, at resonance, is
proportional to the plasmon field intensity normalized by
the dissipated power [50]: ρ(ωm, r) = E2

m(r)/4π2Wm.
The plasmon LDOS (55) describes plasmon states’ dis-

tribution in unit volume and frequency interval. Fre-
quency integration of LDOS yields plasmon mode density

ρm(r) =

∫

dωρm(ω, r) =
ωmE2

m(r)

8πQmWm

=
E2

m(r)

8πUm

, (57)

which describes spatial distribution of plasmon field in-
tensity. Note that, in contrast to LDOS, ρ(r) is normal-
ized by the mode energy, rather than dissipated power,
and, hence, is independent of losses. With help of
Eq. (16), the mode density is explicitly obtained as

ρm(r) =
1

Vm(r)
=

2E2
m(r)

∫

dVE2
m(r)∂(ωmε′)/∂ωm

, (58)

and can be viewed as the inverse local mode volume

Vm(r), which characterizes field confinement at point r.
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The expression (58) is valid for any nanoplasmonic sys-
tem, including plasmonic cavities and open systems.
Note that the form (58) for plasmon mode volume

was proposed previously in the case of spherical metal
nanoshell [42]. For more general systems described by
dispersive dielectric function, a similar expression was ob-
tained by using expansion of full Maxwell equations’ so-
lution over quasinormal modes (QNM) [29]. Since QNMs
are leaky modes described by complex-valued fields, the
QNM volume is complex as well, and so the QNM Purcell
factor is given by the real part of Eq. (1) [29, 49].
Within our approach, the local mode volume at point

r arises as the inverse of plasmon mode density at that
point and, hence, represents real function of plasmon field
intensity and is independent of radiative and nonradia-
tive losses. These losses still do affect the Purcell factor
(1) as they determine the quality factor Qm via the full
plasmon decay rate γm = γr

m+γnr
m , thereby ensuring the

energy flux conservation.

B. Plasmon mode volume near metallic tip

The largest plasmonic enhancements occur if QE is
located at a hot spot – a small region characterized by
very high mode density (or very small mode volume),
e.g., near sharp tip of a metal nanostructure. With help
of Eq. (58), the maximal mode density can be estimated
by assuming classical field profile near the metal surface.
Due to the Gauss law, the local fields do not significantly
change inside small metallic structure, while falling off
rapidly outside it, so the highest field intensity is achieved
near the metal surface,

ρm(r) ≈ 2

ωm∂ε′(ωm)/∂ωm

E2
L(r) + E2

T (r)

Vmet

(

[Ein
L ]2 + E2

T

) , (59)

where Vmet is the metal volume. Here, subscripts L and T
stand for longitudinal (normal to the tip) and transverse
(tangential to the tip) field components, and superscripts
in and out indicate local fields at the interface on metal
and dielectric side, respectively. The highest field local-
ization is achieved when ET , which is continuous across
the metal-dielectric interface, is much smaller than EL.
Assuming that the local field is polarized along the tip,
i.e., EL ≫ ET , and using boundary condition for normal
field component Eout

L = ε′(ωm)Ein
L , we obtain the mode

density projected along the tip:

ρL(r) =
1

VL(r)
=

1

Vmet

2|ε′(ωm)|2 Ẽ2
L(r)

ωm∂ε′(ωm)/∂ωm

, (60)

where ẼL(r) = EL(r)/E
out
L is normal field component at

point r near the tip normalized by its value at the tip.
Although the mode volume near hot spot scales with the
metal volume Vmet, the ratio Vmet/VL = VmetρL depends
on the proximity of QE to the tip. While the mode den-
sity is highest at the tip (ẼL = 1), it is expected to
saturate below distances ∼ vF /ω as the nonlocal effects

become dominant [55, 56]. Note for noble metals, this
length scale is ∼ 1 nm in the plasmonic frequency range.

V. PURCELL FACTOR AND ENHANCEMENT

FACTOR FOR POWER SPECTRUM

Purcell factor characterizes the enhancement of QE de-
cay rate due to ET between QE and plasmonic resonator.
Part of transferred energy is radiated away by the plas-
monic antenna, while the rest is dissipated due to the
Ohmic losses in metal. In this section, we derive explicit
expressions for Purcell factor for spontaneous decay rate
and enhancement factor for radiated power spectrum. In
this paper, we only consider weak coupling regime and
disregard plasmon back action on QE spectrum.

A. QE-plasmon ET rate and Purcell factor

The ET rate between a QE situated at r0 with dipole
moment p = µn and resonant plasmon mode is straight-
forwardly obtained from Eq. (5) using the plasmon Green
function (23) as

γet(ω) =
µ2Qm

~Um

[n·Em(r0)]
2

1 + 4Q2
m(ω/ωm − 1)2

. (61)

As function of QE emission frequency ω, the rate (61) has
Lorentzian shape with maximum at ω = ωm. In terms of
mode volume projected on QE dipole direction n,

ρnm(r) =
1

Vn
m(r)

=
2 [n·Em(r)]

2

∫

dVE2
m∂(ωmε′)/∂ωm

, (62)

the QE-plasmon ET rate takes the form

γet(ω) =
8πµ2

~Vn
m(r0)

Qm

1 + 4Q2
m(ω/ωm − 1)2

. (63)

Normalizing the QE-plasmon ET rate at resonance fre-
quency, γet(ωm) = 8πµ2Qm/~Vn

m, by the free-space QE
spontaneous decay rate (3), we finally obtain the Purcell
factor for a QE coupled to resonant plasmon mode,

Fp =
6πQm

k3Vn
m

=
12πQm [n·Em(r0)]

2

k3
∫

dVE2
m∂(ωmε′)/∂ωm

, (64)

which extends the cavity Purcell factor (1) to plasmonic
resonators. For QE at the hot spot near metallic tip,
with help of Eq. (60), we obtain

F tip
p =

12πQm|ε′(ωm)|2
k3Vmetωm∂ε′(ωm)/∂ωm

[

n·ẼL(r0)
]2
, (65)

where n·ẼL(r0) stands for projection of normalized field
component along the tip onto QE’s dipole orientation
n. The Purcell factor is maximal when QE dipole is
oriented along the tip while, for transverse dipole orien-
tation, there is no significant enhancement.
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B. Radiated power spectrum

Part of the energy transferred from QE to resonant
plasmon mode is radiated away by the plasmonic an-
tenna, leading to overal enhancement of radiated power
observed, e.g., in plasmon-enhanced fluorescence experi-
ments [5–11]. While plasmon’s radiative decay rate (31)
is typically much larger than that of individual QE, i.e.,
γr
m ≫ γr

0 , significant part of the transferred energy is dis-
sipated in the metal at rate (24), so that the enhancement
factor depends on radiation efficiency of the plasmonic
antenna ηm = γr

m/γm.
The power radiated by a QE placed at position r0 near

plasmonic antenna is obtained by integrating Poynting’s
vector S = (c/8π)|E(r)|2 over remote surface enclosing
the system, where E(r) is the QE electric field [37]

E(r) = D̄(ω; r, r0)·p, (66)

and D̄(ω; r, r0) is the Green dyadic (4). In order to ex-
tract far field contribution, we use the Dyson equation
(40). Replacing the near-field Green dyadic D̄ in the in-
tegrand by plasmon Green dyadic (23), the QE-generated
far field (66) takes the form

E(r) = D̄0(ω; r − r0)·p (67)

+
ωm

4Um

Em(r0)·p
ωm − ω − iγm/2

∫

dV ′D̄0(ω; r − r′)·Pm(r′).

Straightforward integration of Poynting’s vector over re-
mote spherical surface yields the radiated power

Wr(ω) =
ω4

3c3

∣

∣

∣

∣

p+
ωm

4Um

Pm [Em(r0)·p]
ωm − ω − iγm/2

∣

∣

∣

∣

2

, (68)

where the second term represents contribution of the
plasmonic antenna with dipole moment Pm. Near the
resonance, the plasmon emission is dominant and, disre-
garding the first nonresonant term, we obtain

Wr(ω) =
µ2ω4

3c3
γr
mγet(ω)

γmγr
0

, (69)

where QE-plasmon ET rate γet(ω) is given by Eq. (63),
and radiative decay rates γr

0 and γr
m are given by Eqs. (3)

and (31), respectively. Normalizing Wr(ω) by spectral
power W 0

r = µ2ω4/3c3 radiated by an isolated QE [37],
we obtain the enhancement factor for power spectrum

M(ω) =
Fpηm

1 + 4Q2
m(ω/ωm − 1)2

, (70)

where the Purcell factor Fp is given by Eq. (64) and plas-
mon radiation efficiency ηm is given by (33). At the res-
onance, |ω − ωm| ≪ γm, we obtain

M(ωm) = Fpηm =
6πQm

k3Vn
m

ηm, (71)

which represents general relation between the Purcell fac-
tor for spontaneous decay and maximal enhancement fac-
tor. For high radiation efficiency η ∼ 1, the enhancement
factor is comparable to the Purcell factor, i.e., energy
is radiated by the plasmonic antenna at approximately
same rate as it is being received from the QE.
Note finally that the relation (71) overestimates the en-

hancement factor as it does not account for ET from QE
to off-resonant modes which leads to radiation quench-
ing at close QE-metal distances. The fraction of energy

transferred to bright plasmon mode is q = Fp/
∑

l F
(l)
p ,

where F
(l)
p are Purcell factors for all modes and so, close

to the metal surface, the enhancement factor M is sup-
pressed by the quenching factor q.

VI. NUMERICAL RESULTS AND DISCUSSION

To illustrate our theory, we performed numerical cal-
culations for a QE coupled to longitudinal plasmon mode
oscillating, with frequency ωL, along Au nanorod, which
is modeled here by prolate spheroid with semi-major and
semi-minor axes a and b, respectively (see schematics in
Fig. 1). This needle-shaped structure is characterized
by relatively high radiation efficiency while, at the same
time, possesses hot spots near the tips, where the plas-
mon field is highly localized. We assume that Au nanorod
is submerged into water (εs = 1.77) and use experimen-
tal Au dielectric function ε(ω) = ε′(ω) + iε′′(ω) in all
calculations. The dielectric constant εs of surrounding
medium is restored in all expressions via replacements:
c → c/εs, ε(ω, r) → ε(ω, r)/εs, and µ2 → µ2/εs. Ana-
lytical expressions for spheroidal particles are provided in
the Appendix along with other technical detail, and here
we only discuss the results of numerical calculations.
In Fig. 1, we show calculated plasmon radiation effi-

ciency ηL = γr
L/γL and quality factor QL = ωL/γL which

include both radiative and Ohmic losses. As expected,
the increase of ηL [see Fig. 1(a)] due to increase of γr

L

with nanorod overall size is accompanied by the reduction
of quality factor [see Fig. 1(b)] due to overall increase of
the plasmon decay rate γL = γr

L+γnr
L . The maximal val-

ues of ηL and QL are reached for aspect ratio a/b in the
range 3÷ 5, corresponding to plasmon wavelength range
650 ÷ 800 nm. In this range, ε′′(ω) for Au reaches its
minimum, which translates to lowest Ohmic losses and,
hence, highest ηL and QL, except for the largest nanorod
(a = 50 nm), where the plasmon decay is dominated by
radiative channel [see Fig. 1(b)].
To study the field confinement at hot spot, we plot in

Fig. 2 the projected plasmon mode density ρL, normal-
ized by the metal volume, as function of distance d to
the nanorod tip for several values of aspect ratio. Note
that for spheroidal particles, Eq. (60) is exact. To ac-
count for field enhancement saturation due to nonlocal
effects [55, 56], we restrict minimal distance to the tip by
dmin = 0.05a, and change the nanorod volume by reduc-
ing b at fixed a. For aspect ratios a/b in the range 2÷ 4,
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FIG. 1. Plasmon radiation efficiency ηL (a), and quality factor
QL (b) plotted against aspect ratio a/b for different nanorod
sizes. Inset: Schematics of prolate spheroidal particle.

i.e., when hot spots at the tips are well developed, the
mode volume VL = 1/ρL exhibits nearly universal be-
havior reaching Vmet in the hot spot region while rapidly
decreasing when moving away from the tip.

Consider now spontaneous decay of a QE at distance d
from the nanorod tip with its dipole oriented normally to
the metal surface (see schematics in Fig. 3). We assume
that the QE is situated at fixed distance d = 1 nm from
the tip, where the plasmon field is highly localized. In
Fig. 3, we show the QE-plasmon ET rate (63), normalized
by free-space decay rate (3), and the enhancement fac-
tor for power spectrum (70) plotted against QE emission
frequency ω for different overall sizes but at fixed aspect
ratio a/b = 3.0. The amplitude of frequency Lorentzian
γet(ω)/γ

r
0 in Fig. 3(a) is given by the Purcell factor (64),

which, near hot spot, scales as QL/k
3Vmet [see Eq. (65)].

With increasing nanorod size, the Purcell factor sharply
decreases due to combined effect of decreasing QL and,
more importantly, increasing k3Vmet. However, the en-
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FIG. 2. Normalized mode density (inverse mode volume) pro-
jected along Au nanorod is plotted against the distance to
nanorod tip for different aspect ratios a/b at fixed a.

hancement factor M(ω) in Fig. 3(b) exhibits more com-
plicated behavior: its amplitude FpηL first sharply in-
creases due to rapid change of ηL as a changes from 10
nm to 20 nm, but then, for larger a, falls down as the
metal volume effect in Fp takes over.
In Fig. 4, we show the Purcell factor Fp and enhance-

ment factor at resonance frequency M(ωL) = FpηL plot-
ted against the distance d to the nanorod tip for several
overall sizes. With QE moving away from the tip, both
Fp andM(ωL) decrease by up to two orders of magnitude
as d increases to a/2, indicating that the plasmon field is
highly localized near the tips (see Fig. 2). Note that since
the distance in Fig. 4 is measured in units of nanorod
size, the same starting point d = 0.05a for each curve
translates into different initial distance to the metal sur-
face. After appropriate rescaling to bring initial distances
to the same numerical value (e.g., 1.0 nm), the order of
curves in Fig. 4 follows that in Fig. 3. Overall, Figs. 3 and
4 indicate that the Purcell factor and enhancement fac-
tor are highly sensitive to the system size due to scaling
of the plasmon mode volume with the metal volume (see
Fig. 2) and, to lesser degree, size-dependence of plasmon
quality factor and radiation efficiency (see Fig. 1).

VII. CONCLUSIONS

In summary, here we presented a theory for sponta-
neous decay of a quantum emitter coupled to localized
plasmon mode in metal-dielectric structure characterized
by dispersive dielectric function which incorporates, in a
consistent way, plasmon coupling to the radiation field.
For plasmonic systems with characteristic size below the
diffraction limit, we derived explicit expressions for plas-
mon radiative decay rate, which determines radiation ef-
ficiency of a plasmonic antenna, and optical polarisabil-
ity, which defines system response to an external field.
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Using these results, we extended our approach [50] to de-
rive plasmon Green function that now includes plasmon
interaction with radiation field and obtained explicit ex-
pression for the plasmon local density of states that ac-
counts for all relevant plasmon damping channels. We
have shown that plasmon mode volume is defined natu-
rally as the inverse of plasmon mode density, which char-
acterized plasmon field confinement, and that, for well-
defined plasmon modes, it is independent of losses. We
estimated the plasmon mode volume at hot spot near
sharp tip of a small metal nanostructure and demon-
strated that it scales with the metal volume, although
its actual value is highly sensitive to the QE distance to
the tip. Using our approach, we recovered the usual form
of Purcell factor, but now for plasmonic resonators, and
established its relation with the enhancement factor for
radiated power. Finally, we illustrated our approach by
presenting numerical results for QE situated near the tip
of an Au nanorod.
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ted for normally-oriented QE at different Au nanorod sizes
and fixed aspect ratio a/b.
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Appendix A: Potentials and fields in nanospheroids

Consider a prolate spheroid with semiaxis a along the
symmetry axis and semiaxis b in the symmetry plane
(a > b). We use standard notations for spheroidal co-
ordinates (ξ, η, φ) where ξ is ”radial” coordinate while
η = cos θ and φ parametrise the surface. The scaling
factors are given by

hξ = f

√

ξ2 − η2

ξ2 − 1
, hη = f

√

ξ2 − η2

1− η2
,

hφ = f
√

(ξ2 − 1)(1− η2), (A1)
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where f =
√
a2 − b2 is half distance between the foci,

and spheroid surface corresponds to ξ1 = a/f . The
volume and surface elements are, respectively, dV =
hξhηhφdξdηdφ and dS = hηhφdηdφ, and the gradient

operator is ∇ = ξ̂h−1
ξ ∂/∂ξ + η̂h−1

η ∂/∂η + φ̂h−1
φ ∂/∂φ.

The potentials for longitudinal and transverse dipole
modes are

ΦL = fRL(ξ)P1(η), ΦT = fRT (ξ)P
1
1 (η) cosφ. (A2)

For a metallic spheroid with permittivity ε(ω) in a
medium with dielectric constant εs, the radial compo-
nents for longitudinal mode are

RL(ξ) = P1(ξ), for ξ < ξ1,

RL(ξ) = Q1(ξ)P1(ξ1)/Q1(ξ1), for ξ > ξ1. (A3)

The plasmon frequencies ωL follow from the continuity
of εR′(ξ) across the metal/dielectric interface.

Appendix B: Plasmon energy in spheroidal particles

In the quasistatic approximation, the plasmon mode
energy comes solely from the metal and has the form

Um =
ωm

16π

∂ε(ωm)

∂ωm

∫

dVmetE
2
m

=
ωm

16π

∂ε(ωm)

∂ωm

∫

dSΦ∇nΦ, (B1)

where Vmet and S are the volume and surface of metal
nanoparticle, respectively, and ∇n is the normal deriva-
tive. Using Eqs. (A3), we obtain

Um = Vmet
ωm

16π

∂ε(ωm)

∂ωm

= ab2
ωm

12

∂ε(ωm)

∂ωm

. (B2)

Appendix C: Plasmon radiative decay in spheroidal

particles

The decay rate of a plasmon mode in metal-dielectric
system has the form

γr
m =

ω4
m

3c3
P

2
m

Um

(C1)

where Pm = (4π)−1
∫

dVEm(r)[ε′(ωm, r) − 1] is plas-
mon dipole moment. Due to the Gauss law, Pm can be
written as surface integral

Pm =
ε′(ωm)− 1

4π

∫

dSΦm(s)n, (C2)

where n is normal to the surface. For prolate spheroids,
the potentials are given by Eq. (A2) and the normal

vectors are simply n = ξ̂. Using the addition formula

ξ̂ ·ξ̂′ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′) for solid angle
in spheroidal coordinates (η = cos θ), we obtain

P
2
L =

[

a2b

3
[ε′(ωm)− 1] gL(ξ1)

]2

, (C3)

where ξ1 = a/
√
a2 − b2 and

gL(ξ) =
3ξ3

8
arctan

1
√

ξ2 − 1
− 3(ξ2 − 2)

8ξ

√

ξ2 − 1,

(C4)

is a function that changes in the range 0.5÷1.0, reaching
the upper limit for sphere (ξ → ∞). Using Eqs. (C3) and
(B2), the plasmon radiative decay rate is evaluated as

γr
L =

4
√
εsω

3
ma3

9c3
[ε′(ωm)− εs]

2

∂ε′(ωm)/∂ωm

g2L(ξ1), (C5)

where we restored the dielectric constant of surrounding
medium εs. Note that radiative decay rate for spheroidal
particle scales as a3 rather than as particle volume, im-
plying high radiation efficiency for elongated particles.
For spherical particle (a = b), we have gL = 1 and

ε′(ωsp) = −2, and so the plasmon radiative decay rate
(35) is recovered. The nanosphere polarizability (53) is
recovered as well using Usp = a3ωsp[∂ε

′(ωsp)/∂ωsp]/12

and P
2
sp = a6, so that

ωspP
2
sp

4Usp

=
3a3

∂ε′(ωsp)/∂ωsp

. (C6)

For nanosphere in dielectric medium, right hand side of
Eq. (C6) should be multiplied by εs.

Appendix D: Mode volume and Purcell factor for

spheroidal particles

Using the Gauss law and expressing local fields in
terms of potentials, the mode density projected along
nanorod major axis takes the form

ρL(r) =
2

ωm∂ε′(ωm)/∂ωm

[∇nΦm(r)]2
∫

dSΦm∇nΦm

, (D1)

where integration takes place over the metal surface. For
r at the distance d from the tip of a prolate spheroidal
particle with major and minor semiaxes a and b, respec-
tively, so that ξ1 = a/

√
a2 − b2 at the surface, and using

that hξ = f along the z-axis, we obtain

ρL =
1

VL

=
2

Vmet ωL

[

∂ε′(ωL)

∂ωL

]

−1 [
Q′

1(ξ)ξ1
Q1(ξ1)

]2

, (D2)

where ξ = (a+d)/
√
a2 − b2 and Vmet = 4πab2/3 is the Au

nanorod volume. The plasmon frequency ωL follows from
the boundary condition ε′(ωL) = εsQ

′

1(ξ1)ξ1/Q1(ξ1). In
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the limit of spherical particle of radius a, i.e., f → 0 and
ξ → ∞ as b → a, we have Q(ξ) ≈ 1/3ξ2, yielding

ρsph =
1

Vsph
=

6

πωL

[

∂ε′(ωL)

∂ωL

]

−1
a3

(a+ d)6
. (D3)

Note that for random dipole orientations, the orienta-
tional averaging results in the additional factor 1/3 in

Eqs. (D2) and (D3). Finally, the Purcell factor for QE
at distance d from the nanorod tip is given by

Fp =
12πεsQL

k3VmetωL∂ε′(ωL)/∂ωL

[

Q′

1(ξ)ξ1
Q1(ξ1)

]2

, (D4)

and scales as (k3Vmet)
−1.
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