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The role of classical dynamics in spin transport is an intriguing problem from the point of view
of classical-quantum correspondence, as spin is a purely relativistic quantum mechanical variable
with no classical counterpart. Nevertheless, due to spin-orbit coupling (generally referred to as the
relativistic interaction of a particle’s spin with its motion inside a potential) and because the orbital
motion does have a classical correspondence, the nature of the classical dynamics can affect spin.
A basic transport structure is quantum dots, whose geometrical shape can be chosen to lead to
characteristically distinct classical behaviors ranging from integrable dynamics to chaos. Whether
and how classical chaos can affect spin transport and if the effect can be exploited for applications in
spintronics are thus issues of both fundamental and practical interest. Here we report results from
systematic, full quantum computations of spin transport through quantum dots hosting different
types of classical dynamics. Our main finding is that chaos can play orthogonal roles in affecting
spin polarization, depending on the relative strength of the spin-orbit coupling. For weak coupling
with the characteristic interaction length much larger than the system size, chaos can be beneficial
to preserving spin polarization. In the strong coupling regime where the interaction length is smaller
than the system dimension, chaos typically destroys spin polarization. We develop a semiclassical
theory to understand these phenomena and point out their implications and potential applications
in developing spintronic devices.

I. INTRODUCTION

Spin transport, the spin-dependent electron transport
in mesoscopic systems, is fundamental to condensed mat-
ter physics1–3 and the development of energy efficient
electronics1,2 such as spintronics. Advances in experi-
mental techniques4,5 have made it possible to uncover,
understand and exploit a variety of phenomena related
to spin transport. In terms of basic physics, how to gen-
erate polarized spin currents from unpolarized electron
injections, i.e., spin rectification6, and how to preserve
spin polarization during electronic transport1 are issues
of current interest3,7. The main point of this paper is
that, under certain circumstances, classical chaos can ei-
ther help to preserve or destroy spin polarization.

Spin transport represents a subclass of phenomena in
the broad context of electronic transport8, a field that
has been relatively well developed. To explain the mo-
tivation behind our work, we briefly describe the perti-
nent problem of the interplay between classical dynamics
and quantum transport. When electrons traverse a nano-
structure, e.g., a quantum dot, universal conductance
fluctuations can arise9–14. If the underlying classical dy-
namics are integrable or mixed in the sense that there are
both Kolmogorov-Arnold-Moser (KAM) tori and chaotic
components in the phase space15, sharp, Fano-type of
resonances in the conductance curve of interest (e.g., con-
ductance versus the Fermi energy or the strength of an
external magnetic field) can arise, but the resonances
are smoothed out when the classical dynamics are fully
chaotic13,16–22. The ability for classical chaos to suppress

or even eliminate resonances has led to the proposal of
the control scheme to mitigate conductance fluctuations
through chaos23,24. For electronic or charge transport, it
seems quite natural to investigate the interplay between
classical dynamics and quantum characteristics as, in this
context, a classical-quantum correspondence exists.
Spin is a relativistic quantum characteristic with no

classical counterpart. Intuitively, there is no direct classi-
cal correspondence to spin transport. A question is then:
is it meaningful to study the interplay between classical
dynamics and spin transport? The answer is affirmative,
thanks to Rashba spin-orbit coupling25–31—a relativistic
type of interaction of a particle’s spin with its orbital
motion inside a potential. Because the orbital motion in
general has a classical correspondence, the nature of the
classical dynamics can affect spin transport.
Depending on whether the injected electrons are spin

unpolarized or polarized, chaos can have a characteristi-
cally distinct effect on spin polarization. To explain these
results, we consider a two dimensional system. In partic-
ular, for unpolarized injection, if the system is invariant
under the symmetric operation r ↔ −r, where r is the
position vector in the (x, y) plane, the z-component of
spin polarization must be zero32. From the semiclassical
point of view, if initially electrons are spin-unpolarized,
the precession caused by spin-orbit coupling of an elec-
tron with spin P is opposite to that of an electron with
spin −P . As a result, at any time the spins of the two
electrons are in exactly opposite directions and thus can-
cel each other completely, giving rise to zero total spin
polarization. Quantum mechanically, there can be resid-
uals of the x or y component of spin polarization. In
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this case, classical chaos or edge roughness of the un-
derlying quantum confinement structure can reduce the
cancellation of the spin of the pair of electrons with initial
opposite spins, leading to an enhancement in the residual
polarization33,34.

For spin polarized injection, a related phenomenon is
that, classical chaos can preserve the polarization35. In
particular, in Ref. [35], the authors investigated spin re-
laxation in two-dimensional electron systems with an an-
tidot structure through Monte Carlo simulations in the
semiclassical regime, in which the electron motion can
be mapped to that in a closed quantum confinement with
the geometry of a chaotic billiard with the degree of chaos
determined by the geometric parameters. It was found
that chaos can suppress the relaxation of spin polariza-
tion by increasing the relaxation time or, for a given re-
laxation time, strengthening the amount of spin polar-
ization. However, there are circumstances under which
chaos can play the opposite role to suppress spin po-
larization. For example, path-integral based simulations
of spin evolution controlled by Rashba spin-orbit interac-
tion in the semiclassical regime for chaotic and integrable
(circular) quantum confinements revealed36 that chaos
can make the spin polarization approach zero. However,
classically integrable dynamics can lead to a constant,
non-zero residual polarization value - a result confirmed
by a full quantum analysis.

Most previous works focused on closed systems in the
semiclassical regime35,36. The purpose of this paper is
to carry out full quantum computations and analysis of
spin transport in open quantum dot systems. Our focus
is on spin polarized injection and the effect of classical
chaos on quantum spin transport in 2D mesoscale quan-
tum dots. To be comprehensive, we consider four types
of quantum dots that exhibit different degree of chaos in
the classical limit. In each case, polarized spin current
is injected into the left side of the dot. We use the spin-
resolved Usuki recursive scattering matrix method37–39

to calculate and analyze the transport through the dot
region with Rashba spin-orbit coupling. The calculation
gives the degree of spin polarization at the right side
and the spin-resolved Fano factor of shot noise. As the
system changes from being integrable to mixed and be-
comes fully chaotic in the classical limit, the Fano factor
increases systematically, indicating a stronger degree of
mixing of different transmitting channels. For spin po-
larization, there are two distinct cases: the characteris-
tic spin-orbit interaction length is much larger than or
comparable/smaller than the device size, corresponding
to the weak or strong coupling regime, respectively. In
the weak coupling regime, chaos is beneficial to preserv-
ing spin polarization, but in the strong coupling regime,
chaos will diminish spin polarization. We provide a phys-
ical understanding of these phenomena through analyz-
ing the semiclassical spin precession along the classical
orbits. In particular, the generic difference between an
integrable/mixed and a chaotic system is that the former
has stable periodic orbits while for the latter, all periodic

orbits are unstable and are scattered in phase space, so
that the direction of spin polarization vector can change
in a random manner. In the weak coupling regime, for
an integrable or mixed system, a trajectory reflects from
the boundary in a regular way, so spin polarization tends
to be weakened systematically. For a chaotic system,
while the spin polarization vector changes randomly, the
amplitude of the change is small, mimicking a small step
random walk. On average, after many reflections (walks),
spin polarization can be preserved. In the strong coupling
regime, for an integrable/mixed system, spin polarization
tends to vary in a regular manner: it decreases to zero
and then increases in the opposite direction, and so on.
For a chaotic system, as the magnitude of the change in
spin polarization vector is larger, the randomness in the
rotating axis deteriorates the vector quickly, especially
when there are multi-transmitting channels, leading to
destruction of spin polarization.
In Sec. II, we describe the device model and provide

formulas for quantities such as spin-resolved transmis-
sion, spin polarization vector, and the Fano factor char-
acterizing the shot noise of the system. In Sec.III, we
present results on the effect of chaos on spin transport.
In Sec. IV, we provide a semiclassical explanation of
the main results based on examining and comparing the
structure of the Poincaré section of the classical trajecto-
ries for different types of classical dynamics. A discussion
is presented in Sec. V.

II. SPIN TRANSPORT IN TWO DIMENSIONS

Figure 1 illustrates a general two-terminal spin trans-
port system, which consists of a left lead, a Rashba spin-
orbit coupling region (or cavity), and a right lead. The
Rashba spin-orbit interaction is induced by an external
electric field ERashba in the cavity region. The electron
in the cavity is confined by an electric potential that is
infinite outside but vanishes inside the cavity and the
lead region. The boundary of the cavity can be chosen
to generate integrable, mixed, or chaotic dynamics in the
classical limit. Polarized electrons with spin polarization
Pinject = (0, 0, 1) are injected from the left lead into the
cavity40,41. They undergo scattering inside the cavity
and finally exit from the right lead with spin polariza-
tion Pdetect = (Px, Py, Pz). In general, both Rashba cou-
pling and the geometrical shape of the cavity can affect
the electron motion, with the corresponding Hamiltonian
given by

Ĥ =
p̂2

2m∗
σ0 +

α

~
· (σ̂ × p̂), (1)

where σ0 is the 2 × 2 unit matrix, σ̂ = (σx, σy) are the
Pauli matrices, m∗ is the electron’s effective mass inside
the cavity, α = [~/(2m∗c)2]∇U = −[~/(2m∗c)2]ERashba

characterizes the strength of Rashba spin-orbit coupling,
which can be obtained42 by expanding the Dirac equa-
tion in terms of v/c. For a given Fermi energy, the wave-
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function inside the ideal leads attached to both sides of
the cavity can be expressed as a linear combination of
the spin-polarized conducting channels |nσ〉 = |n〉 ⊗ |σ〉,
with n and σ being the channel and spin indices, respec-
tively. For an incoming state with certain channel and
spin indices, the outgoing state can be expanded by |nσ〉
of the right lead, i.e.,

|in〉 = |n〉 ⊗ |σ〉, (2)

|out〉 =
∑

n′,σ′

tn′n,σ′σ|n
′〉 ⊗ |σ′〉. (3)

The square modulus of the expansion coefficients tn′n,σ′σ

gives the probability for a spin-σ incoming channel |n〉
from the left lead to scatter into a spin-σ′ channel |n′〉
state in the right lead. We denote tσ′σ as the scattering
matrix of all orbital channels from the spin-σ state in
the left lead to the spin-σ′ state in the right lead, whose
dimension is determined by the total number of the con-
ducting channels. In particular, tσ′σ can be calculated
from the Green’s function formalism40,41.

FIG. 1. Schematic illustration of spin transport in two

dimensions. The Rashba spin-orbit coupling (SOC) is in-
duced by an external electrical field ERashba in the SOC re-
gion.

We focus on calculating the physical quantities that
are important to characterizing spin transport, such as
the spin-resolved transmission coefficient T σ′σ, the spin
polarization vector P σ, and the spin-resolved shot noise
characterized by the Fano factor F . For simplicity,
throughout the work we assume polarized injection with
σ = ↑ at the contact with the left lead. Omitting the
index σ and writing P σ as P would thus lead to no con-
fusion.
Spin-resolved transmission. With the outgoing state

Eq. (3), we obtain the spin-resolved transmission coeffi-
cients as

T σ′σ = Tr(tσ′σt
†
σ′σ), σ, σ′ = ↑, ↓, (4)

which describes the transmission of the spin-σ incom-
ing wave through the cavity and being detected as the
spin-σ′ wave in the right lead. At low temperature,
the spin-resolved conductance can be obtained via the
Landauer-Büttiker formula43: Gσ′σ = (2e2/h)T σ′σ. The
total transmission is the sum of transmission for both
spins, i.e., T =

∑

σ′ T σ′σ.

Spin polarization vector. The spin polarization vector
is defined as 40,41,44 the average of the Pauli operator
P = 〈σ̂〉. It is necessary to normalize the outgoing state
with the normalization constant

√

∑

σ′

Tr(tσ′σt
†
σ′σ) =

√

Tr(t↑σt
†
↑σ) + Tr(t↓σt

†
↓σ).

We have

|out〉 =
∑

n′,σ′

tn′n,σ′σ
√

∑

σ′ Tr(tσ′σt
†
σ′σ)

|n′〉 ⊗ |σ′〉. (5)

The spin polarization vector taking into account all in-
jecting channels is given by40,

P =
∑

n

〈out|σ̂|out〉

=

∑

σ′σ′′ Tr(tσ′σt
†
σ′′σ)〈σ

′|σ̂|σ′′〉

Tr(t↑σt
†
↑σ) + Tr(t↓σt

†
↓σ)

. (6)

This result has the same form as that in Ref. [40], which
was obtained through the spin density matrix. Note that
|P | = 1 indicates a pure state, while |P | < 1 specifies a
mixed state as a result of loss of spin coherence into the
environment.
Since the spin for the incoming state is assumed to be

σ = ↑, the three components of P can be obtained from
Eq. (6) as

Px =
2Re[Tr(t↓↑t

†
↑↑)]

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

, (7a)

Py =
2 Im[Tr(t↓↑t

†
↑↑)]

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

, (7b)

Pz =
Tr(t↑↑t

†
↑↑)− Tr(t↓↑t

†
↓↑)

Tr(t↑↑t
†
↑↑) + Tr(t↓↑t

†
↓↑)

. (7c)

For the incoming wave, we have Pz = 1. Our goal is to
assess the value of Pz after scattering from the cavity.
Spin-resolved shot noise. Quantum transmission is

related with the current through the system. The shot
noise characterizes the current’s fluctuation-correlation
function, which can be an indicator of the randomness
of the system47–50 and can be measured in experiments
with apparatus as described in Ref. [50]. At low temper-
atures and on the mesoscopic scale, the electron’s mean
free path can be larger than the system size, making the
conductor phase coherent. The origin and the meaning of
shot noise for phase-coherent transport system has been
explained in Refs. [47–50]. Specifically, in general the
quantum states are occupied by particles in a probabilis-
tic sense as characterized, e.g., by the transmission prob-
ability (coefficient) from the incoming to the outgoing
channels51. Shot noise originates from the fluctuations
of the particles. When spin is not taken into consider-
ation, the scattering theory of quantum transport can
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FIG. 2. Four cavities investigated in this paper and their spin polarization. (a-d) Cavities I to IV in the order of
an increasing degree of classical chaos, respectively. All structures have the same width of 0.24 µm and, for a given Fermi
energy, the leads permit the same number of transmitting modes. (a) A ribbon with integrable classical dynamics, where the
length of the SOC region is 1 µm. (b) A cosine billiard with mixed dynamics of length L = 1.33 µm. The upper boundary is
given by45 y = W + (M/2) [1− cos (2πx/L)] with M/L = 0.11 and W/L = 0.18. (c) A cosine billiard with chaotic dynamics
for L = 0.67 µm, M/L = 0.22, and W/L = 0.36. (d) A chaotic cavity46 with its upper boundary being made up of an arc
of radius R = 0.38 µm and another arc of radius r = 0.2 µm. The lower boundary is a section of arc of radius r = 0.2 µm.
The length of the cavity is 1 µm. (e-h) Contour plots of Pz in the parameter plane of Fermi energy Ef and SOC strength tso
(both in units of t0, the hopping energy between neighboring lattice sites). The triangles mark the positions of the tso such
that Lso = π/(2tso) = ∞, 4L, L,L/2, which are investigated further in Fig. 3.

be used to obtain47–50 the following formula for the shot
noise power in terms of the transmission eigenvalues:

S =
4e3V

h

∑

n

Tn(1− Tn),

where Tn are the eigenvalues of the transmission ma-
trix tt

† and V is the applied voltage in the longitudinal
(transport) direction. When spin is taken into account,
shot noise for spin-resolved transport process can be ob-
tained40 similar to that of the spin polarization vector for
the setup σ =↑. More specifically, the four components
of shot noise are

S↑↑ =
2e3V

h
[Tr(t↑↑t

†
↑↑) + Tr(t↑↑t

†
↑↑t↑↑t

†
↑↑)], (8a)

S↓↓ =
2e3V

h
[Tr(t↓↑t

†
↓↑) + Tr(t↓↑t

†
↓↑t↓↑t

†
↓↑)], (8b)

S↑↓ = −
2e3V

h
Tr(t↓↑t

†
↑↑t↑↑t

†
↓↑), (8c)

S↓↑ = −
2e3V

h
Tr(t↑↑t

†
↓↑t↓↑t

†
↑↑). (8d)

The spin-resolved current induced by the incoming spin
up electrons is40

Iσ =
2e2V

h
Tr(tσ↑t

†
σ↑), σ = ↑, ↓ . (9)

The Fano factor, by its definition F = S/(2eI), can also
be obtained in a spin-resolved manner as

F ↑→↑ =
S↑↑

2eI↑
, (10a)

F ↑→↓ =
S↓↓

2eI↓
, (10b)

F ↑→↑↓ =
S

2eI
, (10c)

where I = I↑ + I↓, and S = S↑↑ + S↑↓ + S↓↑ + S↓↓.
For convenience, we denote F ↑→↑↓ as F . The value of
the Fano factor lies in the range [0, 1]41, where a larger
value of F indicates a stronger degree of randomness in
channel mixing51–53. For completely stochastic motion,
we have F = 1, and the corresponding shot noise of this
case is Poisson48,49. For F → 0, the electron motions
are deterministic50–55. In general, the value of the Fano
factor is an indicator of the quantum randomness in the
current that coincides with the degree of classical chaos
of the system51–53.

III. RESULTS

We employ the Usuki recursive scattering matrix tech-
nique37 to calculate the three characterizing quantities
described in Sec. II. The characteristic length scale as-
sociated with spin transport is the distance required for
spin to flip in the semiclassical regime, which is the so-
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FIG. 3. Characterization of spin transport through the four different types of cavities. Total transmission T =
T ↑↑ + T ↓↑ (upper row), charge Fano factor F ≡ F ↑→↑↓ [Eq. (10c)] for the total spin-resolved current (middle row), and
the spin polarization Pz (bottom row) versus the normalized Fermi energy. The four columns from left to right correspond to
Lso = ∞, 4L, L, L/2, respectively. The notions I-IV indicate the four cavities in Fig. 2. For F and Pz, a sliding window average
is used with the window size ∆ = 0.0464t0 . For Ef − 0.016t0 < ∆/2, the average is over the interval [0.016t0, 2Ef − 0.016t0].

called spin-orbit length40,41,56 defined as

Lso = π~2/(2m∗α) = πat0/(2tso),

where a is the lattice constant and t0 = ~
2/(2m∗a2) is

the hopping energy between two neighboring sites. In
the units of a = ~ = 2m∗ = 1, we have t0 = 1, so
Lso = π/(2tso).
Figures 2(a-d) show the four cavities that we study,

which are denoted as cavities I-IV, respectively. The
classical dynamics for cavity I and II are integrable and
mixed, respectively, while those of cavities III and IV
are fully chaotic. It has been noted that with spin-orbit
interactions only circular billiard is integrable57,58, but
in our case, integrable or chaos are referred to the cor-
responding classical dynamics only. Since it is assumed
that the orbital motion is not affected by spin, the or-
bital motion is purely determined by the classical trajec-
tories33–36, and the cavity shape determines the classical
integrability of the system. For the purpose of compar-
ison, the leads attached to the cavities in all cases have
the same width so that, for a given energy, there are an
equal number of transmitting modes in the lead. Fig-
ures 2(e-h) present the contour plots of spin polarization
Pz in the parameter plane of Fermi energy Ef and spin-
orbit coupling strength tso, for the cavities in Figs. 2(a-
d), respectively. For relatively small values of tso, Pz

varies periodically with tso. However, as the value of tso
becomes larger, the periodic behavior disappears due to
the phenomenon of spin subband mixing59. Our compu-
tations reveal that transmission and shot noise exhibit a
similar pattern as the value of tso is increased from zero,
which has also been observed in previous works59,60. We
note that, as the classical dynamics become increasingly
chaotic [Figs. 2(e) to Figs. 2(h), the periodic pattern of

Pz versus tso becomes progressively degraded. Another
feature is that, as Ef is increased, Pz exhibits vertical
line patterns, which can be seen clearly from Fig. 2(e).
This is due to the abrupt changes in the number of trans-
mitting modes as Ef is increased, i.e., from one to two,
to three, and to four. There are many more vertical lines
in (f) due to the localized states about the stable periodic
orbits in cavity II with mixed dynamics in the classical
limit. The nearly vertical curves in Figs. 2(g,h) are also
due to the localized states but, because of the absence of
stable periodic orbits in a chaotic cavity, these states are
much weaker than those in the mixed cavity, resulting in
much smoother variations of Pz with Ef .

It is insightful to examine the details of the depen-
dence of the total transmission, the Fano factor of the
total current, and the spin polarization Pz on the Fermi
energy Ef for some specific values of tso, as marked by
the four triangles in each of Figs. 2(e-h), corresponding
to Lso = π/(2tso) = ∞, 4L, L, L/2, where there is ab-
sence of spin precession, π/4 precession for the ribbon,
up to down spin flip, up to down and then back to up
spin flip, respectively. The results for the four cases are
shown in Fig. 3.

For the ribbon, the total transmission is a step function
versus the Fermi energy, corresponding to the number of
allowed transmitting modes, where the first transmitting
mode emerges at the Fermi energy 0.016t0, below which
there are no transmitting modes and the total transmis-
sion is zero. As the spin-orbit coupling becomes stronger
[Figs. 3(c,d)], the total transmission exhibits small os-
cillations after jumps, which is similar to what happens
when a magnetic field is present. As the cavity becomes
increasingly chaotic in the classical limit (from I to IV),
random scattering becomes more severe, leading to de-
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FIG. 4. Averaged spin polarization over the Fermi

energy versus the spin-orbit coupling strength. (a-
d) Averaged polarization 〈Pz〉Ef

versus tso for four different
ranges of energy averaging: [0.016, 0.0624], [0.0632, 0.140],
[0.1408, 0.2472], [0.248, 0.3816], respectively, corresponding
to one to four transmission modes. The spin-orbit coupling
strength tso is normalized by t̃so, the strength value that flips
the electron spin from up to down as it travels from the left to
the right lead through the cavity. The t̃so values are marked
by the third triangles (red) from the bottom in Fig. 2 for
different cavities.

graded transmission. The four curves for the transmis-
sion in Figs. 3(a-d) from top to down are for cavities I
to IV, respectively. For mixed classical dynamics (cav-
ity II), due to the recurrence of the strongly localized
states about the stable periodic orbits, the transmission
exhibits repeated oscillations as Ef is varied. For the
chaotic cavities (III and IV), the transmission becomes
irregular.
Figures 3(e-h) show that, as the cavity becomes more

chaotic, the Fano factor of the total current takes on
larger values, indicating a stronger degree of randomness
associated with channel mixing of the current53,55. The
Fano factor is thus a quantity capable of revealing faithful
quantum manifestations of classical chaos51–55. We find
that these results are insensitive to the specific values of
tso or Lso, as the qualitative behaviors are essentially the
same for different tso values.
Figures 3(i-l) show the spin polarization Pz versus the

Fermi energy. For Lso = ∞ or tso = 0 [Fig. 3(i)], there is
no change in spin, leading to Pz = 1 (independent of the
Fermi energy) for all cavities. For Lso = 4L [Fig. 3(j)], Pz

decreases slightly. From the magnifying inset, we see a
more dramatic decrease in the value of Pz for the ribbon
than for that the chaotic cavities, indicating that classical
chaos helps to preserve the spin polarization. As the spin-
orbit coupling is strengthened further, e.g., for Lso = L
[Fig. 3(k)], spin flips begin to occur. For the ribbon, Pz

can reach the value of −1. However, as the cavity be-
comes more chaotic, Pz approaches zero, demonstrating
the destructive effects of chaos on spin polarization. For
Lso = L/2 [Fig. 3(l)], spin flips to the up state again, i.e.,
Pz > 0. In this case, Pz exhibits a decreasing trend from
ribbon to mixed and then to chaotic cavities, signifying
again the destructive role of chaos in spin polarization.
To characterize the effects of chaos on spin polarization

more quantitatively, we average Pz in the energy range
with certain number of transmitting modes. Figures 4(a-
d) show the average spin polarization 〈Pz〉Ef

versus tso
for the energy range with one to four transmitting modes,
respectively. In all panels, 〈Pz〉Ef

oscillates periodically
with tso but with a decreasing amplitude, which can be
attributed to channel mixing in the regime of strong
spin-orbit coupling. Figures 4(a-d) reveal two distinct
regimes of tso: tso/t̃so ≤ 1/2 (Lso ≥ 2L) and tso/t̃so ≥ 1
(Lso ≤ L). For tso/t̃so < 1/2, 〈Pz〉Ef

decreases from
unity and the fastest decay occurs for the ribbon (cavity
I). As the cavity becomes increasingly chaotic, the decay
of 〈Pz〉Ef

becomes slower, and the slowest decay occurs

for cavity IV. For tso/t̃so = 1/2, we have 〈Pz〉Ef
= 0 for

the ribbon, while the value of 〈Pz〉Ef
is still finite for the

chaotic cavities. We can conclude that, in this regime
(e.g., Lso = 4L or tso/t̃so = 1/4 as in Fig. 3), chaos is
beneficial to preserving spin polarization. Beyond this
regime, the value of 〈Pz〉Ef

gets close to −1 for the rib-

bon as tso/t̃so approaches one (the case Lso = L). For
the other cavities, although 〈Pz〉Ef

attains a minimum
value, the value of |〈Pz〉Ef

| is typically smaller than one
and closer to zero for a more chaotic cavity. For example,
for cavity IV, the value of 〈Pz〉Ef

approaches the value of
approximately −0.5. In these cases, chaos is detrimental
to spin polarization. This feature persists for tso/t̃so ≥ 1,
e.g., Lso = L/2 (corresponding to tso/t̃so = 2) in Fig. 3.

IV. SEMICLASSICAL THEORY

Our full quantum computations have revealed that,
for polarized injection, depending on the relative scale
of the characteristic spin-orbit interaction length, clas-
sical chaos can either preserve or destroy quantum spin
polarization. Here we present a semiclassical theory to
explain these results. The starting point is to rewrite the
Hamiltonian in (1) as1,61

Ĥ =
p̂2

2m∗
σ0 +

~

2
σ̂ · Ω̂, (11)

where Ω̂ = −(2/~2)α × p̂. The Hamiltonian is valid for
electron inside the cavity, subject to Rashba spin-orbit
interaction. The equation of time evolution of the spin
polarization vector P = 〈σ̂〉 is given by1,61

d

dt
〈σ̂〉 =

1

i~
〈[σ̂, Ĥ]〉 = 〈Ω̂× σ̂〉. (12)

For this system, the two observables {p̂, σ̂} form a com-
plete set. The quantum state |ψ〉 of the system can then
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be chosen as the eigenstate of both p̂ and σ̂. We thus
have 〈p̂〉 = p, 〈Ω̂〉 = Ω = −(2/~2)α × p and 〈σ̂〉 = P .
With these expressions, Eq. (12) can be further simplified
as1,61

d

dt
P = Ω× P , (13)

which describes the rotational motion of the polarization
vector P about Ω, with |Ω| being the angular velocity of
P .

Semiclassically, an electron moves freely in the cavity
and reflects at the boundary, so the trajectory consists
of straight line segments. For each segment, Ω is a con-
stant, for which Eq. (13) can be solved analytically. In
particular, let P and P ′ be the polarization vectors at
the beginning and end of a straight trajectory segment,
respectively. The two vectors are connected through a
rotation matrix as

P ′ = R(γ, ϕ)P , (14)

where the matrix is given by

R(γ, ϕ) =





cosϕ+ (1− cosϕ) sin2 γ − sin γ cos γ(1− cosϕ) − cosγ sinϕ
− sin γ cos γ(1− cosϕ) cosϕ+ (1− cosϕ) cos2 γ − sin γ sinϕ

cos γ sinϕ sin γ sinϕ cosϕ



 .

ϕ is the rotated angle. The axis of rotation is deter-
mined by γ: for momentum p = p(cos γ, sin γ, 0), we
have Ω = −(2/~2)α × p = [(2αp)/~2]n, where α =
−[~/(2m∗c)2]ERashba is the Rashba spin-orbit coupling
strength pointing to the z direction, n is a unit vector
perpendicular to the plane spanned by α and p, thus the
rotation axis is given by n = (sin γ,− cosγ, 0). Since

dϕ = Ωdt = −
2m∗

~2
α× dr, (15)

and because α is a constant, dr is along the line segment.
We thus have ϕ = (2m∗α/~2)s, where s is the distance
that the electron travels through62. For s = Lso, we

have ϕ = π. After n reflections at the boundary, the
final polarization vector is related to the initial one by
Pf = Rn · · · · · R1 ·Pi.
For different types of classical dynamics, the trajec-

tories can be characteristically distinct. For example,
for the ribbon, the trajectory segments have two direc-
tions only and the trajectory takes these directions al-
ternatively during evolution: γ0, −γ0, γ0, . . ., where γ0
is the initial angle with the x axis. The rotated angle
for each line segment is ϕ0 = 2m∗αM/[~2 sin (γ0)]. De-
noting R0 = R(γ0, ϕ0) and R1 = R(−γ0, ϕ0), we have
Pf = · · · ·R1 ·R0 ·R1 ·R0 ·Pi. We thus have the following
approximate expressions for the spin polarization vector
as it propagates along the x-axis:

Px(x) = − cos

(

πM

2Lso

)

sin

[

(1 + ω1)
π

Lso

x

]

, (16a)

Py(x) = − sin

(

πM

2Lso

)

cos

(

πM

2Lso

){

1− cos

[

(1 + ω1)
π

Lso

x

]

cos

[

(1 + ω2)
π

M cot γ
x

]}

, (16b)

Pz(x) = cos2
(

πM

2Lso

)

cos

[

(1 + ω1)
π

Lso

x

]

+ sin2
(

πM

2Lso

)

cos

[

(1 + ω2)
π

M cotγ
x

]

. (16c)

where the values of ω1 and ω2 depend on the param-
eters of the system. Figures 5(a,b) show, for ω1 =
−2.065M cot γ0/L, and ω2 = −0.001ω1, Pz versus x and
the evolution of the whole spin polarization vector, re-
spectively. The initial spin polarization is Pi = [0, 0, 1]T .
The symbols are the numerically calculated values of spin
polarization from Eq. (14), while the curves represent the
theoretical prediction from Eq. (16). There is good agree-
ment between theory and numerics. Different choices of
the parameters M and L will lead to different values of

ω1 and ω2, but Eq. (16) still holds.

For mixed or chaotic classical dynamics, due to the
variations of the rotating axis and angle, analytic ex-
pressions similar to Eq. (16) cannot be obtained. Never-
theless, it is feasible to calculate the classical phase space
and examine how a typical trajectory behaves. In partic-
ular, we can trace the trajectory and calculate the cor-
responding spin polarization vector to gain insights into
their relation, so as to assess the influence of the classical
dynamics on the evolution of the spin polarization vec-
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FIG. 5. Spin polarization and evolution of polarization

vector for the integrable cavity. For the ribbon (cavity
I), (a) Pz versus x, for spin-orbit coupling strength Lso = L.
Symbols are numerical results from Eq. (14), while the light
blue oscillatory curve is from theory [Eq. (16)]. (b) A tra-
jectory of the spin polarization vector in the P space, where
up and down triangles are for reflections from the upper and
lower boundary, respectively.

tor in terms of the distinct behaviors of the trajectories.
Representative results are shown in Fig. 6. The left col-
umn is for the mixed case (cavity II), where a dominant
KAM island is apparent in the phase space [Fig. 6(a)].
A typical trajectory is located around the KAM island,
i.e., the trajectory stays close to the periodic orbit for a
substantially long time due to the stickiness effect of the
KAM island64–68. As a result, the reflection angle and the
segment length between two successive reflections vary in
an ordered manner, similar to the behaviors in an inte-
grable cavity. Since the reflection angle and the segment
length are uniquely determined by the axis angle γ and
the angle of rotation ϕ in Eq. (14), the corresponding
spin polarization Pz varies in a way similar to that for
the ribbon, as shown in Figs. 6(b,c), in spite of the many
bounces back and forth in the x direction. For the chaotic
cavity (III), there are no KAM tori and the phase space
is filled with chaotic sea, as shown in Fig. 6(d). A typi-
cal trajectory bounces randomly with large variations in
the reflection angle and the segment length, leading to
drastic changes in the rotating axis.

For weak spin-orbit coupling, e.g., Lso = 4L, the ro-
tating angle ϕ is small. For the chaotic case, due to the
stochastic variations in the rotating axis angle γ, the evo-
lution of the spin polarization vector mimics a random
walk about its starting point, leading to an appreciable
value of Pz higher than the values for the integrable or
mixed cavities, as shown in Figs. 6(b,e). For strong spin-
orbit coupling, e.g., Lso = L, after the electron passes
through the Rashba region, the value of Pz is close to
−1 for the integrable and mixed cavities [Fig. 5(a) and
Fig. 6(c), respectively]. However, for the chaotic cavity,
Pz varies drastically, as shown in Fig. 6(f), leading to a
deteriorated output spin polarization on average.

FIG. 6. Spin polarization and evolution of polarization

vector for cavities with mixed and chaotic dynamics.
(a,d) Phase space trajectories, i.e., the reflection angle versus
the position of reflection at the lower boundary, for the cosine
cavity with mixed (cavity II) and chaotic dynamics (cavity
III), respectively. Only trajectories starting from the left lead
are considered. The crosses are for a typical trajectory63. A
dominant KAM island at (x, θ) = (0.5, π/2) is present in (a).
(b,e) Pz versus x for the trajectories shown in (a,d), respec-
tively. The spin-orbit coupling strength is such that Lso = 4L.
(c,f) Pz versus x for the same trajectories but with Lso = L.
The two curves in (c) are the envelope lines similar to that in
Fig. 5(a). Up and down triangles are for trajectory’s reflect-
ing from the upper and lower boundary, respectively. The two
solid red right triangles mark the values of the incoming and
outgoing Pz at x = 0 and x = L, respectively.

V. DISCUSSION AND CONCLUSION

Fundamentally, spin is a relativistic quantum degree
of freedom, for which a classical correspondence does
not exist. Nonetheless, spin-orbit interactions provide
an avenue through which classical dynamics are able to
manifest themselves in the characteristics and evolution
of spin. In particular, for billiards with Rashba spin-
orbit interactions, previous works have investigated con-
ductance fluctuations69,70, statistical properties of wave
functions71,72, the effects to weak localization and weak
antilocalization73, and other characteristics in the gen-
eral context of quantum chaos74–76. In a general sense,
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to study the effects of distinct types of classical dynamics
including chaos on spin belongs to the field of relativistic
quantum chaos77,78. Concerning only the impact of clas-
sical chaos on spin behaviors, there have been previous
works on closed systems but with seemingly contradict-
ing conclusions: situations were identified where chaos
preserves or enhances spin polarization35, but there are
also circumstances under which chaos plays the opposite
role of deteriorating the polarization36.
In this paper, we present results from a systematic

study of the effects of classical chaos on spin transport.
We focus on spin transport in 2D quantum dot systems
with Rashba spin-orbit interaction and investigate sys-
tematically the effects of classically integrable, mixed,
and chaotic dynamics on spin polarization. For a given
dot structure with a specific class of classical dynam-
ics, we assume that spin polarized electrons are injected
into the system and carry out full quantum computations
to obtain an exact picture of how the spin polarization
evolves during the transport through the dot. To gain
insights, we also develop a semiclassical theory to obtain
a physical understanding of the phenomena revealed by
the quantum calculations. This should be contrast to
previous works that were based mainly on the semiclas-
sical approach35,36. We find that classical chaos has a
clear signature in the Fano factor for spin-resolved quan-
tum transport. Strikingly, in the weak spin-orbit cou-
pling regime where the characteristic interaction length
is relatively large, classical chaos is beneficial to preserv-
ing spin polarization, but in the strong coupling regime,
chaos can suppress or even destroy the polarization.
Conceptually, in the weak coupling regime, the dy-

namics of spin polarization are described by those of a
damped oscillator. For classically integrable dynamics,
the oscillations are regular with small damping effects.
As the classical dynamics become increasingly chaotic,
damping becomes significant. For any oscillation period,
in the first quarter, spin polarization for the integrable
dot decreases rapidly to zero, while that for the chaotic
system decreases much more slowly, giving rise to the
counterintuitive phenomenon of chaos-assisted spin po-
larization preservation. In the strong spin-orbit coupling
regime with characteristic length smaller than the size of
the interacting region, chaos is detrimental to spin po-
larization. An implication is that, for a given strength of
spin-orbit interaction, chaos in a relatively small quan-

tum dot system can preserve spin polarization, but the
opposite occurs in a larger system.

Our computations and analysis provide a natural un-
derstanding of the seemingly contradicting results re-
ported previously in the literature. For example, in
Ref. [35], the parameters are such that the character-
istic spin-orbit length is much larger than the scale of
the quantum dot (anti-dot). Semiclassically, the angle
of spin rotation per scattering event or collision is small.
From the point of view of ensemble average, chaos can
suppress the overall spin drift and help maintain the spin
polarization. The phenomenon reported in Ref. [36] has
a similar origin. However, when the characteristic spin-
orbit length is comparable to or even smaller than the
system size, spin polarization depends primarily on the
classical periodic orbits36. For a chaotic dot system, the
periodic orbits are unstable, which accelerates relaxation
of spin polarization.

We have also examined graphene quantum dots with
the same cavity structures and found essentially the same
results. Our results have broad applications in develop-
ing devices where robust maintenance of spin polariza-
tion is required. This is because chaos plays the same
role as disorder or edge roughness in an experimental
setup to provide randomness in transport through quan-
tum dots. In particular, as smaller systems are becoming
increasingly experimentally accessible and are exploited
for device applications, our results indicate that when
the system is smaller than the characteristic spin-orbit
length, disorders or edge roughness can be beneficial to
maintaining spin polarization.
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