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The electric field of high-intensity ultrashort laser pulses substantially perturbs electron sub-
system of a crystal and affects its band structure. Laser-driven oscillations of electrons and holes
are frequently referred to as a major mechanism of the perturbation in dielectrics and semicon-
ductors. New physical effects arise when the band structure is modified by an ultrashort pulse of
the oscillations driven by a few-cycle laser pulse. Assuming the laser-pulse envelope varies slowly
compared to the carrier frequency, we derive analytical relations for the laser-modified band struc-
ture by utilizing the Keldysh cycle-averaged non-perturbative approach under the approximation
of constant effective mass. Formation of indirect-gap transient bands, suppression of the nonlinear
absorption on the leading edge of a laser pulse, and cycle-averaged photo-current generation driven
by the pulse envelope are predicted. Analytical scaling with six laser and material parameters is
obtained. The reported results establish the limits of validity of the Keldysh photoionization model
and advance understanding of the fundamental effects involved in high-intensity ultrafast laser-solid
interactions.

PACS numbers: 71.20.-b; 78.47.J- ; 78.20.-e.

I. INTRODUCTION

Ultrafast laser interaction with electron sub-system of
non-metal solids has been under intensive studies for sev-
eral decades [1–45]. The strong interest to that field re-
sults from the fundamental fact: the laser-electron inter-
action and energy deposition into the electron sub-system
substantially contribute to all high-intensity ultrafast
laser interactions with wide-band-gap crystals, e.g., laser
ablation [1–8], laser-induced damage [7–15], excitation
of transient optical response [16–18], direct writing of
nanostructures [19, 20], and ultrafast nonlinear propaga-
tion [21–24]. A recent development of petawatt (PW)
laser systems launched another wave of research activ-
ity in this field [25]. The general approach to reach the
PW domain of laser-pulse power is to reduce pulse width
towards the femtosecond range [25]. Therefore, the elec-
tron sub-system of optical materials of the PW lasers
interacts with the optical radiation of PW peak power
concentrated within femtosecond-long pulse.
Exceptionally high peak irradiance characteristic of

those interactions (that exceeds 10 TW/cm2) is fre-
quently acknowledged as one of the major contributors
to the novel physical effects, e.g., generation of very high
order harmonics (HHG) and ultrafast strong-field laser
effects [26–45]. Corresponding peak value of laser-pulse
electric field E0 is close to or even higher than the char-
acteristic electric field of a crystal lattice ECR = ∆/(d·q)
estimated via band gap ∆, crystal-lattice constant d, and
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electron charge q [46]. Therefore, the laser pulses sig-
nificantly distort the electron sub-system and its energy
spectrum, i.e., band structure, and those distortions can-
not be treated by a regular time-dependent perturbation
theory [47], but require non-perturbative approaches.

Currently, there are two major groups of the non-
perturbative approaches employed to simulate the ul-
trafast laser interaction with electrons of the solids.
The first one brings together various numerical methods
to solve time-dependent quantum-mechanical equations.
The most sophisticated are the ab initio simulations by
direct numerical solving the time-dependent Schrodinger
equation [36–42, 48–53]. Those approaches deliver the
most detailed information on sub-cycle electron dynam-
ics driven by instant electric field of a laser pulse, e.g., in-
stant 3D distribution of electron density. However, they
are time-consuming, effectively treat the dynamics only
over a limited time range (typically about 10-20 femtosec-
onds). Due to that reason, they meet substantial chal-
lenges in the proper implementation of electron-phonon
collisions for realistic 3D crystal structures with multiple
energy bands. To overcome those limitations, reduced or
simplified numerical approaches are utilized, e.g., solving
1D or 2D Schrodinger equation for a truncated set of elec-
tron functions of few energy bands [36–42]; reduction of
the Schrodinger equation to the semiconductor Bloch or
matrix-element equations [29–35]; semi-analytical mod-
els [43, 44], and empirical pseudopotential methods [45].
Although the numerical modeling currently dominates in
theoretical studies of the non-perturbative laser-electron
interactions [29–44, 49–53], it faces substantial challenges
in simulations of scaling with laser and material parame-
ters. Also, those approaches are not employed to simulate
the laser-induced band-structure modification in spite of
that it is one of the most fundamental aspects of the ul-
trafast laser-solid interactions that substantially assists
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in understanding the physics of the interactions.

The other group of the non-perturbative ap-
proaches operates with cycle-averaged electron transi-
tion/excitation rates. Correspondingly, those approaches
consider slow time variations driven by pulse envelope
rather than the sub-cycle dynamics driven by instant
electric field of a laser pulse. They employ the approx-
imation of decoupled inter- and intra-band laser-driven
excitations [1, 2, 4, 5, 7–12, 18–24]. In particular, the
approaches of this group use the Keldysh formula [54] to
evaluate the rate of the field-driven inter-band transitions
that is not coupled to electron-particle collision and intra-
band absorption rates of conduction-band electrons.

Although the models of this group are approximate,
they have several advantages. They provide transparent
interpretation of the experimental data and significantly
assist in identifying specific contributions to the overall
interactions. They deliver analytical scaling of the laser-
induced effects with laser and material parameters due to
the use of analytical formulae for the rates of the electron
excitations [1, 2, 4, 5, 7–12, 18–24]. The analytical mod-
els are a highly supporting complement to the numerical
simulations and are indispensable for qualitative analysis
of the physics of ultrafast high-intensity laser interaction
with quantum systems [55]. In particular, they are piv-
otal tools in studies of the non-trivial influence of band-
structure on the photoionization rate [56–59]. Finally,
the approximate analytical approaches take into account
the laser-induced modification of the energy bands when
evaluating the inter-band excitation rate. In the first ap-
proximation, the band modification is assumed to result
from the ponderomotive energy of intra-band laser-driven
electron oscillations [54, 59].

However, all the electron-transition rates employed
by the analytical approaches are evaluated under
the monochromatic approximation. It implies single-
frequency cosine variations of electric field at constant
amplitude that is in obvious contradiction with realis-
tic time variations of electric field of a laser pulse. The
usual way to overcome this issue is to replace the constant
electric-field amplitude with the slowly varying ampli-
tude of a pulse envelope [1, 2, 4, 5, 7–12, 14–24]. Al-
though this approach raises significant concerns, e.g.,
when the monochromatic Keldysh formula is applied to
laser pulses containing 2-25 cycles [22, 60–62], no analy-
sis has been done so far to determine a range of laser pa-
rameters where such modification of the monochromatic
approximation is valid.

Therefore, there are several significant gaps in the
studies of the ultrafast high-intensity laser interactions
with electrons of the solids for pulse durations from few
cycles to few tens of cycles. In this pulse-width range,
the validity of the simple analytical models is highly
questionable due to the failure of the monochromatic
approximation while the numerical approaches are not
applied because of various reasons. Recently reported
attempts to build analytical non-monochromatic models
either assume low irradiance and the perturbative regime
of the laser-electron interaction [60, 61] or are obtained by

improper modifications of the Keldysh formula [22, 62].
However, exactly this range of pulse widths is of special
significance for various applications, e.g., to support the
development of the PW laser systems.
To fix this gap, we propose to use the Keldysh non-

perturbative approach that serves as a basis for the
Keldysh theory of the photoionization [54]. It assumes
the major perturbation to the electron sub-system of
a solid can be interpreted in terms of laser-driven os-
cillations of electrons and holes [59, 63]. The concept
of the laser-driven electron oscillations in a crystal is
so fundamental and powerful that the recent theoreti-
cal studies of the HHG and strong-field ultrafast solid-
state effects frequently employ it [26–45]. According to
it, energy gaps between electron states involved in the
laser-induced inter-band transitions are modified by the
amount of cycle-averaged ponderomotive energy of the
oscillations [54, 59, 63, 64]. Therefore, modification of
the energy gaps by the laser-driven oscillations can be
interpreted in terms of formation of quasi-energy-bands
obtained by adding the ponderomotive energy to the en-
ergy of the initial energy bands [59, 63].
With those motivations, here we report an analyti-

cal study of the high-intensity femtosecond laser-induced
modifications of energy bands of a wide-band-gap crys-
tal driven by the electron/hole oscillations. The bands of
quasi-energy obtained under the approach described be-
low are referred to as effective or transient bands. In Sec-
tion II we describe the proposed model including a brief
overview of the concept of the laser-driven electron/hole
oscillations (II.1), qualitative analysis of the physics of
the band-structure modifications (II.2), and the major
approximations (II.3). Section III contains analytical re-
lations for the direct-gap energy bands (III.1) and ex-
amples of modeling for Gaussian pulse envelope (III.2).
Section IV discusses the obtained results including the
contributions of different terms of the employed asymp-
totic series (IV.1); scaling with material and laser pa-
rameters (IV.2); other mechanisms of the band-structure
modifications (IV.3); slowly-varying photocurrent (IV.4);
the case of indirect-gap crystals (IV.5); and the impact
of the reported results on the nonlinear absorption in the
wide-band-gap crystals (IV.6). We finish with the major
conclusions in Section V.

II. DESCRIPTION OF THE MODEL

II.1. Laser-driven electron/hole oscillations

Considering femtosecond pulses with the duration be-
low 30 cycles, we neglect the atomic motion that takes
significantly longer time in the crystals [65]. Accordingly,
the only ultrafast distortion of the energy bands during
an immediate laser-pulse action results from the laser-
electron interaction in the crystal. Neglecting Coulomb-
type interactions and applying the single-electron and
dipole approximations [46, 64], one arrives at the follow-
ing time-dependent Schrodinger equation in the length
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gauge to describe the laser-electron interaction [64]:

i~
∂Ψ(~r, t)

∂t
= Ĥ0(~r)Ψ(~r, t)− q ~E(t)~r, (1)

where Ĥ0(~r) is the space-periodic non-perturbed Hamil-
tonian of the crystal. Approximate solutions to Eq. (1)
are given by non-steady Bloch functions [54, 64, 66, 67]:

ψ(~r, t) =uCB(~p[t], ~r)exp

(

i

~
~p[t] · ~r

)

× exp

(

− i

~

t
∫

−∞

εCB(~p[τ ])dτ

)

, (2)

where u(~p,~r) is the amplitude of a steady Bloch function
of the non-perturbed crystal Hamiltonian [46], and time-
dependent electron momentum is expressed via the Bloch
acceleration theorem [46, 64]:

~p(t) = ~p0 − q

t
∫

−∞

~E(τ)dτ, (3)

where p0 = (p0x, p0y, p0z) is an initial value of 3D mo-
mentum. With the proper choice of time dependence
of the electric field, the functions of Eqs. (2) and (3)
have been successfully utilized for the non-perturbative
evaluation of probabilities and rates of various effects,
e.g., in the theory of the Franz-Keldysh effect [67], the
Keldysh photoionization model [54], and studies of the
strong-field ultrafast effects in the semiconductor crys-
tals [39–44]. Below, we employ the approach based on
the non-steady functions of Eq. (2) and propose an inter-
pretation of the band-structure modifications using the
oscillatory interpretation of the non-steady Bloch func-
tions [26–30, 32, 38–44, 59, 63, 68–70].
In this connection, we note that the crystal-momentum

oscillations of Eq. (3) driven by periodic time variations
of the laser-pulse electric field are frequently referred to
as Bloch oscillations [26–30, 32, 38, 39]. However, the
true Bloch oscillations are produced by a dc electric field
E0 and are characterized by two specific features. First,
momentum varies at constant rate [46, 63, 64, 66–70]:

~p(t) = ~p0 − qE0t. (4)

Second, the only physical mechanism of the periodic-
ity of the electron motion is the multiple Bragg-type
reflection of the electron at the edges of a Brillouin
zone [59, 63, 64, 68–70]. Correspondingly, cycle dura-
tion of the Bloch oscillations TBO is determined by the
dc field and dimensions of the Brillouin zone. For ex-
ample, if the field is parallel to a principle crystal axis,
duration of the Bloch cycle reads as follows:

TBO =
2π~

qE0d
, (5)

where d is the crystal-lattice constant along that axis.

In case of the laser-driven electron oscillations, the pe-
riodicity of the electron motion results from the periodic
time-domain variations of the driving ac electric field.
Correspondingly, an electron is accelerated and deceler-
ated at varying rate within a single cycle of the oscilla-
tions. Those oscillations are performed even if the ampli-
tude of the laser-pulse electric field is so small that an os-
cillating electron does not reach the edges of the Brillouin
zone and does not experience the Bragg-type reflections.
At high laser intensity, the oscillating electrons can reach
the edges of the zone and experience the Bragg-type re-
flections. If the duration of an optical cycle T0 at the
carrier frequency is significantly larger than the duration
of the Bloch cycle TBO at peak electric field of the laser
pulse, the intra-band electron dynamics can be repre-
sented as the Bloch oscillations slowly modulated at the
carrier frequency. For example, this is a good approxi-
mation for the THz frequency domain [30]. However, this
is not the case for visible, near- and mid-infrared light,
when an oscillating electron experiences just few Bragg-
type reflections per optical cycle even at peak irradiance
close to damage threshold [26–28]. To avoid confusions,
here we consider the laser-driven oscillations of the elec-
trons and holes driven at the carrier frequency in the
visible, near-infrared or mid-infrared range of the optical
spectrum and do not refer to them as Bloch oscillations.

II.2. Qualitative analysis

The concept of the laser-driven electron and hole oscil-
lations provides a transparent interpretation of the band-
structure modifications. To be specific, we consider an
electron occupying an initial state at the bottom of the
conduction band in the vicinity of the center of the Bril-
louin zone (state A in Fig. 1(a)). When affected by the
electric field of linearly polarized monochromatic radia-
tion, the electron performs intra-band single-frequency
oscillations according to Eq. (3). Amplitude of electron
departures from the initial state qE0/ω0 is of the same
value for each half of each oscillation cycle (lower part
of Fig. 1(a), blue dash-dotted cosine line), and the two
ultimate states B and C reached by the electron at max-
imum departures are symmetrically located on the oppo-
site sides of the Brillouin zone and the conduction band
(Fig. 1(a)). The energy of the oscillating electron in-
creases by the amount of average oscillation energy, i.e.,
ponderomotive energy Up0:

Up0 =
q2E2

0

4mCBω2
0

, (6)

where mCB is effective conduction-band mass, and E0

stays for the amplitude of the time-dependent laser-pulse
electric field. Under the approximation of constant effec-
tive mass, the energy of all oscillating conduction-band
electrons increases by the same amount given by Eq. (6).
It results in a homogeneous distribution of the pondero-
motive energy over the Brillouin zone. Correspondingly,
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FIG. 1. (a) Time variations of electron momentum due to
the laser-driven oscillations (lower part) and associated mod-
ification of the conduction band (upper part) by the pon-
deromotive energy of the monochromatic (blue dash-dotted
lines) and non-monochromatic (red dashed lines) oscillations.
(b) Expected dynamics of the band p-shifts along a momen-
tum direction parallel to electric field of a laser pulse: from
the original direct-gap (left lower insert) via two oppositely
shifted indirect-gap (upper inserts), and back to the original
direct-gap bands (lower right insert).

the effective conduction band is produced from the orig-
inal conduction band by homogeneous up-shifting in the
energy space by the amount of the ponderomotive energy
Up0.

When the oscillations are driven by a linearly polarized
ultrashort laser pulse, oscillation amplitude varies within
each cycle, e.g., the second half of each oscillation cycle
has a slightly larger amplitude (qE0/ω0 + qE′

0/ω0) than
the first half (at the leading edge of the pulse) (Fig. 1(a)).
Due to this sub-cycle variation of the oscillation am-
plitude, the electron is dominantly promoted towards
the part the Brillouin zone that hosts the lager depar-
tures of the oscillation cycles. For the sample electron of
Fig. 1(a), that violation of the sub-cycle oscillation sym-
metry results in promoting the oscillating electron to the
energy level D (Fig. 1(a)) that is higher than the level C
reached by the monochromatic oscillation at the ampli-
tude of the first half of the cycle. Furthermore, averaging
of the oscillation energy over a single cycle delivers a non-
homogeneous distribution of the ponderomotive energy
U ′′
p over the Brillouin zone, so that one part of the zone

receives a larger amount of ponderomotive energy than
the other (upper part of Fig. 1(a), red dashed curve). A
simple geometrical consideration (Fig. 1(a)) suggests that
the non-homogeneous distribution of ponderomotive en-
ergy leads to displacement of the bottom of the effective
conduction band towards the part of the Brillouin zone
that receives a smaller amount of ponderomotive energy.
In case of a valence band, the laser-driven hole oscilla-
tions must result in similar effects except that all dis-
placements are of opposite sign due to the positive charge
of the holes. Therefore, the effective conduction and va-
lence bands produced by the non-homogeneous distribu-

tion of ponderomotive energy are shifted in the opposite
directions along the momentum axis parallel to the laser-
pulse electric field. The considered band transformations
are reversed at the tail edge of the pulse (Fig. 1(b)) and
result in returning the modified bands back to their orig-
inal positions in the energy-momentum space. However,
the reverse dynamics of the modified bands must exhibit
some delay since the electrons (and the holes) promoted
to one side of the Brillouin zone cannot instantly return
to the initial states.
This qualitative analysis suggests the formation of the

indirect transient bands from the original direct bands
due to the non-homogeneous distribution of ponderomo-
tive energy of the laser-driven electron-hole oscillations.
Correspondingly, the transient bands should be charac-
terized by direct and indirect effective band gaps. More-
over, the considered dynamics of the shift of the energy
bands suggests that the direct effective band gap of the
transient bands must be larger than the effective band
gap of the monochromatic approximation at the leading
edge of the pulse. The situation is reversed at the rear
edge of the pulse due to the delay of the reverse dynamics
of the band modification. Moreover, because of the delay
effects, the maximum direct effective band gap must be
reached at a time instant that is shifted away from the
laser-pulse peak.

II.3. Approximations and calculation procedure

To correctly introduce the modifications of the energy
bands by an ultrashort pulse of the laser-driven electron
oscillations, we assume that time variations of the electric
field of a linearly polarized laser pulse are represented by
a product of a slow envelope f(t) and a fast oscillation
at the carrier frequency ω0:

~E(t) = ~E0f

(

t

τp

)

cos(ω0t+ φ0), (7)

where τp is a characteristic duration of the laser pulse,
and φ0 is a carrier-envelope phase (CEP) [27, 28, 39].
This assumption means that the pulse spectrum has
an evident central frequency and is mathematically ex-
pressed via the following pulse parameter:

α = ω0τp = 2π
τp
T0

>> 1. (8)

The assumption of Eq. (8) is met for pulses longer than
two cycles and allows extracting the slow time variations
of the band structure driven by the pulse envelope. The
pulse parameter is utilized below to build asymptotic ex-
pansions of the band-structure modifications that incor-
porate the monochromatic approximation as zero-order
terms obtained at 1/α = 0. Below in this paper, the elec-
tric field of Eq. (7) is assumed to be the electric field in
the crystal evaluated with the contributions from laser-
induced polarization, screening due to collective electron
response, and other many-body effects.
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Following the general concept of the Keldysh ap-
proach [54], we suppose that the laser-driven intra-band
electron and hole oscillations are the dominating pertur-
bation of the electron sub-system. In particular, we ne-
glect the influence of electron-particle collisions. Mea-
sured electron dephasing time (e.g. Ref. [71]) supports
the validity of this approximation. Also, neglecting the
electron-particle collisions is a very usual approximation
of a majority of recently published theoretical models of
the ultrafast electron dynamics in crystals [26–42, 45].

Another assumption employed below considers a neg-
ligible influence of the inter-band electron transitions
on the intra-band oscillations and band-structure mod-
ifications. The inter-band excitations are orders-of-
magnitude weaker in the wide-band-gap crystals than
in the typical semiconductors [43] because the rate
of the inter-band excitation exponentially depends on
band gap [54, 55]. Also, the density of laser-induced
conduction-band electrons experimentally detected at
the intensity close to the damage threshold is rather low
(1017−1020 cm−3 in typical dielectrics [8, 16, 18, 23], i.e.,
it is below 1% of the total valence-electron density [46]).
Finally, the usual theoretical approaches to calculate the
band structure of crystals neglect any inter-band electron
dynamics and consider it as a perturbation to the band
structure [46, 64]. We follow this traditional approach
below.

By combining Eq. (3) with Eq. (7), one obtains the
following relation for the time-dependent electron mo-
mentum driven by the laser-pulse electric field:

~p(t) = ~p0 −
q ~E0

ω0

ω0t
∫

−∞

f

(

h

α

)

cos(h+ φ0)dh, (9)

where normalized time h = ω0t is introduced. Momen-
tum of a hole is represented by a similar expression with
positive sign in front of the field-induced part. Asymp-
totically evaluating the integrals of Eq. (9), one arrives
at the following expansion of time-dependent momentum
with respect to small parameter 1/α:

~p(t) =~p0 −
q ~E0

ω0

[

f

(

h

α

)

sin(h+ φ0))

+
1

α
f ′

(

h

α

)

cos(h+ φ0)−
1

α2
f ′′

(

h

α

)

sin(h+ φ0)

− 1

α3
f ′′′

(

h

α

)

cos(h+ φ0)

]

, (10)

where f ′(x) = df(x)/dx. Below we consider 3D momen-
tum space, assume that the electric field is parallel to
the axis Ox of the Brillouin zone, and consider two un-
coupled energy bands – the lowest conduction and the
highest valence – under the approximation of constant

effective mass:

εCB
~(p) = ∆

[

1 +
p2x + p2y + p2z
2mCB∆

]

, (11a)

εV B
~(p) = −∆

[

p2x + p2y + p2z
2mV B∆

]

, (11b)

where ∆ is the original (i.e., pre-laser) band gap, mCB

and mV B are effective masses of the conduction (CB)
and valence (V B) band correspondingly. The bands are
direct-gap, i.e., the minimum energy gap between them
is in the center of the first Brillouin zone. The energy-
momentum relations of Eqs. (11) are rough for a proper
description of the Bragg-type reflections of the oscillating
electrons and holes at the edges of the Brillouin zone at
high intensity [59, 63]. However, it does not affect the
major mechanism of the periodicity of the laser-driven
electron/hole oscillations outlined in Section II.2. There-
fore, the approximation of Eqs. (11) is sufficient to un-
cover the major features of the band-structure modifica-
tion under consideration, and the Bragg-type reflections
of the electrons/holes can be treated as a distortion to
be considered for later improvements of our approach.
Following the approximation of the Keldysh model [54]

rigorously justified in Ref. [64], we first evaluate the
laser-distorted energy bands by substituting the time-
dependent momentum of Eq. (9) into the energy-
momentum relations of Eq. (11). For example, the ef-
fective conduction band reads as follows:

ε̃CB(~p0, t) = ε



~p0 − q

t
∫

−∞

~E(τ)dτ





= ∆



1 +
p20

2mCB∆
− xCB

γCB

ω0t
∫

−∞

f

(

h

α

)

cos(h+ φ0)dh

+
1

2γ2CB





ω0t
∫

−∞

f

(

h

α

)

cos(h+ φ0)dh





2





, (12)

where xCB = p0x/
√
mCB∆ is normalized momentum

component parallel to the laser-pulse electric field. Fol-
lowing the definition of Keldysh [54], we introduce the
following band-specific and general Keldysh parameters:

γi =
ω0

√
mi∆

qE0

; i = CB, V B, 0;
1

m0

=
1

mCB
+

1

mV B
.

(13)
The calculations are done as follows. Eq. (12) and a

similar relation for the valence band are averaged over a
single cycle T0 of the carrier frequency to obtain equa-
tions for the transient slowly-varying energy bands that
include the ponderomotive energy of the laser-driven
electron/hole oscillations. Those cycle-averaged relations
are asymptotically expanded into series with respect to
the small parameter 1/α. The zero-order terms of the
series correspond to the monochromatic approximation,
and our studies are focused on the effects described by
the higher-order terms.
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III. MAJOR RESULTS

The advantage of the proposed approach is that it de-
livers analytical relations for arbitrary pulse envelope.
Numerical evaluation of the transient bands is done for
a particular case of Gaussian laser-pulse envelope.

III.1. Analytical relations for direct-gap bands:
general case

The asymptotic expansions for the effective conduction
band:

εeffCB (~p0, s) = ∆

[

1 +
p20

2mCB∆
+
f(s)2

4γ2CB

(14)

+
f ′(s)

α

{

f(s)

4γ2CB

[2π − sin(2φ0)] +
xCB

γCB
cos(φ0)

}

+
1

α2

{

f ′(s)2

4γ2CB

Ψ+
f(s)f ′′(s)

4γ2CB

(Ψ− 3)− xCBf
′′(s)

γCB
Ψx1

}

+
1

α3

{

f(s)f ′′′(s)

4γ2CB

Ψ1 +
f ′(s)f ′′(s)

4γ2CB

Ψ2 −
xCBf

′′′(s)

γCB
Ψx2

}]

and effective valence band:

εeffV B (~p0, s) = −∆

[

p20
2mV B∆

+
f(s)2

4γ2V B

(15)

+
f ′(s)

α

{

f(s)

4γ2V B

[2π − sin(2φ0)]−
xV B

γV B
cos(φ0)

}

+
1

α2

{

f ′(s)2

4γ2V B

Ψ+
f(s)f ′′(s)

4γ2CB

(Ψ− 3) +
xV Bf

′′(s)

γV B
Ψx1

}

+
1

α3

{

f(s)f ′′′(s)

4γ2V B

Ψ1 +
f ′(s)f ′′(s)

4γ2V B

Ψ2 +
xV Bf

′′′(s)

γV B
Ψx2

}]

include the terms of the asymptotic series of all orders
from zero to 1/α3. Here and below s = t/τp is the nor-
malized time, and the following functions are introduced
for the sake of compactness:

Ψ =
4π2

3
+

5

2
− 3 cos(φ0)

2 − π sin(2φ0), (16a)

Ψ1 =
2π3

3
− π

2
− 3π cos(φ0)

2 −
(2π2

3
− 7

4

)

sin(2φ0),

(16b)

Ψ2 = 2π3 +
9π

2
− 9π cos(φ0)

2 −
(

2π2 − 17

4

)

sin(2φ0),

(16c)

Ψx1 = 2 sin(φ0)− π cos(φ0), (16d)

Ψx2 = 2π sin(φ0)−
(2π2

3
− 3
)

cos(φ0). (16e)

The zero-order terms of the square bracket of Eqs. (14)
and (15) correspond to the initial parabolic energy bands
homogeneously shifted by the amount of ponderomo-
tive energy evaluated under the monochromatic ap-
proximation. The 1/α, 1/α2, and 1/α3 terms of the

square bracket describe the effects produced beyond the
monochromatic approximation.

Time-dependent position of the bottom state of the
effective conduction band:

pxCB(s) =
√

mCB∆

[

− f ′(s)

αγCB
cos(φ0) +

f ′′(s)

α2γCB
Ψx1

+
f ′′′(s)

α3γCB
Ψx2

]

,

pyCB(s) = pzCB(s) = 0, (17)

confirms that the effective band is shifted along the mo-
mentum direction parallel to the laser-pulse electric field.
Combining Eq. (17) with a similar equation for the posi-
tion of the top state of the effective valence band:

pxVB(s) =
√

mV B∆

[

f ′(s)

αγV B
cos(φ0)−

f ′′(s)

α2γV B
Ψx1

− f ′′′(s)

α3γV B
Ψx2

]

,

pyV B(s) = pzV B(s) = 0, (18)

one arrives at a relation for the mutual p-shift of the
transient bands:

δpx(s) = pxCB(s)− pxV B(s) (19)

=
2
√
m0∆

γ0

[

− f ′(s)

α
cos(φ0) +

f ′′(s)

α2
Ψx1 +

f ′′′(s)

α3
Ψx2

]

,

where the band-specific adiabatic parameters are re-
placed with the usual Keldysh parameter of Eq. (13).

To fully characterize the indirect-gap structure of the
transient bands, direct and indirect effective band gaps
should be evaluated. The effective indirect band gap is
determined as the minimum energy gap between the bot-
tom of the effective conduction band of Eq. (14) and the
top state of the effective valence band of Eq. (15):

∆eff
ind (s) = ∆

[

1 +
f(s)2

4γ20
+
f ′(s)f(s)

4αγ20
[2π − sin(2φ0)]

+
f ′(s)2

4α2γ20
(Ψ − 2 cos(φ0)

2) +
f(s)f ′′(s)

4α2γ20
(Ψ− 3) (20)

+
f(s)f ′′′(s)

4α3γ20
Ψ1+

f ′(s)f ′′(s)

4α3γ20

(

Ψ2−4πcos(φ0)
2+4 sin(2φ0)

)

]

.

The effective direct band gap is evaluated as minimum

of the function ε(~p0, s) = εeffCB (~p0, s) − εeffV B (~p0, s) and
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reads as follows:

∆eff
dir (s) = ∆

{

1 +
f(s)2

4γ20
+
f ′(s)f(s)

4αγ20
[2π − sin(2φ0)]

+
f ′(s)2

4α2γ20

[

Ψ− 2 cos(φ0)
2

[

m0

mCB
− m0

mV B

]2
]

(21)

+
f(s)f ′′(s)

4α2γ20
(Ψ− 3) +

f(s)f ′′′(s)

4α3γ20
Ψ1 +

f ′(s)f ′′(s)

4α3γ20

×
[

Ψ2 + 4

[

m0

mCB
− m0

mV B

]2

[sin(2φ0)− π cos(φ0)
2]

]}

.

Position of the direct bag gap in the momentum space
reads as follows:

pxDG(s) =
√

m0∆
[ m0

mCB
− m0

mV B

]

×
[

− f ′(s)

αγ0
cos(φ0) +

f ′′(s)

α2γ0
Ψx1 +

f ′′′(s)

α3γ0
Ψx2

]

,

pyDG(s) = pzDG(s) = 0. (22)

The zero-order terms of the asymptotic expansions of
Eqs. (20) and (21) exactly correspond to the effective
band gap of the original Keldysh model produced under
the monochromatic approximation [54]:

∆eff
mh (s) = ∆

[

1 +
f(s)2

4γ20

]

. (23)

It predicts conservation of the initial direct-gap structure
of the effective bands. The contributions of the higher-
order terms of Eqs. (20) and (21) result in formation of
the indirect-gap transient bands.

III.2. Numerical evaluations: Gaussian pulse,
direct-gap bands

The general relations of the previous section deliver
more detailed information about the dynamics of the ef-
fective band structure if a pulse envelope is specified.
Here we provide an illustrative analysis and simulation
of the band-structure modifications for the Gaussian en-
velope:

f(s) = exp(−s2) = exp

(

− t2

τ2p

)

. (24)

We note that the half-width τp of the electric-field pulse
envelope of Eq. (24) is almost 1.7 times smaller than

half-width τHW =
√

ln 2/2 τp of a laser pulse at the
level of 1/2 of peak intensity. For the numerical sim-
ulations, the laser-pulse peak intensity is below the
threshold of laser-induced damage by few-cycle pulses [9–
16, 26, 36, 37]. Material parameters are chosen to com-
pare band-structure modifications in two crystals of dif-
ferent groups: a typical dielectric (NaCl) and a typical
wide-band-gap semiconductor (AlN) (see Table I).

-π

ε
[e
V
]

px [arb.u.]

12

- .230 7τpt =

t = 0
-τpt =

10

16

14

20

18

22

24

26

28

(a)

-π

ε
[e
V
]

px [arb.u.]

- .230 7τpt =

t = 0
-τpt =

(b)

FIG. 2. Original conduction band (green solid) and transient
bands (black, blue, red) evaluated for a Gaussian pulse enve-
lope (Eq. (24); peak intensity 30 TW/cm2; carrier wavelength
2400 nm; pulse half-width at the level 1/e of maximum inten-
sity is 15 fs; zero CEP) at several instants of time for (a) NaCl
and (b) AlN crystals under the monochromatic (Eq. (23);
dashed lines) and pulse-driven (Eq. (14); dotted lines) ap-
proximations. Orange dots on the closed dotted curve and
gray dots on the vertical gray dashed line depict positions of
the bottom of the transient conduction bands on their laser-
driven trajectories for the pulse-driven and monochromatic
models correspondingly.

Figure 2 confirms the qualitative discussion of Sec-
tion II.2 regarding dynamics of the effective-band vari-
ations by an ultrashort pulse of the laser-driven electron
oscillations (see also Ref. [74]). In particular, the bot-
tom point of the effective conduction band shifts along
the momentum direction parallel to the laser-pulse elec-
tric field and makes an elliptic trajectory in energy-
momentum space (Fig. 2) instead of a linear trajectory
with zero p-shift characteristic of the monochromatic ap-
proximation of the original Keldysh model.
The simulations show very pronounced mutual p-shift

of the transient conduction and valence bands in the mo-
mentum space even at moderate peak intensity and pulse
width (Fig. 2 and 3). A significant influence of the enve-
lope phase on the shift is highly remarkable (Fig. 3). In
the time domain, the major features of that influence are:
(a) the suppression of the band p-shifts with the forma-
tion of three maxima/minima separated by two zero-shift
points if CEP is φ0 = π/2±Nπ (N=0;1;2;. . . ) (Fig. 3);
and (b) formation of one maximum and one minimum of
the p-shift separated by a single zero-shift point if CEP

TABLE I. Material parameters utilized in simulations.

Parameter name NaCl [72] AlN [73]
Direct band gap, eV 8.9 6.2
Conduction-band effective
mass, units of free-electron
mass

0.6 0.25

Valence-band effective mass,
units of free-electron mass

4.56 0.285
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FIG. 3. (a, b): Normalized envelope of E-field pulse (black
dotted) and time variations of the total mutual p-shift of the
energy bands δpx (Eq. (19)) normalized to the half-width of
the first Brillouin zone pBZ for (a) NaCl, and (b) AlN. Eval-
uation for the Gaussian envelope of Eq. (24) is done for two
values of CEP: 0◦ (red dashed) and 90◦ (blue solid). The
vertical solid lines mark the position of the pulse peak on the
time axis for eye convenience. (c, d): Band shift δpx normal-
ized to pBZ vs intensity I0 and CEP φ0 taken at fixed time
instant t = −τp/

√
2 for (c) NaCl; and (d) AlN. Parameters

of the laser pulse are the same for all the panels: peak inten-
sity is 30 TW/cm2; carrier wavelength is 2400 nm; pulse half
width at the level 1/e of maximum intensity is 15 fs.

φ0 6= π/2 ± Nπ (N=0;1;2;. . . ) (Fig. 3). Also, Eq. (19)
suggests that the absolute value of the mutual p-shift of
the energy bands is of the order of 1/(α2γ0) at the peak
of a laser pulse (i.e., at t=0) at any value of the CEP.

Finally, we note that the pulse-driven model predicts
maximum of both direct and indirect effective band gaps
at the leading edge of the pulse (Fig. 4). Correspond-
ingly, the effective band gaps exceed the value deliv-
ered by the monochromatic approximation of Eq. (23)
at the leading edge of the laser pulse (Fig. 4). How-
ever, the pulse-induced effective band gaps are smaller
than that of the monochromatic model at the tail part
of the pulse (Fig. 4). The difference can be as large
as few electron-volts depending on laser and material
parameters. Also, a strong dependence of those non-
monochromatic effects on laser wavelength is highly re-
markable. In particular, the deviation of the pulse-driven
model from the monochromatic approximation rapidly
grows with increase of laser wavelength (Fig. 4 (c), (d));
also see Ref. [75] with animation of time variations of
wavelength dependence of maximum effective direct and
indirect band gaps).
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FIG. 4. (a, b) Normalized difference between the effective
direct band gap and the original band gap for the monochro-
matic model of Eq. (23) (black curves) and the pulse-driven
model of Eq. (21) (red curves) plotted vs time at peak laser
intensity 10 TW/cm2 (dashed curves) and 30 TW/cm2 (solid
curves) for (a) NaCl; and (b) AlN. Laser carrier wavelength
is 2400 nm. The vertical solid lines mark the position of
the pulse peak on the time axis for eye convenience. (c, d)
Normalized difference between the laser-induced effective and
original band gaps vs carrier wavelength for pulse-driven di-
rect (Eq. (21); red solid); pulse-driven indirect (Eq. (20); blue
dotted); and monochromatic (Eq. (23); black dashed) effec-
tive band gaps plotted at peak laser intensity 30 TW/cm2

in (c) NaCl; and (d) AlN. The effective band-gap values are
taken at time instant t = −15 fs. Other laser-pulse param-
eters are the same for all the panels: zero CEP; pulse half-
width at the level 1/e of maximum intensity is 15 fs.

The advantage of the reported above analytical model
is the feasibility of a detailed characterization of the
band-structure modification and dynamics (e.g., see
Figs. 3 and 4) by rigorous analytical relations. For ex-
ample, the maximum and minimum values of the mu-
tual band p-shift at the CEP values φ0 6= π/2±Nπ,
N = 0, 1, 2, . . . (Fig. 3), are analytically evaluated from
Eq. (19):

δpM (sM ) =
2
√
m0∆

αγ0
exp(−s2M ) (25)

×











±
√
2 cos(φ0) +

2

α
Ψx1

∓2
√
2

α2

[

(4π − 6 tan(φ0)) sin(φ0)−
(

3 +
11π2

6

)

cos(φ0)

]











,
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and the time instants of the maximum and the minimum
are also delivered by Eq. (19):

tM =τp

[

± 1√
2
+
2 tan(φ0)− π

α
∓
√
2

α2

[

3+2 tan(φ0)
2− 7π2

6

]

]

,

(26)

where sM = tM/τp. The three maxima and minima of
the mutual bands p-shift at CEP φ0 = π/2 are analyti-
cally evaluated as follows:

δpM (sM , φ0 = π/2) =

=















































16
√
m0∆

α2γ0

(

1+

√
6π

α

)

exp



−
[

√

3

2
+
π

α

]2


;

−8
√
m0∆

α2γ0
exp

(

−π
2

α2

)

;

16
√
m0∆

α2γ0

(

1−
√
6π

α

)

exp



−
[

√

3

2
− π

α

]2


;















































, (27)

as well as the time instants when they appear:

tM (φ0 = π/2)=τp

[

−
√

3

2
− π

α
; −π

α
;

√

3

2
− π

α

]

. (28)

Analytical relations for other specific features of the
band-structure modifications, e.g., time instants of the
zero p-shift, have been reported before [76, 77].
The mutual band p-shift is not the only parameter sig-

nificantly affected by CEP. Carrier-envelope phase sub-
stantially influences the time variations of effective indi-
rect and direct band gaps as it is clear from the following
relations:

(A) the time instants when the maximum effective in-
direct band gap is reached:

sMI =
sin(2φ0)− 2π

2α
(29)

+
sin(2φ0)

α3

(

11 sin(φ0)
2 + 2 cos(φ0)

4 + 2[2− cos(φ0)
2]
)

,

(B) the maximum value of the effective indirect band

gap:

∆eff
indMAX = (30)

= ∆

(

1+
exp(−2s2MI)

4γ20

[

1+
(2π − sin(2φ0))

2

α2
− 2Ψ− 6

α2

])

,

(C) the time instant of the maximum effective direct
band gap:

sMD =
sin(2φ0)− 2π

2α
(31)

+
sin(2φ0)

α3

(

11 sin(φ0)
2 + 2 cos(φ0)

4

+2

[

m0

mCB
− m0

mV B

]2

[2− cos(φ0)
2]



 ,

(D) and the maximum effective direct band gap:

∆eff
dirMAX = (32)

= ∆

(

1+
exp(−2s2MD)

4γ20

[

1+
(2π − sin(2φ0))

2

α2
− 2Ψ− 6

α2

])

.

IV. DISCUSSION

IV.1. Analysis of asymptotic contributions

The specific scaling of the band modification with pa-
rameters α, γCB, γV B, and γ0 directly results from the
inhomogeneous sub-cycle distribution of the oscillation
amplitude explained in Section II.2. In this connection,
we notice that the electric-field amplitude of the second
half of any radiation cycle at arbitrary time instant t2
can be expressed via the amplitude of the first half of
the cycle at time instant t1 = t2 − T0/2 by the following
asymptotic series (for simplicity, zero CEP is assumed):

E0f

(

t2
τp

)

= E0f

(

t1
τp

)

+ E0f
′

(

t1
τp

)

T0
2τp

(33)

+
E0

2
f ′′

(

t1
τp

)(

T0
2τp

)2

+
E0

6
f ′′′

(

t1
τp

)(

T0
2τp

)3

=E0f

(

t1
τp

)

+E0

π

α
f ′

(

t1
τp

)

+E0

π2

2α2
f ′′

(

t1
τp

)

+E0

π3

6α3
f ′′′

(

t1
τp

)

,

obtained from Eq. (7) and (8). The amplitude pA(t2) of
the second half of the cycle of the conduction-electron
oscillations driven by the electric field of Eq. (33) reads
as follows:

pCB
A (t2) =

qE0

ω0

f

(

t2
τp

)

= pCB
A (t1) +

π
√
mCB∆

αγCB
f ′

(

t1
τp

)

+
π2

√
mCB∆

2α2γCB
f ′′

(

t1
τp

)

+
π3

√
mCB∆

6α3γCB
f ′′′

(

t1
τp

)

. (34)

In Eq. (34), the second right-hand term delivers the
amount of the violation of the homogeneous amplitude
distribution within the cycle. The third term is asso-
ciated with the rate of that effect and should be at-
tributed to the delay effects discussed in Section II.2.
For a valence-band hole, a relation similar to Eq. (34)
can be obtained.

Eq. (34) shows that the difference pA(t2)−pA(t1) con-
tains the combinations of the parameters α and γCB with
proper time derivations of the pulse envelope that are ab-
solutely similar to those of Eq. (17) under the zero-CEP
assumption. The same is true for the amplitude of the
hole oscillations and Eq. (18).

Ponderomotive energy Up0(t2) of the second half of the
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oscillation cycle is expressed as follows by Eq. (33):

Up0(t2) =
q2E2

0

4mCBω2
0

f

(

t1
τp

)2

(35)

=
∆

4γ2CB



















f

(

t1
τp

)2

+
2π

α
f

(

t1
τp

)

f ′

(

t1
τp

)

+
π2

α2
f

(

t1
τp

)

f ′′

(

t1
τp

)

+
π2

α2
f

(

t1
τp

)2

+
π3

3α3
f

(

t1
τp

)

f ′′′

(

t1
τp

)

+
π3

α3
f

(

t1
τp

)

f ′′

(

t1
τp

)



















.

A similar relation can be obtained for the ponderomotive
energy of the oscillating valence-band holes. The simi-
larity between Eq. (35) and the field-dependent terms of
Eq. (14) at zero CEP suggests that they originate from
the same physical effects. Summarizing this qualitative
analysis, we conclude that:

- the zero-order terms of the asymptotic series
of Eqs. (14) through (22) are characteristic to
the monochromatic approximation of the original
Keldysh model [54] that assumes constant oscilla-
tion amplitude within each single oscillation cycle;

- the terms of the order of 1/α of the asymptotic
series are attributed to the violation of the homo-
geneous sub-cycle distribution of the electron (and
hole) oscillation amplitude within each oscillation
cycle;

- the terms of the order of 1/α2 correspond to the
delay effects associated with the rate at which the
sub-cycle amplitude-distribution is violated.

This interpretation is supported by simulations of sepa-
rated contributions of those terms into the overall mod-
ification of the energy bands (Fig. 5). In particular, if
the pulse envelope is symmetric with respect to the pulse
peak, the inhomogeneous sub-cycle distribution of the os-
cillation amplitude must produce zero mutual p-shift of
the energy bands at any CEP at the pulse peak if the
delay effects are neglected and corresponding 1/α2 and
1/α3 terms are omitted (Fig. 5(b)). It results from the
fact that the oscillation amplitude is the same for both
halves of the cycle centered at the pulse peak (Fig. 6).
This is perfectly confirmed by simulations of the mutual
band p-shift with the series containing only the zero-order
and the 1/α terms (Fig. 5(b)). The terms of the order of
1/α2 attributed to the delay effects produce a non-zero
band p-shift at the pulse peak (Fig. 5(b)). The delay
terms also disturb the symmetric positions of the max-
ima and minima of the p-shifts with respect to the pulse
peak in the time domain (see Eqs. (25) through (28)).

Certain physical meaning could also be assigned to the
terms of the order of 1/α3, but they are of minor value
and are retained mainly for improvement of the accuracy
at reduced pulse width (Fig. 5).
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FIG. 5. (a) Normalized difference between the effective di-
rect band gap and the original band gap of AlN evaluated
with the different terms of Eq. (21): black dashed – only
zero-order terms (i.e., the monochromatic model of Eq. (23));
green dash-dotted curve 1 – zero- and first-order terms; blue
dashed curve 2 – zero-, first-, and second-order terms; red
solid curve 3 – the terms of all orders from zero to the third
inclusive. Laser-pulse parameters are the same as in Fig. 4(b),
peak intensity is 30 TW/cm2. (b) Normalized mutual band
p-shifts along the momentum direction collinear with laser-
pulse electric field evaluated with different terms of Eq. (19):
green dash-dotted curve 1 – first-order terms; blue dashed
curve 2 – first- and second-order terms; red solid curve 3 –
all the terms from zero to the third order inclusive. Laser
parameters are the same as in Fig. 3(b). The vertical lines
depict instant of the pulse peak.

t
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FIG. 6. (a) A sketch of the instant variations of the electric
field (blue solid) and electron momentum (red dot) in the
time domain for the zero (a) and π/2 (b) CEP. Black dashed
line depicts the pulse envelope. The time variations of the
electron momentum and electric field are normalized so as to
follow the same slow envelope.

IV.2. Parametric scaling of the band modifications

Scaling with six laser and material parameters is de-
livered by the analytical relations of Section III.1 (see
Table II). The band-structure modifications under con-
sideration are enhanced by reduction of pulse width and
reduction of the Keldysh adiabatic parameter. The lat-
ter can be reduced, for example, by increasing the peak
intensity of a laser pulse. Therefore, at a fixed pulse
width, the higher peak laser intensity, the stronger the
pulse-driven features of the transient bands discussed
above. Also, the band shifts are more pronounced in
crystals with smaller band gaps due to the reduction of
the Keldysh parameter (Figs. 2, 3, and 4). Finally, the
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TABLE II. Scaling of the key parameters of the non-monochromatic modifications of the band structure with carrier wavelength
λ, peak pulse intensity I0, initial band gap ∆, reduced effective electron-hole mass m0, and pulse width τp.

Band-structure parameter Equation(s) Scaling with pulse and
adiabatic parameters

Scaling with laser and
material parameters

Maximum non-monochromatic correction to the
direct and indirect effective band gap (e.g.,
Eq. (20) minus Eq. (23))

(20), (21), (23) 1/(αγ2

0 ) λ3I0/(m0∆τp)

Absolute value of the mutual p-shift of the energy
bands at the CEP φ0 6=π/2±Nπ, N=0, 1, 2, . . .

(19) 1/(αγ0) λ2I
1/2
0

/(m
1/2
0

∆1/2τp)

Absolute value of the mutual p-shift of the energy
bands at the CEP φ0=π/2±Nπ, N=0, 1, 2, . . .

(19) 1/(α2γ0) λ3I
1/2
0

/(m
1/2
0

∆1/2τ 2

p )

specific pulse-driven contributions to the band modifica-
tion become more pronounced with the increase of laser
wavelength.

Influence of another key material parameter – effective
electron/hole mass – is less trivial. First, we note that the
effective masses are not modified under the considered
approximations, and the energy bands are shifted with-
out deformation during the laser-driven modifications.
This conclusion is evident from the Eqs. (14) and (15).
Second, reduction of the effective masses favors reduction
of the adiabatic parameter and, therefore, low-effective-
mass crystals are more favorable for observation of the
reported effects. Third, if the valence-band effective mass
significantly exceeds the conduction-band mass (that is
the case for typical dielectric crystals), the difference be-
tween the effective direct and indirect band gaps reduces
according to Eqs. (20) and (21). The physical reason
for this conclusion is quite transparent: mV B >> mCB

means the valence band is almost flat, and the p-shift of
the effective conduction band away from its initial po-
sition does not remarkably contribute to the difference
between the direct and indirect effective band gaps. If
the effective masses do not differ very much, the effective
direct band gap becomes larger than the indirect band
gap, and the difference between them is of the order of
1/(α2γ20). Therefore, the indirect-gap structure of the
transient energy bands is expected to produce a stronger
effect on the laser-driven processes in typical semicon-
ductors.

Finally, we note a strong influence of CEP on the tran-
sient bands. It can be interpreted in terms of a spe-
cific dephasing between the driving electric field and the
laser-driven electron/hole oscillations. For example, if
the delay effects are neglected, the oscillation amplitude
is symmetrically distributed between the two halves of
the oscillation cycle centered at the pulse peak at any
CEP (Fig. 6). This fact suggests zero p-shift of the en-
ergy bands with respect to each other at the pulse peak.
Therefore, the delay effects are the only to make a non-
zero contribution to the band p-shift at the pulse peak.
That contribution is of the order of 1/(α2γ0) at any CEP
since the rate of the time variations of the pulse envelope
f ′(t) is zero. However, with the accuracy of the 1/α
terms, the zero CEP produces zero instant electron de-
parture from an initial state at the pulse peak (Fig. 6(a)),

and the delay effects make a minor contribution to the
zero value of the p-shift. In opposite, the π/2 CEP de-
livers the maximum instant electron/hole departure from
the initial state at the pulse peak (Fig. 6(b)), and the de-
lay effects make the only contribution to the maximum
p-shift of the energy bands at the pulse peak, but that
contribution is of the order of 1/(α2γ0). That is, the
delay effects determine minimum p-shift of the bands at
CEP=0 and maximum p-shift at CEP=π/2 at the laser-
pulse peak. This dephasing explains the suppression of
the band p-shift at CEP close to (π/2±Nπ).

IV.3. Competing mechanisms of band-structure
modification

The reported band-structure modifications consider
the only mechanism associated with the laser-driven
electron/hole oscillations. In semiconductor crystals,
there may be other mechanisms contributing to laser-
induced modifications of band gap and energy bands. For
example, the high-frequency Franz-Keldysh effect [78,
79]; laser-enhanced coupling of valence and conduction
bands [80–82]; band-gap shrinkage due to increase of
conduction-band electron density [82, 83]; and band fill-
ing [82–85] (also referred to as Burstein-Moss effect [83])
are among the mechanisms competing with the laser-
driven oscillations. Except for the Burstein-Moss effect,
those mechanisms reduce the initial band gap, i.e., com-
pete with the band-gap increase by the ponderomotive
energy of the electron and hole oscillations. However,
the Franz-Keldysh effect and the band coupling are sig-
nificant for narrow-gap semiconductors with initial band
gap about 1 eV or smaller [78–82]. A large band gap
between the lowest conduction band and the highest va-
lence band of the wide-band-gap crystals significantly
suppresses those mechanisms. Moreover, the band-gap

variations by the Franz-Keldysh effect scale as E
3/2
0 with

electric-field amplitude E0 of the high-intensity laser-
pulse [78, 79] while the contribution of the laser-driven
electron/hole oscillations results in E2

0 scaling. There-
fore, it is reasonable to expect that the laser-driven os-
cillations dominate over the Franz-Keldysh effect in the
wide-band-gap crystals at high intensity.
The band-gap variation due to the shrinkage effect can
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be evaluated using the equations of Refs. [82, 83, 85].
Those estimations deliver the band gap reduction by a
few tenths of eV at the highest conduction-band elec-
tron density 1019–1020 1/cm3 recently reported at sub-
damage-threshold irradiance [8, 16, 18, 23]). Those val-
ues are substantially smaller than the increase of the ef-
fective band gap by several eV produced by the laser-
driven oscillations. Therefore, the band-gap shrinkage
can be neglected in the first approximation. Generation
of the conduction-band electrons by the inter-band exci-
tation can also contribute to the band-gap modification
due to the band filling effect [82, 83, 85]. In general,
that modification can be as large as an energy of a few
laser photons since the absence of vacant states at the
bottom of the conduction band favors absorption of one
extra photon to promote the newly arriving electrons to
vacant states of the band. However, the influence of the
band filling effect is very unlikely in the case under con-
sideration since an ultrashort laser pulse generates elec-
tron population in a broad range of states first on the one
side of the conduction band (at the leading edge of the
pulse) and then on the opposite side of the band (at the
tail edge of the pulse) due to the mutual band p-shift.
Therefore, the laser-driven electron/hole oscillations

are expected to dominantly contribute to the band-
structure modifications of the wide-band-gap crystals
during the immediate action of an ultrashort high-
intensity laser pulse.

IV.4. Slowly varying electron current

Another remarkable effect produced by the non-
monochromatic laser-driven electron/hole oscillations is
the electric current driven by the pulse envelope. Its gen-
eration becomes evident from a relation for the electron
momentum of Eq. (10) when it is averaged over a single
oscillation cycle:

〈pxe〉(s) = px0 −
√

mCB∆

[

f ′(s)

αγCB
cos(φ0) (36)

− f ′′(s)

α2γCB
Ψx1 −

f ′′′(s)

α3γCB
Ψx2

]

.

A similar relation is true for the oscillating holes. Eq. (36)
contains the non-zero field-dependent component that
corresponds to photocurrent in the direction parallel to
the laser-pulse electric field. Comparing Eq. (36) with
Eq. (19), one notices that the time variations and the
parametric scaling of the current are similar to the vari-
ations of the mutual band p-shift. This photo-current
results from a dominant promotion of the oscillating elec-
trons (holes) in a direction parallel to the electric field of
the linearly-polarized laser pulse. In turn, that promo-
tion of the free carriers in the real physical space arises
from the violation of the sub-cycle symmetry of the oscil-
lation amplitude discussed in Section II.2. To estimate
the charge it produces, we evaluate the peak value of
electron current density jeMAX via the peak value peM of

the field-induced part of Eq. (36), maximum free-carrier
density neMAX , and effective conduction-band mass as
follows [46]:

jeMAX =
q · neMAX · peM

mCB
. (37)

We further assume the current is generated in a focal vol-
ume characterized by an effective radius R of the order
of 10−6–10−5 m. Simulations of the laser-induced free-
carrier dynamics [8, 12] show that free-electron density
reaches significant values only after the peak of an ul-
trashort laser pulse, i.e., over the tail part of the pulse.
Therefore, the total charge produced by the current is
the most effectively accumulated over the time interval
of the order of τp. For the laser-pulse parameters from
the caption of Fig. 3 and the material parameters of
Table I, the photo-current density is estimated as 1011–
1013 A/cm2 if maximum laser-induced free-carrier den-
sity is 1020–1022 1/cm3 respectively. Correspondingly,
the photo-charge delivered by the photocurrent varies
from 1 to 100 nC for that range of free-electron density.
It is remarkable that the mechanism of this ultrafast

photo-current generation differs from that of recently re-
ported photocurrent effects driven by an instant electric
field of two-cycle laser pulses in dielectrics [36, 37]. Also,
the photocurrent predicted by Eq. (36) is a few orders
of magnitude larger than that reported in Refs. [36] and
[37] and it can produce a significant contribution to the
transient optical response. Detailed analysis of those ef-
fects substantially goes beyond the scope of this paper.

IV.5. Indirect-gap crystals

The modification of the energy bands considered above
assumes direct-gap structure prior to the laser action.
It is shown that the direct-gap band structure is not
conserved during the laser action on the crystal, and
the crystal responses as an indirect-gap one. For typi-
cal indirect-gap crystals, the bottom of the conduction
band is displaced by pS away from the center of the Bril-
louin zone alone one of the crystal axes prior to the laser
action [46, 64]. That feature of the indirect-gap bands
substantially influences the laser-driven band-structure
modification only if the electric field of a laser pulse is
directed along that crystal axis (it is considered as axis
x to be specific). A majority of the relations presented
above for the direct-gap crystals is still valid in that case
if the momentum component px and its normalized val-
ues (i.e., xCB for the conduction band and xV B for the
valence band) are replaced with px − pS, xCB − xS , and
xV B−xS correspondingly. The only relation that receives
a significant modification beyond that substitution is the
Eq. (21) for the effective direct band gap. However, the
approximation of the parabolic bands is not sufficient
to properly evaluate the effective direct band gap of the
indirect-gap crystals since the initial band displacement
pS is usually so large [46] that non-parabolic features of
the energy bands cannot be neglected. Ultrafast modi-
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FIG. 7. Illustration of expected influence of the laser-induced
p-shift of the energy bands on the rate of the photoionization.
The data are the same as in Fig. 4 (a).

fication of non-parabolic bands requires a separate con-
sideration to be reported in the nearest future.

IV.6. Potential influence of the
non-monochromatic effects on the photoionization

The specific variations of the band structure by the
laser-driven electron oscillations are favorable for some
qualitative analysis of the photoionization and nonlinear
absorption. The analysis is based on the fundamental
exponential dependence of the inter-band transition rate
on effective band gap [46, 54]. First, the time-domain dy-
namics of the effective band gaps suggest suppression of
the photoionization at the leading edge of an ultrashort
laser pulse compared to the predictions of the monochro-
matic Keldysh model [54]. This suppression results from
a significant enhancement of the effective direct band gap
of the pulse-driven model compared to the monochro-
matic approach (Fig. 7). The difference between those
models can be as large as few eV and is more pronounced
in wide-band-gap semiconductors (Fig. 7). Therefore,
the pulse-driven model predicts absorption of a few more
photons at the leading edge of the pulse compared to the
estimations by the monochromatic Keldysh model. The
photoionization suppression due to the increase of the ef-
fective band gap is enhanced by the reduced laser inten-
sity at the leading tail of the pulse (Fig. 7). The action of
those two processes favors formation of an abrupt front
(within very few cycles) of the photoionization. The sit-
uation is reversed at the tail part of the laser pulse where
the pulse-driven model predicts lower effective band gap
than that of the monochromatic approximation. This
specific feature of the pulse-driven modification of the
band structure should lead to substantial enhancement
of the photoionization and the nonlinear absorption at
the tail part of the pulse. This violation of the tempo-
ral symmetry of the nonlinear absorption with respect to
the pulse peak may result in specific time dynamics of
the nonlinear optical response as well as energy absorp-
tion and transfer.

V. CONCLUSIONS

In conclusion, we have reported the transient bands
formed by the ponderomotive energy of the ultra-
short pulses of laser-driven electron/hole oscillations
in a wide-band-gap crystal. The monochromatic and
quasi-monochromatic approximations assume the homo-
geneous distribution of the oscillation amplitude within
every single cycle. Departure from the monochromatic
approximation is done by taking into account the fun-
damental fact that the amplitude of the second half of
any oscillation cycle is never the same as the amplitude
of the first half of the cycle. This basic property of the
ultrashort oscillation pulses results in the formation of
the transient indirect-gap band structure due to the p-
shifting of the original bands in the direction parallel to
the electric field of the laser pulse. The transient bands
are characterized by the effective direct and indirect band
gaps. Another specific feature of the ultrashort-pulse-
driven modification of the energy bands is the shift of
the maximum of the time-dependent direct effective band
gap away from the peak of a laser pulse in the time do-
main. Due to that shift, the effective pulse-driven band
gap exceeds that of the monochromatic approximation at
the leading part of a laser pulse. At the tail part of the
pulse, the situation is reversed, i.e., the ultrashort-pulse
model predicts a smaller effective band gap compared
to that of the monochromatic approach. This feature
suggests a significant suppression of the laser-induced
photoionization and associated nonlinear absorption at
the leading edge of the ultrashort laser pulse and possi-
ble formation of an abrupt ionization front. Finally, the
reported above model predicts generation of a slowly-
varying photo-current of free carriers driven by the pulse
envelope. It can make a specific contribution to the ul-
trafast optical response of the crystals. All those results
are obtained under the assumption that the laser-driven
oscillations dominantly contribute to the band-structure
distortions in the crystals.
The reported model suggests that the Keldysh formula

for the photoionization rate of crystals [54] can be a rea-
sonable approximation for a domain of laser and material
parameters that provide large value of the products (αγ20 )
and (αγ0). For few-cycle and high-intensity laser pulses,
the Keldysh formula cannot deliver any reasonable es-
timation of the photoionization rate because it incorpo-
rates incorrect estimation of the effective band gap.
The reported model can serve as an improved basis for

theoretical evaluation of the time-dependent nonlinear
absorption and transient optical response of the wide-
band-gap crystals during an immediate action of the
high-intensity ultrashort laser pulses on the crystals.
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