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Semiclassical dynamics of Bloch electrons in a crystal under slowly varying deformation is devel-
oped in the geometric language of a lattice bundle. Berry curvatures and gradients of energy are
introduced in terms of lattice covariant derivatives, with the corresponding connections given by the
gradient and rate of strain. A number of physical effects are discussed: an effective post-Newtonian
gravity at band bottom, polarization induced by spatial gradient of strain, orbital magnetization
induced by strain rate, and electron energy stress tensor.

I. INTRODUCTION

Semiclassical dynamics of Bloch electrons was devel-
oped in the early days of solid state physics to give an in-
tuitive picture of electron motion in the ionic background
in a crystal. Combined with the Boltzmann equation,
many equilibrium and transport phenomena are well de-
scribed [1]. The theory can also be quantized [2] to de-
scribe quantum energy levels, such as Wannier-Stark lad-
der in a constant electric field and Landau levels in a
constant magnetic field [1]. Much later, Berry phases [3]
were found to play an important role in the semiclassical
equations of motion in the form of Berry curvatures [4].
It accounts for quite a few phenomena such as the quan-
tum Hall effect [5], the intrinsic anomalous Hall effect [6]
and charge pumping [7]. The description of electric po-
larization [8] and orbital magnetization [9] in crystals are
also closely related to the notion of Berry phase.

The wave-packet method developed by Sundaram and
Niu provides a systematic way to derive the semiclassical
dynamics in perturbed crystals [10] with various types of
Berry curvatures appearing in the equations of motion.
In their work, besides the effect of electromagnetic field,
they studied the crystal deformation. Some interesting
results are found such as dragging effect due to lattice
motion and real space Berry phase associated with a dis-
location. Their theory is based on the displacement field
of ions, and the wave-packet method can easily account
for the effects to first-order in spatial and time deriva-
tives of the displacement field, i.e the strain and lattice
velocity. However, it is very difficult to extend to the
next order of derivatives, such as strain gradient, lattice
acceleration and strain rate in this formalism, which are
related to phenomena such as flexoelectricity [11, 12] and
viscosity [13].

In this paper, we advocate another picture by viewing
the whole crystal under deformation as a lattice bundle.
For a given time and about each spatial point, a locally
periodic lattice can be identified, which well describes the
distribution of ions in a region smaller than the length
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scale of the variation of periodicity. The local lattice also
moves rigidly at the average velocity of ions around the
position point. By identifying the local lattice at each
space and time point, we have a bundle of locally peri-
odic lattices on spacetime manifold. Each local lattice
contains information to the arbitrary order of strain (de-
fined relative to some reference lattice). Strain gradient,
strain rate, and lattice acceleration are manifested in the
difference between local lattices. In this sense, a periodic
crystal can be viewed as a special case where all local
lattices are identical.

Based on lattice bundle picture, we have two geomet-
rical structures, which are extended phase space and
Hilbert bundle [14]. Noticing each local lattice gives rise
to a Brillouin zone, all the Brillouin zones together with
the spacetime make up the extended phase space (k;x, t),
where crystal momentum k denote points in the Brillouin
zone of the local lattice at spacetime point (x, t). How-
ever, in a crystal under deformation, the sizes of local
Brillouin zones are different in general. This is in con-
trast to an ideal crystal where all local Brillouin zones
are the same and can be viewed as a single one. This
special geometry brings up the question of how to ex-
press the electron equations of motion in phase space.
Particularly, we are faced with the difficulty of defining
the change rate of crystal momentum k since at different
time slices crystal momentums belong to different Bril-
louin zones.

Moreover, the definition of Berry connections in terms
of spacetime parameter is also problematic. The naive
idea from previous experience is to define, for exam-
ple, At = i〈u|∂tu〉 using the eigenstates of the k de-

pendent Hamiltonian Ĥ(k;x, t) given by the local lat-
tice. However, |∂tu〉 involves the difference between two
Bloch functions of different periodicities which is not a
periodic function in general and gives rise to ill-defined
results. In fact, this problem involves the second geomet-
rical structure we mentioned earlier called lattice Hilbert
bundle. Noticing that all the eigenstates of Hamiltonian
Ĥ(k;x, t) labeled by different band indexes form a com-
plete basis for periodic functions thus give rise to a lo-
cal Hilbert space defined at a particular extended phase
space point (k;x, t), the lattice Hilbert bundle appears
as the collection of all local Hilbert spaces together with
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the extended phase space. Local Hilbert spaces at differ-
ent spacetime points are distinct in periodicities inherited
from the corresponding local lattices. So the definition
of Berry connection actually involves the comparison be-
tween states in different Hilbert spaces.

To resolve the aforementioned problem, with the same
spirit in differential geometry [15], we introduce the con-
cept of lattice covariant derivative to take the place of
partial derivatives in comparing local quantities such as
crystal momentum, Bloch functions, and band energy. It
gives mathematically and physically reasonable results as
shown later in this paper. With lattice covariant deriva-
tive, we achieve our main result in this paper: the equa-
tions of motion of electrons accurate to the first-order of
strain gradient, strain rate, and lattice acceleration. The
results are expressed in terms of the Bloch functions given
by the local periodic lattice, which are solvable numer-
ically. A few interesting effects are discussed based our
lattice covariant formalism. First neglecting the Berry
phase effects, we show the similarity between the elec-
tron dynamics at band bottom to that of a test particle
in post-Newtonian gravity. An equivalent metric tensor
is identified in terms of the effective mass and lattice
deformation. Then we focus on the Berry phase related
effects. For a band insulator at zero temperature, we cal-
culate the current induced by deformation. Particularly,
we identify the polarization contribution and give an ex-
plicit expression for the proper piezoelectric constant [16]
in terms of Berry curvatures expressed with lattice covari-
ant derivative. Then we discuss the Chern-Simons part of
the strain gradient induced polarization and strain rate
induced orbital magnetization. Finally, for the spatially
homogeneous case, we discuss the electron energy-stress
tensor and its responses to ionic velocity gradient and
acceleration.

This paper is organized as follows. Section II intro-
duces the basic idea of lattice bundle picture and clears
the mathematical notion. In Section III, we discuss the
special geometry of phase space. The equations of mo-
tion without Berry phase effect are discussed in compar-
ison to the gravitational effect. In Section IV, we discuss
the lattice covariant Berry curvatures and their related
effects. Subsection IVC concludes the paper with afore-
mentioned applications.

II. LATTICE BUNDLE PICTURE

A. Local lattice

In this paper, our main results are expressed in lab
frame (x, t), which is a Cartesian coordinate represent-
ing Minkowski spacetime. x is the position coordinate
which has three components denoted by {i, j, k} run-
ning at 1, 2, 3. t is the time coordinate. The com-
pound notion like xu,ν,ξ is also used in this paper where
u, ν, ξ = 0, 1, 2, 3 to include the time component repre-
sented by 0.

W

a1

a2

Figure 1. A schematic picture of how to identify the local
lattices in a deforming crystal. Blue circles represent the lat-
tice points of a deforming crystal. Dashed lines represents
the crystalline lines of the fictitious periodic local lattice. As
can be seen, the local distribution of lattice points is well de-
scribed by the local lattice only with deviation far away from
the local point. The right panel is the zooming in picture.
The lattice vector of a local lattice is given by the relative
displacement between lattice points and located in the mid-
dle denoted by the black dots on the arrows. And a local
lattice moves rigidly at velocity W .

The description of an ideal crystal in lab frame is given
by its Bravais lattice, which is a set of lattice points pe-
riodically aligned in space. Each lattice point may rep-
resent several ions and has an integer label {l}. Its dis-
placement vector from the lab frame origin is denoted as
{Rl = lαcα+u}. Here we use {α, β, γ} running at 1, 2, 3
to denote crystalline directions. l is short for {lα} which
has three components. {cα} are the three primitive lat-
tice vectors and u is the position of the zeroth lattice
point. Einstein summation rule is applied throughout
this paper.

In the lattice bundle picture, local lattices are ex-
pressed in the same way as ideal lattices only with
{cα(x, t),u(x, t)} becoming position and time-dependent
vector fields denoting the property at a particular
spacetime point (x, t). Reciprocal lattice vector fields
{bα(x, t)} are defined through the relation bα · cβ = δαβ ,
where the “crystallographer’s definition” is used and δαβ
is the Kronecker delta function. We use the bold sym-
bol to denote tensors. Normal symbol with the same
letter denotes their components. For example, lattice
vectors are written as cα = (c1α, c

2
α, c

3
α) and reciprocal

lattice vectors as bαi = (bα1 , b
α
2 , b

α
3 ). Vectors and covec-

tors are indicated by their upper and lower indices of
their components respectively. Thus the orthogonal rela-
tion written in components reads bαi c

i
β = δαβ . If we only

consider the three-dimensional space, {cα(x, t)} provides
a basis for real space vector fields e.g. electron velocity
and {bα(x, t)} provides a basis for covector fields e.g elec-
tron momentum. The completeness relation for this basis
reads bαj c

i
α = δij .

On the other hand, we know a crystal under defor-
mation is described by the position of its lattice points
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{Rl(t)}. Thus we need to establish the relation between
{cα(x, t),u(x, t)} and {Rl(t)}. This relation is schemat-
ically shown in figure (1) and is given by the following
formula

cα(
Rl +Rl+1α

2
, t) =Rl+1α −Rl, (1)

where 1α means one increment in the αth crystalline di-
rection. To achieve the continuous lattice vector fields
{cα(x, t)}, some interpolation procedure should be ap-
plied. A detailed discussion is given in Appendix A. We
should notice that once the lattice vector fields are given,
they can determine the total crystal up to a rigid body
displacement since given the position of a particular lat-
tice point, Eq. (1) can be applied repeatedly to recover
all the lattice points. The rigid body center position is
described by the field u(x, t) however is insignificant due
to the translational invariance of the Minkowski space-
time. Thus u(x, t) will not be discussed.

However, due to the time-dependence of the problem,
it is convenient to introduce a velocity field W (x, t) to
describe the motion of local lattices. It is determined by
the property that

W (Rl, t) = Ṙl(t), (2)

where again interpolation procedure should be applied
to achieve a continuous field. Then the four fields
{cα(x, t),W (x, t)} with α = 1, 2, 3 define at each
spacetime point (x, t) a periodic lattice of periodicity
{cα(x, t)} moving rigidly at velocity W (x, t) as observed
in lab frame. Thus we have a lattice bundle over the
spacetime.

It is worth to point out that the above argument is
always applicable to cases where the primitive unit cell
only contains one ion. For multi-ion cases, we need to
check whether there exists a one-to-one correspondence
between the ionic positions in a unit cell and the instanta-
neous positions of Bravais lattice points i.e all degrees of
freedom is contained in lattice points. Examples, where
such correspondence exists, are deformation caused by a
particular acoustic phonon branch, adiabatic case where
ions are always relaxed to their minimal energy position
at each time slice or crystals satisfying clamped-ion ap-
proximation where at each time the distribution of ions
within a unit-cell follows the instantaneous strain of the
unit-cell (although there can be internal strain contri-
bution [17]). Exceptions are cases where deformation is
caused by optical phonon or there is a internal strain.

Each local lattice automatically gives rise to a local
“static” Hamiltonian as

Ĥ(k;x, t) =
1

2me

(
1

i

∂

∂r
+ k)2 + V ({lαcα(x, t)− r}).

(3)

r is the real space representation. k is the crystal mo-
mentum. Both r and k should be viewed as local quan-
tity as well. The domain of r is chosen to be the first

Wigner–Seitz cell of the local lattice. And the domain
of k is chosen to be the first Brillouin zone. The de-
tailed derivation to achieve this Hamiltonian is given in
Appendix A to D and the relation between r and (x, t)
is given by Eq. (D9).

The above Hamiltonian has translational symmetry
and is solvable in principle. Its eigenstates are the peri-
odic part of the Bloch functions denoted by un(r,k;x, t),
where n is the band index. We will call un(r,k;x, t)
Bloch functions in this paper just for simplicity. The
corresponding eigenvalue is band energy denoted by
εn(k;x, t). In the following discussion, we assume those
eigensolutions are given by first principle calculations and
all our results will be given based on them.

Here are a few comments about this local Hamilto-
nian. In the crystal potential term, information about
the center position of a local lattice is discarded as the
zeroth ion is always located at r = 0. As pointed out
earlier, this won’t cause trouble since the lattice vector
fields contain structural information of the whole crystal
up to a rigid body displacement. Also, the local lattice
velocity W (x, t) is absent. As can be seen later, the ef-
fects of velocity field are to shift the crystal momentum
by −meW (x, t) and the electron energy by a centrifugal
potential − 1

2meW
2 while not changing electron Bloch

functions. The shifted crystal momentum and energy
have the physical meaning of electron momentum and en-
ergy in the reference frame comoving with ions. Rather
than being discussed in the Hamiltonian level, we will in-
troduce the effect of velocity directly in the semiclassical
equations of motion in III B. Again, this procedure can
be rigorously proved in Appendix D.

To make sure the above local Hamiltonian gives a good
approximation to the real lattice Hamiltonian, we must
assume the crystal potential at a given position is mainly
determined by ions within some finite spatial length scale
ξ and ξ is much smaller than the variation length scale
of lattice vectors λ i.e ξ ≪ λ. Also, because we have ap-
plied adiabatic approximation where the instantaneous
Bloch function and band energy are used, the variation
time scale of lattice vectors denoted by τ should sat-
isfy ~

τ
≪ ∆, where ∆ is the minimal direct band gap

of the adiabatic Hamiltonian. However, for polar ma-
terials, there does exist a non-local contribution to the
crystal potential due to polarization. Although this part
of contribution is not the focus of this paper, we expect
the polarization contribution to crystal potential can be
accounted for by combining the static Poisson equation
self-consistently with our formula of polarization given
in Subsec. IVC. Then our theory takes care of the local
potential part within this complete approach.

B. Lattice connection as strain rate and gradient

The major motivation of this work is to study the effect
of inhomogeneity i.e lattice acceleration, strain gradient
and strain rate on electron semiclassical dynamics, which
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are described by the spacetime derivative of the fields
{cα(x, t),W (x, t)}. In formulating the theory, we find it
is more convenient to define a quantity that is directly
related to inhomogeneity called lattice connection.

Consider the lattice vectors change δcα =
∂µcα(x, t)dx

µ given by a small increment in posi-
tion and time dxµ, we can define the lattice connection
to encode this variation as

δcα(x, t) =Γµ(x, t) · cα(x, t)dxµ, (4)

where Γµ(x, t) is the lattice connection and can be
viewed as second rank tensor with its element denoted
by {Γi

jµ}. In components, the above equation reads

δaiα = Γi
jµa

j
αdx

µ. If we define the infinitesimal strain
as δs = dxµΓµ, it simply reads δcα = δs · cα, which is
the strain induced lattice vector change. Thus the phys-
ical meaning of lattice connection Γµ is just the gradient
µ = 1, 2, 3 and rate µ = 0 of the unsymmetrized strain
tensor. The antisymmetric part between the upper and
first lower index is the relative rotation between local lat-
tices and the symmetric part is the relative symmetrized
strain. Particularly, the unit-cell volume change is de-
scribed by Γi

iµ. Since we choose local lattice as the ref-
erence, strain is no longer present in our theory instead
strain gradient denoted by lattice connection gives the
leading order correction. Multiplying the reciprocal lat-
tice vector bα on both sides of Eq. (4) and summing over
α, we can have an explicit expression of lattice connection
as

Γi
jµ =bαj ∂µc

i
α. (5)

Lattice connection represents how local lattices are
connected together to form the total lattice structure.
If in a local region the deformation is elastic i.e can be
continuously deformed to a periodic crystal, the gradi-
ent of the fields {cα(x, t),W (x, t)} are not independent,
which is directly manifested on the property of lattice
connection. As seen from Figure 2, the four adjacent lo-
cal lattice vectors forming a closed quadrilateral leads to
the conclusion that

(cα · ∂)cβ − (cβ · ∂)cα =0, (6)

where the second-order derivatives of {cα(x, t)} are ig-
nored. On the other hand, if we consider the relative
velocity between two adjacent lattice points, it can be
expressed either as the total time derivative of the lat-
tice vector fields from Eq. (1) or as the gradient of the
velocity field from Eq. (2). Equating both expressions
leads to the relation that

∂t|xcα + (W · ∂)cα = (cα · ∂)W , (7)

where again second-order derivatives of W (x, t) are ne-
glected. Both Eq. (6) and (7) can be reformulated in

terms of lattice connection as

Γk
ij − Γk

ji =0, (8)

Γk
i0 + Γk

jiW
j =∂iW

k. (9)

The first relation is the torsion free condition for a con-
nection form in a coordinate basis, which tells that the
two lower indexes of lattice connection are symmetric.
Eq. (9) shows that the strain rate experienced by ions
the left-hand side equals the gradient of velocity field the
right-hand side, where the first term on the left-hand side
is the strain rate observed at a fixed position. From the
above expression, we see that the angular velocity field
given by ω = ∂ × W is also related to lattice connec-
tion as ωk = εijk(Γj

i0 + Γj
liW

l) with εijk the Levi-Civita
symbol. Thus angular velocity is just the antisymmetric
part of the strain rate experienced by ions. However, we
should notice that the lattice acceleration field a is not
directly related to lattice connection, which is given by
a = (W · ∂)W + ∂tW .

Besides its geometrical meaning, lattice connection
also gives rise to an important gradient correction to local
Hamiltonian (3). This gradient correction term is for the
electron wave-packet, which is localized in real space with
center position x and expressed as the superposition of
the local Bloch states of local Hamiltonian (3) [10]. For
such a wave-packet state, the gradient correction reads:

∆H(r;x, t) =
1

2
Γm
niÔ

ni
m +

1

2
Γm
ni[(r − rc)

iD̂n
m + C.C].

(10)

where rc is the expectation value of operator r under
the wave-packet state. The derivation is given in Ap-
pendix B and Appendix C. The first term comes from
the difference between local lattice and real lattice away
from the particular point where local lattice resides. The
second term comes from the difference between local lat-
tices. Because wave-packet states have finite sizes usually
as large as several unit-cells, electrons can feel the influ-
ence from adjacent local lattices as well. Both terms are
proportional to the spatial part of lattice connection.

Ôni
m =

∑

l
∂V ({R̃l−r})

∂R̃m
l

(R̃l−r)n(R̃l−r)i is a periodic op-

erator respect to r, where {R̃i
l(x, t) = lαciα(x, t)} are the

local lattice points. The second term breaks the trans-
lational symmetry due to the factor {r − rc}. However,
it still has a well-defined expectation value under wave-
packet state due to localization in real space. D̂n

m =
Vn
m− 1

me
(1
i

∂
∂rm

+km)(1
i

∂
∂rn

+kn) is the deformation poten-

tial operator [18] with Vn
m =

∑

l
∂V ({r−R̃l(x,t)})

∂R̃m
l

(r− R̃l)
n.

Vn
m has the same form as assumed in the rigid ion model

[19] and automatically vanishes in the deformable ion
model. Actually, follow the argument in this paper IVB,
we believe this form of Vm

n is rather general as long as
there is a one to one correspondence between all lattice
points and the crystal potential. Deformation potential
operator is a second rank symmetric tensor operator with
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Figure 2. (a) Elastic condition of lattice vectors. The dots on
the four corners represent lattice points, which determine the
local lattice vectors denoted by the four edges of the quadrilat-
eral. The dot in the middle of each edge denotes where these
lattice vectors resides. According to Eq. (1), it is straight-
forward to derive the condition for the four lattice vectors to
form a closed quadrilateral. (b) Schematics of dislocation in
a square lattice. Along the closed trajectory denoted by the
bold line, if we count the change of lattice label, we always find
a unit mismatch in the crystalline direction. (c) Schematics
of a disclination in a square lattice. Along the closed tra-
jectory denoted by the bold line, we find the lattice vector
continuously change from c to c̃ a shown in the picture (d)
A special case of disclination in a rectangular lattice, which
is characterized by the 2π rotation of lattice vector along the
defect center. In the region far enough from the center, lo-
cally we have a rectangular lattice, whose two lattice vectors
c1 = c1θ, c2 = c2r are along the angle direction and radius
direction respectively in a polar coordinate. The disclination
located at the origin is characterized by the rotation of lattice
vectors by 2π along the complete circle.

respect to lattice symmetries. Its expression in momen-
tum space is discussed in Appendix G, which might be
more useful in first principle calculations.

Local Hamiltonian (3) together with gradient correc-
tion (10) gives the total Hamiltonian of electron wave-
packet in the first-order of strain gradient or lattice
connection. Although in principle gradient correction
also modifies local Bloch states, the eigenstates of local
Hamiltonian (3) are enough to achieve the equations of
motion up to first-order.

C. Characterizing line defects in the lattice bundle

picture

In this subsection, we discuss how to describe line de-
fects within lattice bundle picture. Although our theory
is limited in regions where locally deformation is slowly
varying and elastic, the topology of line defects can still
be described by the loops enclosing the defect line [20].
Here we consider the cases of dislocation and disinclina-
tion.

These two kinds of defect correspond to the redundant
freedom to describe a Bravais lattice. For an ideal crys-
tal described by {cα,u}, we can change the lattice labels

by some integer Z = {Zα} with u fixed, which gives the
same lattice. This is associated with dislocation. If we
travel along the loop enclosing dislocation line, after go-
ing back to the initial point, we find the lattice labels are
changed by some integer. Also, we may choose other crys-
talline directions c̃α = Uβ

αcβ , such that {c̃α,u} gives the
same lattice. This degree of freedom is related to discli-
nation. In the lattice bundle picture, if we keep track of
the local lattice vectors change along the loop enclosing
disclination, after returning to the starting point, we end
up with another set of equivalent local lattice vectors.
Dislocation and disclination are topological in the sense
that Z is an integer vector and U is an integer matrix.

The above argument is schematically shown in figure
2(b) and (c). Here, we show how they can be described
mathematically. First, for dislocation, Eq. (6) tells us
that the primitive lattice vector equals to the position
change of lattice points per integer label increment. This
can be written in a discrete form as

δxi =ciα(x+
δx

2
, t)δlα. (11)

The above expression relates the change in x space and l

space. With it, we can calculate the change of x or l along
some trajectory. If the trajectory is a loop in l space, the
displacement in x space gives the Burgers vector. On the
other hand, if the trajectory forms a loop in x space, the
total change of l gives the mismatch of lattice label Z
mentioned before. Here we adopt the latter perspective.
Considering a loop in x space far away from and enclosing
dislocation line, the change of lattice label can be written
as a integral as

˛

C

bαi (x)dx
i =Zα, (12)

where the integer on the right-hand side describes the
topological “charge” of the dislocation. According to
whether the crystalline direction Z is perpendicular or
parallel to the plane of the loop, we can characterize the
dislocation either as screw dislocation, edge dislocation
or mixed type. For example, in figure 2b, we have an edge
dislocation in a square lattice with Z = (1, 0, 0) denoting
one associated with the dislocation line.

Next we discuss disclination. Eq. (4) gives a formal
description of how local lattice vectors change in position
and time. Given lattice connection and the initial value
of lattice vectors {cα}, this equation determines the final
value {c̃α} along some trajectory. For a loop enclosing
disclination line, in general, the initial and final value
of lattice vectors are different. They are related to each
other as c̃α = U · cα and the matrix U can be formally
expressed as

U =T exp(
˛

dxiΓi), (13)

where T is the path ordering operator which is necessary
when the matrixes Γi(x, t) at different points along the
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loop do not commute. Given lattice connection expressed
in lab frame basis {Γm

ni} , U will have the form of {Um
n }.

However, to see its topological property, we express it in
lattice vector basis as Uβ

α = cnαU
m
n b

β
m. Then the final and

initial value of lattice vectors are related as c̃α = Uβ
αcβ.

Because {c̃α} and {cα} represent the same local lattice,
the matrix U and its inverse are both integer matrix with
determinant ±1.

It is important to realize that in the presence of dis-
inclination, lattice vector fields are not globally well-
defined. This restricts our previous discussion only to
a local region. To study the global effect of disinclina-
tion, at least two sets of lattice vector fields are needed.
However, lattice connection is still a good quantity glob-
ally. As seen from its expression (5), the summation
over all crystalline directions makes lattice connection
single-valued even in the presence of disclination. It is
also worth to point out that because of elastic condition
(8,9), locally lattice connection is trivial in the sense it
can be made zero by a particular coordinate transforma-
tion. However, in the presence of a topological defect,
lattice connection is no longer trivial globally.

Here, we give a demonstration calculation for discli-
nation shown by figure 2(d). In polar coordinates c1 =
c1θ, c2 = c2r, where c1, c2 are constant representing the
magnitude of lattice vector. Then according to Eq. (4),
we have Γx

xθ = Γy
yθ = 0 and Γy

xθ = −Γx
yθ = 1

R
, where R is

the radius of the circle we are considering enclosing the
disclination. The lattice connection can be treated as a
matrix

Γθ =

(

0 − 1
R

1
R

0

)

, (14)

which is just the generator of the SO(2) group multiplied
by 1

R
. Because lattice connection is constant along the

path, the ordering operator can be omitted and we have

U =exp

(

0 −2π
2π 0

)

=

(

cos(2π) − sin(2π)
sin(2π) cos(2π)

)

, (15)

which is the expected 2π rotation of the lattice vectors.

III. LATTICE COVARIANT PHASE SPACE

A. Phase space geometry

At a given time t, the electron wave-packet state with
center position x and center wave-vector k locates at the
point (k;x) in phase space. Phase space is the base man-
ifold for the semiclassical electron motion. However, for
the case of deforming crystals, it takes an unusual geom-
etry comparing to periodic lattices as shown in figure 3,
which is the one-dimensional case. In the lattice bundle
picture, for given time t, at each position x the local lat-
tice gives rise to a local Brillouin zone according to its

own periodicity. All the Brillouin zones together with the
position space x constitute the phase space. However,
the shapes of local Brillouin zones are different. Notic-
ing the topology of Brillouin zone, we have a bundle of
smoothly varying toruses as the phase space. As shown in
the one-dimensional case, the phase space is an irregular
tube.

Mathematically, each point in a local Brillouin zone
is labeled by k and we choose the domain of k as

[−πb(x,t)
2 ,

πb(x,t)
2 ], with −πb

2 and πb
2 denoting the same

point and forming a torus. The position and time de-
pendence of b(x, t) shows how the local Brillouin zones
vary along spacetime. Due to this geometry, unlike peri-
odic crystals, the meaning of wave-vector k is incomplete
without pointing out which local Brillouin zone it belongs
to. This property brings up the question about how to
compare wave-vectors in different local Brillouin zones.
To answer this question, a correspondence between local
Brillouin zones is needed. Thus we introduce the con-
cept of correspondence curves in phase space. Given a
wave-vector k at some initial position point x, we move
the wave-vector in real space while at the same deform
the wave-vector with local Brillouin zones. This is essen-
tially the same concept of parallel transport in differential
geometry. The trajectory of parallel transport in phase
space is the line of correspondence as shown in figure 3.
Particularly, the infinitesimal changes of wave-vector by
a small shift in position is given by δkm = −Γn

mikndx
i.

Wave-vectors on the same correspondence line are
treated equivalently. Thus it is useful to introduce
a derivative operation ∇xµ to encode this equivalence,
which we call lattice covariant derivative. Lattice covari-
ant derivative is crucial for the semiclassical dynamics.
For example, the band energy ε(k,x, t) given by Hamilto-
nian (3) is a time-dependent phase space function and its
derivative in position gives the “force” term responsible
for the acceleration of electrons. An important property
of ε is that it is periodic in k which makes it compatible
with the torus topology of Brillouin zone. Thus it is nat-
ural to require that their lattice covariant derivatives are
also periodic:

∇xµf |(k+2πb,x,t) ≡∇xµf |(k;x,t), (16)

where f is an arbitrary periodic function, ∇xµ is the lat-
tice covariant derivative and µ = 0 accounts for the time
derivative. It is easy to see that partial derivative with
k fixed doesn’t satisfy the above relation. To find the
right derivative operation, we consider the total differen-
tial change of f(k,x, t):

df(k;x, t) =[dxµ∇xµ +Dki∂ki
]f, (17)

with

∇xµf =(∂xµ − klΓ
l
jµ∂kj

)f, (18)

Dki =dki + kjΓ
j
iµdx

µ, (19)
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Figure 3. The phase space of electrons in the one-dimensional
case. The straight line at the bottom denotes the position
space x. Local Brillouin zones are denoted by circles at each
position. The intersection between each circle and the straight
line is the k = 0 point. The phase space is a “tube” with a
varying radius. To compare two points in phase space, we
show two alternatives. One is along the path denoted by ∂x

where the value of k is fixed then go along the circle by the
total change of wave-vector dk. Another path is to go along
the correspondence line formed by parallel transport denoted
by ∇x then go along the circle by the mechanical change of
wave-vector Dk.

where instead of using partial derivatives to express the
total differential, we rearrange the terms to write it in a
lattice covariant form. dxµ∇xµf is the differential change
along the correspondence line and Dki∂ki

is the change
along k, which is schematically shown in figure 3.

Eq. (18) gives the desired lattice covariant derivative
operation. It is easy to check that the lattice covari-
ant derivative of f is still periodic. As a bonus, we get
another quantity Dk. Noticing that −Γµkdx

µ is the ge-
ometrical change of wave-vector due to deformation, Dk

is the total change subtracting the geometrical change.
So we call Dk the mechanical change of wave-vectors.
It is worth to point out that the mechanical change of
wave-vector defined this way is also periodic in k.

When f(k,x, t) = ε(k,x, t), its lattice covariant
derivative is related to the deformation potential as

∇xµε(k;x, t) = Dn
m(k;x, t)Γm

nµ, (20)

where Dn
m ≡ (cnα∂cmα − km∂kn

)ε is the deformation po-
tential defined in the entire Brillouin zone[21]. Here a
trick has been used that when the position and time de-
pendence is through the lattice vectors, partial deriva-
tives can be written as ∂xµ = Γm

nµc
n
α∂cmα |k. Usually, the

deformation potential is defined relative to a particular
reference crystal. Here we have a deformation potential
tensor field from all local lattices.

B. Electron equations of motion

Next, we show how the equations of motion of electrons
can be written in a covariant form with the help of lattice
covariant derivatives. In this subsection, we neglect the

Berry phase effect first. Without Berry phase, the elec-
tron position x and wave-vector k are a pair of canonical
variables. Under single band approximation, for a static
deformed crystal, it is straightforward to write down the
equations of motion:

ẋ =∂kε, (21)

k̇ =− ∂xε, (22)

where ε and k are the eigen energy and eigenstate of the
local Hamiltonian (3). Although this form is mathemati-
cally correct, the equations of motion are not compatible
with the phase space geometry mentioned before since
∂xε is not a periodic function in k and breaks the torus
topology of Brillouin zones. We can then rewrite the
above equations with lattice covariant derivatives as

ẋ =∂kε, (23)

Dtk =−∇xε, (24)

where not only every term in the above equations can
be interpreted as a quantity in phase space but also Eq.
(24) acquires new geometrical meaning that the mechan-
ical change of wave-vector is induced by the deformation
potential force noticing Eq. (20).

For the time-dependent case, the above equations of
motion need to be further modified. As pointed out
earlier that the Hamiltonian is written in the co-moving
frame of ions, thus ε and k denotes the energy and crys-
tal momentum relative to ions respectively. Keeping this
in mind, the equations of motion need to be revised in
two aspects. First, the energy dispersion represents the
relative velocity of electrons to ions thus the LHS of (23)
should be replaced by ẋ−W instead. Second, due to the
non-inertial motion of ions, inertial force should also con-
tribute to the change of the relative crystal momentum
k in Eq. (24).

By adding those corrections, we achieve the equations
of motion in the most general case as

Dtx =∂kε, (25)

Dtk =−∇xε+meDtx× 2ω −mea, (26)

where Dtx ≡ ẋ − W is the relative velocity to ions.
meDtx× 2ω , −mea are the inertial forces due to lattice
rotation and acceleration respectively, where ω = 1

2∂ ×
W is the angular velocity field and a = (W · ∂)W +
∂tW is the acceleration field. The mechanical change
rate of the wave-vector is defined as Dtk ≡ Dk

dt
and in

components, it reads:

Dtki ≡(k̇i + Γn
itkn + ẋjΓn

ijkn). (27)

The geometrical meaning of the above equations of mo-
tion becomes explicit with the help of lattice covariant
derivative. In fact, if we compare the equations of mo-
tion to those of a test particle moving in the real gravita-
tional field [22], we can see they share a lot of similarities.
Eq. (25) is just the expression of the covariant velocity
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with W resembling the effect of the spatiotemporal com-
ponent of the metric tensor. However, the free particle
energy dispersion on the right-hand side replaced by the
band energy dispersion. Dtk has the form of the covari-
ant derivative of the crystal momentum along the elec-
tron trajectory in spacetime, which is the same as test
particle case. However, in real gravity the right-hand
side of Eq. (26) vanishes for spinless particles. One of
the reasons for this distinction is that our lattice connec-
tion is only for the spatial part of the tangent space of
the spacetime manifold while the Levi-Civita connection
in general relativity is for the total tangent space includ-
ing the time component. We expect a more complete
analogy to gravity can be made by considering the defor-
mation of a Bloch-Floquet crystal[23]. Another reason is
that the deformation effect is not completely geometri-
cal in the sense different crystals have different forms of
deformation potential. It is also worth to point out that
the equations of motion have the covariant property un-
der Newtonian coordinate transformation. Particularly,
each term in Eq. (25) transforms like vector and each
term in Eq. (26) transforms as covector. This property
allows us to get the equations of motion in other coor-
dinates related by Newtonian coordinate transformation
with time universal in all coordinate choices.

Chronologically, we derived the above equations of mo-
tion from the following zeroth order Lagrangian:

L0
e =− (ε(k;x, t) +W · k +

1

2
meW

2) + (k +meW ) · ẋ,
(28)

where the first-order terms such as Berry connections
and gradient energy are discarded. This Lagrangian can
be understood in terms of its free electron limit, where

ε = k2

2me
and by defining the lab frame canonical mo-

mentum p ≡ k +meW , we have the expected free elec-

tron Lagrangian L0
e = pẋ− p2

2me
. Direct variation of the

Lagrangian (28) gives the following equations of motion
expressed in terms of partial derivatives

ẋ =∂kε+W , (29)

k̇ =− ∂xε− ∂xW · k +me(ẋ−W )× 2ω −mea. (30)

However, as mentioned earlier the geometrical meaning
of this form is less obvious and cannot be interpreted as
the equations of motion in phase space. By using lattice
covariant derivative and the local elastic relation Γk

i0 +
Γk
jiW

j = ∂iW
k , they can be rewritten in the covariant

form (25) and (26).

C. Post-Newtonian gravity at band bottom

Motivated by the similarity to gravitational effect, we
study the low energy dynamics around band extrema and
find that the electron dynamics is described by an effec-
tive post-Newtonian gravity. Since we only consider the

deformation of crystals with spatial periodicity and adopt
the Newtonian point of view about time passing uni-
formly regardless of the deformation, it is unlikely to get
a full analogy to the four-dimensional gravity. However,
it is reasonable to compare to post-Newtonian gravity,
which is the low energy and speed limit of the complete
gravitational theory. At band minimal, expanding local
energy to the second-order of k and expressing the elec-
tron wave-vector k in terms of ẋ, we have the Lagrangian
(28) as

L̃e =
1

2
m∗

ij(x, t)ẋ
iẋj − (m∗

ij −meδij)W
j(x, t)ẋi

+
1

2
(m∗

ij −meδij)W
iW j − Φ(x, t), (31)

where m∗
ij is the effective mass, Φ(x, t) is the energy at

band extremals. It reduces to the Lagrangian of New-
tonian free particle when electron and lattice are decou-
pled. We compare it with the Lagrangian of an electron
in post- Newtonian gravity. By assuming both the veloc-
ities of the massive object generating gravity and the test
particle are small compared to the velocity of light and
keeping to the second-order of velocity, the test particle’s
Lagrangian reads

L̃g ≈1

2
megij ẋ

iẋj +meg0iẋ
i +meφ, (32)

where g00 = −c2+2φ and φ is the Newton’s gravitational
potential. The rest energy of electron is discarded. Direct
comparison of both Lagrangians leads to the equivalent
metric tensor in lattice as

m∗
ij

me

∼ gij ,

−(
m∗

ij

me

− δij)W
j ∼ g0i,

1

2
(
m∗

ij

me

− δij)W
iW j − Φ

me

∼ φ. (33)

We emphasize that this effective metric is expressed in
the lab frame. The motion of electrons follows the
geodesic equation given by the above equivalent metric.
The first relation between the effective mass tensor and
the spatial part of the metric tensor is well-known in gen-
eral solid state physics [24]. The energy at band bottom
as a static potential serves as Newton’s gravitational po-
tential is also expectable. The new discovery here is the
contribution from ionic motion. Particularly the g0i com-
ponent comes directly from the ionic velocity. It acts as
the vector potential of the gravitational electromagnetic
field thus can be coupled to the energy magnetization
[25] in the system (Energy magnetization is analogous
to charge magnetization, which is the circular motion of
energy current and couples to gravitomagnetic field sim-
ilar to the Zeeman coupling). It also gives a dynamical
contribution to the gravitational potential. The factor
m∗

ij

me
− δij which is proportional to the difference between
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effective mass and bare mass is a manifestation of the
dragging effect. For free electrons whose effective mass is
just the bare mass this effect vanishes. For effective mass
larger and smaller than the bare mass, g0i just have op-
posite effects. It is also interesting to study the effective
gravitational effect for Dirac semi-metal or Weyl semi-
metal.

IV. LATTICE COVARIANT FORMULATION OF

BERRY PHASE EFFECTS

In this section, we focus on the Berry phase effects.
From the previous discussion, we know that evolution of
an electron is described by its trajectory in phase space
with a special geometry. Under adiabatic approxima-
tion, the electron Bloch functions will change adiabati-
cally along the trajectory. If the trajectory forms a loop,
the initial and final state of Bloch functions only differ
by a phase term called Berry phase. The corresponding
Berry connection and Berry curvature will modify the
previous equations of motion (25, 26).

A. Lattice covariant Berry connections and Berry

curvatures

The mathematical expressions of the Berry connections
involve derivatives of the local Bloch states u(r,k;x, t)
with respect to the extended phase space parameters
(k;x, t). However, this is non-trivial in the deforming
crystal system. On top of the special geometry of ex-
tended phase space mentioned before, there is another
difficulty due to Bloch states at different positions and
times have different periodicities in r. A complete under-
standing of this problem calls for the concept of Hilbert
bundle [14]. Noticing that all the eigenstates of the local
Hamiltonian (3) form a complete basis for the Hilbert
space of complex periodic functions with the same pe-
riodicity as the local lattice, we can assign such a local
Hilbert space to each position x, time t and wave-vector
k. Then we have a Hilbert bundle with its fibre the local
Hilbert space denoted by F(k;x, t) and the base mani-
fold the extended phase space. F(k;x, t) is characterized
by the local periodicity given by {cα(x, t)}. Local Hamil-

tonian Ĥ(k;x, t) and local Bloch states u(r,k;x, t) are
operator and states in F(k;x, t). Thus the problem arises
from comparing states in different Hilbert spaces.

Next, we discuss how to resolve this problem. Since
Bloch functions of all bands form a complete basis, for
convenience we use them to discuss the properties of
states in the Hilbert bundle. Under a particular choice of
smooth gauge, the Bloch functions satisfy the following
boundary conditions:

u(r + cα(x, t),k;x, t) =u(r,k;x, t), (34)

u(r,k + 2πbα(x, t);x, t) =eiφ
α(k;x,t)ei2πr·b

α

u(r,k;x, t).
(35)

The first condition identifies the periodicity of the local
Hilbert space F(k;x, t), to which the Bloch function be-
longs. The second condition shows that Bloch functions
are quasi-periodic functions in k where “quasi” is due to
the Berry phase term eiφ

α(k;x,t). The factor ei2πr·b
α

is
completely artificial because we denote the Brillouin zone
torus with a single domain k ∈ [−πb(x, t), πb(x, t)]. The
Berry phase term cannot be eliminated by single-valued
and continuous gauge transformation. For example, in
the two-dimensional case, the Berry phase accumulated
along the Brillouin zone boundary equals the Chern num-
ber.

We view (34, 35) as the boundary conditions charac-
terizing a Hilbert bundle state. Then it is natural to re-
quire that the correct derivative operation of Bloch states
is still a quantity in this Hilbert bundle and satisfies the
above boundary conditions. Along k direction, it can
be verified easily the gauge invariant derivative ∂k + iAk

satisfies this requirement, where Ak is defined with ∂k
as Ak = 〈u|i∂ku〉. However, the gauge invariant par-
tial derivative of position x and time t does not satisfy
our requirement. Thus we introduce the lattice covariant
derivative in the Hilbert bundle denoted by ∇xµ , whose
property is given in Table I. The corresponding gauge
invariant derivative ∇xµ + iAxµ satisfies the boundary
conditions.

Our discussion in the last section is the case where lat-
tice covariant derivative acting on phase space functions
and is given in the first row. The last row in Table I
shows how lattice covariant derivative acting on Bloch
functions. Comparing the first row and the last row, we
see that when lattice covariant derivative acting on Bloch
functions, in addition to the first two terms which treat
Bloch functions in the same way as phase space functions,
the third term resolves the issue the periodicity difference
of Bloch functions at different position and time in the
same manner.

With lattice covariant derivative, the definition of
Berry connection is straightforward:

Axµ(k;x, t) ≡i〈u(k;x, t)|∇xµu(k;x, t)〉, (36)

Ak(k;x, t) ≡i〈u(k;x, t)|∂ku(k;x, t)〉, (37)

where the Bloch functions are normalized with the inner
product:

〈u1|u2〉 =
(2π)3

v(x, t)

ˆ

v

d3ru∗1(r,k;x, t)u2(r,k;x, t), (38)

where u1(r,k;x, t) and u2(r,k;x, t) are two local
Bloch functions of different bands. Here because
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phase space quantities examples lattice covariant derivatives

scalar functions ε(k;x, t) ∇xµε ≡ ∂xµε− Γn
mµkn

∂ε
∂km

vectors Ak(k;x, t) ∇xµAki
≡ ∂xµAki

− Γn
mµkn∂kmAki

− Γi
jµAkj

vector density P =
´

d3k

(2π)3
Ak ∇xµP i

≡ ∂xµP i
− Γi

jµP
j + Γj

jµP
i

Bloch functions u(r,k;x, t) ∇xµu ≡ ∂xµu− Γn
mµkn

∂u
∂km

+ Γm
nµr

n ∂u
∂rm

Table I. lattice covariant derivative of different phase space subjects. The definition comes naturally once we identify (r,k) as
local quantities and introduce lattice connection to compare them. For example, ∂k and d3k are also local quantities inherited
from the k, whose lattice covariant derivatives are responsible for the second term and third term in the vector density case
respectively.

∇xµu(r,k;x, t) is periodic in r, the integral in a unit-

cell becomes reasonable. The factor (2π)3

v(x,t) in Eq. (38)

can be viewed as the volume measure and is position and
time dependence, which is another indication that lab
frame is “curved” for electrons. This factor is also neces-
sary for lattice covariant derivative to satisfy the Lebniz
rule: ∇xµ〈u′|u〉 = 〈∇xµu′|u〉+〈u′|∇xµu〉, where the total
inner product on the left-hand is treated as a phase space
function.

The corresponding Berry curvature is defined with lat-
tice covariant derivative as

Ωkikj
≡i[〈∂ki

u|∂kj
u〉 − 〈∂kj

u|∂ki
u〉], (39)

Ωkixµ ≡i[〈∂ki
u|∇xµu〉 − 〈∇xµu|∂ki

u〉], (40)

Ωxx and Ωxt are second-order quantities, which will not
be discussed here. However, from the above definition
the relation between Berry curvatures Ωkx and Berry
connections is not so trivial. It turns out that the rela-
tion Ωkixµ = ∂ki

Axµ −∇xµAki
is valid only if the lattice

covariant derivative of Berry connection Ak is defined as

∇xµAki
≡∂xµAki

− Γn
mµkn∂km

Aki
− Γi

jµAkj
, (41)

where the first two terms treat the Berry connection as
a normal phase space scalar function. However, we have
an additional term. If looking back at the form of Eq.
(27) which is the covariant derivative of a covector form
k, we can see that the last term in Eq. (41) is a manifes-
tation of the vector property of Berry connection Ak. We
summarize this property in the second row of Table I. It
can be easily checked that indeed Ak transforms in the
same way as the coefficient of a three-dimensional vector
under Newtonian coordinate transformation. Mathemat-
ically, this additional term is due to the commutation
relation [∇xµ , ∂

∂ki
]u = Γi

mµ
∂

∂kcm
u, where u is the local

Bloch function. It is necessary for the gauge invariance
of Berry curvatures. And Berry curvatures Ωkikj

, Ωkixj

can be viewed as second rank tensors.

B. Energy correction and complete equations of

motion

We have discussed the lattice covariant derivative of
Bloch functions and the corresponding Berry connec-
tions. A complete discussion should also include the

property of lattice covariant derivative acting on quan-
tum operators such as the local Hamiltonian. This can
be achieved by imposing Leibniz rule such that

∇xµ [Ŝu](k;x, t) ≡(∇xµ Ŝ)u(k;x, t) + Ŝ(k;x, t)∇xµu,
(42)

where Ŝ(k;x, t) is some operator in Hilbert bundle which
keeps the periodicity of Bloch functions. With the above
requirement, we can directly define the deformation po-
tential operator D̂n

m in arbitrary crystal system as

∇xµĤ(k;x, t) ≡Γm
nµ(x, t)D̂

n
m. (43)

We find that for a generic lattice Hamiltonian as shown in
Eq. (3), D̂n

m = Vn
m − 1

me
(1
i

∂
∂rm

+ km)(1
i

∂
∂rn

+ kn), which

is exactly the one appearing in Eq. (10). Historically,
deformation potential operator is first derived using La-
grangian coordinate [18]. Here we show that it is simply
the lattice covariant derivative of local Hamiltonian. This
conclusion only relies on the existence of one to one cor-
respondence between ionic distribution and local Bravais
lattice.

With lattice covariant derivative, most well-known re-
sults have the same analytical form only with partial
derivatives replaced by lattice covariant derivatives. For
example the Hellmann–Feynman theorem in the defor-
mation crystal case can be written as:

∇xµε(k;x, t) = 〈u(k;x, t)|D̂m
n |u(k;x, t)〉Γn

mµ, (44)

where the left-hand side is to treat the local band energy
as a phase space function and the right-hand side comes
from the lattice covariant derivative of the expectation
values of local Hamiltonian in Bloch states. Comparing
to Eq. (20), it is obvious that deformation potential Dm

n

is just the expectation value of the deformation potential
operator.

Next, we discuss the first-order correction to en-
ergy. It contains static part and dynamical part. The
static contribution comes from the expectation value
of the gradient correction Eq. (10) in the wave-
packet states, which has two terms: the potential cor-

rection Γi
jk(x, t)〈u|Ô

jk
i |u〉 and the gradient correction

Γm
niIm[〈u|Dmn−D̂mn|∂ki

u〉]. The dynamical part comes
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from the coupling between lattice rotation and self-
rotation of wave-packet: 2ω · J , which is a Zeeman type
coupling with J = me

i
2~〈∂ku|×(ε−Ĥ)|∂ku〉 the angular

momentum of wave-packet. This can be understood from
the similarity between the form of Coriolis force in Eq.
(26) to Lorentz force. The detailed derivation of these
correction terms is given in Appendix D. In summary,
the total energy up to first-order reads:

εtot = ε+ Γi Im〈u|D − D̂|∂ki
u〉+ Γ〈Ô〉+ 2ω · J . (45)

Up till now, we have all the ingredients to write down
the equations of motion up to first-order. They are
achieved by adding Berry curvatures to the Eq. (25),
(26) and using the total energy instead of local band en-
ergy. The results are

Dtx =∂kεtot −Dtk × Ωk − ΩkT , (46)

Dtk =−∇xεtot +meDtx× 2ω −mea, (47)

which have the similar analytical form as the result in
[10]. However, partial derivatives are replaced by lattice
covariant derivative and the geometrical meaning of each
term is more transparent. Eq. (46) is the relative veloc-
ity of an electron to ions and each term can be viewed as
a spatial vector while Eq. (47) is the mechanical change
of crystal momentum and each term can be viewed as a
spatial covector. This geometrical property guarantees
the covariant form of the equations of motion and al-
lows us to directly write down the equations of motion in
other coordinates related by Newtonian coordinate trans-
formation. Ωk is the pseudovector constructed from Ωkk.
ΩkT = Ωkx · ẋ+ Ωkt will give rise to the adiabatic cur-
rent induced by strain rate and strain gradient. Although
Ωxx and Ωxt are not included in the equations of motion
as second-order quantities, they play the same role as a
magnetic field and electric field respectively as discussed
in [10]. And the above equations of motion can be derived
from the complete first-order Lagrangian:

Le =− (εtot +W · k − 1

2
meW

2) + (k +meW ) · ẋ

+ (At + ẋ ·Ax) +Dtk ·Ak. (48)

C. Applications

In the following discussion, we study the response of
electrons to deformation i.e the four fields describing lat-
tice bundle {cα(x, t),W (x, t)}. This is related to quite
a few phenomena such as piezoelectricity, flexoelectric-
ity, strain rate induced orbital magnetization and elec-
tron stress tensor as well as their responses to deforma-
tion. Frequently, we need to extract a factor which is
related to deformation e.g. strain, strain gradient, and
velocity gradient to get the corresponding response coef-
ficient. This is achieved by defining the covariant strain
derivative ∇m

n , which has the physical meaning as the
differentiation to the unsymmetrized strain tensor and is

related to lattice covariant derivative as ∇xµ = Γm
nµ∇m

n .
However, we should notice that this is true only when the
position and time dependence of the system comes from
the lattice vectors {cα(x, t)} such that ∂xµ = Γm

nµc
n
α∂cmα

. Similarly, we summarize its action on various phase
space quantities in Table II.

1. charge density

The first point to notice that in general a deformed
band insulator is not locally charged neutral due to
lattice rotation and strain gradient. Particularly, the
electron charge density is given by the integration of
the modified density of state [9] in phase space: D =

1
(2π)3 [1 + tr(Ωkx) − me2ω · Ω]. The form of D comes

from the fact that due to Berry phase effect, electron
coordinate x and crystal momentum k are not canon-
ical to each other. While the density of state is 1

(2π~)

for a pair of canonical variables, Berry phase gives rise
a correction to density of state as denoted by the Berry
curvature terms tr(Ωkx)−me2ω ·Ω. Then the electron

charge density in real space is given by −e∑
´

d3k
(2π)3Df ,

where f(k,x, t) is the distribution function which can be
achieved for example by solving the Bolzmann equation
and the summation

∑

is over all bands.
For insulators at zero temperature, f is a step func-

tion and it is just the integration of D in k space and
summation over all occupied bands. Then the electron

density in real space reads − ene

v
+eme2ω ·

∑
´

d3k
(2π)3Ωk−

e
∑
´

d3k
(2π)3 tr(Ωkx) [9]. ne is the number of itinerate elec-

trons per unit-cell. The exact meaning of ne depends
on the first-principle method used. In the “all electron”
calculation, ne includes all the electrons outside the nu-
clei while in the pseudopotential method, the core elec-
trons are excluded. Under clamped-ion approximation,
the first term is canceled by the ionic charge density.
The second term is analogous to the effect of Fermi sea
volume change due to the magnetic field in a Chern insu-

lator, where Ω =
´

d3k
(2π)3Ωk is quantized. The third term

comes from inhomogeneous piezoelectricity. The physi-
cal meaning becomes more transparent if we chose the
periodic gauge for Ax in k. Then the third term reads
−∂iP i, where P = − e

(2π)3

∑
´

d3kAk is the Vanderbilt

polarization [8].

2. deformation induced adiabatic charge current

For simplicity, in the discussion of deformation induced
adiabatic charge current, we only consider band insula-
tors at zero temperature such that the distribution func-
tion is simply a step function. First, we study the to-
tal current of both ions and electrons under clamped-ion
approximation. This approximation states that at each
time the distribution of ions within a unit-cell follows the
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examples lattice covariant derivatives

phase space functions ε(k;x, t) ∇
m
n ε ≡ cmα

∂ε
∂cnα

− Γn
mµkn

∂ε
∂km

phase space vectors Ak(k;x, t) ∇
m
n Aki

≡ cmα
∂Aki

∂cnα
− kn∂kmAki

− δinAkm

vector density P =
´

d3k

(2π)3
Ak ∇

m
n P i

≡ cmα
∂P i

∂cnα
− δinP

m + δmn P i

Bloch functions u(r,k;x, t) ∇
m
n u ≡ cmα

∂u
∂cnα

− kn
∂u

∂km
+ rn ∂u

∂rm

Table II. covariant strain derivative of different phase space subjects

instantaneous strain of the unit-cell (although there can
be internal strain contribution [17]).

Next, we show that for band insulators at zero tem-
perature, the total current is adiabatic and can be cate-
gorized as either electric polarization current or electric
magnetization current besides the anomalous current.
Particularly, the magnetization due to the motion of po-
larization dipole modifies charge pumping picture and
leads to the concept of proper piezoelectricity [16, 26].

Using the equations of motion, it is straightforward
to write down the total current density up to first-order
(Appendix E):

jtot =− emea×Ω+ ∂ ×M + ∂tP + ∂ × (P ×W )
(49)

where e is the absolute value of electron charge and the
integral is in local k space. And the periodic gauge for
the real space Berry connections: Axµ(k) = Axµ(k+b) is
used. The first term is the well-known anomalous current
density [27], with Ω = 1

(2π)3

´

d3kΩk. The anomalous

current density here is driven by the inertial force due to
ionic acceleration. The second term is the magnetization
current density, where M = − 1

(2π)3
e
2~

∑

n

´

i〈∂kun| ×
(εn + Ĥ − 2µ)|∂kun〉 is the orbital magnetization at zero
temperature [28]. The third term is the polarization cur-
rent density. Attention should be paid to the last term. It
is the curl of P ×W , which indicates that P ×W should
be interpreted as the magnetization density. This term
comes from the motion of a polarized material, which is
actually a well-known phenomenon in classical electro-
magnetism. As magnetization and polarization form a
3+1 dimensional anti-symmetric tensor, they transform
into each other under material motion. The picture is as
follows: consider an initially stationary dipole moment
P composed by a pair of spatially separated positive and
negative charge, if it begins to move at velocity W , the
two charges give rise to currents of opposite directions
thus an effective current circuit is formed which gives rise
to the orbital magnetization density P ×W . This effect
shows the consistency between the classical electromag-
netism and the modern quantum theory of polarization
and magnetization in solids.

We then consider the case where the lattice vectors
are constant in space and only changes slowly with time
and further assume that at each fixed time t, the lattice
has time-reversal symmetry. Then the first term and the
second term in Eq. (49) vanish and using the elastic

condition (8, 9) the remaining terms can be written in
an intriguing form as

jitot =∂tP
i − Γi

m0P
m + Γm

m0P
i. (50)

The first term is the absolute change of polarization den-
sity under deformation. The second term is the direc-
tional change due to the deformation of crystalline di-
rections. The last term is the magnitude change due to
the deformation of unit-cell volume. Eq. (50) shows that
the last two geometrical changes of polarization density
should be subtracted to give the experimentally observed
current density. This confirms the argument by Nelson
and Vanderbilt [16, 29] that only the proper change of
polarization can be observed experimentally. Substitut-
ing P = − e

(2π)3

´

d3kAk and ∂t = Γm
n0c

n
α∂cmα , within our

lattice covariant formula, Eq. (50) can be conveniently
written as

ji =− eΓn
m0

ˆ

d3k

(2π)3
[∇m

n Aki
− ∂ki

Am
n ], (51)

where the periodic gauge condition for At = Γn
m0A

m
n is

used again to retain this gauge invariant form and Am
n =

i〈u|∇m
n u〉. Noticing Γ0 denotes the strain rate and by

defining the proper piezoelectric constant as emi
n = ∂ji

∂Γn
m0

,

we have an explicit expression for emi
n as

emi
n =− e

ˆ

d3k

(2π)3
[i〈∂ki

u|∇m
n u〉 − i〈∇m

n u|∂ki
u〉], (52)

which is nothing but the integral of Berry curvature in-
volving k and strain. And lattice covariant strain deriva-
tive gives an explicit meaning for the strain derivative.
Its expression in terms of deformation potential operator
is discussed in Appendix G.

Another consequence of Eq. (50) is that the charge
pumping picture should be revised in deforming crys-
tal case. The usual picture states that when the sys-
tem varies slowly and periodically in time, the charge
pumped through a fixed plane in lab frame during one
cycle is quantized [7]. However, due to the last two terms
in Eq. (50), this picture is changed due to that the right-
hand side is not a total time derivative. To see this, by
multiplying a factor vbα on both sides, Eq. (50) reads:

jitotvb
α
i =− ∂t(vb

α
i P

i), (53)
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where v(t) is the unit-cell volume and bα(t) is the recip-
rocal lattice vectors. Now the right-hand side becomes
a total time derivative and the left-hand side is the cur-
rent passing through a lattice plane unit-cell, where bα

is the normal direction. After integration in time, the
left-hand side gives the total charge pumped through a
lattice plane unit-cell and the right-hand side is the dif-
ference of vbαl P

l between initial and final state. Suppose
the initial and final states are the same, from the un-
certainty of P l, the charge pumped is quantized to some
integer. However, noticing that the lattice plane unit-cell
is constantly changing during the time cycle, the pumped
charge through a fixed surface plane in lab frame is not
necessarily quantized.

3. Strain gradient induced polarization and strain rate

induced magnetization

The first-order current density comes from the vari-
ation of the zeroth order polarization/magnetization.
To study the polarization/magnetization induced by
strain gradient/rate, current density accurate to second-
order is needed. As pointed in the work [30], polar-
ization/magnetization due to inhomogeneity can be di-
vided into two parts: (1) the zeroth order polariza-
tion/magnetization formula expressed with inhomogene-
ity modified Bloch functions; (2) the Chern-Simons con-
tribution expressed with zeroth order local Bloch func-
tion. The former will be deferred to future study. Here
we concentrate on the Chern-Simons contribution to po-
larization/magnetization from electrons.

Two results are discussed here: the polarization in-
duced by the strain gradient denoted by lattice connec-
tion and orbital magnetization induced by strain rate de-
noted by the gradient of the velocity field. The former
phenomenon is well-known as flexoelectricity[12] while
the latter phenomenon we call dynamical magnetization.
We find that the Chern-Simons contribution to both ef-
fects share the same response tensor coefficient given by

µmij
n =

ˆ

[Aki
∇m

n Akj
+Akj

∂ki
Am

n +Am
n ∂kj

Aki
], (54)

where
´

d3k
(2π)3 is just the k space integral of a Chern-

Simons form involving one strain parameter and two k

parameter. Am
n is the Berry connection in terms of strain.

The tensor coefficient µmij
n is anti-symmetric with re-

spect to the indices ij and symmetric to mn. The former
property is inherited from Chern-Simons form and the
latter is due to the vanishing of lattice covariant deriva-
tive of Bloch functions under local rotation. In terms of

this coefficient, the Chern-Simons polarization and mag-
netization induced by strain gradient and strain rate re-
spectively can be written as

P i
cs =eΓ

n
mjµ

mij
n , (55)

M ij
cs =− e∂mW

nµmij
n + (P i

csW
j − P j

csW
i). (56)

Eq. (55) is the Chern-Simons contribution to flexoelec-
tricity, where the strain gradient is denoted by lattice
connection {Γn

mj}. The well-known picture to under-
stand flexoelectricity is introduced by Taganstsev, where
flexoelectricity is described by the ionic effective Born
charge multiplied by the displacement induced by strain
gradient [17]. The major challenge is the calculation of
the effective charge. The longitudinal polarization can
be calculated from the local charge density response to
ionic position [26, 31]. However, the transverse part in-
volves the current response to strain gradient[31]. As can
be seen from Appendix E, indeed we achieve the above
formula by considering the response of current to strain
gradient and strain rate. The key point is to calculate
the Abelian Chern-Simons form (54), which is a tractable
problem.

Eq. (56) is the dynamical magnetization as clearly in-
dicated by the appearance of the velocity field. The first
term is induced by the gradient of the velocity field, which
is the strain rate experienced by ions. It couples to the
same tensor coefficient of Chern-Simons flexoelectricity.
This indicates that materials with large bulk flexoelec-
tricity effect may also demonstrate observable dynamical
magnetization. The second term is the transformation
from polarization to magnetization due to ionic motion
as discussed before.

We conclude by summarizing the different parts of po-
larization/magnetization in Table III, which includes the
zeroth order contributions intrinsic to local lattices and
the Chern-Simons contribution due to inhomogeneity.

4. Stress tensor and its responses

The electron stress tensor response to a geometrical
background is a very interesting problem. Particularly,
the response to velocity gradient is known as viscosity
term and is a manifestation of the rigidity of the electron
system. Electron viscosity has been studied in differ-
ent cases such as the integer Hall system [32, 33], frac-
tional quantum Hall [34–36], topological insulators [37],
superfluid[38] and in the time-dependent DFT theory
[39]. Here we give a general formula of electron energy
stress tensor in a spatially homogeneous band insulator
at zero temperature including its response to lattice de-
formation:
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polarization orbital
magnetization

intrinsic contribution P in = e
´

Ak M in = M + P ×W

Chern-Simons contribution P
i
cs = eΓn

mjµ
mij
n M ij

cs = −e∂mW nµmij
n + (P i

csW
j
− P j

csW
i)

Table III. electric polarization and orbital magnetization

T i
j =Di

j + 2ω · ∇i
jJ + Γn

m0η
mi
nj + a · ∇i

jPme
+
me

v
W iW j − [W jjime

+ i↔ j]. (57)

where the left-hand side is the stress-energy tensor. The
derivation is given in Appendix F. First we would like to
point out that the indices i and j are symmetric on both
sides of the equation. This is because energy stress tensor
can be viewed as the unsymmetrized strain derivative
of electron energy. And this covariant strain derivative
vanishes when strain is antisymmetric i.e crystal under
rigid body rotation.

The above expression is for a particular filled band
while the total energy stress tensor is the sum of all oc-

cupied bands. Di
j =
´

d3k
(2π)3D

i
j is the contribution from

deformation potential. It gives the leading order con-
tribution to the stress tensor. The second term is the
response of the stress tensor to the rotation of lattices in
time, which is the anti-symmetric part of ionic velocity
gradient. J is the orbital angular momentum for a filled
band.

∇j
iJmn = ajα

∂Jmn

∂aiα
− δmi J jn − δni Jmj + δ

j
iJmn, (58)

where Jmn = me

´

d3k
(2π)3 Im〈∂km

u | (ε + Ĥ) | ∂kn
u〉.

The first three terms in Eq. (C6) are the strain deriva-
tive of a second rank tensor in retrospect to the first
rank vector case exemplified by Berry connection term
in Table II. The last term comes from the strain deriva-
tive of the volume element in k space, which reads
∇m

n (d3k) = −δmn d3k. If we are to put strain derivative
outside of the integral

´

d3k, this term always appears.
Equivalently, we can view a phase space quantity after
integration in k space as a real space density quantity.
The last term is a manifestation of this density property.

The third term in Eq. (57) is the response to strain
rate, which is often referred to as the viscosity term. The
viscosity tensor has the following explicit form as:

ηmi
nj =

ˆ

d3k[i〈∇m
n u|∇i

ju〉 − i〈∇i
ju|∇m

n u〉], (59)

where is simply the integral of Berry curvature in terms of
strain parameter in k space. Again the meaning of strain
derivative is only clear within our theory as given in Ta-
ble II. This term is automatically antisymmetric between

the two groups of indices mn and ij, thus is dissipation-
less. And both mn and ij are symmetric within their
own groups. This symmetric property is inherited from
the fact that |∇m

n u〉 = 0 when m,n are anti-symmetric
i.e rigid body rotation. Its expression in terms of defor-
mation potential operator is given in Appendix G.

The fourth term in Eq. (57) is the response to accel-
eration. Pme

= me

´

d3kAk is the mass polarization of
electron and

∇j
iP

n
me

=ajα
∂Pn

me

∂aiα
− δni P

j
me

+ δ
j
iP

n
me
. (60)

Comparing to Eq. (58), it is easily to see this is the strain
derivative of a vector density. Noticing the periodic gauge
condition for Am

n , actually ∇j
iP

n
me

= me

e
einj is just the

proper piezoelectric constant multiplied by a factor me

e
.

The last two terms Eq. (57) has the signature of a per-
fect fluid with energy density and energy current density
(me

v
,−jme

) in coordinates relative to ions. After trans-
forming back to lab frame with relative velocity −W

, we have those terms as part of the energy stress ten-
sor. And jme

is the mass current density with expression

jime
= me

e
Γm
n0e

ni
m + meW

i

v
−m2

e(a×Ω)i+(∂×J )i in the
spatially homogeneous case.

Here we only discussed the spatially homogeneous case
for band insulators. The physical meaning of the above
stress-energy tensor is to provide a force effect on the
dynamics of ions as shown in the derivation Appendix F.
And we didn’t include the strain gradient contribution to
the energy stress tensor, which will be referred to future
study.

Also, we want to point out the direction to extend cur-
rent formalism to study the deformation effect in metals.
The equations of motion Eq. (46, 47) hold in regard-
less of whether the system is metallic or insulating. The
difference between metallic and insulating system lies in
the distribution function which can be calculated, for ex-
ample, from the Bolzmann equation. Near equilibrium,
the distribution function can be divided into local equi-
librium part which is responsible for the intrinsic prop-
erty and non-equilibrium part. The non-equilibrium cor-
rection can be calculated in the simplest case with re-
laxation time approximation or more accurately by con-
sidering the scattering process introduced by impurities,
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phonons or electron-electron interaction. In the hydrody-
namic limit, we expect the lattice deformation provides a
platform to study the curved space hydrodynamics. It is
also interesting to study the electron energy stress tensor
from the hydrodynamic point of view.

V. CONCLUSION

In summary, we have developed a theory describing
the semiclassical dynamics of electrons in deforming crys-
tals up to the first-order of strain gradient, strain rate,
and lattice acceleration. Our theory is based on lattice
bundle picture, where local lattices are introduced to ac-
count for the local property of deforming crystals. To
compare quantities associated with local lattices with dif-
ferent periodicities, a derivative operation called lattice
covariant derivative is introduced. It takes the place of
partial derivative in expressing the equations of motion
including Berry phase effect. In general, lattice covari-
ant derivative allows our results expressed in a familiar
and covariant form under Newtonian coordinate trans-
formation. The geometrical effect of lattice deformation
is made explicit in terms of our lattice covariant formal-
ism. Many deformation effects resemble the effects in a
curved spacetime even if expressed in the Euclidean lab
frame coordinates.

Our formula considers the deformation of an original
periodic Hamiltonian and makes no other particular as-
sumption about the property of the Hamiltonian. Thus
we expect the results can be easily applied to other pe-
riodic systems such as the photonic crystal or cold atom
systems. Moreover, our approach provides a way to gen-
erate non-trivial geometry for particles coupled to a de-
formed background. In other systems of different order
parameters (in our case the lattice vectors), we expect
other types of geometry can be achieved. As the focus
of this paper is to set up the framework of our lattice
covariant formula, a lot of discussions in the application
part is not complete. The most obvious direction to pur-
sue is to include the strain gradient contribution to Bloch
functions and the electron energy stress tensor.
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Appendix A: Lattice frame

In the main text, the results are expressed in lab frame.
This has the advantage that the physical picture is more
transparent. However, it is more convenient to derive the
results in another curvilinear frame called lattice frame.

This is similar to the relation between Euclidean and La-
grangian description in fluid dynamics. This coordinate
transformation method in dealing with deforming crystal
problem is introduced by Whitfield [18].

Here we introduce the lattice frame and discuss its re-
lation with the lattice bundle picture. Lattice frame co-
ordinates are denoted as {x′α, t′}, with α = 1, 2, 3 repre-
senting three crystalline directions. Given the positions
of all lattice points in lab frame {Rl(t)}, we define a
smooth lattice field R(x′, t′) in terms of lattice frame
coordinates, which satisfies:

Rl(t) ≡R(l, t′)|t=t′ . (A1)

Then lab frame coordinates is related to lattice frame
coordinates as

x =R(x′, t′), (A2)

t =t′. (A3)

From (A1), we see that lattice frame coordinates can be
viewed as the continuity of the lattice points label. Any
deforming crystal is mapped to a unit cubic lattice in
lattice frame. We require that in a local region deforma-
tion is elastic which means the relation (A2) is reversible
and x′ is also a function of x and t. In later discussion
, we will frequently use this reversibility and change the
independent variables of the same fields from (x′, t′) to
(x, t) or vice versa.

To connect to the lattice bundle picture introduced in
the main body of this paper, we can define the lattice
vector fields and velocity field as

cα(x
′, t′) ≡∂x′αR(x′, t′), (A4)

W (x′, t′) ≡∂t′R(x′, t′). (A5)

The physical property of lattice vector fields and velocity
field comes naturally from (A1) that

cα(
l + (l+ 1α)

2
, t′) =Rl+1α(t

′)−Rl(t
′), (A6)

W (l, t′) =Ṙl(t
′). (A7)

However, from the definition (A1), Eq. (A6) does not
necessarily holds exactly. Here we impose the second
requirement for lattice field such that the LHS and RHS
of Eq. (A6) equal. This is to keep our theory accurate
in the first-order gradient of lattice fields at least in the
case of constant strain gradient. In the constant strain
gradient case, we have the following form of lattice field
R(x′, t′):

R(x′, t′) =N1
α(t

′)x′α +
1

2
N2

αβ(t
′)x′αx′β +N0(t′),

(A8)
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where N2
αβ describes a constant strain gradient in space.

After substituting Eq. (A8) into Eq. (A6), we can see
that Eq. (A6) holds exactly.

From the above definition of lattice vector fields and
velocity fields, it is straightforward to show that

(cα · ∂)cβ − (cβ · ∂)cα =0, (A9)

(cα · ∂)W − (W · ∂)cα =∂tcα, (A10)

which is the elastic relation addressed by Eq. (67). This
shows the consistency between the definition here and the
discussion in the main body of this paper. Actually, elas-
tic condition is the necessary condition for the existence
of a local lattice fields R(x′, t).

Next, we discuss the metrics in lattice frame. In lat-
tice frame, lattice points always have unit cubic lattice
coordinates and the deformation is described by the met-
ric tensor in this curvilinear coordinate system. This is
in contrast to lab frame description where coordinate of
lattice points are crucial. The four-dimensional metric
tensor in lattice frame is

Gαβ =
∂xi

∂x′α
∂xi

∂x′β
= ciαc

i
β, (A11)

G0α =
∂xi

∂t′
∂xi

∂x′α
=W iciα, (A12)

where we choose (−1, 1, 1, 1) for the Minkowski metric
signature. We see that from the above expression the
spatial part of metric is just the contraction between two
lattice vectors and the time-space component of metric
is just the velocity field projected to lattice frame coor-
dinate directions. This is consistent with the geometric
method of describing deformation effect [40, 41] where
the metric tensor is introduced to account for strain ef-
fect. Next, we discuss how the metric fields couple to the
first principle Hamiltonian of electrons written in lattice
frame.

Appendix B: Gradient expansion to crystal potential

Viewed in lab frame, the total crystal potential which
depends on deformed lattice points is responsible for all
the deformation effects. However, this potential is not
easy to deal with since it has no periodicity. So it is cru-
cial to write the potential in a tractable form. In the case
of slowly varying deformation, this is done by expanding
the total potential in the first-order of strain gradient.
Here we show how this process can be conducted with
the help of lattice frame defined previously.

In general, the crystal potential is a function of the
relative position between electron and all ions

V̄ ({Rlτ − x}), (B1)

where x is the position of electrons expressed in lab
frame. l is lattice point label and τ is the label of ions
inside a unit-cell. Here we assume the position of ions
inside a unit-cell is completely determined by the lat-
tice points positions while there are exceptions as men-
tioned earlier in this paper. Thus Rlτ ({Rl′}) can be
written as a function of all the lattice points. Due
to translational invariance of the whole crystal, when
we displace all lattice points by the same amount, all
ions in a unit-cell will be translated by the same value
as well. This property is described by the formula:
Rlτ ({Rl′})−C = Rlτ ({Rl′ −C}) with C some constant
displacement. Thus we can absorb the overall constant
translation of Rlτ into its {Rl′} dependence. Thus when
C = x, the total crystal potential can be written as a
function of the position difference between electron and
lattice points:

V̄ ({Rlτ − x}) =V̄ ({Rlτ ({Rl′ − x})}) ≡ V ({Rl − x}),
(B2)

where by defining the crystal potential as V ({Rl − x})
we eliminate the label of ions within a unit-cell.

The distribution of {Rl} is not periodic in general for
a deforming crystal. However, for slowly varying defor-
mation, we can apply local approximation to transform
it into a more tractable form. It is based on the as-
sumption that only ions within some length scale that
is much smaller than the length scale of strain variation
contributes to the above crystal potential. This is true
for metals and non-polar insulators. For polar materials,
the macroscopic electric field caused by polarization need
to be attended to the potential and the argument here
applies the local part. With the lattice field defined in
(A1), we have Rl(t) = R(l, t). Expanding l respect to
the electron position in lattice frame x′, we have:

Rl(t)− x =R(l, t)−R(x′, t)

≈ (l − x′)αcα(x, t)+
1

2
(l − x′)α(l − x′)β(cβ · ∂)cα(x, t),

(B3)

where the last term is a first-order small quantity pro-
portional to the spatial gradient of lattice vector fields.
Substituting back into (B2) and utilizing the property of
lattice connection Eq. (5), the Taylor expansion of po-
tential with respect to the second term in Eq. (B3) gives
the potential as

V ({Rl − x}}) ≈ V ({(lα − x′α)cα(x, t)}) +
1

2
Γi
jkÔ

jk
i ,

(B4)

where {Γk} is the lattice connection introduced in Eq.
(4). We call the above procedure the gradient expansion
to crystal potential.



17

The first term is the potential given by the local lat-
tice at the electron x. It is still not periodic due to the
position dependence of cα(x, t). This can be expected
in the lattice bundle picture as electron moves it expe-
riences different local lattices with potentials of different
periodicities. However, the advantage here is that if we
transform to the lattice frame and apply local approx-
imation, the first term becomes periodic and tractable.
Actually, due to the invariance of crystal potential under
rigid body rotation of all ions and electron at the same
time, we can rotate three lattice vectors freely without
changing the crystal potential i.e V ({(lα − x′α)ciα}) =
V ({(lα − x′α)Oi

jc
j
α}) with Oi

jO
i
k = δjk. This property

means that the first term actually only depends on the
lattice frame metric {Gαβ = ciαc

i
β}.

The second term is the gradient correction to potential,

where Ôjk
i =

∑

l
∂V ({R̃l−x′αcα})

∂R̃i
l

(R̃k
l −x′αckα)(R̃

j
l −x′αcjα)

with R̃l(x, t) = lαcα(x, t). It can be understood as the
response of crystal potential operator to strain gradient

denoted by {Γk} and Ôjk
i is the response coefficient.

Appendix C: Schrodinger equation in lattice frame

Given the expression of total crystal potential (B4) up
to first-order of strain gradient, the Schrodinger equation
in lab frame reads

i∂tψ =[− 1

2me

∆+ Vtot({(lα − x′α)cα})]ψ, (C1)

where ∆ = ∂2x is the Laplace operator in lab frame and

Vtot =V ({lα − x′α}cα) +
1

2
Γi
jkÔ

jk
i (C2)

comes from Eq. (B4). It is very attempting to express
the Schrodinger equation lattice frame (x′, t′) due to the
fact that the potential only depends on {lα − x′α} and
lattice frame metric.

During the transformation to lattice frame, if we
require that wave-function invariant under coordinate
transformation, then the Schrodinger equation in lattice
frame simply reads

i∂t′ψ = {− 1

2m
∆′ − iW ′α∂′α + Vtot({(lα − x′α)cα})}ψ,

(C3)

where ∆′ = 1√
G′
∂′α(

√
G∂′α) is the Laplacian in lat-

tice frame with ∂′α = Gαβ∂′β , ∂′β = ∂
∂x′β and G′ =

det(Gαβ). {Gαβ} is the inverse matrix of {Gαβ} and
satisfies GαβGβγ = δαγ , with repeated indices summed.
It has the explicit expression as

Gαβ =
∂x′α

∂xi
∂x′β

∂xi
= bαi b

β
i , (C4)

where {bα} is the reciprocal lattice vector. In order to be
more transparent about the meaning of G0α, we use the
symbol W ′

α = G0α to denote this component of metric
tensor. Then we only have spatial indices and the spatial
part of metric tensor {G′αβ , G′

αβ} can be used to raise
and lower indices. For example, we have

W ′α = GαβW ′
β = bαi W

i. (C5)

However, there is a problem with the Schrodinger
equation (C3) that the Hamiltonian on the right-hand
side is not Hermitian with respect to the inner product
´

dx′
√
G. This inner product is inherited from the def-

inition in lab frame. Since during the transformation
the wave-function is kept invariant, to ensure the prob-
ability of finding an electron in a given volume is the
same expressed in both coordinates i.e ∆ρ = |ψ|2d3x =

|ψ|2
√
Gd3x′, we have to define the inner product in lat-

tice frame as
´

dx′
√
G. To resolve the non-Hermiticity

problem, instead of keeping the wave-function invariant,
we require the wave-function in lattice frame ψ′ satisfies
the following relation

|ψ|2d3x = |ψ′|2d3x′, (C6)

as a result of which the physical meaning of wave-function
is still kept while the inner product in lattice frame be-
comes

´

dx′. Then we can choose the transformation
of wave-function and define the inner product in lattice
frame as

ψ′ ≡(G)
1

4ψ, (C7)

〈ϕ′|ψ′〉′ ≡
ˆ

ϕ′∗ψ′d3x′. (C8)

As can be seen later, this choice restores the Hermicity
of the Hamiltonian in lattice frame.

To complete the argument, the transformation rela-
tion for operators should also be specified. This can
be done by requiring that physical observables have the
same value calculated in both frames:

ˆ

ϕ∗Ŝψd3x =

ˆ

ϕ′∗Ŝ′ψ′d3x′, (C9)

where Ŝ and Ŝ′ are operators in lab frame and lattice
frame respectively. Thus we see that operators transform
as

Ŝ′ =G
1

4 ŜG− 1

4 . (C10)

Equipped with this transformation relation, after some
long but tedious algebra, we finally have the Schrodinger
equation for ψ′ in lattice frame as
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i∂t′ψ
′ =[− 1

2me

(∂′α − imeW
′
α)(G

′αβ(∂′β − imeW
′
β)) + Vtot({(lα − x′α)cα(x

′, t′)})− 1

2
meW

′
αW

′α + Vg]ψ
′, (C11)

where Vg = 1
8me

∂′α∂
′αlnG+ 1

32me
Gαβ(∂′αlnG)(∂

′
βlnG) is

a pure geometrical quantity. It is second-order in strain
gradient thus will be discarded in our first-order theory.
It can be checked that the Hamiltonian in the above
Schrodinger equation is Hermitian with respect to the
inner product (C8). From Eq. (C3) to Eq. (C11), the
derivation is exact and the geometrical potential Vg is
the only remembrance of this process. The probability
balance equation can be easily deduced from Eq. (C11),
which reads:

∂t′ρ
′ + ∂′αj

′α =0, (C12)

with ρ′ = |ψ′|2 and j′α = 1
2me

G′αβ{ψ′∗ 1
i
∂′βψ

′ −
ψ′ 1

i
∂′βψ

′∗ − 2meW
′
βρ

′}. Noticing that ρ′dx′ denotes the
probability to find the particle in the volume denoted by
d3x′, which has the same form as the one in a Cartesian
coordinate, it is easy to understand that the probability
balance equation (C12) also has the same form expressed
with partial derivatives. The first two terms of the cur-
rent density can be interpreted as the current density of
lab frame projected to lattice frame basis directions and
the third term comes from the relative motion between

lattice frame and lab frame.

Appendix D: Lagrangian of wave-packet

The Schrodinger equation in lattice frame is still hard
to solve. The Hamiltonian in Eq. (C11) is neither peri-
odic nor static. However, it is easily seen that both the
aperiodicity and time-dependence come from the fields
{W ′α(x′, t′), Gαβ(x′, t′)}. So if deformation varies slowly
in position and time, local approximation and adiabatic
approximation can be applied to solve this problem. This
can be done systematically with wave-packet method.
We refer to the paper by Sundaram and Niu [10] for a
more complete discussion of this method. The basic idea
is that if we have a wave-packet state of electron that
is localized both in real space and reciprocal space, with
its center position in lattice frame as x′

c and q′
c respec-

tively, the effective Hamiltonian is given by the Taylor
expansion of position operator in metric fields relative to
the center position of wave-packet. The zeroth order and
first-order Hamiltonians for the wave-packet state thus
read

ˆ̃
H ′

c =− 1

2m
Gαβ

c (∂′α − imeW
′
cα)(∂

′
β − imeW

′
cβ) + V ({(lα − x′α)ccα})−

1

2
meW

′
cαW

′α
c , (D1)

∆ ˆ̃
H ′

c =
1

2
[(x′α − x′αc )

∂Ĥ ′
c

∂x′αc
+
∂Ĥ ′

c

∂x′αc
(x′α − x′αc )] +

1

2
Γi
jk(x

′
c, t

′)Ôjk
i {(lα − x′α)ccα}, (D2)

where {G′αβ
c ,W ′

cα} are fields evaluated at position
(x′

c, t
′).

The Hamiltonian (D1) seems complicated but is actu-
ally easy to solve since it is periodic and the metric tensor
and velocity field are just parameters. To solve this eigen-
problem, first we define the gauge invariant wave-vector
k′c as

k′
c = q′

c −meW
′
c. (D3)

Then the eigenstate and eigenvalue of Hamiltonian (D1)
reads

ψ̃′
c(x

′; q′
c,x

′
c, t

′) =eiq
′

cx
′

u′(x′;k′
c,x

′
c, t

′), (D4)

ε̃′c(q
′
c,x

′
c, t

′) =ε′c(k
′
c,x

′
c, t

′)− 1

2
meW

′α
c W

′
cα, (D5)

where u′(x′;k′
c,x

′
c, t

′) and ε′c(k
′
c,x

′
c, t

′) are eigen-states
and eigen-energy of the Hamiltonian without velocity
field

Ĥ ′
c(k

′
c,x

′
c, t

′) =− 1

2m
Gαβ

c (∂′α + ik′cα)(∂
′
β + ik′cβ)

+ V ({(lα − x′α)ccα}). (D6)

As a first-order theory in inhomogeneity, we do not
need to consider the correction to the wave-function from
the first-order Hamiltonian (D2). But we do need to con-
sider its correction to energy. To calculate this gradient
correction, we first superpose the eigenstates (D4) to con-
struct an electron wave-packet state. Then calculate the
expectation value of the first-order Hamiltonian (D2) in
this wave-packet state. Again this process is quite stan-
dard in wave-packet method [10], we just list the result
here
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∆ε̃′c(q
′
c,x

′
c, t

′) =− Im〈∂x′

c
|q′

c
u′ | ·(ε′c − Ĥ ′

c) | ∂q′

c
u′〉′

+
1

2
Γi
cjk〈u′ | Ôjk

i | u′〉′, (D7)

where the first and second terms come from the two terms

in (D2) respectively. After expressing (∂q′

c
, ∂x′

c
) in terms

of (∂k′

c
, ∂x′

c
), the first term gives rise to two terms: 2ω′

c·J ′

and Im〈∂x′

c
|k′

c
u′ | ·(ε′c − Ĥ ′

c) | ∂k′

c
u′〉′. ω′

c defined as

ω′
c = 1

2∂x′

c
× W ′

c is the angular velocity of lattice and

J ′ = me

2 Im〈∂k′

c
u′ | ×(ε′c − Ĥ ′

c) | ∂k′

c
u′〉′ is the angular

momentum of electron.
Then the Lagrangian for wave-packet in lattice frame

reads

L′
e =− (ε′tot −

1

2
meW

′α
c W

′
cα) + (k′

c +meW
′
c) · ẋ′

c + 〈ũ′|i∂x′

c
ũ′〉′ · ẋ′

c + 〈u′|i∂k′

c
u′〉′ · k̇′

c + 〈u′|i∂t′u′〉′, (D8)

with ε′tot = ε′c − 1
2meW

′α
c W

′
cα + 2ω′

c · J ′ + 1
2Γc〈O〉′ +

Im〈∂x′

c
u′ | ·(ε′c− Ĥ ′

c) | ∂k′

c
u′〉′ is the energy depending on

the Bloch functions.
The Lagrangian of wave-packet in lattice frame (D8)

is very useful in deriving results but its physical mean-
ing is usually less clear since we are more accustomed to
understanding a physical problem in lab frame. Also, we
are left with the question of how to calculate the eigen-
problem of Hamiltonian (D6) with Ab initial calculations.
Furthermore, lattice frame is not globally well-defined in
the presence of defects so we are unable to consider the
topological effect associated with defects in lattice frame.
Based on the above reasons, it is more desirable to ex-
press the results in lab frame.

First, we rewrite the Hamiltonian (D6) in an orthonor-
mal coordinate defined as

ri =x′αcicα. (D9)

Then the Hamiltonian written in this orthonormal coor-
dinates denoted by Ĥc reads

Ĥc(kc;xc, t) =
1

2me

(
1

i

∂

∂r
+ kc)

2 + V ({lαccα(xc, t)− r}),
(D10)

which is exactly the Hamiltonian (3) evaluated at xc with
kci ≡ k′cαb

α
ic. Thus we automatically get the transforma-

tion rule for wave-vector from lattice frame to lab frame

kci =k
′
cαb

α
i (xc, t), (D11)

which denotes points in the Brillouin zone of the local
lattice at (xc, t).

Then the eigen solution of (D6) is related to the eigen
solution of (D10) as

u′(x′;k′
c,x

′
c, t

′) =u(x′αccα; k
′
cαb

α
c ,xc(x

′
c, t), t), (D12)

ε′c(k
′
c,x

′
c, t

′) =εc(k
′
cαb

α
c ,xc(x

′
c, t), t), (D13)

where u(r;kc,xc, t) and εc(kc,xc, t) are the eigen states
and eigen energy of Hamiltonian (D10). Then the Berry
connection in the Lagrangian (D8) take the form

〈u′|i∂x′µ
c
u′〉′ = ∂xνc

∂x
′µ
c

[
(2π)3

vc(xc, t)

ˆ

d3ru∗i∇xν
c
u], (D14)

where vc(xc, t) is the unit-cell volume at point (xc, t)
and the lattice covariant derivative ∇xν

c
arises naturally.

Thus through this line of derivation, we have proved the
validity of lattice covariant derivative.

If we define the Berry connection in lab frame as

Axν
c
≡ i〈u|∇xν

c
|u〉 ≡(2π)3

vc

ˆ

d3ru∗∇xν
c
u, (D15)

Akci
≡ i〈u|∂kci

|u〉 ≡(2π)3

vc

ˆ

d3ru∗∂kci
u, (D16)

then the relation between Berry connections in lattice

frame and lab frame reads Ax
′µ
c

=
∂xν

c

∂x
′µ
c
Axν

c
and A′

k′

cα
=

∂x′α
c

∂x
j
c

Akcj
.

The next step is to transform the Lagrangian back to
lab frame. Since time is the same for both coordinates,
their Lagrangians can also be chosen to be equal for a par-
ticular gauge. Then we can write down the Lagrangian
in lab frame as

Le =− (εtot +W c · kc +
1

2
meW

2) + (kc +meW c) · ẋc

+ (At + ẋc ·Axc
) +Dtkc ·Akc

, (D17)

where

εtot =εc + Γc Im〈u|D − D̂|∂ku〉+ Γc〈Ô〉+ 2ωc · J .
(D18)

The first term is the eigenenergy of local Hamiltonian
(3) evaluated at xc. The second and third term come
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from the gradient correction to local Hamiltonian Eq.
(10). The last term is due to lattice rotation and J is
the angular momentum of electrons. After omitting the
indices c we have the Lagrangian appearing in the main
text (48).

Appendix E: Orbital magnetization and polarization

Here, we deduce the result in Eq. (49). For a insulator,
the total current density up to first-order is given by two
contributions

jia =

ˆ

ẋiDd3k, (E1)

jib =∂j

ˆ

dk

(2π)3
Im[〈∂unk

∂ki
|H − ε|∂unk

∂kj
〉], (E2)

where D = 1+tr(Ωkx)−me2ω ·Ωk is the density of state.
jb comes from the dipole moments of velocity operator
[4]. We can combine Eq. (46) and (47) to solve for ẋ.

Especially the last two terms in Eq. (49) come from
the following terms in ja:

e

ˆ

d3k[−Ωkx ·W +Ωkt +W · tr(Ωkx)]. (E3)

To get the same form in Eq. (49), we will frequently use
the following identity

∂xµ

ˆ

dkf(k, x, t) = −Γi
iµ

ˆ

dkf +

ˆ

dk∇xµf, (E4)

where f is any phase space function. Choosing the peri-
odic gauge Axµ(k + 2πb;x, t) = Axµ(k;x, t) and noticing

that ∇xjAkj
= ∂xjAkj

−Γn
mjkn∂km

Akj
−Γj

ijAki
, we have

ˆ

−ΩkixjW j =W j(∂jP
i − Γi

ljP
l + Γl

ljP
i), (E5)

ˆ

Ωkit =∂tP
i − Γi

l0P
l + Γl

l0P
i, (E6)

ˆ

W itr(Ωkx) =−W i(∂jP
j − Γj

ljP
l + Γl

ljP
j), (E7)

where P = − e
(2π)3

´

Ak. Substituting back to Eq. (E3)

and utilizing the elastic condition Γk
i0 + Γk

jiW
j = ∂iW

k,
we have the last two terms in Eq. (49):

∂tP − ∂ × (W × P ). (E8)

Next, we deduce the Chern-Simons contribution to
flexoelectricity and dynamical magnetization. We start
from the expressions in lattice frame then transform back
to lab frame. Because lattice connection vanishes in lat-
tice frame, the results in [30] can be applied directly in

lattice frame. We can directly write down the Chern-
Simons contribution to current density as

j′ics =− e

ˆ

dk′[Ω′
k′

ik
′

j
Ω′

x′

jt
′ +Ω′

k′

jx
′jΩ′

k′

it
′ +Ω′

x′

jk
′

i
Ω′

k′

jt
′ ]

=e∂t′

ˆ

dk′∂k′

i
A′

k′

j
A′

x′

j
+ ∂k′

j
A′

x′

j
A′

k′

i
+ ∂x′

j
A′

k′

i
A′

k′

j

− e∂x′

j

ˆ

dk′∂k′

i
A′

k′

j
A′

t + ∂kj
A′

tA
′
ki

+ ∂′tA
′
ki
A′

kj
.

(E9)

where the periodic gauge condition for real space Berry
connections has been used:

A′
t′(k

′)−A′
t′(k

′ + 2πb′) = 0,

A′
x′(k′)−A′

x′(k′ + 2πb′) = 0,

where b′ is the reciprocal lattice vector in lattice frame.
From (E9), we can easily identify the polarization and
magnetization term as

P ′i =e

ˆ

dk′Ak′

i
∂x′jAk′

j
+Ak′

j
∂k′

i
Ax′j +Ax′j∂k′

j
Ak′

i
,

(E10)

M ′ij =− e

ˆ

dk′∂k′

i
Ak′

j
At′ + ∂k′

j
At′Ak′

i
+ ∂t′Ak′

i
Ak′

j
.

(E11)

Then using the transformation rule of polarization-
magnetization tensor under coordinate transformation,
which we have verified in zeroth order, we can get the
results given by Eq. (55) and (56).

Appendix F: Energy stress tensor of electron

Here we will demonstrate how the concept of energy
stress tensor appears naturally by considering the role
electrons play in the dynamics of ions. From Appendix A,
we can see the fundamental field describing the ionic de-
grees of freedom is contained in the lattice field R(x′, t′)
given by Eq. (A1). If we are to consider the dynamics of
ions in the least action principle, we need to variate the
total action including both electronic part and ionic part
with respect to the lattice field.

Here, we focus on the electron part. The electron La-
grangian written in lattice frame depends on the lattice
frame metric field, which are related to the lattice field
as

Gαβ =∂αR
i∂βR

i = ciαc
i
β , (F1)

G0α =∂αR
i∂t′R

i = ciαW
i. (F2)

The variation to lattice field can be expressed in terms
of the variation to lattice frame metric, which is just the
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formal definition of stress-energy tensor. The action of electron is given by the Lagrangian of wave-packet as
discussed before, which has the following form:

A =

ˆ

V0

dx′dt′δ(x′ − y′(t′))L′
e(W

′(y′, t′), {G′
αβ(y

′, t′)}; (k′(t′), ẏ′(t′), k̇
′
(t′))), (F3)

where L′
e is given by Eq. (D8). Here we use variables

(k̇
′
(t′), ẏ′(t′),y′(t′), t′) to denote the degrees of freedom

of electron as a point particle, all of which are functions of
time t′. And we add a factor δ(x′−y′(t′)) to express the

action in a field form so that we can apply the variation
principle in field theories directly.

Then we variate the above action with respect to the
lattice field R(x′, t′). After some long and tedious calcu-
lation, we have

F i =
δAe

δRi
(x′, t′) =

∂Le

∂Gαβ

[∂y′αδ(x′ − y′)∂y′βRi + α ↔ β]|t′ +
∂Le

∂(∂γGαβ)
∂y′γ [∂y′αδ(x′ − y′)∂y′βRi + α↔ β]

− {∂̃t′ [
∂Le

∂(∂t′Gαβ)
]∂y′βRi∂y′αδ(x′ − y′) + α ↔ β}

+ [
∂Le

∂G0α
∂y′αδ(x′ − y′)∂t′R

i − δ(x′ − y′)∂̃t′(
∂Le

∂G0α
∂y′αRi)]

+
∂Le

∂(∂γG0α)
∂y′γ [∂y′αδ(x′ − y′)∂t′R

i]− ∂̃t′{
∂Le

∂(∂γG0α)
∂y′γ [δ(x′ − y′)∂y′αRi} (F4)

where the derivative operator ∂̃t′ only acts the explicit
time dependence while not on the time dependence of

those variables (k̇
′
(t′), ẏ′(t′),y′(t′)). Here we haven’t

used the expressions of (k̇
′
, ẏ′) which can be given by

the equations of motion in lattice frame. δSe

δRj describes
the force density electron exerting on ions. We see from
the delta function δ(x′−y′) that the effective interaction
between electron and ion is local, which is inherited from
the local approximation and adiabatic approximation we
used.

Eq. (F4) is the contribution from a single electron.
However, we have multiple electrons filling in the band
structure. Then we need to sum over all electrons in a
filled band with the integration of density of state and

substitute the expression for (k̇
′
, ẏ′) given by the equa-

tions of motion. For simplicity, here we only consider
a particular band in an insulator at zero temperature.
Then the total force from all electron contributions reads

F i(x′, t′) =

ˆ

dy′dk′D′ δAe

δRi
(x′, t′), (F5)

where we adopt the convention to use curlicue form of
the symbol to denote all electron contributions such as
F is the total contribution from the F of each individual
electron.

Then substituting Eq. (F4) into the above expression,
we have a very simple form that

F i(x′, t′) =
√
G[∂jT ij + ∂tT 0i], (F6)

where

T ij =
∂xi

∂x′α
∂xj

∂x′β
T αβ + T 0iW j +W iT 0j , (F7)

T 0i =
∂xi

∂x′β
T 0β (F8)

and T αβ , T 0β are the four-dimensional energy stress ten-
sor of electrons in lattice frame defined as:
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T αβ(x′, t′) =−
ˆ

dk′D′ 2√
G
{ ∂̃L

∂̃Gαβ

− ∂σ
∂̃Le

∂̃(∂σGαβ)
− ∂̃t′

∂̃Le

∂̃(∂t′Gγδ)
}, (F9)

T 0α(x′, t′) =−
ˆ

dk′D′ 1√
G
{ ∂̃Le

∂̃G0α

− ∂σ
∂̃Le

∂̃(∂σG0α)
}, (F10)

where ∂̃

∂̃Gαβ
, ∂̃

∂̃(∂σGαβ)
, ∂̃

∂̃(∂t′Gγδ)
, ∂̃

∂̃G0α
, ∂̃

∂̃(∂σG0α)
do not

act on the metric dependence of (k̇
′
, ẏ′) whose expres-

sion is given by the equations of motion and D′ =
(1+tr(Ω′

k′x′)−2meω
′·Ω′) while ∂σ acts on all the position

dependence including that in the expression of (k̇
′
, ẏ′).

Here we come up with the expression (F9, F10) to
ensure the physical meaning of energy stress tensor i.e
the form of Eq. (F6). Equivalently, we can define the
energy stress tensor directly in lattice frame following
the variation to metric as

Tαβ ≡− 2
1√
G

δA

δGαβ

, (F11)

T 0α ≡− 1√
G

δA

δG0α
, (F12)

where the definitions of Tαβ and T 0α differ by a factor
of two besides their variations to different components
of metric, which is a feature of non-relativistic theory
[42]. Then following the same procedure in calculating
F i from F i, we can achieve the expressions (F9, F10).

To calculate the specific form of energy stress ten-
sor, we need to substitute the expression of electron La-
grangian Eq. (D8) into Eq. (F9, F10). The calculation
is very tedious but straightforward thus we only list the
result here

Tαβ =
2√
G

ˆ

dk′D′{ ∂̃ε′

∂̃Gαβ

+
1

2
meG

0αG0βD′

+me∂σG0γ Im ∂̃Gαβ
〈∂k′

γ
u′ | (ε′ − Ĥ ′) | ∂k′

σ
u′〉′ − k̇

′ · ∂̃A
′
k′

∂̃Gαβ

− ∂t′GσγΩGαβGσγ
}

=2

ˆ

dk′√
G
{∂̃Gαβ

ε′ +
1

2
meG

0αG0β

+me∂σG0γ Im ∂̃Gαβ
〈∂k′

σ
u′ | (ε′ + Ĥ ′) | ∂k′

γ
u′〉′ +mea

l
γ∂t′W

l∂̃Gαβ
A′

k′

γ
− ∂t′GσγΩGαβGσγ

},

where from the second line to the third line, we substi-

tute the expression of k̇
′
and use the periodic gauge con-

dition for 〈u′|i∂Gαβ
u′〉′ . ΩGαβGσγ

= i[∂Gαβ
〈u′|∂Gσγ

u′〉′−
∂Gσγ

〈u′|∂Gαβ
u′〉′] is the Berry curvature with respect to

lattice metric. On the other hand,

T 0α =−
ˆ

dk′D′ 1√
G
{ ∂̃Le

∂̃G0α

}

=−
ˆ

dk′√
G
D′{meW

′α +meẋ
′α]}

Then following Eq. (F7, F8) and using the identity

2 ∂
∂Gαβ

= b
β
i

∂
∂ai

α
, we have the energy stress tensor in lab

frame as

T i
j =Di

j − 2ω · ∇i
jJ +∇i

jPme
· a− Γm

l0

ˆ

dkΩjl
im

+
me

v
W iW j − [W jjime

+ i↔ j] (F13)

We will illustrate the physical meaning of each term in
the main body of this paper.

Appendix G: Expressions in momentum

representation

Although we introduce the concept of lattice covariant
in the position representation in order to contrast with
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the normal partial derivatives, often it is more conve-
nient to calculate in momentum space. So it is worth
to discuss the expression in momentum space. Since
the local Hamiltonians and Bloch states all have the
same periodicity as local lattices, their expression in mo-
mentum space only involves discrete momentum basis
|l〉 = exp(2πilαb

α(x, t) · r), where l is some integer and
b(x, t) the reciprocal lattice vector at (x, t). If we cal-
culate the lattice covariant derivative of Bloch states ex-
pressed on the momentum basis, we have

∇xµu(r,k;x, t) =
∑

l

[∂xµul + Γn
mµkn∂km

ul]exp(ilαb
α · r),

(G1)

where ul(k;x, t) =
´

dru(r,k;x, t)exp(−2πilαb
α(x, t) ·

r) is the Fourier component of Bloch functions. An im-
portant property is that the basis |l〉 vanishes under lat-
tice covariant derivative while not under partial deriva-
tive. Thus in the momentum representation lattice co-
variant derivative takes a simpler form as

∇xµ =∂xµ + Γn
mµkn∂km

, (G2)

which acting on the Fourier components. Then the real
space Berry connection can be conveniently expressed as

Axµ =iΓn
mµ

∑

l

u∗l (a
m
α ∂an

α
+ kn∂km

)ul. (G3)

where the relation ∂xµ = Γn
mµa

m
α ∂an

α
is used. The nor-

malization condition for Bloch function is
∑

l u
∗
lul = 1

from Eq. (38).
For the local Hamiltonian, its matrix element ex-

pressed in momentum representation is

Hl,l′ =
(Gl + k)2

2m
δl,l′ + V (Gl−l′(x, t)), (G4)

where Gl = 2πlαb
α, Gl−l′ = 2π(l − l′)αb

α and V (G) =
1
v

´

drV ({R̃l − r})exp(iG · r) is the Fourier component

of the local crystal potential. Directly applying (G2), we
have the lattice covariant derivative of local Hamiltonian
as

∇xµĤl,l′ =D̂
m
n;l,l′Γ

n
mµ, (G5)

where {D̂m
n;l,l′} is the deformation potential operator in

momentum representation, which reads

D̂m
n;l,l′ =− [

(Gl + k)m(Gl + k)n
2m

δl,l′ +∇m
n V (Gl−l′)].

(G6)

∇m
n V (G) = limδGl→0

V (G+δG)−V (G)
δGα

m
Gα

n is the deriva-

tive of crystal potential to strain expressed in reciprocal
space. V (G+ δG) and V (G) correspond to two crystals
with different periodicities. This is also been touched by
the paper [21]. However, this discussion here is valid in
general case not limited to the rigid ion model.

The energy effect of deformation operator has been dis-
cussed thoroughly [43], which is the diagonal part in the
Bloch basis. Its off-diagonal part also plays an important
role in electron dynamics through Berry curvatures. This
can be seen through the expression of Berry curvatures
as a sum over all bands contributions. For example, Ωm

nki

can be written as

Ωm
nki

=i
∑

l 6=0

〈u0|D̂m
n |ul〉〈ul|v̂i|u0〉 − 〈u0|v̂i|ul〉〈ul|D̂m

n |u0〉
(ε0 − εl)2

,

(G7)

where 0 is the band we are interested and l labels all
the other bands. The role of deformation potential op-
erator is explicit in this expression. Integration in Bril-

louin zone −e
´

d3ki
∑

l 6=0
〈0|Ômn|l〉〈l|v̂i|0〉−〈0|v̂i|l〉〈l|Ômn|0〉

(ε0−εl)2

just gives the proper piezoelectric constant.
And viscosity term comes from the Berry curvature

Ωmp
nq involving strain and can be written as

Ωmp
nq = i

∑

l 6=0

〈u0|D̂m
n |ul〉〈ul|D̂p

q |u0〉 − 〈u0|D̂p
q |ul〉〈ul|D̂m

n |u0〉
(ε0 − εl)2

. (G8)
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