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We study a class of anomalies associated with time-reversal and spatial reflection symmetry in (2+1)D bosonic

topological phases of matter. In these systems, the topological quantum numbers of the quasiparticles, such

as the fusion rules and braiding statistics, possess a Z2 symmetry which can be associated with either time-

reversal (denoted Z
T
2 ) or spatial reflections. Under this symmetry, correlation functions of all Wilson loop

operators in the low energy topological quantum field theory (TQFT) are invariant. However, the theories that

we study possess a severe anomaly associated with the failure to consistently localize the symmetry action to

the quasiparticles, precluding even defining a consistent notion of symmetry fractionalization in such systems.

We present simple sufficient conditions which determine when Z
T
2 symmetry localization anomalies exist in

general. We present an infinite series of TQFTs with such anomalies, some examples of which include USp(4)2
Chern-Simons (CS) theory and SO(4)4 CS theory. The theories that we find with these Z

T
2 anomalies can all

be obtained by gauging the unitary Z2 subgroup of a different TQFT with a Z
T
4 symmetry. We further show

that the anomaly can be resolved in several distinct ways: (1) the true symmetry of the theory is Z
T
4 , or (2)

the theory can be considered to be a theory of fermions, with T
2 = (−1)Nf corresponding to fermion parity.

Finally, we demonstrate that theories with the Z
T
2 localization anomaly can be compatible with Z

T
2 if they are

“pseudo-realized” at the surface of a (3+1)D symmetry-enriched topological phase. The “pseudo-realization”

refers to the fact that the bulk (3+1)D system is described by a dynamical Z2 gauge theory and thus only a subset

of the quasi-particles are truly confined to the surface.

I. INTRODUCTION

There has recently been immense progress in understanding

the interplay of global symmetries and topological degrees of

freedom in physics. From the perspective of condensed mat-

ter physics, this has led to advances in our understanding of

the distinct possible gapped quantum phases of matter by pro-

viding the theoretical framework for describing their univer-

sal long-wavelength properties and leading to a host of topo-

logical invariants that can distinguish such phases. On the

other hand, many of these developments can be viewed en-

tirely within the framework of quantum field theory, and have

led to advances in our understanding of global symmetries in

topological quantum field theory.

In two and higher spatial dimensions, the study of topologi-

cal phases of matter with global symmetries is still in progress.

Even without any global symmetry, gapped quantum systems

can still form distinct phases of matter, characterized by their

topological order. These states are distinguished by various

exotic properties, including topologically non-trivial quasi-

particle excitations with fractional or non-Abelian braiding

statistics, robust topological ground state degeneracies, and

protected gapless edge modes.[1–3]

The intrinsic topological order in (2+1)D states is believed

to be fully characterized by two objects: (1) the chiral cen-

tral charge c− of the phase, which describes the chiral energy

transport along the (1+1)D boundary of the system, and (2) an

algebraic theory C, known as a unitary modular tensor cate-

gory (UMTC),[4, 5] which encapsulates the topological prop-

erties of the quasiparticles, such as their topological spins, fu-

sion rules, and braiding transformations.

In the presence of a global symmetry group G, it is impor-

tant to distinguish two types of phases: (1) invertible [6, 7],

or short-range entangled states,[8] and (2) long-range entan-

gled, topologically ordered states. Invertible states have the

property that given the state, there is an “inverse” state which,

when the two are combined together, can be transformed into

a trivial product state by a finite-depth (in the limit of infi-

nite system size) local unitary quantum circuit (or, equiva-

lently, by adiabatically tuning the parameters of the Hamil-

tonian without closing the bulk energy gap). In (2+1)D, these

correspond to cases where the UMTC C is trivial. A special

class of invertible states are symmetry-protected topological

(SPT) states [9–13]. SPT states have the property that the

state can be transformed into a product state by a finite-depth

local unitary quantum circuit that breaks the G symmetry [8];

a non-trivial SPT state cannot be transformed into a product

state by aG-symmetric finite-depth local unitary quantum cir-

cuit.

Long-range entangled, or topologically ordered, states can-

not be transformed into a product state by any finite-depth lo-

cal unitary quantum circuit, even in the absence of any global

symmetry. In the presence of a global symmetry groupG, the

class of topologically ordered states is refined into symmetry-

enriched topological (SET) states [1, 14–24]. Different SETs

with the same intrinsic topological order differ in the way the

global symmetry interplays with the topological order. This

leads to different ways that the topologically non-trivial quasi-

particles can carry fractional quantum numbers of the symme-

try group [14, 16, 19, 21], and different topological properties

of symmetry defects [19–22].

In Ref. 19, a systematic theoretical framework for charac-

terizing symmetry-enriched topological phases was presented.

Each (2+1)D topological phase has a group of symmetries
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(possibly emergent), denoted Aut(C), and which we refer to

as the group of topological symmetries. This is the group

of symmetries of the long wavelength effective topological

quantum field theory (TQFT). It consists of permutations of

the anyon types which keeps their topological spins, fusion

rules, and braiding statistics invariant (up to certain complex

conjugations that are required for space-time parity revers-

ing symmetries). Even in the absence of a global symme-

try G, a topological phase of matter can have a non-trivial

Aut(C), which describes the group of emergent symmetries of

the topological quantum numbers of long wavelength degrees

of freedom in the system. For example, for the 1/m Laugh-

lin fractional quantum Hall (FQH) states, this includes the

transformation which interchanges quasiparticles with quasi-

holes. For a bilayer FQH system consisting of two indepen-

dent 1/m Laughlin FQH states, this includes the transforma-

tion which interchanges quasiparticles from different layers.

For Z2 quantum spin liquids, this includes electric-magnetic

duality, which interchanges the Z2 gauge charges (spinons)

with the Z2 fluxes.[25]

The action of a global symmetry groupG on the long wave-

length effective TQFT is characterized first by a group homo-

morphism

[ρ] : G→ Aut(C). (1)

[ρg] ∈ Aut(C) describes how a given symmetry group element

g ∈ G permutes the anyons of the system. [ρg] determines an

action of G such that all closed anyon diagrams in the UMTC

are invariant; that is, all correlation functions of Wilson loop

operators in the effective TQFT description are invariant un-

der the symmetry action.

In Ref. 19, it was shown that despite the fact that [ρ] appears

to define an allowed symmetry action for G in the TQFT be-

cause all correlation functions will be invariant under G, the

symmetry can have a certain severe anomaly. This anomaly is

associated with the inability to localize the action of the sym-

metry to the location of the quasiparticles in a way that is con-

sistent with associativity of the group action. Consequently,

we refer to this as a “symmetry-localization” anomaly. As we

review in the subsequent section, the map [ρ] defines an el-

ement [O] ∈ H3
[ρ](G,A). Here A is a finite Abelian group

associated with the Abelian quasiparticles of C, which form a

group under fusion. H3
[ρ](G,A) is the third group cohomol-

ogy of G with coefficients in A. The subscript [ρ] indicates

that the cohomology depends on the action ofG on A through

[ρ].
As discussed in detail in Ref. 19, when [O] vanishes, then it

is possible to consistently define a notion of symmetry frac-

tionalization. This specifies how quasiparticles carry frac-

tional quantum numbers of the symmetry group G; different

possible symmetry fractionalization classes are related to each

other by elements in H2
[ρ](G,A). However certain symmetry

fractionalization classes may themselves be anomalous, in the

sense that they cannot exist in purely (2+1)D, but can exist at

the surface of a (3+1)D SPT state.[21, 26–40] These may be

referred to as anomalous symmetry fractionalization classes,

or as “SPT anomalies” because of the connection to the sur-

face of (3+1)D SPTs. Using the language of the high energy

field theory literature, these are examples of ’t Hooft anoma-

lies in TQFTs. For space-time reflection symmetries which

square to the identity, a general understanding of how to de-

tect such anomalies was presented in Ref. 41 by studying

the theory on non-orientable space-time manifolds.[42] For

unitary internal or lattice translation symmetries, a general

understanding was developed in Ref. 19 and 43 by solving

consistency equations for the algebraic theory of symmetry

defects.[44].

For unitary internal (on-site) symmetries, known examples

of the H3 symmetry localization anomaly occur for G = Z2

and are associated with discrete gauge theories with gauge

group D20 or D16 (the dihedral groups with 20 and 16 ele-

ments, respectively).[19, 45] Mathematically, the H3 obstruc-

tions in these examples have their roots in the theory of group

extensions;[46] more recently, these obstructions appeared in

the category theory literature, in the context of extending a

fusion category by a groupG.[47]

In this paper, we present and study in detail examples

of the H3 anomaly for space-time parity odd symmetries,

which include anti-unitary symmetries such as time-reversal,

or unitary symmetries such as spatial reflections. Specifically,

we consider cases where time-reversal symmetry T satisfies

T2 = 1, or spatial reflection R satisfies R2 = 1. We refer to

these symmetry groups as ZT
2 and ZR

2 , where the superscript

denotes the fact that the symmetry generator is anti-unitary or

reverses the parity of space. These types of symmetries appear

to be beyond what was considered in the relevant mathemat-

ical literature, and the obstructions we find are not directly

related to group extension obstructions of a gauge group, as in

the previously known examples.

The primary purpose of this work is to develop a deeper un-

derstanding of when and why the H3 symmetry localization

anomaly occurs. As we review below, the H3 anomaly [O]
can be explicitly computed from [ρ] and the F andR symbols

of C, where the F and R symbols are certain consistent data

that specify the fusion and braiding properties of the anyons.

However obtaining the F andR symbols of C is often tedious

and computationally prohibitive. It is thus desirable to have

a diagnostic for the presence of the H3 anomaly from only

the modular data of the theory (the modular S matrix and

topological spins). Here we provide such a set of constraints

that, if violated, are sufficient to detect the existence of an H3

symmetry-localization anomaly.

Recently, several infinite series of time-reversal invariant

TQFTs were found by studying level-rank duality in Chern-

Simons theories.[48] The series of relevance to this paper are

USp(2N)N for N even, and SO(N)N for N a multiple of

4. We show that USp(4)2 and SO(4)4 are both part of an infi-

nite family of theories with ZT
2 symmetry-localization anoma-

lies. We further show that in these theories, the anomaly can

be resolved in several distinct ways: (1) The presence of the

H3 anomaly can be interpreted to mean that the symmetry of

the theory was misidentified; the true symmetry of the the-

ory is the larger group, ZT
4 . We show in our examples that

ZT
4 is free of the H3 symmetry localization anomaly. There-

fore, these theories are time-reversal invariant, however T2 is

a non-trivial unitary symmetry, while T4 = 1. (2) We show
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that in the cases that we study, the anomaly can also be re-

solved by considering the TQFT to be a theory of fermions

(i.e. a spin TQFT), such that T2 = (−1)Nf , where (−1)Nf is

the fermion parity of the system.

While much of our discussion is phrased in terms of time-

reversal symmetry, analogous results hold also for reflection

symmetry. To establish our results we will use whichever is

convenient for the issues at hand, noting that in the setup of

Euclidean quantum field theory, which we make use of, time-

reversal and spatial reflections appear on an equal footing.

For the case where G = Z2 is a unitary internal (on-site)

symmetry, Ref. 45 provided an example of an H3 anomaly

that occurs for discrete gauge theory with gauge group D16. It

was shown that it is possible to, in some sense, realize the the-

ory at the surface of a (3+1)D SET with a globalG = Z2 sym-

metry. In this case, the surface theory is no longer a (2+1)D

theory, since some of the anyons that can exist on the sur-

face correspond either to bulk quasiparticles or to endpoints

of strings in the (3+1)D bulk. For this reason, here we refer to

this as a “pseudo-realization” of the original theory at the sur-

face of the (3+1)D SET. In this construction, the H3
[ρ](G,A)

could be related to the symmetry fractionalization of string

excitations in the (3+1)D system [45, 49–51].

For the case where G = ZT
2 , symmetry fractionaliza-

tion of string excitations in (3+1)D is not well-understood,

which makes the corresponding problem in this case espe-

cially intriguing. For the case of the ZT
2 symmetry local-

ization anomalies in USp(4)2 and SO(4)4 CS theories, we

demonstrate that the corresponding theories can be pseudo-

realized at the surface of a (3+1)D SET, whose low energy

theory is a dynamical Z2 gauge theory and possesses a global

ZT
2 time-reversal symmetry.

We further provide an infinite family of TQFTs with

H3
[ρ](Z

T
2 ,A) symmetry localization anomalies. These can all

be obtained by starting with a theory with ZT
4 symmetry, and

gauging the unitary Z2 subgroup associated with T2. Im-

portantly, when performing the gauging of the unitary Z2

subgroup, we must add a Dijkgraaf-Witten term for the Z2

gauge field, which is associated with the non-trivial element in

H3(Z2,U(1)) = Z2. Physically, this corresponds to stacking

a Z2 SPT with the theory with the ZT
4 symmetry. This process

can be repeated indefinitely, so that we can generate an infi-

nite series of TQFTs with H3
[ρ](Z

T
2 ,A) anomalies by starting

with a single “root” theory with ZT
4 symmetry. We provide

an infinite set of such “root” theories. For the USp(4)2 and

SO(4)4 examples, the root phases are SU(5)1 and SU(3)1×
SU(3)1 CS theory, respectively. We show that U(1) × U(1)

CS theory with K-matrix K =

(

m n
n −m

)

provides another

infinite family of root theories as well.

This paper is organized as follows. In Sec. II we provide

a brief review of UMTCs and the action of global symmetry,

the general definition of the H3
[ρ](G,A) anomaly, and sym-

metry fractionalization. In Sec. III we introduce the exam-

ple of USp(4)2 CS theory as a theory with a H3
[ρ](Z

T
2 ,A)

anomaly. In Sec. IV we provide a set of sufficient condi-

tions, defined in terms of the modular data of the theory and

the way T permutes the anyons, for diagnosing H3
[ρ](Z

T
2 ,A)

anomalies. In Sec. V we discuss several resolutions of the H3

anomaly, which include enlarging the symmetry from ZT
2 to

ZT
4 , viewing the theory as a theory of fermions, and finally

how to pseudo-realize theories with such anomalies at the sur-

face of (3+1)D SET phases. In Sec. VI we provide an infinite

family of examples that generalize the USp(4)2 example. We

conclude with a discussion of some open issues in Sec. VII.

II. REVIEW OF THE H3
[ρ](G,A) ANOMALY

In this section we briefly review the discussion of Ref. 19

regarding the H3
[ρ](G,A) symmetry localization anomaly.

A. Review of UMTC notation

Here we briefly review the notation that we use to de-

scribe UMTCs. For a more comprehensive review of the no-

tation that we use, see e.g. Ref. 19. The topologically non-

trivial quasiparticles of a (2+1)D topologically ordered state

are equivalently referred to as anyons, topological charges,

and quasiparticles. In the category theory terminology, they

correspond to isomorphism classes of simple objects of the

UMTC.

A UMTC C contains splitting spaces V abc , and their dual

fusion spaces, V cab, where a, b, c ∈ C are the anyons. These

spaces have dimension dim V abc = dim V cab = N c
ab, where

N c
ab are referred to as the fusion rules. They are depicted

graphically as:

(dc/dadb)
1/4

c

ba

µ = 〈a, b; c, µ| ∈ V cab, (2)

(dc/dadb)
1/4

c

ba

µ = |a, b; c, µ〉 ∈ V abc , (3)

where µ = 1, . . . , N c
ab, da is the quantum dimension of a, and

the factors
(

dc
dadb

)1/4

are a normalization convention for the

diagrams.

We denote ā as the topological charge conjugate of a, for

which N1
aā = 1, i.e.

a× ā = 1 + · · · (4)

Here 1 refers to the identity particle, i.e. the vacuum topolog-

ical sector, which physically describes all local, topologically

trivial excitations.

The F -symbols are defined as the following basis transfor-

mation between the splitting spaces of 4 anyons:

a b c

e

d

α

β
=
∑

f,µ,ν

[

F abcd

]

(e,α,β)(f,µ,ν)

a b c

f

d

µ

ν
. (5)
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To describe topological phases, these are required to be uni-

tary transformations, i.e.
[

(

F abcd

)−1
]

(f,µ,ν)(e,α,β)
=
[

(

F abcd

)†]

(f,µ,ν)(e,α,β)

=
[

F abcd

]∗
(e,α,β)(f,µ,ν)

. (6)

The R-symbols define the braiding properties of the

anyons, and are defined via the the following diagram:

c

ba

µ =
∑

ν

[

Rabc
]

µν

c

ba

ν . (7)

The topological twist θa = e2πiha , with ha the topological

spin, is defined via the diagram:

θa = θā =
∑

c,µ

dc
da

[Raac ]µµ =
1

da a

, (8)

Finally, the modular, or topological, S-matrix, is defined as

Sab = D−1
∑

c

N c
āb

θc
θaθb

dc =
1

D a b , (9)

where D =
√
∑

a d
2
a.

B. Topological symmetry and braided auto-equivalence

An important property of a UMTC C is the group of

“topological symmetries,” which are related to “braided auto-

equivalences” in the mathematical literature. They are asso-

ciated with the symmetries of the emergent TQFT described

by C, irrespective of any microscopic global symmetries of

a quantum system in which the TQFT emerges as the long

wavelength description.

The topological symmetries consist of the invertible maps

ϕ : C → C. (10)

The different ϕ, modulo equivalences known as natural iso-

morphisms, form a group, which we denote as Aut(C).[19]

The symmetry maps can be classified according to a Z2 ×
Z2 grading, defined by

q(ϕ) =

{

0 if ϕ is not time-reversing

1 if ϕ is time-reversing
(11)

p(ϕ) =

{

0 if ϕ is spatial parity even

1 if ϕ is spatial parity odd
(12)

Here time-reversing transformations are anti-unitary, while

spatial parity odd transformations involve an odd number of

reflections in space, thus changing the orientation of space.

Thus the topological symmetry group can be decomposed as

Aut(C) =
⊔

q,p=0,1

Autq,p(C). (13)

Aut0,0(C) is therefore the subgroup corresponding to topolog-

ical symmetries that are unitary and space-time parity even

(this is referred to in the mathematical literature as the group

of “braided auto-equivalences”). The generalization involving

reflection and time-reversal symmetries appears to be beyond

what has been considered in the mathematics literature to date.

It is also convenient to define

σ(ϕ) =

{

1 if ϕ is space-time parity even

∗ if ϕ is space-time parity odd
(14)

A map ϕ is space-time parity odd if (q(ϕ)+p(ϕ)) mod 2 = 1,

and otherwise it is space-time parity even.

The maps ϕ may permute the topological charges:

ϕ(a) = a′ ∈ C, (15)

subject to the constraint that

N c′

a′b′ = N c
ab

Sa′b′ = S
σ(ϕ)
ab ,

θa′ = θσ(ϕ)a , (16)

The maps ϕ have a corresponding action on the F - and R−
symbols of the theory, as well as on the fusion and splitting

spaces, which we will discuss in the subsequent section.

C. Global symmetry

Let us now suppose that we are interested in a system with a

global symmetry groupG. For example, we may be interested

in a given microscopic Hamiltonian that has a global symme-

try groupG, whose ground state preservesG, and whose any-

onic excitations are algebraically described by C. The global

symmetry acts on the topological quasiparticles and the topo-

logical state space through the action of a group homomor-

phism

[ρ] : G→ Aut(C). (17)

We use the notation [ρg] ∈ Aut(C) for a specific element

g ∈ G. The square brackets indicate the equivalence class of

symmetry maps related by natural isomorphisms, which we

define below. ρg is thus a representative symmetry map of the

equivalence class [ρg]. We use the notation

ga ≡ ρg(a). (18)

We associate gradings q(g) and p(g) by defining

q(g) ≡ q(ρg)

p(g) ≡ p(ρg)

σ(g) ≡ σ(ρg) (19)

ρg has an action on the fusion/splitting spaces:

ρg : V cab → V
gc
ga gb. (20)
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This map is unitary if q(g) = 0 and anti-unitary if q(g) = 1. We write this as

ρg|a, b; c, µ〉 =
∑

ν

[Ug(
ga, gb; gc)]µνK

q(g)|a, b; c, ν〉,

(21)

where Ug(
ga, gb; gc) is a N c

ab ×N c
ab matrix, and K denotes

complex conjugation.[52]

Under the map ρg, the F andR symbols transform as well:

ρg[F
abc
def ] = Ug(

ga, gb; ge)Ug(
ge, gc; gd)F

ga gb gc
gd ge gfU

−1
g ( gb, gc; gf)U−1

g ( ga, gf ; gd) = Kσ(g)F abcdefK
σ(g)

ρg[R
ab
c ] = Ug(

ga, gb; gc)R
ga gb
gc Ug(

ga, gb; gc)−1 = Kσ(g)Rabc K
σ(g), (22)

where we have suppressed the additional indices that appear

when N c
ab > 1.

Importantly, we have

κg,h ◦ ρg ◦ ρh = ρgh, (23)

where the action of κg,h on the fusion / splitting spaces is

defined as

κg,h(|a, b; c, µ〉) =
∑

ν

[κg,h(a, b; c)]µν |a, b; c, ν〉. (24)

The above definitions imply that

κg,h(a, b; c) = Ug(a, b; c)
−1Kq(g)Uh(

ḡa, ḡb; ḡc)−1Kq(q)Ugh(a, b; c), (25)

where ḡ ≡ g−1. κg,h is a natural isomorphism, which means

that by definition,

[κg,h(a, b; c)]µν = δµν
βa(g,h)βb(g,h)

βc(g,h)
, (26)

where βa(g,h) are U(1) phases.

D. H3
[ρ](G,A) obstruction

As discussed in detail in Ref. 19, the choice of [ρg] defines

an element [O] ∈ H3
[ρ](G,A). To see this, we first define

Ωa(g,h,k) =
Kσ(g)βρ−1

g (a)(h,k)K
σ(g)βa(g,hk)

βa(gh,k)βa(g,h)
(27)

It can be shown that

Ωa(g,h,k)Ωb(g,h,k) = Ωc(g,h,k), (28)

if N c
ab 6= 0. This then implies that[19]

Ωa(g,h,k) =M∗
aO(g,h,k), (29)

for some O(g,h,k) ∈ A. Here A ⊂ C is the subset of

topological charges in C that are Abelian. These form a fi-

nite group, which we also denote A, under fusion. Given an

Abelian anyon b ∈ A, Mab is the braiding phase obtained

by encircling b around a, as defined by the following anyon

diagram:

a b

=Mab

ba

. (30)

In terms of the modular S-matrix,Mab =
S∗
abS00

S0aS0b
.

One can show that O is a 3-cocycle, and that there is a

freedom in the choice of βa which relate two different O’s

by a 3-coboundary. Therefore [ρg] defines an element in

[O] ∈ H3
[ρ](G,A).

In Ref. 19, it was shown that [O] ∈ H3
[ρ](G,A) is an ob-

struction to symmetry localization. That is, it is an obstruc-

tion to consistently defining a notion of symmetry action on

individual topological charges. More specifically, let us con-

sider a state |Ψa1,··· ,an〉 in the full Hilbert space of the sys-

tem, which consists of n anyons, a1, · · ·an, at well-separated

locations, which collectively fuse to the identity topological

sector. Since the ground state is G-symmetric, we expect that

the symmetry action Rg on this state decomposes as follows:

Rg|Ψa1,··· ,an〉 ≈
n
∏

j=1

U (j)
g Ug(

ga1, · · · , gan; 0)|Ψ ga1,··· , gan〉.

(31)
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Here, U
(j)
g are unitary matrices that have support in a region

(of length scale set by the correlation length) localized to the

anyon aj . The map Ug(
ga1, · · · , gan; 0) is the generaliza-

tion of Ug(
ga, gb; gc), defined above, to the case with n

anyons fusing to vacuum. In contrast to the local unitaries

U
(j)
g , Ug(

ga1, · · · , gan; 0) only depends on the global topo-

logical sector of the system (i.e. on the precise fusion tree

that defines the topological state). Rg is the representation

of g acting on the full Hilbert space of the theory. The ≈
means that the equation is true up to corrections that are ex-

ponentially small in the distance between the anyons and the

correlation length of the system. [O] ∈ H3
[ρ](G,A) is an ob-

struction to Eq. (31) being consistent when considering the

associativity of three group elements.[19].

When ρg does not permute any anyons, i.e. ρg(a) = a
for all a, we expect that ρg must be a natural isomorphism.

This has so far been proven rigorously for the case where C
is an Abelian theory. One can show that this implies that the

associated H3 obstruction is always vanishing. With this as-

sumption, non-vanishingH3 obstructions therefore require ρg
to have a non-trivial permutation action on the anyons.

E. Symmetry fractionalization

When the H3
[ρ](G,A) symmetry-localization obstruction

vanishes, then one can define a consistent notion of symmetry

fractionalization. Symmetry fractionalization determines how

the anyons in the system carry fractional symmetry quantum

numbers. In general, the distinct allowed patterns of sym-

metry fractionalization are in one-to-one correspondence with

elements in H2
[ρ](G,A).[19]

For the case of time-reversal symmetry, an important set of

data that characterizes time-reversal symmetry fractionaliza-

tion is as follows. When a = Ta, one can define a quantity

ηTa = ±1. This determines whether locally the action of T2

on a is equal to ±1.[15, 19] This, in turn, determines whether

a carries a “local Kramers degeneracy.” If ηTa = −1, then

a carries with it an internal local multi-dimensional Hilbert

space whose degeneracy (the Kramers degeneracy) is pro-

tected by time-reversal symmetry. The quantities ηTa must

satisfy a number of highly non-trivial consistency relations.

For example, one can show:[19]

[κT(a, b; c)]µν = δµν
ηTa η

T
b

ηTc
. (32)

Moreover, if N c
ab is odd and Ta = a, Tb = b, and Tc = c,

then

ηTa η
T
b = ηTc . (33)

Similarly, if N b
aTa is odd and Tb = b one can prove

ηTb = θb. (34)

The case of reflection symmetry is analogous to that of

time-reversal symmetry. Here, when a = Rā, then we can de-

fine a symmetry fractionalization quantum number ηRa = ±1.

Anyon label, a 1 ε φ1 φ2 ψ+ ψ−

Quantum dimension, da 1 1 2 2
√
5
√
5

Topological twist, θa 1 1 e
4πi
5 e−

4πi
5 i −i

Time-reversal action, Ta 1 ε φ2 φ1 ψ− ψ+

TABLE I. Anyon content of USp(4)2.

ηRa can be understood as follows. We place a and ā away from

each other, such that the action of reflection R interchanges

their positions. If a = Rā, then the system is reflection in-

variant, and ηRa = ±1 corresponds to the eigenvalue of the ac-

tion of reflection on this state. Alternatively, we can consider

taking the spatial manifold to be a cylinder, with topological

charge a and ā on the two ends of the cylinder, such that the

action of reflection interchanges their position. If a = Rā,

then we can view this system as a (1+1)D reflection symmetry

SPT system, which has a Z2 classification. ηRa can be related

to whether this (1+1)D reflection SPT is trivial or non-trivial

(when compared to the case where a is the identity particle).

See Ref. 41 for more details.

III. EXAMPLE: USp(4)2 CHERN-SIMONS THEORY

An explicit example of a theory with a H3(ZT
2 ,A)

anomaly is Chern-Simons theory with gauge group USp(4)2.

Here USp(2n) is the symplectic group, where USp(2) =
SU(2).[53] The anyon content of USp(4)2 CS theory coin-

cides with the integrable highest weight representations of

the affine lie aglebra so(5)2.[5, 54] It consists of 6 particles,

which we can label 1, ǫ, φ1, φ2, ψ+, ψ−. The fusion rules are

given by

ǫ× ǫ = 1, ǫ× φi = φi, ǫ× ψ+ = ψ−

φi × φi = 1 + ǫ+ φmin(2i,5−2i),

φ1 × φ2 = φ1 + φ2

ψ+ × ψ+ = 1 + φ1 + φ2.

(35)

Here i = 1, 2. We also list the quantum dimensions and topo-

logical twists in Table I, from which one can construct the

modular S matrix:

S =
1√
20

















1 1 2
√
5

√
5 2

1 1 2 −
√
5 −

√
5 2

2 2
√
5− 1 0 0 −

√
5− 1√

5 −
√
5 0

√
5 −

√
5 0√

5 −
√
5 0 −

√
5

√
5 0

2 2 −
√
5− 1 0 0

√
5− 1

















,

(36)

where we have presented S in the basis (1, ǫ, φ1, ψ+, ψ−, φ2).
The F and R symbols of this theory are tabulated in Ref.

55. We see that there is only one possible action under time-

reversal, summarized in Table I.

In this case, A = Z2, and H3(ZT
2 ,Z2) = Z2. By direct

computation, following the procedure outlined in the previ-

ous section, we find that the choice of [ρT] described above
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leads to a non-trivial obstruction [O] ∈ H3(ZT
2 ,Z2). In

fact, one finds that the representative 3-cocycle is given by

O(T,T,T) = ǫ (all others are 1). Therefore USp(4)2 pos-

sesses an H3(ZT
2 ,Z2) symmetry-localization anomaly.

IV. SUFFICIENT CONDITIONS FOR THE PRESENCE OF

H3
[ρ](Z

T
2 ,A) ANOMALY

A. Overview

The above discussion of the H3 symmetry-localization

anomaly requires detailed knowledge of the F and R sym-

bols of the theory in order to determine whether any symme-

try G and map [ρ] possesses the anomaly. However obtaining

the F and R symbols given the modular data (the S matrix

and the topological twists) of a TQFT is often a computation-

ally prohibitive problem. Below we will discuss some simple

conditions that must be satisfied for a theory to be free of the

H3
[ρ](Z

T
2 ,A) anomaly.

First we define the quantities:

Z(RP4) =
∑

{a|a=Ta}
S0aθaη

T
a ,

Ma =
∑

{x|x=Tx}
Saxη

T
x , (37)

whose significance will be described in the subsequent sec-

tions.

The conditions that must be satisfied are as follows:

1. Z(RP4) = ±1.

2. Ma is a non-negative integer for all a.

3. θa = ±1 and θa is independent of a, for all a such that

Ma > 0.

Given the modular S-matrix, the topological twists, and an

action of T that permutes the anyons, there must be a choice

of {ηTa } such that conditions (1)-(3) are satisfied. If not, the

theory possesses an H3
[ρ](Z

T
2 ,A) anomaly.

For the case of reflection symmetry R, we replace Ta with
Rā, and ηTa with ηRa in the above formulae:

Z(RP4) =
∑

{a|a=Rā}
S0aθaη

R
a ,

Ma =
∑

{x|x=Rx̄}
Saxη

R
x . (38)

In the subsequent sections we will discuss these conditions

and their origin in detail. It will be convenient to phrase the

discussion in terms of spatial reflection symmetry R, and then

to obtain the results for time reversal T by replacing R with

CT (where C : a→ ā is topological charge conjugation) and

{ηRa } with {ηTa }.

In Sec. IV E, we also provide an additional diagnostic by

considering the theory obtained by condensing certain bosons

in the TQFT of interest, where the inconsistency arises by

finding conflicting constraints on {ηTa }.

In order to connect the constraints above to H3
[ρ](G,A)

symmetry-localization anomalies, we need to make an im-

portant assumption that we discuss below. Let us consider

a (2+1)D topological phase with symmetry G whose symme-

try action [ρ] is free of the H3
[ρ](G,A) symmetry-localization

anomaly. Depending on the symmetry fractionalization class,

which recall is classified by H2
[ρ](G,A), the system may pos-

sess an SPT (t ’Hooft) anomaly, in the sense that the fraction-

alization class can only occur if the (2+1)D system is realized

at the surface of a (3+1)D SPT state. The (3+1)D SPT can-

cels the anomaly from the symmetry fractionalization of the

(2+1)D surface. In this way, a given (2+1)D SET determines

a (3+1)D SPT state. If the (2+1)D theory has no anomaly at

all, then the bulk (3+1)D system is a trivial SPT.

In the following, we will show that the choice of symmetry

action [ρ] alone can be enough to preclude the (2+1)D system

from existing at the surface of a (3+1)D SPT state. In the

example of USp(4)2 CS theory, we find that the existence of

the H3
[ρ](G,A) anomaly is accompanied by the impossibility

of the theory to be consistent at the surface of any (3+1)D

ZT
2 SPT state. We expect that this is a general phenomenon:

the impossibility of the theory, with a specified action of [ρ],
to exist at the surface of a (3+1)D SPT state with symmetry

group G signals the existence of the H3
[ρ](G,A) anomaly. In

principle, for space-time reflection symmetries we have not

ruled out the possibility that the failure of the (2+1)D system

to exist at the surface of a (3+1)D SPT state could signal an

additional anomaly associated with [ρ], which is independent

of the H3
[ρ](G,A) obstruction. However this appears to be

unlikely, given that this is known not to be the case for unitary

internal symmetries.[19, 47]

B. Condition (1): (3+1)D Path integral on RP
4

In the case of ZR
2 (or ZT

2 ) symmetry, bosonic SPTs in

(3+1)D have a Z2 × Z2 classification. The 4 distinct SPT

states can be distinguished by the value of their topological

path integrals on RP
4 and CP

2:[12]

Z(RP4) = ±1,

Z(CP2) = ±1. (39)

As mentioned above, a given (2+1)D SET determines a

(3+1)D SPT state. In Ref. 41, it was shown that if the symme-

try of the system is ZR
2 , then one can compute the path inte-

gral on RP
4 entirely in terms of the properties of the (2+1)D

theory through the following formula:

Z(RP4) =
∑

{a|a=Rā}
S0aθaη

R
a . (40)

Here, the sum is over all anyons that are invariant under the

action of reflection, R, and topological charge conjugation.
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Similarly, one can compute the path integral on CP
2:

Z(CP2) =
1

D
∑

a

d2aθa = e2πic/8, (41)

where c is the chiral central charge of the UMTC.

Therefore, for any (2+1)D topological phase that admits a

ZR
2 symmetry with a given action [ρ], there must be a choice

of {ηRa } such that (39) is satisfied. Failure to sastify (39) for

any choice of {ηRa } implies that the symmetry action [ρ] can-

not be realized in a way that allows the system to exist at the

surface of a (3+1)D SPT state.

For the case of the USp(4)2 CS theory, performing the

computation for RP4 (using time-reversal ZT
2 instead of re-

flection ZR
2 as the example), we find:

Z(RP4) =
1

D (1 + ηTǫ ). (42)

We can see that if ηTǫ = −1, then Z(RP4) = 0. If ηTǫ = 1,

then Z(RP4) = 2
D = 1√

5
. We see that in both cases, the bulk

(3+1)D system cannot be a ZT
2 SPT state.

C. Condition (2): constraints from RP
2 ×D2

Let us suppose that we are given a ZR
2 SET state that can

exist at the surface of a (3+1)D SPT state. Consider the path

integral for the (3+1)D theory onRP2×D2, whereDp denotes

the p-dimensional disk. We choose boundary conditions on

the boundary, RP2 × S1, such that there is a Wilson loop of a
encircling the S1 at a particular point on the RP

2. In Ref. 41,

this path integral, denoted as Z(RP2×D2)[la], was computed

to be

Z(RP2 ×D2)[la] ≡Ma =
∑

{x|x=Rx̄}
Saxη

R
x . (43)

Below we derive the following non-trivial constraint, that

Ma must be a non-negative integer:

Ma ∈ Z≥0. (44)

To derive (44), let us first consider the case where the

bulk (3+1)D theory is a trivial SPT, i.e. when Z(RP4) =
Z(CP2) = 1. In this case, all path integrals of the (3+1)D

theory depend solely on the (2+1)D boundary. Thus Ma

can be intepreted to be solely a property of the boundary of

RP
2 ×D2:

Ma = Z2+1;a(RP
2 × S1), (45)

where the subscript (2+1) emphasizes that this is purely a

property of the (2+1)D theory. This, in turn, corresponds to

the dimension of the Hilbert space of the (2+1)D theory on

RP
2, with a puncture labelled by a. By definition the dimen-

sion of a Hilbert space must be a non-negative integer; thus

Ma must be a non-negative integer.

Now let us consider the case when the bulk (3+1)D the-

ory is a non-trivial SPT, i.e. when either Z(RP4) = −1 or

Z(CP2) = −1. In this case we argue for (44) in two steps.

We first prove that 2Ma ∈ Z≥0, after which we prove that

MaMb ∈ Z. Together these imply (44).

To prove that 2Ma ∈ Z≥0, we argue as follows. Let us

refer to the bulk (3+1)D theory of interest as A, which can be

obtained from the UMTC C, which below we denote as CA.

Let us now consider a second bulk (3+1)D theory, denotedB,

which can be obtained from a second UMTC CB, and which

satisfies ZB(RP4) = ZA(RP4), and ZB(CP2) = ZA(CP2).
Next, we consider the combined theory, denoted AB, such

that

ZAB(M4) = ZA(M4)ZB(M4), (46)

where M4 is any closed 4-manifold. Now consider

MAB
(a,b) =MA

a M
B
b , (47)

whereMAB
(a,b) = ZAB(RP2×D2)[l(a,b)], a ∈ CA, and b ∈ CB.

By our previous argument, we have MAB
(a,b) ∈ Z≥0.

When ZB(RP4) = −1 and ZB(CP2) = 1, we can take

CB to be the Z2 toric code model, which has four particles,

{1, e,m, ψ}, with ψ = e ×m the fermion. Furthermore, we

consider the case where ηRe = ηRm = −1. For this theory,

MB
b = 2δbψ. Since we also have MAB

(a,b) ∈ Z≥0, it follows

that 2MA
a ∈ Z≥0.

When ZB(RP4) = −1 and ZB(CP2) = −1, we can take

CB to be the three-fermion theory, i.e. SO(8)1 CS theory. This

is an Abelian theory with four particle types, {1, f1, f2, f3},

where fi are fermions (θfi = −1), with Sfi,fj = −1/2 for

i 6= j. For this theory, MB
b = 2δb1, and therefore again

2MA
a ∈ Z≥0 in this case as well.

Finally, when ZB(RP4) = 1 and ZB(CP2) = −1, we can

take CB to consist of the three-fermion model, with ηRf1 = −1

and ηRf2 = 1. Then we get MB
b = 2δbf2 , which again proves

that 2MA
a ∈ Z≥0.

Next, we must prove that MaMb ∈ Z. This follows from

the fact that

Z(RP2 × S1 × I)[la ∪ lb] =MaMb, (48)

where the boundary conditions (denoted in the square brack-

ets) are such that there is a loop of a encircling the S1 at

RP
2 × {0} and a loop of b encircling the S1 at RP2 × {1}.

Here we take the interval I = [0, 1], so that {0} and {1} are

the boundaries of I . Z(RP2 × S1 × I)[la ∪ lb] can be in-

terpreted as the dimension of the Hilbert space of the (3+1)D

system on RP
2 × I with two anyons a and b on the two ends

of I . Since this is the dimension of a Hilbert space, MaMb

must be a non-negative integer.

It remains to prove (48). We can demonstrate (48) as fol-

lows, using ideas from Ref. 56.[57] We refer the reader to Ref.

41 for a detailed discussion of these computations written for

physicists. First we note that the (3+1)D path integrals on

closed manifolds are all bordism invariant when constructed

from UMTCs. Therefore,

Z(RP2 × S2) = 1, (49)
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because RP
2 × S2 is bordant to the empty manifold, as it

is the boundary of RP
2 × D3. Next, we use the fact that

the Hilbert space of the (3+1)D theory on any closed 3-

manifold is one-dimensional, which follows from the fact that

this is a bulk (3+1)D SPT, with no intrinsic topological or-

der. Therefore, using the gluing formula for topological path

integrals,[41, 56]

Z(RP2 × S2) =
Z(RP2 ×D2)[la]Z(RP2 × S1 × I)[la ∪ lb]Z(RP2 ×D2)[lb]

〈la|la〉V(RP2×S1)〈lb|lb〉V(RP2×S1)

. (50)

Here, we consider obtainingRP2×S2 by gluingRP2×S1×I
to two copies of RP2×D2, each one alongRP2×S1. Thus the

inner product is in the Hilbert space V(RP2×S1), as indicated

by the subscript. Using (49), moving the denominator to the

LHS, and using the definition of the inner product in terms of

the path integral[41, 56] we obtain

Z(RP2 × S1 × I)[la ∪ lā]Z(RP2 × S1 × I)[lb ∪ lb̄]
=MaMbZ(RP2 × S1 × I)[la ∪ lb]. (51)

Together with the identity Ma =Mā, this implies (48).

D. Condition (3): Topological twists and Ma

The third non-trivial constraint summarized above is

θa = ±1, and independent of a, for Ma > 0. (52)

In the special case that M1 > 0, this implies that θa = 1 for

all a such that Ma > 0.

One way to derive (52) is to use the following identity,

shown in Ref. 41:
∑

a θaM
2
a

∑

aM
2
a

= Z(RP4)Z(CP2). (53)

Since M2
a is a non-negative integer, and Z(RP4)Z(CP2) =

±1, the condition (52) follows trivially.

To better understand the origin of (52), below we will prove

it through a different approach, which does not make use of

the identity in Eq. (53). Let us again consider the path integral

of the (3+1)D system, Z(RP2 × S1 × I)[la ∪ lb] = MaMb.

As in the previous section, the boundary conditions denoted

in square brackets consist of a Wilson loop of a along the S1

direction on the first RP2 × S1, and a Wilson loop of b along

the S1 direction on the other RP2 × S1.

Now, we can consider the following procedure. IfMaMb >
0, we can consider a state |Ψa,b〉 from the Hilbert space on

RP
2 × I , which contains a puncture of a and b on the top and

bottom surfaces. Next, we can cut out a tube that encircles a
on the top RP

2 and b on the bottom surface, rotate the tube

by 2π, and glue it back in. This leads to an operation T on

the state |Ψa,b〉 which corresponds to a Dehn twist on the top

surface, and the oppositely oriented Dehn twist on the bottom

surface. Thus we obtain:

T |Ψab〉 = θaθ
∗
b |Ψab〉. (54)

Since the Dehn twist around the cross-cap on RP
2 is isotopic

to the identity (see e.g. Ref. 41 for a discussion of this ), it is

a trivial operation and therefore we must have that T |Ψab〉 =
|Ψab〉. In particular, we must have

θaθ
∗
b = 1. (55)

This implies that θa = θb whenever MaMb > 0; that is, that

θa is independent of a for all a such that Ma > 0.

Next, we can consider taking b through the cross-cap on

the bottom RP
2, obtaining Rb and yielding the state |Ψa,Rb〉.

The Dehn twist procedure now gives

T |ΨaRb〉 = θaθ
∗
Rb|ΨaRb〉 (56)

Again, since the Dehn twist operation is trivial, this gives

θa = θRb. (57)

In particular, if we take b = a, we find:

θa = θRa. (58)

Since we also know that the reflection action must satisfy

θa = θ∗Ra, (59)

we find that θa must be real. This proves (52).

Examining the example of USp(4)2 (again using time-

reversal ZT
2 as the example), we find:

Ma = Sa1 + Saǫη
T
ǫ . (60)

We see that Ma will all be integer only if we set ηTǫ = −1.

However, this then implies that Mψ+ = Mψ−
> 0. But

θψ+ = θ∗ψ−
= i 6= ±1. We thus conclude again that USp(4)2

cannot be a ZT
2 time-reversal invariant topologial phase that

exists on the surface of a (3+1)D ZT
2 SPT.

E. Conflicting constraints on symmetry fractionalization

quantum numbers

Here we point out that another symptom of theH3
[ρ](Z

T
2 ,A)

symmetry localization anomaly arises in terms of conflict-

ing constraints on the time-reversal symmetry fractionaliza-

tion patterns.
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On the one hand, Ref. 19 derived a set of constraints for

ηTa , which showed that

ηTa = θa, if Na
cTc is odd, for any c. (61)

In the case of USp(4)2, we have ψ+ × ψ− = ǫ + · · · , and
Tψ+ = ψ−. Therefore, we must have

ηTǫ = 1. (62)

On the other hand, we show below that by a different argu-

ment, we must have

ηTǫ = −1. (63)

It is the incompatibility of the above two results that signals

the presence of an H3 anomaly for the ZT
2 symmetry.

To see how Eq. (63) arises, we observe that since ǫ is an

Abelian boson, we can condense it, leading us to a new topo-

logical phase, which in this case corresponds to SU(5)1 CS

theory. To be more explicit, we label the anyons in SU(5)1 by

[j], with j = 0, . . . , 4 (mod 5). They form a Z5 group under

fusion. The topological twists are θj = e
4πi
5 j2 . This theory

has a charge conjugation symmetry C : [j] ↔ [−j].
In addition, we observe that SU(5)1 CS theory has a ZT

4

symmetry, where

T : [j] → [2j], (64)

so that T2 = C, and C2 = 1. Notice that similar to USp(4)2,

the chiral central charge c = 4 implying that the theory can

only be time-reversal invariant at the surface of a (3+1)D the-

ory.

The inverse process of condensing an Abelian Z2 boson in

USp(4)2 is to gauge the unitary Z2 symmetry C in SU(5)1.

The general procedure for gauging is discussed in Ref. 19.

To see how gauging C in SU(5)1 yields USp(4)2, let us enu-

merate the anyons in the gauged theory. First we enlarge the

theory to include extrinsic Z2 symmetry defects, denoted by

ψ. ψ satisfies the following fusion rules:

ψ × ψ = [0] + [1] + [2] + [3] + [4],

ψ × [a] = ψ. (65)

We then need to project the whole theory to the Z2-invariant

subspace, which in the mathematics literature is referred to as

“equivariantization.” This amounts to (a) reorganizing objects

into orbits under the symmetry, and (b) including symmetry

charges. In the present case, the nontrivial anyons in SU(5)1
form two orbits: {[1], [4]} and {[2], [3]}, which correspond to

φ1 and φ2. Both the identity and the defect split into two,

carrying opposite Z2 charges, which are 1, ǫ for the identity

and ψ+, ψ− for ψ.

Since T2 is gauged, and since ǫ is the Z2 gauge charge, we

must have that

ηTǫ = −1, (66)

because ηTǫ is precisely the local T2 value of ǫ. The anyon

permutation given in Eq. (64) becomes φ1 ↔ φ2 in the

gauged theory.

a 1 ǫ φ1 φ2 ψ+ ψ−

θa 1 1 e
4πi
5 e−

4πi
5 1 −1

da 1 1 2 2
√
5
√
5

Ta 1 ǫ φ2 φ1 ψ+ ψ−

TABLE II. Anyon types, topological spins, and quantum dimensions

for USp(4)∨2 .

Another possible way to see that ηTǫ = −1 follows from

the general constraints of Eq. (32). While we do not pursue

this analysis in detail here, we note that a similar analysis was

performed in the case of D(S3) in the Appendix of Ref. 41.

Here D(S3) refers to the quantum double of S3, the permuta-

tion group on three elements.

F. Non-anomalous cousins

We have glossed over an important detail of the gauging

procedure, upon which we now elaborate. As discussed in

Ref. 19, once the Z2 symmetry fractionalization class is cho-

sen, the remaining Z2 symmetry enriched phases are related

to each other by elements of H3(Z2,U(1)) = Z2. The dif-

ference between these two can be thought of as stacking a

Z2 (2+1)D SPT before gauging (in high energy field theory

language, this corresponds to adding a Dijkgraaf-Witten[58]

term for the Z2 gauge field). The SPT phase does not change

either the bulk anyons or the chiral central charge. The only

effect is that the topological twist factors of the Z2 gauge

fluxes ψ± are modified by a factor of i. Namely, we will have

θψ+ = 1, θψ−
= −1 instead.

This implies that USp(4)2 has a partner theory with the

same fusion rules, where ψ± are invariant under the action

of time-reversal (see Table II). Let us refer to this theory as

USp(4)∨2 . We can readily compute for this theory that

Z(RP4) =
1√
20

(1 + ηTǫ +
√
5ηTψ+

−
√
5ηTψ−

). (67)

Using ηTǫ = −1 and ηTψ−
= ηTǫ η

T
ψ+

, we obtain:

Z(RP4) = ηTψ+
= ±1. (68)

Since ψ+ and ψ− are both time-reversal invariant, we no

longer have the constraint ηTǫ = θǫ. Therefore, USp(4)∨2
does not lead to conflicting constraints on ηTǫ . We conclude

that USp(4)∨2 does not possess the H3
[ρ](Z

T
2 ,A) anomaly. De-

pending on the value of ηTψ+
, it does have the SPT (’t Hooft)

anomalies associated with Z(RP4) and Z(CP2), which in-

dicate which (3+1)D ZT
2 SPT state hosts it at the surface. In

particular, if we see ηTψ+
= 1, the USp(4)∨2 theory only has the

Z(CP2) anomaly, which matches the SPT (t’ Hooft) anomaly

in SU(5)1.

Another way of stating the relation between USp(4)2 and

USp(4)∨2 is as follows. We can stack a double semion state[59]

on top of USp(4)∨2 . Note that the double semion state is de-

scribed by U(1)2×U(1)−2 CS theory. We denote the four
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anyons in the double semion state by 1, s, s′, b = s × s′,
where s (s′) is a semion(anti-semion). The resulting theory

has 24 particles. In particular, it has a boson (b, ǫ), consist-

ing of the boson from the double semion state and the ǫ from

the USp(4)∨2 state. If we condense the composite (b, ǫ), the

following particles remain deconfined after the condensation:

1 ∼ (b, ǫ), (1, ǫ) ∼ (b, 1), (1, φi) ∼ (b, φi)

(s, ψ+) ∼ (s′, ψ−), (s, ψ−) ∼ (s′, ψ+),
(69)

where ∼ here means differing by the condensed particle. We

can readily see that the resulting theory is USp(4)2.

However, this condensation process must break the ZT
2

symmetry. This is because the b boson must have ηTb =
θb = 1, because b = s × s′ and s′ = Ts due to the oppo-

site topological spins. Therefore, the bound state (b, ǫ) also

has ηT(b,ǫ) = −1, i.e. it carries a local Kramers degeneracy.

Condensing (b, ǫ) must therefore break time-reversal symme-

try.

To summarize, we have found a cousin theory USp(4)∨2 of

USp(4)2 which has at most t’Hooft anomaly.

V. THREE RESOLUTIONS

Above we saw that the ZT
2 symmetry in USp(4)2 possesses

an H3 anomaly, implying that the symmetry action cannot be

consistently localized to the quasiparticles. In the following

we discuss three possible resolutions of this anomaly.

A. Enlarging the symmetry from Z
T
2 to Z

T
4

One resolution of the ZT
2 symmetry localization anomaly

is that the theory actually does not have a ZT
2 symmetry, but

rather the true symmetry is ZT
4 .

Mathematically, one can show straightforwardly that if the

symmetry group is enlarged to ZT
4 , the obstruction class we

found earlier (naturally embedded into the larger symmetry

group) becomes trivial. Here instead we will present a physi-

cal argument, explicitly constructing the USp(4)2 theory in a

system with ZT
4 time-reversal symmetry.

Let us start from a system of bosons where each boson,

φ, has T2 = −1 (e.g. spin-1/2 bosons). Thus globally

T2 = (−1)Nφ on the whole system, where Nφ is the num-

ber of bosons. Microscopically the system therefore possesses

a ZT
4 symmetry. Pairs of bosons in this system thus locally

have T2 = 1. Let us suppose that the paired bosons re-

alize a topological phase described at long wavelengths by

two decoupled theories, consisting of the double semion state

and the USp(4)∨2 state. Now consider the composite (b, ǫ)
(recall b is the topologically non-trivial boson of the double

semion state). Depending on whether we attach the funda-

mental T2 = −1 boson φ, the composite (b, ǫ) can be a

Kramers singlet, so that its condensation no longer breaks any

symmetry. This way we have a realization of USp(4)2 with

ZT
4 symmetry (up to the chiral central charge anomaly, which

can be cancelled by a bulk (3+1)D SPT).

We notice that similar resolutions apply to unitary symme-

try groups as well. For example, the H3 obstruction for a Z2

symmetry in the D16 gauge theory can be avoided if the sym-

metry group is actually Z4.[45]

B. USp(2N)N CS theory as a fermionic (spin) theory with

SPT (t ’Hooft) anomaly

In Ref. 48, it was proposed that USp(2N)N CS the-

ory is time-reversal invariant as a fermionic theory. Here

we consider the case where T2 = −1 on the electron cre-

ation/annihilation operators, so that globally T2 = (−1)Nf

on the state of the system, with (−1)Nf being the fermion

parity of the system. We show that USp(4)2 possesses a

time-reversal anomaly that can be cancelled by a bulk (3+1)D

electronic time-reversal-invariant topological superconductor

in class DIII. In other words, the theory no longer has any H3

anomaly, but it does have an SPT anomaly. This may look

similar to the ZT
4 symmetry we discussed in the previous sec-

tion, however we cannot use the same argument to resolve the

anomaly due to the fermionic statistics.

Recall that USp(4)2 has a cousin USp(4)∨2 that is free of

the H3(ZT
2 ,A) anomaly. As discussed earlier in Sec. IV F,

the two theories are related by stacking with a double semion

state and condensing certain bosonic quasiparticles. To pre-

serve the time-reversal symmetry, the boson b in the double

semion has to have ηTb = −1, which is impossible in bosonic

systems in two dimensions. However, if the double semion

theory is viewed as a state arising from microscopic degrees

of freedom that contain fermions (i.e. as a spin theory), then

time-reversal symmetry can be implemented differently:

T :s↔ s× f,

s′ ↔ s′ × f. (70)

Here f denotes the local fermion, which is transparent under

braiding with the anyons of the system. With this action of

T, time-reversal symmetry changes the local fermion parity

on the semion and anti-semion. As shown in Ref. 35, if an

anyon a transforms as a → a × f under T, then (i) f must

have T2 = −1, i.e. the fermions are Kramers doublets; and

(ii) a has a well-defined “T2” value which can now be ±i
and which will also be denoted by ηTa . Such anyons are said

to carry a “Majorana Kramers doublet”. However, unlike in

bosonic systems, for two anyons a and b both having Majo-

rana Kramers doublets, and c with N c
ab = 1, one can show

that

ηTc = −ηTa ηTb . (71)

In the double semion state above, since both s and s′ carry

Majorana Kramers doublets we have ηTb = −ηTs ηTs′ . There-

fore, if ηTs = i, ηTs′ = −i, we have ηTb = −1. This is precisely

the surface topological order of a ν = 4 class DIII topologi-

cal superconductor (ν = 1 is the root phase, having a single

Majorana cone on the surface without any interactions).

With this anomalous fermionic double semion theory, we

can condense (b, ǫ) in USp(4)∨2 stacked with the double
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semion state, obtaining a T-invariant USp(4)2 theory with

T2 = (−1)Nf . This provides a surface topological order for

the ν = 4 class DIII topological superconductor. Under T,

the anyons are transformed according to

T : φ1 ↔ φ2, ψ± ↔ ψ±f. (72)

We note that this conclusion is consistent with the use of

the fermionic anomaly indicator formula discussed in Ref. 60

and 61.

C. Pseudo-2D realization at the surface of (3+1)D SETs

While strictly speaking ZT
2 cannot be a symmetry of the-

ories with an H3 anomaly, below we will demonstrate a pre-

cise sense in which these theories can admit a ZT
2 symme-

try, provided they are “pseudo-realized” at the surface of a

(3+1)D topologically ordered bulk state. From the discus-

sion of Sec. IV F, we see that it is sufficient to show that

the anomalous double semion state (where ηTb = −1) can be

“pseudo-realized.”

1. Pseudo-realizing double semion with ηTb = −1 on the surface

of a (3+1)D SET

As discussed in the preceding sections, in (2+1)D a dou-

ble semion state with ZT
2 time-reversal symmetry must satisfy

ηTb = θb = 1 because N b
sTs = 1.

Nevertheless, below we will show how one can realize a

state that is closely related (but strictly speaking not identical)

to the double semion state with ηTb = −1 on the surface of a

bulk (3+1)D system with long-range entanglement. To under-

stand this, it is helpful to consider spatial reflection symmetry,

R, instead of time-reversal symmetry. In the TQFT, we re-

place T by CR. Since charge conjugation C acts trivially

here, the action of T can just be replaced with the action of

R.

2. Z2 gauge theory on the bulk mirror plane

In Ref. 33, it was shown how (3+1)D reflection invariant

SPTs (with R2 = 1), can be understood by restricting atten-

tion to the mirror plane. On the mirror plane, the reflection

symmetry acts like an on-site Z2 symmetry. Thus, to under-

stand (3+1)D SPTs with ZR
2 reflection symmetry, one is led to

considering the possible existence of non-trivial (2+1)D SPT

states with on-site (internal) Z2 symmetry existing on the mir-

ror plane.

Here, we instead consider a (2+1)D SET on the mirror

plane. Specifically, on the mirror plane we consider a Z2 toric

code state, which is described by a dynamical Z2 (untwisted)

gauge theory. Furthermore, we consider a global ZR
2 reflec-

tion symmetry, which acts as an on-site Z2 symmetry on the

mirror plane. The anyons in Z2 gauge theory are denoted by

{1, e,m, ψ} where e (m) is the Z2 gauge charge (flux). We

 TCZ2

Φm

R

DS DS

Φl Φr

FIG. 1. Illustration of the construction of the anomalous double

semion state on the surface of a Z2 toric code on the mirror plane.

Left panel: 3D setup, where a Z2 gauge theory harbors the mirror

plane. Right panel: top view of the surface.

further consider the case where the e andm particles of the Z2

gauge theory both carry fractional Z2 charge under the global

Z2 symmetry.

Next, we consider a (2+1)D surface of the (3+1)D bulk sys-

tem. At a given time-slice, the (2+1)D surface forms a plane

which is perpendicular to the mirror plane of the (3+1)D bulk

on which the Z2 gauge theory lives (see Fig. 1). We consider

the case where the surface theory is a double semion state.

Below we will demonstrate that this surface theory can have

ηRb = −1.

To demonstrate this explicitly, we imagine cutting the sys-

tem along the mirror axis on the surface, so that we have three

subsystems: the double semion edge states on the left and

right of the mirror plane, and the Z2 gauge theory on the mir-

ror plane. We need to show that at the (1 + 1) dimensional

intersection between the surface and the bulk mirror plane,

the three pairs of edge modes can be fused together in a way

which preserves the global symmetry and which is gapped ev-

erywhere. Note that with the on-site Z2 symmetry, the Z2

gauge theory has gapless edge modes, since a gapped edge

has to correspond to either e or m condensation, which nec-

essarily breaks the symmetry because both of them carry half

charge.

To this end, we see that the (1 + 1)D theory at the junction

consists of the edge theories of the three subsystems. Each of

them admits a description as a non-chiral Luttinger liquid, and

altogether can be compactly written as

L =
1

4π
∂tΦ

TK∂xΦ− . . . (73)

here Φ = (φ1l, φ2l, φ1r, φ2r , φ1m, φ2m)T, where φl/r refer

to the edge bosonic fields of the double semion states on the

left/right, and φm refer to the edge fields of the Z2 gauge the-

ory on the mirror plane. The K-matrix reads

K =







2σz 0 0

0 2σz 0

0 0 2σx






(74)

The ±2σz parts describe the contribution from the double

semion state on either side of the interface. The 2σx part

describes the contribution from the Z2 gauge theory on the

mirror plane. We adopt the convention that the e particle at
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the mirror plane corresponds to the operator eiφ1m , and the m
particle corresponds to the operator eiφ2m . The ZR

2 symmetry

acts in the following way on these fields:

φ1m → φ1m +
π

2

φ2m → φ2m +
π

2
φ1l ↔ φ1r

φ2l ↔ φ2r

The first two transformations on φ1m and φ2m encode the fact

that the e and m particles carry half Z2 charge. The boson

operator on one side of the interface is b = ei(φ1l+φ2l), and on

the other side of the interface is b = ei(φ1r+φ2r).

The idea in this construction will be that the boson on

the surface will be the Z2 gauge charge on the mirror plane.

Therefore we consider the following gapping terms:

δL =− u cos 2(φ1l + φ2l − φ1m)

+ u cos 2(φ1r + φ2r − φ1m)

− v cos 2(φ1l − φ2l + φ1r − φ2r − 2φ2m)

(75)

The gapping terms preserve the reflection symmetry defined

in Eq. (75). The first two terms show that the combination

b × e is condensed at the junction, which implies that at the

junction, b can continue into the mirror plane as the e particle,

which is the Z2 gauge charge.

The above gapping terms can be written as

δL =
∑

a

ta cos(Λ
T

aKΦ), (76)

where the integer vectors Λa determine the gapping terms. In

the present case, we have

Λ1 = (1, 1, 0, 0,−1, 0)

Λ2 = (0, 0, 1, 1,−1, 0)

Λ3 = (1,−1, 1,−1, 0,−1) (77)

and t1 = −t2 = u, t3 = v. One can see that these vectors are

null vectors for the K-matrix, as they satisfy

ΛT

aKΛb = 0 (78)

for all a, b = 1, 2, 3. We should also check that the global

Z2 symmetry is not spontaneously broken in the ground state.

Using the criteria derived in Ref. 15, we can in fact show that

the gapping terms lead to a unique gapped ground state, thus

excluding the possibility of spontaneous symmetry breaking.

Importantly, observe that the operator

ei(φ1l−φ2l)+i(φ1r−φ2r) creates a pair of b bosons on ei-

ther side of the mirror plane, in a mirror-symmetric

way. Due to the third gapping term above, we see

that since ei(φ1l−φ2l+φ1r−φ2r+2φ2m) is condensed, then

ei(φ1l−φ2l)+i(φ1r−φ2r) can be replaced by e2iφ2m . Since

under the global ZR
2 symmetry φ2m → φ2m + π/2, we see

that this operator goes to minus itself, which is precisely the

definition of the reflection eigenvalue ηRb = −1.

s

i− 1 i i+ 1
i+ 2

FIG. 2. Illustration of the layer construction. Each vertical layer

denotes a Z2 toric code, and neighboring layers are coupled such that

pairs of e particles are condensed. The surface consists of a double

semion state, joined to the vertical layers at each (1+1)D intersection

by condensing b× e.

3. Z2 gauge theory in the bulk (3+1)D system

In the previous section we showed how the double semion

state with ηRb = −1 can be realized at the surface of a bulk

(3+1)D system with a certain Z2 gauge theory on the bulk mir-

ror plane. Here we will briefly point out that with this start-

ing point, one can then consider a layer construction, where

we stack (2+1)D Z2 toric code states on planes parallel to

the mirror plane (see Fig. 2). We condense pairs of e par-

ticles from neighboring planes, so that the e particle can prop-

agate in three dimensions. The other deconfined excitations

are strings of m particles from each layer. This way we get

a bulk (3+1)D Z2 gauge theory, with a global ZR
2 reflection

symmetry.

At the interface of the bulk planes with the (2+1)D surface

we condense pairs of e and b particles together, so that the

b particle can just propagate from the surface into the bulk.

Because of the condensation of b × e at each intersection, if

a semion/anti-semion were to propagate on the surface, each

time it passes through an intersection it has to bind with a

m particle from the layer. In other words, due to the mutual

statistics of the particles, the condensation of b × e confines

the semions/anti-semions s and s′ to the end points of the m-

strings.

We refer to the above as a “pseudo-realization” of the dou-

ble semion state with ηRb = −1 at the surface of a (3+1)D Z2

gauge theory. The reason we call it a “pseudo-realization” is

because strictly speaking, the double semion is not confined to

live on the surface of the (3+1)D system anymore. The boson

b can propagate into the bulk, while the semions at the surface

are bound to the end-points of Z2 flux strings in the bulk. In

this case, since the endpoints of the flux strings do not have

a well-defined topological spin, it is no longer meaningful to

associate them with semions.

We thus find that while the double semion state with

ηRb = −1 is strictly speaking not allowed, it can be “pseudo-

realized” at the surface of a bulk (3+1)D SET with global ZR
2

reflection symmetry.
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D. Pseudo-realizing USp(4)2

Combining the above results, we can now conclude the

following. USp(4)2 possesses an H3(ZT
2 ,A) time-reversal

anomaly. It has a cousin USp(4)∨2 which does not possess

this H3 time-reversal anomaly. One can obtain USp(4)2 from

USp(4)∨2 by stacking a double semion on the latter, and con-

densing the combination of ǫ×b. If we demand that ηTb = −1,

then the bound state will have ηTbǫ = 1, and therefore condens-

ing it will not break T. However such a double semion state

with ZT
2 symmetry can only be pseudo-realized at the surface

of a bulk (3 + 1)D that contains a dynamical Z2 gauge field.

Therefore USp(4)2 can be pseudo-realized with ZT
2 symme-

try at the surface of a bulk (3 + 1)D Z2 gauge theory.

VI. MORE EXAMPLES OF THEORIES WITH H3

ANOMALIES

We have seen that the H3
[ρ](Z

T
2 ,A) anomaly in USp(4)2

CS theory is intimately associated with the ZT
4 symmetry in

SU(5)1 CS theory. Below we will see that this is a general

phenomenon. We provide an infinite series of TQFTs with

H3
[ρ](Z

T
2 ,A) anomalies, obtained by gauging T2 in a theory

with ZT
4 symmetry.

The essential point is that when we gauge T2, we can con-

sider adding a Dijkgraaf-Witten (DW) term for the gauge field

associated with the T2 symmetry. Physically this corresponds

to stacking a Z2 SPT (associated with T2) together with the

theory with the ZT
4 symmetry. This combined system no

longer possesses ZT
4 symmetry, because a Z2 SPT is incom-

patible with ZT
4 symmetry if the Z2 SPT is to be protected

by T2. We will see that the theory obtained by gauging T2

under these circumstances thus leads us to another theory that

contains the H3 anomaly.

A. Gauging T
2 in USp(4)2 CS theory

Given that USp(4)2 supports a ZT
4 symmetry, we can study

the time-reversal symmetry properties of the theories obtained

by gauging the global unitary Z2 symmetry T2.[19]

The symmetry fractionalization associated with the Z2

global symmetry is classified by H2(Z2,Z2) = Z2. In one

case, none of the particles of USp(4)2 carry fractional quan-

tum numbers; naively gauging the Z2 gives rise to two de-

coupled theories: USp(4)2 × D(Z2), where D(Z2) refers to

a Z2 discrete gauge theory. Depending on whether there is a

Dijkgraaf-Witten (DW) term in the effective action for the Z2

gauge field, the D(Z2) factor will correspond to a toric code

or double semion theory. One then runs into the contradiction

that since the Z2 gauge theory is decoupled from USp(4)2,

the theory continues to have the same H3
[ρ](Z

T
2 ,A) anomaly,

which is impossible if we start from an anomaly-free theory.

The resolution is that we have not been careful enough in

gauging. The correct theory obtained from gauging can be

most easily obtained from the physical construction in Sec.

V A. There we observed that USp(4)2 with ZT
4 symmetry

can be obtained as follows. We start with a theory of physical

bosons φ, which are the local degrees of freedom of the the-

ory, and which have T2 = −1. Then we imagine that pairs of

bosons form a topological state described by USp(4)∨2 × DS.

Next we condense the particle bǫ combined with the local bo-

son φ. Since bǫ has T2 = −1, combining it with φ yields a

particle which is a Kramers singlet, which can then be con-

densed without breaking the ZT
4 symmetry.

Thus to gauge T2 in USp(4)2, we first start from

USp(4)∨2 × DS, then we gauge the T2 symmetry and sub-

sequently condense the particle that corresponds to the fusion

of bǫ and the Z2 charge of the T2 gauge field.

Since we are considering the case with no DW term and

trivial symmetry fractionalization classes, the result for gaug-

ing T2 in USp(4)∨2 × DS is USp(4)∨2 × DS × D(Z2). Here

D(Z2) refers to an untwistedZ2 gauge theory. Denote the four

particles in D(Z2) as {1, e,m, ψ = e ×m} where e is inter-

preted as the gauge charge and therefore has T2 = −1. Thus

we now condense ǫbe. After condensation, we can identify an

Abelian subsector

1, b ∼ ǫe, sm ∼ s′ψǫ, s′m ∼ sψǫ

ǫ, ǫb ∼ e, ǫsm ∼ s′ψ, ǫs′m ∼ sψ
(79)

The first line is nothing but a DS theory. We can further iden-

tify another sector

1, ǫ, ψ+m,ψ−m,φ1, φ2, (80)

which is closed under fusion and can again be identified as

USp(4)∨2 . Thus the resulting theory is USp(4)∨2 ×DS, and T

acts diagonally on the two sectors. This theory is free of any

H3 anomaly, as it should be. If we further add a DW term in

gauging the T2 symmetry, we would obtain a theory with H3

anomaly again, which turns out to be USp(4)2 ×D(Z2).
In the case where the USp(4)2 particles do carry fractional

quantum numbers (corresponding to the non-trivial Z2 frac-

tionalization class), we can obtain the gauged theory as fol-

lows.

In the physical construction of Sec. V A, we let the s and s′

particles in the DS sector both have fractional quantum num-

bers, i.e.

ηs(T
2,T2) = ηs′(T

2,T2) = −1. (81)

One can easily see that after condensing bǫ together with a

physical boson φ, we do get a USp(4)2 where ψ± have frac-

tional quantum numbers under T2.

The gauged theory can be obtained as follows: first we add

a gauge flux σ. Due to the fractionalization of T2, the flux

satisfies the fusion rule σ2 = b. The topological twist of this

flux can be chosen to be either θσ = 1 or θσ = i, depending

on whether a DW term is included or not. Without loss of

generality we also set

Ms,σ = i,Ms′,σ = −i, (82)

where recall Mab is the braiding phase between a and b, de-

fined in Eq. 30. Further we also need to add a bosonic T2



15

gauge charge e, such that s2 = s′2 = e. Notice that we still

define b = ss′.
When θσ = 1, we can identify the gauged theory as

USp(4)∨2 × D(Z4). The Z4 gauge charge, which we label

as (1, 0), is identified with σ. The Z4 gauge flux (0, 1) can be

identified with s′σe = sσb. The T2 gauge charge e becomes

(2, 2). For reference, the topological twist of an anyon (a, b)
in D(Z4) is

θ(a,b) = iab. (83)

Under time reversal symmetry T (which now satisfies

T2 = 1), we find that e and σ are invariant, while sσb →
sσe = sσb. We have ηTσ = 1, ηTb = 1, ηTe = −1, and

ηTbe = −1, which form a consistent set of time-reversal sym-

metry fractionalization quantum numbers. Therefore, as ex-

pected, the case where θσ = 1, which corresponds to no added

DW term, does not have a H3 anomaly.

When θσ = i, we again define (1, 0) ≡ σ, (0, 1) ≡ sσb,
with θ(0,1) = θ(1,0) = i. A general anyon (a, b) in this theory

has topological twist

θ(a,b) = ia
2+b2−ab. (84)

Let us denote it by D′(Z4).

Now we determine the time-reversal transformation in this

case. Using the consistency of braiding, we can uniquely fix

Tσ = σe.
Tsσb = sσ. (85)

This theory D′(Z4) has a H3 anomaly: on the one hand,

ηTe = −1 due to the fact that e is a T2 gauge charge of the

original theory. However, on the other hand we have ηTbe =
θbe = 1, because be = Tσ × σ. Since ηTb = 1, it follows that

ηTe = ηTbeη
T
b = 1, which is a contradiction.

We now start from USp(4)∨2 ×D(Z4) or USp(4)∨2 ×D′(Z4)
depending on whether θσ = 1 or i, and condense ǫbe ≡ ǫ ×
(0, 2). Notice that while D(Z4) and D′(Z4) generally have

different braiding structures, the braiding of (0, 2) with other

anyons are the same:

M(a,b),(0,2) = (−1)a. (86)

Therefore we can treat the condensation uniformly for both

cases. The resulting gauged theory contains 24 particles, with

the spins and quantum dimensions shown in Table III.

When θσ = i, from Table III we see that all of the anyons

must be permuted by T because of their complex twists, ex-

cept for (0, 0), (2, 0), (0, 2) and (2, 2), which are invariant un-

der T. This implies that

Z(RP4) =
1

2
√
20

(1 + ηT(2,0) + ηT(0,2) + ηT(2,2)) 6= ±1. (87)

We thus conclude that this theory possesses a H3
[ρ](Z

T
2 ,A)

anomaly.

To summarize, we have found so far that USp(4)2 CS the-

ory possesses an H3(ZT
2 ,A) anomaly. As discussed above,

Label d θ Remark

(a, b) 1 θ(a,b) a ∈ {0, 2}, b ∈ {0, 1, 2, 3}
ψ+ × (a, b)

√
5 θ(a,b) a ∈ {1, 3}, b ∈ {0, 1, 2, 3}

φ1 × (a, b) 2 e
4πi
5 θ(a,b) a ∈ {0, 2}, b ∈ {0, 1}

φ2 × (a, b) 2 e−
4πi
5 θ(a,b) a ∈ {0, 2}, b ∈ {0, 1}

TABLE III. Particle types, quantum dimensions, and topological

twists for the theory obtained by gauging a unitary global Z2 sym-

metry in USp(4)2. We take the case where the symmetry fraction-

alization class is non-trivial. There are thus two remaining distinct

choices, θσ = 1, i, encoded in the two expressions for θ(a,b)
.

a 1 (1/2, 1/2) (0, 1) (1, 0) (1/2, 3/2) (1, 1)+ (1, 1)− (0, 2)

θa 1 i e
2πi
3 e

2πi
3 −i e−

2πi
3 e−

2πi
3 1

da 1 3 2 2 3 2 2 1

TABLE IV. Anyon types, topological spins, and quantum dimensions

for SO(4)4.

one resolution to this is that the symmetry can be taken to

be ZT
4 . This allows us to consider the theories obtained by

gauging T2, which leads us to new theories that also pos-

sess H3(ZT
2 ,A) anomalies, for example as summarized in Ta-

ble III. Again this means that the true symmetry of the new

gauged theory is ZT
4 . Thus we can again consider gaugingT2.

This procedure can continue indefinitely, yielding an infinite

family of theories with H3(ZT
2 ,A) anomalies.

B. SO(4)4 CS theory

Another example of a theory with an H3(ZT
2 ,A) anomaly

is SO(4)4 CS theory.

SO(4)4 CS theory can be obtained from SU(2)4 × SU(2)4
CS theory by a condensation process as follows. The 5 par-

ticle types of SU(2)4 CS theory can be organized in terms

of SU(2) representations: 0, 1/2, 1, 3/2, 2, with the spin 2
particle being the Abelian anyon. Thus the particle types

of SU(2)4 × SU(2)4 can be written as (a, b), with a, b =
0, 1/2, 1, 3/2, 2. SO(4)4 CS theory can be obtained from

SU(2)4 × SU(2)4 CS theory by condensing the spin (2, 2)
Abelian boson.[62] This leads to a theory with 8 types of par-

ticles, summarized in Table IV.

SO(4)4 has an Abelian particle ǫ = (1, 1). Condensing ǫ
takes us to a new theory, SU(3)1×SU(3)1 CS theory. SU(3)1
CS theory is an Abelian theory with 3 particle types. Thus we

can label the anyons of SU(3)1 × SU(3)1 as (a, b), for a, b =
1, · · · 3 (mod 3). This theory has a ZT

4 symmetry associated

with the following transformation on the anyons:

T : (a, b) → (2a+ b, a+ b) (88)

Note that the above transformation induces the following ac-

tion: (1, 0) → (2, 1) → (2, 0) → 1, 2) → (1, 0), and

(0, 1) → (1, 1) → (0, 2) → (2, 2) → (0, 1). It is easy to

verify that T2 = C, and therefore T generates a ZT
4 symme-

try. We note that it is possible to obtain another ZT
4 symmetry
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by defining T′ = LTL, where L is the Z2 layer-exchange

symmetry, L : (a, b) → (b, a).
This theory has all of the same essential features that ap-

peared in our preceding analysis of USp(4)2 CS theory. The

possible actions of T preclude the constraints discussed in

Sec. IV from being satisfied, in a similar manner to that of

USp(4)2 CS theory. For example,

Z(RP4) =
1

6
(1 + ηT(0,2)) 6= ±1. (89)

Moreover, it is straightforward to check that all of the same

resolutions as discussed for USp(4)2 apply in this case as

well.

As in the USp(4)2 case, we can now consider enlarging the

symmetry to ZT
4 , which does not possess the H3 anomaly, and

subsequently gauge the T2 symmetry. Through this process,

one can again generate an infinite series of TQFTs with H3

anomalies, with now SU(3)1 × SU(3)1 CS theory being the

“root” phase, instead of SU(5)1 CS theory.

C. Infinite family of root phases

Given the understanding developed in the preceding sec-

tions of when H3 anomalies arise, we can now provide an in-

finite family of “root phases” with ZT
4 symmetry which, upon

gauging T2, each lead to a series of theories with H3 anoma-

lies. Let us consider a two-component Abelian U(1) × U(1)
CS theory:

LCS =
1

4π

2
∑

I,J=1

εµνλaIµKIJ∂νaJλ + · · · , (90)

with the K-matrix

K =

(

m n

n −m

)

. (91)

where n,m are integers, and m is even to describe a bosonic

(non-spin) theory. The quasiparticles of this theory are de-

scribed by 2-component integer vectors ~l.
This theory has a time-reversal symmetry, whose action on

the gauge fields is given by

T :

(

a1
a2

)

→
(

a2
−a1

)

. (92)

It is clear that

T2 = −1, (93)

which takes all quasiparticles ~l → −~l. Therefore, T2 is a Z2

charge-conjugation symmetry, while T generates a ZT
4 sym-

metry.

It is important to know that the ZT
4 symmetry of the K-

matrix in Eq. (91) does not possess any anomaly. In Ap-

pendix A, we give an explicit microscopic construction of this

phase with a ZR
4 reflection symmetry in (2+1)D, to explicitly

demonstrate the absence of any anomaly.

We note that the case where (m,n) = (0, 3) gives rise to Z3

gauge theory. Gauging the unitary Z2 particle-hole symmetry

gives rise to S3 gauge theory (the permutation group on three

elements), which contains 8 particles.[19] It is a close cousin

of the SO(4)4 example, but with chiral central charge c = 0.

Similarly, the case where (m,n) = (2, 1) gives rise to a Z5

anyon theory (i.e. the fusion rules form a Z5 group. This is

a close cousin of SU(5)1 CS theory). Gauging the unitary Z2

particle-hole symmetry gives rise to a theory with 6 particles,

which is closely related to USp(4)2, but with c = 0.

In fact we can define a ZT
4 symmetry for an even more

general class of anyon models denoted as Z
(p)
N , for N ≡

1 (mod 4). Z
(p)
N contains Abelian anyons withZN fusion rules

and with R symbols R
[a][b]
[a+b] = e2πipab/N . The T symmetry

acts on an anyon [j] as

T : [j] → [tj], (94)

such that θ[tj] = θ∗[j], which implies t2 ≡ −1 (modN). Since

N is odd, t has to be even in order to satisfy this condition.

As a result, we must have N ≡ 1 (mod 4) as a necessary con-

dition. T2 is automatically the charge-conjugation symmetry.

1. Gauging the unitary Z2 symmetry

Let us now consider gauging the unitary Z2 charge conju-

gation symmetry associated with T2 in the theories described

above. We will show that this leads to a theory with an

H3
[ρ](Z

T
2 ,A) anomaly. As discussed in Ref. 19, there are in

principle two distinct ways to gauge the Z2 symmetry, corre-

sponding to a choice of group element in H3(Z2,U(1)) = Z2.

This is associated with whether we include a Dijkgraaf-Witten

term for the Z2 gauge field in the effective Lagrangian de-

scription. (Note that for this theory this is the only choice

that needs to be made in the gauging process, because the

symmetry fractionalization class H2
[ρ](Z

T
2 ,A) is trivial in this

case[19]).

Here we mainly focus on the case gcd(m,n) = 1. In this

case, the K-matrix defined above defines an Abelian theory

with Zm2+n2 fusion rules.[63] The m2 + n2 quasiparticles

can be taken to be ~la = (a, 0), for a = 0, · · · ,m2 + n2 − 1.

The mutual braiding statistics between anyons labelled by ~la

and ~lb is therefore e
2πiabm

m2+n2 .

Since we are interested in bosonic theories, we require m
to be even. In order for gcd(m,n) = 1, we require that n be

odd. This implies that that m2 + n2 is odd. This corresponds

to the anyon theory Z
(p)
N for N = m2 + n2 and p = m/2.

When gauging charge conjugation in this theory, the re-

sulting theory has (N + 7)/2 anyons.[19, 64] The anyons

[a], [−a] for a = 1, · · · , (N − 1)/2 are grouped into non-

Abelian anyons with quantum dimension 2. The identity par-

ticle splits into two particles, 1, ǫ, with ǫ being the Z2 charge.

After gauging there are two types of twist fields, σ±. These
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have fusion rules

σ+ × σ+ = 1 +
∑

a

φa,

σ+ × σ− = ǫ+
∑

a

φa. (95)

Let us compute θ2σ. As shown in Ref. 19, we have

θ2σ =
κσ√
N

N−1
∑

j=0

e
2πi
N

p(N−1)
2 j2 ≡ κσG(N, p), (96)

where[65]

G(N, p) =

(

p(N − 1)/2

N

)

G(N, 1), (97)

(

a
b

)

is the Jacobi symbol, and

G(N, 1) =

{

1 N ≡ 1 (mod 4)

i N ≡ 3 (mod 4)
. (98)

κσ = ±1 is the Frobenius-Schur indicator of σ, which de-

pends on the choice of H3(Z2,U(1)) = Z2.[19] Therefore,

for N ≡ 1 (mod 4), we find θ2σ = ±1.

Depending on the choice of H3(Z2,U(1)) = Z2 class for

the gauging process, we have θσ±
= ±1 or θσ±

= ±i. It is

clear that the latter case gives rise to the inconsistency in ηTǫ ,

as discussed in Sec. IV E. The latter case also implies that

Z(RP4) =
1

2N
(1 + ηTǫ ) 6= ±1. (99)

Thus gauging T2 gives us a theory with an H3 anomaly. As

discussed in Sec. V A, this can be resolved by taking the true

symmetry to be ZT
4 . As in the examples of Sec. VI A, we can

now continue to gauge T2 again, and in this way generate an

infinite series of theories with H3 anomalies.

In the more general case where gcd(m,n) = f , the fusion

rules of the theory split as ZN/f×Zf , withN = m2+n2.[66]

We leave a detailed analysis of this case for future work.

VII. DISCUSSION

We have demonstrated a series of TQFTs which possess

a ZT
2 time-reversal symmetry localization anomaly, which is

classified by H3
[ρ](Z

T
2 ,A). As described in Ref. 19, the gen-

eral diagnostic of the existence of an H3
[ρ](Z

T
2 ,A) requires the

full F and R symbols of the theory and their transformation

properties under time-reversal. We have further provided a

series of simpler constraints, which only depend on the mod-

ular data (the topological spins and modular S-matrix), that

must be satisfied for any (2+1)D theory to be free of this ZT
2

localization anomaly. All of the theories that we considered

violated these constraints, signalling the existence of their H3

anomaly. Analogous results hold for ZR
2 reflection symmetry,

which we obtain by replacing the action of T with CR.

There are a number of interesting questions that we leave

for future work. In particular, it is unclear whether theories

with ZT
2 symmetry localization anomalies always fall within

the framework found in this paper. For example, do all the-

ories with H3
[ρ](Z

T
2 ,A) anomalies always violate the con-

straints that we have found and, if so, are any of the constraints

always violated together? In the examples that we have stud-

ied many of the constraints that we have found are violated

simultaneously. Furthermore, in our examples, in addition to

the example of Ref. 45 which studied a theory with unitary Z2

symmetry, the anomalous theories can be “pseudo-realized”

at the surface of a (3+1)D dynamical Z2 gauge theory with

bosonic gauge charge; it would be interesting to know whether

cases with fermionic gauge charge exist as well.

We note that the existence of a subgroup of Abelian anyons

A implies the existence of a one-form symmetry with sym-

metry group A.[67] The cohomology class H3
[ρ](G,A) also

appears in the study of 2-groups, where G is interpreted as

the 0-form symmetry, and A is interpreted as the 1-form

symmetry.[68] This suggests another possible interpretation

of the H3
[ρ](G,A) anomaly as implying that the true symme-

try of the TQFT is a non-trivial 2-group symmetry, where the

existence of the H3
[ρ](G,A) class implies that the 1-form sym-

metry cannot be broken without also breaking the 0-form sym-

metry. This 2-group symmetry then could potentially possess

a t’ Hooft anomaly, which would be cancelled by a 2-group

SPT in (3+1)D.[68, 69]

However, an important point regarding the 2-group sym-

metry perspective is that 1-form symmetries apparently can-

not be exact symmetries of a system whose ultraviolet (UV)

degrees of freedom are described by a Hilbert space that de-

composes into a tensor product of local Hilbert spaces. Such

models always contain dynamical matter fields in their effec-

tive quantum field theory description, which spoils the 1-form

symmetry at high enough energies. Therefore it appears that

the 2-group symmetry perspective cannot resolve the possi-

bility of whether the symmetric topological phases of interest

can exist in a system whose UV degrees of freedom form a

Hilbert space that decomposes into a tensor product of local

Hilbert spaces.

Furthermore, we note that Ref. 69 studied t ’Hooft anoma-

lies associated with 2-group symmetries with non-trivial H3

class. There, the possibility of such anomalies being cancelled

by a bulk (3+1)D 2-group SPT via a generalization of anomaly

in-flow was studied. Here we emphasize that the H3 anoma-

lies described in Ref. 69 are distinct from the H3
[ρ](G,A) dis-

cussed in this paper and those of Ref. 19. The H3
[ρ](G,A)

anomalies that we discuss here are defined solely by the ac-

tion [ρ], defined in Ref. 19 and reviewed in Sec. II of this

paper. In particular, all Abelian topological phases where the

symmetries do not permute the anyon types are free of such

H3
[ρ](G,A) anomalies. The examples studied in Ref. 40 and

69 uncover a different H3 structure in a purely Abelian topo-

logical phase with symmetries that do not permute the anyon

types. There the obstruction arises once certain choices for

the symmetry fractionalization class are made for a subset of

the anyons, and one attempts to lift that choice to a symmetry
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fractionalization class for the full theory. It would be inter-

esting to understand whether and how the 2-group anomaly

in-flow picture also applies for H3
[ρ](G,A) obstructions stud-

ied in this paper and in Ref. 19.
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Appendix A: Explicit Construction of Abelian Theories with Z
R
4

Symmetry

In Sec. VI C we presented a series of U(1) × U(1) CS

theories described by a 2 × 2 K-matrix K =

(

m n

n −m

)

,

which have a ZR
4 reflection symmetry. Here we provide a

construction of this theory that demonstrates that it possesses

no SPT (t’ Hooft) anomaly. The idea is similar to ideas used

in Ref. 33 and in Sec. V C.

We use the fact that the K-matrix theory can be realized as

the effective theory of a system with a microscopic charge-

conjugation symmetry. That is, C = −1 is not only a

symmetry of the effective topological field theory, but also

corresponds to a microscopic on-site (internal) Z2 symmetry

(which will also be denoted by C for convenience) of some

lattice realization of the phase. This follows from the fact

that in this theories, C is free of both the H3
[ρ](G,A) and

H4(G,U(1)) anomalies.[19]

We imagine cutting the two-dimensional space of the sys-

tem into two regions, left and right, which are mapped to each

other under R. By defining an appropriate action of R, we

show that the edge modes along the interface can be gapped

in a way which preserves the symmetry, without needing any

additional degrees of freedom on the mirror plane of any bulk

(3+1)D system. This will show that the action of R that we

define is free of any SPT (t ’Hooft) anomalies.

We define the R symmetry by composing the usual reflec-

tion, which only acts on the spatial degrees of freedom, with

C restricted to the right half of the system (this is well-defined

because C is on-site). On the edge fields, we have

R : Φl → −Φr,Φr → Φl. (A1)

Such a R transformation generates a ZR
4 symmetry group.

Using the C symmetry, the entire K matrix of the interface

edge theory is given by

K =

(

K 0

0 K

)

. (A2)

We define the following two null vectors:

Λ1 =
1

f
(m,n,−n,m),

Λ2 =
1

f
(n,−m,m, n). (A3)

Here f = gcd(m,n). We then add the following gapping

terms to the Lagrangian:

δL = −u(cosΛT

1KΦ+ cosΛT

2KΦ)

= −u
[

cos
m2 + n2

f
(φl1 − φr2) + cos

m2 + n2

f
(φl2 + φr1)

]

(A4)

It is easy to see that δL preserves the reflection symmetry de-

fined in Eq. (A1), and leads to a unique ground state. The

cosine potentials pin φl1 = φr2, φl2 = −φr1 in the ground

state, and therefore the two regions are joint together, such

that the quasiparticles can tunnel between the two regions. In

other words, we have realized a single topological phase de-

scribed by the K matrix, with a ZR
4 symmetry.
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