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We study a class of anomalies associated with time-reversal and spatial reflection symmetry in (2+1)D bosonic
topological phases of matter. In these systems, the topological quantum numbers of the quasiparticles, such
as the fusion rules and braiding statistics, possess a Zo symmetry which can be associated with either time-
reversal (denoted Z3 ) or spatial reflections. Under this symmetry, correlation functions of all Wilson loop
operators in the low energy topological quantum field theory (TQFT) are invariant. However, the theories that
we study possess a severe anomaly associated with the failure to consistently localize the symmetry action to
the quasiparticles, precluding even defining a consistent notion of symmetry fractionalization in such systems.
We present simple sufficient conditions which determine when ZT symmetry localization anomalies exist in
general. We present an infinite series of TQFTs with such anomalies, some examples of which include USp(4)2
Chern-Simons (CS) theory and SO(4), CS theory. The theories that we find with these 773 anomalies can all
be obtained by gauging the unitary Zs subgroup of a different TQFT with a Z] symmetry. We further show
that the anomaly can be resolved in several distinct ways: (1) the true symmetry of the theory is Z7 , or (2)
the theory can be considered to be a theory of fermions, with T? = (—1)"7 corresponding to fermion parity.
Finally, we demonstrate that theories with the Z3 localization anomaly can be compatible with ZJ if they are
“pseudo-realized” at the surface of a (3+1)D symmetry-enriched topological phase. The “pseudo-realization”
refers to the fact that the bulk (3+1)D system is described by a dynamical Z, gauge theory and thus only a subset
of the quasi-particles are truly confined to the surface.

I. INTRODUCTION

There has recently been immense progress in understanding
the interplay of global symmetries and topological degrees of
freedom in physics. From the perspective of condensed mat-
ter physics, this has led to advances in our understanding of
the distinct possible gapped quantum phases of matter by pro-
viding the theoretical framework for describing their univer-
sal long-wavelength properties and leading to a host of topo-
logical invariants that can distinguish such phases. On the
other hand, many of these developments can be viewed en-
tirely within the framework of quantum field theory, and have
led to advances in our understanding of global symmetries in
topological quantum field theory.

In two and higher spatial dimensions, the study of topologi-
cal phases of matter with global symmetries is still in progress.
Even without any global symmetry, gapped quantum systems
can still form distinct phases of matter, characterized by their
topological order. These states are distinguished by various
exotic properties, including topologically non-trivial quasi-
particle excitations with fractional or non-Abelian braiding
statistics, robust topological ground state degeneracies, and
protected gapless edge modes.[1-3]

The intrinsic topological order in (2+1)D states is believed
to be fully characterized by two objects: (1) the chiral cen-
tral charge c_ of the phase, which describes the chiral energy
transport along the (1+1)D boundary of the system, and (2) an
algebraic theory C, known as a unitary modular tensor cate-
gory (UMTC),[4, 5] which encapsulates the topological prop-
erties of the quasiparticles, such as their topological spins, fu-
sion rules, and braiding transformations.

In the presence of a global symmetry group G, it is impor-

tant to distinguish two types of phases: (1) invertible [6, 7],
or short-range entangled states,[8] and (2) long-range entan-
gled, topologically ordered states. Invertible states have the
property that given the state, there is an “inverse” state which,
when the two are combined together, can be transformed into
a trivial product state by a finite-depth (in the limit of infi-
nite system size) local unitary quantum circuit (or, equiva-
lently, by adiabatically tuning the parameters of the Hamil-
tonian without closing the bulk energy gap). In (2+1)D, these
correspond to cases where the UMTC C is trivial. A special
class of invertible states are symmetry-protected topological
(SPT) states [9-13]. SPT states have the property that the
state can be transformed into a product state by a finite-depth
local unitary quantum circuit that breaks the G symmetry [8];
a non-trivial SPT state cannot be transformed into a product
state by a G-symmetric finite-depth local unitary quantum cir-
cuit.

Long-range entangled, or topologically ordered, states can-
not be transformed into a product state by any finite-depth lo-
cal unitary quantum circuit, even in the absence of any global
symmetry. In the presence of a global symmetry group G, the
class of topologically ordered states is refined into symmetry-
enriched topological (SET) states [1, 14-24]. Different SETs
with the same intrinsic topological order differ in the way the
global symmetry interplays with the topological order. This
leads to different ways that the topologically non-trivial quasi-
particles can carry fractional quantum numbers of the symme-
try group [14, 16, 19, 21], and different topological properties
of symmetry defects [19-22].

In Ref. 19, a systematic theoretical framework for charac-
terizing symmetry-enriched topological phases was presented.
Each (2+1)D topological phase has a group of symmetries



(possibly emergent), denoted Aut(C), and which we refer to
as the group of topological symmetries. This is the group
of symmetries of the long wavelength effective topological
quantum field theory (TQFT). It consists of permutations of
the anyon types which keeps their topological spins, fusion
rules, and braiding statistics invariant (up to certain complex
conjugations that are required for space-time parity revers-
ing symmetries). Even in the absence of a global symme-
try G, a topological phase of matter can have a non-trivial
Aut(C), which describes the group of emergent symmetries of
the topological quantum numbers of long wavelength degrees
of freedom in the system. For example, for the 1/m Laugh-
lin fractional quantum Hall (FQH) states, this includes the
transformation which interchanges quasiparticles with quasi-
holes. For a bilayer FQH system consisting of two indepen-
dent 1/m Laughlin FQH states, this includes the transforma-
tion which interchanges quasiparticles from different layers.
For Zs quantum spin liquids, this includes electric-magnetic
duality, which interchanges the Zy gauge charges (spinons)
with the Zs fluxes.[25]

The action of a global symmetry group G on the long wave-
length effective TQFT is characterized first by a group homo-
morphism

[0] : G — Aut(C). (1)

[peg] € Aut(C) describes how a given symmetry group element
g € G permutes the anyons of the system. [pg] determines an
action of GG such that all closed anyon diagrams in the UMTC
are invariant; that is, all correlation functions of Wilson loop
operators in the effective TQFT description are invariant un-
der the symmetry action.

In Ref. 19, it was shown that despite the fact that [p] appears
to define an allowed symmetry action for GG in the TQFT be-
cause all correlation functions will be invariant under (7, the
symmetry can have a certain severe anomaly. This anomaly is
associated with the inability to localize the action of the sym-
metry to the location of the quasiparticles in a way that is con-
sistent with associativity of the group action. Consequently,
we refer to this as a “symmetry-localization” anomaly. As we
review in the subsequent section, the map [p] defines an el-
ement [®] € 'H,[BP] (G, A). Here A is a finite Abelian group
associated with the Abelian quasiparticles of C, which form a
group under fusion. ’H,[BP] (G, A) is the third group cohomol-

ogy of G with coefficients in A. The subscript [p] indicates
that the cohomology depends on the action of G on 4 through
[p].
As discussed in detail in Ref. 19, when [®)] vanishes, then it
is possible to consistently define a notion of symmetry frac-
tionalization. This specifies how quasiparticles carry frac-
tional quantum numbers of the symmetry group G; different
possible symmetry fractionalization classes are related to each
other by elements in H[Qp] (G, A). However certain symmetry
fractionalization classes may themselves be anomalous, in the
sense that they cannot exist in purely (2+1)D, but can exist at
the surface of a (3+1)D SPT state.[21, 26—40] These may be
referred to as anomalous symmetry fractionalization classes,
or as “SPT anomalies” because of the connection to the sur-
face of (3+1)D SPTs. Using the language of the high energy

field theory literature, these are examples of °t Hooft anoma-
lies in TQFTs. For space-time reflection symmetries which
square to the identity, a general understanding of how to de-
tect such anomalies was presented in Ref. 41 by studying
the theory on non-orientable space-time manifolds.[42] For
unitary internal or lattice translation symmetries, a general
understanding was developed in Ref. 19 and 43 by solving
consistency equations for the algebraic theory of symmetry
defects.[44].

For unitary internal (on-site) symmetries, known examples
of the #? symmetry localization anomaly occur for G = Zs
and are associated with discrete gauge theories with gauge
group Dy or Dy (the dihedral groups with 20 and 16 ele-
ments, respectively).[19, 45] Mathematically, the > obstruc-
tions in these examples have their roots in the theory of group
extensions;[46] more recently, these obstructions appeared in
the category theory literature, in the context of extending a
fusion category by a group G.[47]

In this paper, we present and study in detail examples
of the H?® anomaly for space-time parity odd symmetries,
which include anti-unitary symmetries such as time-reversal,
or unitary symmetries such as spatial reflections. Specifically,
we consider cases where time-reversal symmetry T satisfies
T? = 1, or spatial reflection R satisfies R? = 1. We refer to
these symmetry groups as Z3 and ZE, where the superscript
denotes the fact that the symmetry generator is anti-unitary or
reverses the parity of space. These types of symmetries appear
to be beyond what was considered in the relevant mathemat-
ical literature, and the obstructions we find are not directly
related to group extension obstructions of a gauge group, as in
the previously known examples.

The primary purpose of this work is to develop a deeper un-
derstanding of when and why the H? symmetry localization
anomaly occurs. As we review below, the H3 anomaly [®)]
can be explicitly computed from [p] and the F and R symbols
of C, where the F' and R symbols are certain consistent data
that specify the fusion and braiding properties of the anyons.
However obtaining the F" and R symbols of C is often tedious
and computationally prohibitive. It is thus desirable to have
a diagnostic for the presence of the 73 anomaly from only
the modular data of the theory (the modular S matrix and
topological spins). Here we provide such a set of constraints
that, if violated, are sufficient to detect the existence of an H?
symmetry-localization anomaly.

Recently, several infinite series of time-reversal invariant
TQFTs were found by studying level-rank duality in Chern-
Simons theories.[48] The series of relevance to this paper are
USp(2N)n for N even, and SO(N)y for N a multiple of
4. We show that USp(4)2 and SO(4)4 are both part of an infi-
nite family of theories with ZT symmetry-localization anoma-
lies. We further show that in these theories, the anomaly can
be resolved in several distinct ways: (1) The presence of the
3 anomaly can be interpreted to mean that the symmetry of
the theory was misidentified; the true symmetry of the the-
ory is the larger group, ZT. We show in our examples that
ZT is free of the 13 symmetry localization anomaly. There-
fore, these theories are time-reversal invariant, however T? is
a non-trivial unitary symmetry, while T* = 1. (2) We show



that in the cases that we study, the anomaly can also be re-
solved by considering the TQFT to be a theory of fermions
(i.e. a spin TQFT), such that T? = (—1)"s, where (—1)"7 is
the fermion parity of the system.

While much of our discussion is phrased in terms of time-
reversal symmetry, analogous results hold also for reflection
symmetry. To establish our results we will use whichever is
convenient for the issues at hand, noting that in the setup of
Euclidean quantum field theory, which we make use of, time-
reversal and spatial reflections appear on an equal footing.

For the case where G = Zo is a unitary internal (on-site)
symmetry, Ref. 45 provided an example of an H> anomaly
that occurs for discrete gauge theory with gauge group Dq¢. It
was shown that it is possible to, in some sense, realize the the-
ory at the surface of a (3+1)D SET with a global G = Z5 sym-
metry. In this case, the surface theory is no longer a (2+1)D
theory, since some of the anyons that can exist on the sur-
face correspond either to bulk quasiparticles or to endpoints
of strings in the (3+1)D bulk. For this reason, here we refer to
this as a “pseudo-realization” of the original theory at the sur-
face of the (3+1)D SET. In this construction, the ’Hf’p] (G, A)
could be related to the symmetry fractionalization of string
excitations in the (3+1)D system [45, 49-51].

For the case where G = ZJ, symmetry fractionaliza-
tion of string excitations in (3+1)D is not well-understood,
which makes the corresponding problem in this case espe-
cially intriguing. For the case of the ZT symmetry local-
ization anomalies in USp(4)y and SO(4)4 CS theories, we
demonstrate that the corresponding theories can be pseudo-
realized at the surface of a (3+1)D SET, whose low energy
theory is a dynamical Zy gauge theory and possesses a global
ZT time-reversal symmetry.

We further provide an infinite family of TQFTs with
'H,[BP] (ZY, A) symmetry localization anomalies. These can all

be obtained by starting with a theory with ZT symmetry, and
gauging the unitary Z, subgroup associated with T?. Im-
portantly, when performing the gauging of the unitary Zo
subgroup, we must add a Dijkgraaf-Witten term for the Zo
gauge field, which is associated with the non-trivial element in
H3(Z2,U(1)) = Zs. Physically, this corresponds to stacking
a Zy SPT with the theory with the ZT symmetry. This process
can be repeated indefinitely, so that we can generate an infi-
nite series of TQFTs with 7—{[3p] (ZY, A) anomalies by starting

with a single “root” theory with ZT symmetry. We provide
an infinite set of such “root” theories. For the USp(4)2 and
SO(4)4 examples, the root phases are SU(5); and SU(3); x
SU(3); CS theory, respectively. We show that U(1) x U(1)
m
n
infinite family of root theories as well.
This paper is organized as follows. In Sec. II we provide
a brief review of UMTCs and the action of global symmetry,
the general definition of the ’H,[BP] (G, A) anomaly, and sym-
metry fractionalization. In Sec. III we introduce the exam-
ple of USp(4)z CS theory as a theory with a H},(Z3, A)
anomaly. In Sec. IV we provide a set of sufficient condi-
tions, defined in terms of the modular data of the theory and

CS theory with K-matrix K = provides another

the way T permutes the anyons, for diagnosing H?, (23, A)

anomalies. In Sec. V we discuss several resolutions of the #3
anomaly, which include enlarging the symmetry from ZJI to
ZT, viewing the theory as a theory of fermions, and finally
how to pseudo-realize theories with such anomalies at the sur-
face of (3+1)D SET phases. In Sec. VI we provide an infinite
family of examples that generalize the USp(4)2 example. We
conclude with a discussion of some open issues in Sec. VII.

II. REVIEW OF THE pr] (G, A) ANOMALY

In this section we briefly review the discussion of Ref. 19
regarding the Hf’p] (G, A) symmetry localization anomaly.

A. Review of UMTC notation

Here we briefly review the notation that we use to de-
scribe UMTCs. For a more comprehensive review of the no-
tation that we use, see e.g. Ref. 19. The topologically non-
trivial quasiparticles of a (2+1)D topologically ordered state
are equivalently referred to as anyons, topological charges,
and quasiparticles. In the category theory terminology, they
correspond to isomorphism classes of simple objects of the
UMTC.

A UMTC C contains splitting spaces V2%, and their dual
fusion spaces, Vi, where a,b,c € C are the anyons. These
spaces have dimension dim V2* = dim V5 = N¢,, where
Ng, are referred to as the fusion rules. They are depicted
graphically as:

&
(de/dadp) " X

a

b = (a,b;c,u| € acba (2)

14 @ b ab
(dc/dadb) w - |a,b;c, M) S V:: ) (3)
C

where 1 = 1,..., N¢,, d, is the quantum dimension of a, and

1/4
the factors ( ddéb) are a normalization convention for the
diagrams.

We denote a as the topological charge conjugate of a, for

which N1, =1, ie.

axa=1+--- 4)
Here 1 refers to the identity particle, i.e. the vacuum topolog-
ical sector, which physically describes all local, topologically
trivial excitations.

The F-symbols are defined as the following basis transfor-
mation between the splitting spaces of 4 anyons:

a b c a b c

‘s = 2 [F") o pripm) Y/ - ©

fipv



To describe topological phases, these are required to be uni-
tary transformations, i.e.

[(Fg) '] = [(F)"]

*

}(e,mﬂ)(.f,u,'/) ' ©)

(fspv)(e,,B) (fp,v)(e,,B)

:[ ;bc

The R-symbols define the braiding properties of the
anyons, and are defined via the the following diagram:

a b a b
f: =3[R, Y NG
C v C

The topological twist 0, = 27"

spin, is defined via the diagram:

de ua 1
0o =02 = SE IR, = d—@%, @®)
C, a

Finally, the modular, or topological, S-matrix, is defined as

0 1
—_ -1 c ¢ _
Sap =D ZNaboaobdc_Ea@) ,

Za dg

o, with h, the topological

where D =

B. Topological symmetry and braided auto-equivalence

An important property of a UMTC C is the group of
“topological symmetries,” which are related to “braided auto-
equivalences” in the mathematical literature. They are asso-
ciated with the symmetries of the emergent TQFT described
by C, irrespective of any microscopic global symmetries of
a quantum system in which the TQFT emerges as the long
wavelength description.

The topological symmetries consist of the invertible maps

0:C—C. (10)

The different ¢, modulo equivalences known as natural iso-
morphisms, form a group, which we denote as Aut(C).[19]

The symmetry maps can be classified according to a Zy x
Zo grading, defined by

__J 0 if ¢ is not time-reversing

a(p) = { 1 if ¢ is time-reversing an
_ | 0 if pis spatial parity even

ple) = { 1 if  is spatial parity odd (2)

Here time-reversing transformations are anti-unitary, while
spatial parity odd transformations involve an odd number of
reflections in space, thus changing the orientation of space.
Thus the topological symmetry group can be decomposed as

Aut(C) = | | Auty,(C). (13)

q,p=0,1

4

Autg ((C) is therefore the subgroup corresponding to topolog-

ical symmetries that are unitary and space-time parity even

(this is referred to in the mathematical literature as the group

of “braided auto-equivalences”). The generalization involving

reflection and time-reversal symmetries appears to be beyond

what has been considered in the mathematics literature to date.
It is also convenient to define

1 if ¢ is space-time parity even

o(p) = * if  is space-time parity odd
A map ¢ is space-time parity odd if (¢(¢)+p(¢)) mod 2 = 1,
and otherwise it is space-time parity even.
The maps ¢ may permute the topological charges:

pla) =d €C, (15)

subject to the constraint that

Ng’b’ = gb
Sy = S,
O = 0709, (16)

The maps ¢ have a corresponding action on the F- and R—
symbols of the theory, as well as on the fusion and splitting
spaces, which we will discuss in the subsequent section.

C. Global symmetry

Let us now suppose that we are interested in a system with a
global symmetry group GG. For example, we may be interested
in a given microscopic Hamiltonian that has a global symme-
try group GG, whose ground state preserves (G, and whose any-
onic excitations are algebraically described by C. The global
symmetry acts on the topological quasiparticles and the topo-
logical state space through the action of a group homomor-
phism

[p] : G — Aut(C). (17)

We use the notation [pg] € Aut(C) for a specific element
g € (. The square brackets indicate the equivalence class of
symmetry maps related by natural isomorphisms, which we
define below. pg is thus a representative symmetry map of the
equivalence class [pg]. We use the notation

8a = pgl(a). (18)

We associate gradings ¢(g) and p(g) by defining

q(g) = qa(pg)
p(g) = p(pg)
o(g) = olpg) (19)

pe has an action on the fusion/splitting spaces:

pg VS = Vilay. (20)

a



This map is unitary if ¢(g) = 0 and anti-unitary if ¢(g) = 1.

‘We write this as

pg|a7 b7 & M) = Z[Ug( gav gb? gc)]ul/Kq(g) |a7 b7 ¢, V>7

v

21

where Ug( 8a, 8b; 8c) is a NS, x NS, matrix, and K denotes
complex conjugation.[52]
Under the map pg, the I and 12 symbols transform as well:

pelFgb%] = Ug(Ba, Bb; Be)Ug(Be, Bc; Bd)Fags s fUg ' (8b, Bc; Bf) UL (Ba, & f; 8d) = K& Fgbe K o(®)
pg[Rgb] = Ug(Ba, 8b; 8¢)R22""Ug(8a, 8b; 8c) ™! = Kf’(g)RgbK“(g), (22)

where we have suppressed the additional indices that appear
when Ng, > 1

Importantly, we have

Kgh O Pg © Ph = Pgh, (23)
|

Kegn(a,b;c) =

where § = g™ '. kg n is a natural isomorphism, which means

that by definition,

ﬁa (gv h)ﬁb (gv h)

26
Be(g,h) 7 (20)

[“g,h(au b; C)]W = O

where (,(g, h) are U(1) phases.

D. H,(G,A) obstruction

As discussed in detail in Ref. 19, the choice of [pg] defines
an element [®)] € H?p] (G, A). To see this, we first define

Kg(g)ﬁpgl (a) (ha k)Kg(g)ﬁa(ga hk)

B RPN SERPTY e
It can be shown that
Qa (g, h, k)2 (g, h, k) = (g, b, k), (28)
if N2, # 0. This then implies that[19]
Qa(g, b, k) = Mypg n i) (29)

for some O(g,h, k) € A Here A C C is the subset of
topological charges in C that are Abelian. These form a fi-
nite group, which we also denote A, under fusion. Given an

Ug(a,b;¢) L K1® Uy (8a, 8b; &

where the action of kg1 on the fusion / splitting spaces is
defined as

= ke n(a,b;0)]wla bie,v).  (24)

174

rgn(la, b;c, 1))

The above definitions imply that

¢) LK1V Ugy(a,b; c), (25)

Abelian anyon b € A, M, is the braiding phase obtained
by encircling b around a, as defined by the following anyon
diagram:

a b a b
é = My . (30)
\

In terms of the modular S-matrix, M, = gabs‘)o

One can show that ® is a 3-cocycle, and that there is a
freedom in the choice of 8, which relate two different ®’s
by a 3-coboundary. Therefore [pg] defines an element in
] € pr] (G, A).

In Ref. 19, it was shown that [®] € ’H,[BP] (G, A) is an ob-
struction to symmetry localization. That is, it is an obstruc-
tion to consistently defining a notion of symmetry action on
individual topological charges. More specifically, let us con-
sider a state |U,, ... 4,,) in the full Hilbert space of the sys-
tem, which consists of n anyons, ay, - - - a,, at well-separated
locations, which collectively fuse to the identity topological
sector. Since the ground state is G-symmetric, we expect that
the symmetry action Rg on this state decomposes as follows:

> ~ HUéj)Ug(gala' )
j=1

Rg|\11a1,~~~,an gan;0)|\11ga17...7gan>.

€1y



Here, Uéj ) are unitary matrices that have support in a region
(of length scale set by the correlation length) localized to the
anyon a;. The map Ug(8a,- -, 8a,;0) is the generaliza-
tion of Ug(8a, 8b; 8c), defined above, to the case with n
anyons fusing to vacuum. In contrast to the local unitaries
Uéj), Ug(®a1,- -, Bay;0) only depends on the global topo-
logical sector of the system (i.e. on the precise fusion tree
that defines the topological state). g is the representation
of g acting on the full Hilbert space of the theory. The ~
means that the equation is true up to corrections that are ex-
ponentially small in the distance between the anyons and the
correlation length of the system. [@®] € Hf’p] (G, A) is an ob-
struction to Eq. (31) being consistent when considering the
associativity of three group elements.[19].

When pg does not permute any anyons, i.e. pg(a) = a
for all a, we expect that pg must be a natural isomorphism.
This has so far been proven rigorously for the case where C
is an Abelian theory. One can show that this implies that the
associated H? obstruction is always vanishing. With this as-
sumption, non-vanishing #? obstructions therefore require pg
to have a non-trivial permutation action on the anyons.

E. Symmetry fractionalization

When the Hf’p](G,A) symmetry-localization obstruction
vanishes, then one can define a consistent notion of symmetry
fractionalization. Symmetry fractionalization determines how
the anyons in the system carry fractional symmetry quantum
numbers. In general, the distinct allowed patterns of sym-
metry fractionalization are in one-to-one correspondence with
elements in H7, (G, A).[19]

For the case of time-reversal symmetry, an important set of
data that characterizes time-reversal symmetry fractionaliza-
tion is as follows. When @ = Ta, one can define a quantity
nT = 41. This determines whether locally the action of T?
on a is equal to +1.[15, 19] This, in turn, determines whether
a carries a “local Kramers degeneracy.” If T = —1, then
a carries with it an internal local multi-dimensional Hilbert
space whose degeneracy (the Kramers degeneracy) is pro-
tected by time-reversal symmetry. The quantities 7T must
satisfy a number of highly non-trivial consistency relations.
For example, one can show:[19]

nany
nx

[KT (a7 b; c)]uu - 5uu (32)

Moreover, if N§, is odd and To=a, Th=10b,and Tec = ¢,
then

Natly = e - (33)
Similarly, if Né’Ta is odd and Th = b one can prove
= O (34)

The case of reflection symmetry is analogous to that of
time-reversal symmetry. Here, when a = Ra, then we can de-
fine a symmetry fractionalization quantum number n® = +1.

Anyon label, a lle| é1 | o2 |+ |—
Quantum dimension, d, [1|1| 2 2 \/5 \/5
Topological twist, 0, |11 e e i [ =i
Time-reversal action, Ta|l|e| ¢z b1 Y- |t

TABLE I. Anyon content of USp(4)..

nE can be understood as follows. We place a and @ away from
each other, such that the action of reflection R interchanges
their positions. If a = ®a, then the system is reflection in-
variant, and nf* = £1 corresponds to the eigenvalue of the ac-
tion of reflection on this state. Alternatively, we can consider
taking the spatial manifold to be a cylinder, with topological
charge a and a on the two ends of the cylinder, such that the
action of reflection interchanges their position. If a = Ra,
then we can view this system as a (1+1)D reflection symmetry
SPT system, which has a Z classification. n can be related
to whether this (1+1)D reflection SPT is trivial or non-trivial
(when compared to the case where a is the identity particle).
See Ref. 41 for more details.

III. EXAMPLE: USp(4). CHERN-SIMONS THEORY

An explicit example of a theory with a H*(ZT, A)
anomaly is Chern-Simons theory with gauge group USp(4)a.
Here USp(2n) is the symplectic group, where USp(2) =
SU(2).[53] The anyon content of USp(4)2 CS theory coin-
cides with the integrable highest weight representations of
the affine lie aglebra so(5)2.[5, 54] It consists of 6 particles,
which we can label 1, €, @1, ¢2, 1+, 10_. The fusion rules are
given by

exe=1, ex¢;=¢;, extpp =1_
Gi X ¢i =1+ €+ Pnin(2i,5-2i)5
$1 X P2 = g1 + P2
Yy Xy =14 01+ ¢o.
Here ¢ = 1, 2. We also list the quantum dimensions and topo-

logical twists in Table I, from which one can construct the
modular S matrix:

(35)

(36)

where we have presented S in the basis (1, €, ¢1, ¥4, ¥—, d2).
The F' and R symbols of this theory are tabulated in Ref.
55. We see that there is only one possible action under time-
reversal, summarized in Table 1.
In this case, A = Zo, and H*(ZT,Zs) = Z>. By direct
computation, following the procedure outlined in the previ-
ous section, we find that the choice of [p| described above



leads to a non-trivial obstruction [®] € H*(ZT,Z;). In
fact, one finds that the representative 3-cocycle is given by
O(T, T, T) = e (all others are 1). Therefore USp(4)2 pos-
sesses an H3(ZT, Zs) symmetry-localization anomaly.

IV. SUFFICIENT CONDITIONS FOR THE PRESENCE OF
H{,(Z3, A) ANOMALY

A. Overview

The above discussion of the H® symmetry-localization
anomaly requires detailed knowledge of the F' and R sym-
bols of the theory in order to determine whether any symme-
try G and map [p] possesses the anomaly. However obtaining
the ' and R symbols given the modular data (the S matrix
and the topological twists) of a TQFT is often a computation-
ally prohibitive problem. Below we will discuss some simple
conditions that must be satisfied for a theory to be free of the
'H,[BP] (ZY, A) anomaly.

First we define the quantities:

ZRPY) = > Soabany,
{ala="Ta}
My= > Sany, (37)
{z|lz=Tz}

whose significance will be described in the subsequent sec-
tions.
The conditions that must be satisfied are as follows:

1. Z(RP*) = +1.
2. M, is a non-negative integer for all a.

3. 6, = £1 and 0, is independent of a, for all a such that
M, > 0.

Given the modular S-matrix, the topological twists, and an
action of T that permutes the anyons, there must be a choice
of {nT} such that conditions (1)-(3) are satisfied. If not, the
theory possesses an 7\ (Z3, A) anomaly.

For the case of reflection symmetry R, we replace Ta with

Ra, and nT with % in the above formulae:

ZRPY = D Soabaniy,
{a|la=Ra}
My= > Sanf. (38)

{zlo=Rz}

In the subsequent sections we will discuss these conditions
and their origin in detail. It will be convenient to phrase the
discussion in terms of spatial reflection symmetry R, and then
to obtain the results for time reversal T by replacing R with
CT (where C : a — a is topological charge conjugation) and
{ma} with {n; }.

In Sec. IVE, we also provide an additional diagnostic by
considering the theory obtained by condensing certain bosons

in the TQFT of interest, where the inconsistency arises by
finding conflicting constraints on {nT}.

In order to connect the constraints above to pr](G, A)
symmetry-localization anomalies, we need to make an im-
portant assumption that we discuss below. Let us consider
a (2+1)D topological phase with symmetry G whose symme-
try action [p] is free of the ’H,?p] (G, A) symmetry-localization
anomaly. Depending on the symmetry fractionalization class,
which recall is classified by pr] (G, A), the system may pos-
sess an SPT (t "Hooft) anomaly, in the sense that the fraction-
alization class can only occur if the (2+1)D system is realized
at the surface of a (3+1)D SPT state. The (3+1)D SPT can-
cels the anomaly from the symmetry fractionalization of the
(2+1)D surface. In this way, a given (2+1)D SET determines
a (3+1)D SPT state. If the (2+1)D theory has no anomaly at
all, then the bulk (3+1)D system is a trivial SPT.

In the following, we will show that the choice of symmetry
action [p] alone can be enough to preclude the (2+1)D system
from existing at the surface of a (3+1)D SPT state. In the
example of USp(4), CS theory, we find that the existence of
the pr] (G, A) anomaly is accompanied by the impossibility
of the theory to be consistent at the surface of any (3+1)D
ZT SPT state. We expect that this is a general phenomenon:
the impossibility of the theory, with a specified action of [p],
to exist at the surface of a (3+1)D SPT state with symmetry
group G signals the existence of the H?p] (G, A) anomaly. In
principle, for space-time reflection symmetries we have not
ruled out the possibility that the failure of the (2+1)D system
to exist at the surface of a (3+1)D SPT state could signal an
additional anomaly associated with [p], which is independent
of the H?p] (G, A) obstruction. However this appears to be
unlikely, given that this is known not to be the case for unitary
internal symmetries.[19, 47]

B. Condition (1): (3+1)D Path integral on RP*

In the case of Z& (or ZT) symmetry, bosonic SPTs in
(3+1)D have a Zy X Zs classification. The 4 distinct SPT
states can be distinguished by the value of their topological
path integrals on RP* and CP?:[12]

Z(CP?) = +1. (39)

As mentioned above, a given (2+1)D SET determines a
(3+1)D SPT state. In Ref. 41, it was shown that if the symme-
try of the system is Z, then one can compute the path inte-
gral on RP* entirely in terms of the properties of the (2+1)D
theory through the following formula:

ZRPY = Y Soabanl (40)

{alo=Ra}

Here, the sum is over all anyons that are invariant under the
action of reflection, R, and topological charge conjugation.



Similarly, one can compute the path integral on CP?%:
Z(CP?) = Z 29,

where c is the chiral central charge of the UMTC.

Therefore, for any (2+1)D topological phase that admits a
ZE symmetry with a given action [p], there must be a choice
of {nR®} such that (39) is satisfied. Failure to sastify (39) for
any choice of {nF} implies that the symmetry action [p] can-
not be realized in a way that allows the system to exist at the
surface of a (3+1)D SPT state.

For the case of the USp(4)2 CS theory, performing the
computation for RP* (using time-reversal ZT instead of re-
flection Z2 as the example), we find:

6271'1’0/87 (41)

1
Z(RP*) = 1+ nr). (42)
We can see that if T = —1, then Z(RP*) = 0. If nT = 1,
then Z(RP') = & = J-. We see that in both cases, the bulk

(3+1)D system cannot be a ZJ SPT state.

C. Condition (2): constraints from RP? x D?

Let us suppose that we are given a Z& SET state that can
exist at the surface of a (3+1)D SPT state. Consider the path
integral for the (3+1)D theory on RP? x D2, where D? denotes
the p-dimensional disk. We choose boundary conditions on
the boundary, RP? x § L such that there is a Wilson loop of a
encircling the S* at a particular point on the RP?. In Ref. 41,
this path integral, denoted as Z(RP? x D?)(l,], was computed
to be

ZRP x DY)l =My = Y. Say.  (43)

{z|o=Rz)

Below we derive the following non-trivial constraint, that
M, must be a non-negative integer:

M, € ZZO. (44)

To derive (44), let us first consider the case where the
bulk (3+1)D theory is a trivial SPT, i.e. when Z(RP*) =
Z(CP?) = 1. In this case, all path integrals of the (3+1)D
theory depend solely on the (2+1)D boundary. Thus M,
can be intepreted to be solely a property of the boundary of
RP* x D2

Ma - ZQJrl;a(]R]P)2 X Sl)v (45)

where the subscript (2+1) emphasizes that this is purely a
property of the (2+1)D theory. This, in turn, corresponds to
the dimension of the Hilbert space of the (2+1)D theory on
RP?, with a puncture labelled by a. By definition the dimen-
sion of a Hilbert space must be a non-negative integer; thus
M, must be a non-negative integer.

Now let us consider the case when the bulk (3+1)D the-
ory is a non-trivial SPT, i.e. when either Z(RP*) = —1 or

Z(CP?) = —1. In this case we argue for (44) in two steps.
We first prove that 20, € Zxq, after which we prove that
MM, € Z. Together these imply (44).

To prove that 2M, € Z>o, we argue as follows. Let us
refer to the bulk (3+1)D theory of interest as A, which can be
obtained from the UMTC C, which below we denote as C 4.
Let us now consider a second bulk (3+1)D theory, denoted B,
which can be obtained from a second UMTC Cp, and which
satisfies 2B (RP*) = Z4(RP*), and ZB(CP?) = Z4(CP?).

Next, we consider the combined theory, denoted AB, such
that

ZAB(M*) = 22 (M) ZP (M*), (46)

where M* is any closed 4-manifold. Now consider
MG = MM, (47

where M(A% = ZAB(RP*x D?)[l(4,1)]. a € Ca,and b € Cp.
By our previous argument, we have M (ﬁﬁ) € Z>p.

When Z5(RP*) = —1 and Z5(CP?) = 1, we can take
Cp to be the Zy toric code model, which has four particles,
{1,e,m, 9}, with b = e x m the fermion. Furthermore, we
consider the case where nf® = n® = —1. For this theory,
M = 26yy. Since we also have M@’} € Zo, it follows
that 2M(;4 € ZZO.

When ZB(RP*) = —1 and ZB(CP?) = —1, we can take
Cp to be the three-fermion theory, i.e. SO(8); CS theory. This
is an Abelian theory with four particle types, {1, f1, fo, f3},
where f; are fermions (0, = —1), with Sy, y, = —1/2 for
i # j. For this theory, Mf = 26,1, and therefore again
2M2 € Z> in this case as well.

Finally, when Z7(RP*) = 1 and Z5(CP?) = —1, we can
take Cp to consist of the three-fermion model, with nﬁ = -1
and 772 = 1. Then we get M, f = 20yy,, which again proves
that 2M2 € Z>.

Next, we must prove that M, M, € Z. This follows from
the fact that

Z(RP? x S* x I)[ly Uly] = M, M,, (48)

where the boundary conditions (denoted in the square brack-
ets) are such that there is a loop of a encircling the S* at
RP? x {0} and a loop of b encircling the S* at RP? x {1}.
Here we take the interval I = [0, 1], so that {0} and {1} are
the boundaries of I. Z(RP? x S' x I)[l, U l,] can be in-
terpreted as the dimension of the Hilbert space of the (3+1)D
system on RP? x I with two anyons a and b on the two ends
of I. Since this is the dimension of a Hilbert space, M, M,
must be a non-negative integer.

It remains to prove (48). We can demonstrate (48) as fol-
lows, using ideas from Ref. 56.[57] We refer the reader to Ref.
41 for a detailed discussion of these computations written for
physicists. First we note that the (3+1)D path integrals on
closed manifolds are all bordism invariant when constructed
from UMTCs. Therefore,

Z(RP? x §%) =1, (49)



because RP? x S2 is bordant to the empty manifold, as it
is the boundary of RP? x D3. Next, we use the fact that
the Hilbert space of the (3+1)D theory on any closed 3-
manifold is one-dimensional, which follows from the fact that

Z(RP? x D?)[I]Z(RP? x S* x I)[l, U] Z(RP? x D?)[ly)]

this is a bulk (3+1)D SPT, with no intrinsic topological or-
der. Therefore, using the gluing formula for topological path
integrals,[41, 56]

Z(RP? x §%) =

Here, we consider obtaining RP? x S by gluing RP? x 1 x T
to two copies of RIP? x D2, each one along RP? x S*. Thus the
inner product is in the Hilbert space V(RP? x S1), as indicated
by the subscript. Using (49), moving the denominator to the
LHS, and using the definition of the inner product in terms of
the path integral[41, 56] we obtain

Z(RP? x St x I)[ly Ulg)Z(RP? x S* x I)[l, U lg]
= M M, Z(RP? x S' x I)[l, Uly). (51)
Together with the identity M, = M3, this implies (48).

D. Condition (3): Topological twists and M,

The third non-trivial constraint summarized above is
0, = +1, and independent of a, for M, > 0. (52)

In the special case that A/; > 0, this implies that 6, = 1 for
all a such that M, > 0.

One way to derive (52) is to use the following identity,
shown in Ref. 41:

2

Since M? is a non-negative integer, and Z(RP*)Z(CP?) =
41, the condition (52) follows trivially.

To better understand the origin of (52), below we will prove
it through a different approach, which does not make use of
the identity in Eq. (53). Let us again consider the path integral
of the (3+1)D system, Z(RP* x S x I)[l, Uly] = M,M,.
As in the previous section, the boundary conditions denoted
in square brackets consist of a Wilson loop of a along the S*
direction on the first RP? x S, and a Wilson loop of b along
the S* direction on the other RP? x S,

Now, we can consider the following procedure. If M, M >
0, we can consider a state |¥, ;) from the Hilbert space on
RP? x I, which contains a puncture of a and b on the top and
bottom surfaces. Next, we can cut out a tube that encircles a
on the top RP? and b on the bottom surface, rotate the tube
by 27, and glue it back in. This leads to an operation 7 on
the state | ¥, ;) which corresponds to a Dehn twist on the top
surface, and the oppositely oriented Dehn twist on the bottom
surface. Thus we obtain:

T1Wab) = 0405 Was). (54)

(lalla)y@p2 x s1) (b llb) v (RP2 < 51)

: (50)

Since the Dehn twist aroun