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We present a finite temperature generalization of the COHSEX approximation to the quasi-
particle electron self-energy, with explicit comparisons of the static and dynamic screened exchange
(SEX) and Coulomb hole (COH) contributions for the homogeneous electron gas. Consistent with
the zero-temperature behavior, we show that the static SEX approximation agrees well with the
fully dynamic SEX at all temperatures and densities. In contrast, dynamic corrections to the COH
approximation are always significant, especially for high energy unoccupied states. Notably the
COHSEX quasi-particle self-energy is complex-valued at finite-T even at the Fermi level.

I. INTRODUCTION

Recently there has been considerable interest in prop-
erties of matter at finite-temperatures (FT) and ex-
treme conditions.1–3 Such properties are often treated
using the FT generalization of density functional the-
ory (DFT), with an appropriate FT exchange-correlation
functional.4–7 However, many properties, such as band-
gaps and optical spectra require many-body corrections
for an accurate treatment. Consequently a more de-
tailed treatment of exchange and correlation effects be-
yond DFT are often needed.8

Formally, such effects can be described in terms of the
one-electron Green’s function G, which satisfies a Dyson
equation G = G0 +G0ΣG, which is also applicable at fi-
nite T for either the Matsubara or retarded Green’s func-
tions. Here G0 is the one-electron Green’s function, and
Σ the one-electron self-energy which accounts for many
body exchange and correlation effects due to electron-
electron interactions v. In principle, Σ can be calculated
using many-body perturbation theory with an expan-
sion in powers of v. However, this procedure converges
poorly, and a better strategy is to expand in powers of
the screened Coulomb interaction W (q, ω) = ǫ−1(q, ω)vq
in momentum- and frequency-space, where ǫ(q, ω) is the
dielectric function and vq = 4π/q2 the bare Coulomb in-
teraction. While there have been many works focusing
on higher order (vertex) corrections to the self-energy,9,10

here we keep only the leading term first order in W , i.e.,
Σ = iGW , yielding the GW approximation of Hedin.11,12

The GW approximation has been highly successful
e.g., for quasi-particle properties such as corrections to
DFT calculations of band-gaps, and has also been ex-
tended to finite temperatures.13,14 On the other hand,
the GW self-energy Σ(k, ω) is state and frequency depen-
dent, and its calculation is computationally demanding.
In an attempt to develop a more efficient approximation,
the static COHSEX has been introduced, in which the
screened Coulomb interaction W (q, ω) is replaced by its
static limit W (q, 0), and the self-energy Σ is split into
statically screened exchange (SEX) and Coulomb-hole
(COH) terms.12 Although the separation into exchange
and correlation parts is arbitrary, depending on the treat-
ment of exchange, the explicit separation of the COH

and SEX contributions in the COHSEX approximation
is physically motivated,12,15 and serves to elucidate the
nature of exchange and correlation effects in the theory.
Since its inception, the T = 0 COHSEX approximation

has been well studied.12,16 however, its behavior at finite-
temperature has heretofore been unexplored. The main
goal of this paper is therefore to develop the FT general-
ization of the COHSEX approximation, and to assess it’s
accuracy. Our approach is based on an extension of the
FT GW approximation to the self-energy.17 We present a
systematic analysis similar to that for T = 0, comparing
the static COH and SEX approximations with the fully
dynamic GW quasiparticle self energy. We also present a
brief analysis of the physical basis of these results. As in
other investigations of the GW approximation,7,10,13 we
limit our explicit calculations here to the homogeneous
electron gas (HEG). However, the approach can be ap-
plied more generally as an approximation to the GW
self-energy.
The remainder of the paper is organized as follows: in

the next section we review the T = 0 case and present
the FT generalizations of the GW and static COHSEX
approximations. Subsequent sections discuss the static
and fully dynamic results, followed by an analysis and
a summary and conclusions. Throughout this paper we
use Hartree atomic units e = h̄ = m = 1, with energies in
Hartrees and distances in Bohr, unless otherwise noted.

II. COHSEX APPROXIMATION

A. Zero-temperature

We begin with a summary of results for theGW self en-
ergy and the COHSEX approximation at T = 0. All the
quantities discussed in this limit are time-ordered, as in
standard zero-temperature many-body perturbation the-
ory. Formally, the GW approximation to the quasiparti-
cle self-energy in momentum-k and frequency-ω space at
T = 0 is the GW self-energy given by11,12

ΣT (k, ω) =

∫

d3q dω′

(2π)4
GT

0 (k− q, ω − ω′)×

×WT (q, ω′)e−iω′δ+ , (1)



2

where GT
0 is the non-interacting, time-ordered one-

particle Green’s function and WT the time-ordered, dy-
namically screened Coulomb interaction. For a given di-
electric function ǫ(q, ω), the screened interaction WT can
be expressed in terms of its spectral representation

WT (q, ω) = vq +WT
p (q, ω), (2)

WT
p (q, ω) =

∫

∞

−∞

dω′
D(q, ω′)

ω − ω′ + iδ sgn(ω′)
, (3)

where D(q, ω) = (1/π)|ImWT (q, ω)| sgn(ω) is the anti-
symmetric (in frequency) bosonic excitation spectrum
and WT

p (q, ω) the polarization part of WT . Thus the

poles of WT (q, ω) in the ω-plane correspond to the
peaks in the loss function (1/π)

∣

∣Im ǫ−1(q, ω)
∣

∣. For-
mally the GW self-energy Σ can be partitioned into
fully dynamic screened exchange (SEX) and Coulomb-
hole (COH) terms, which are defined from the poles
of GT

0 and those of WT respectively.11 At zero tem-
perature this yields the exact separation ΣT (k, ω) =
ΣSEX,T (k, ω) + ΣCOH,T (k, ω) where

ΣSEX,T (k, ω) = −

∫

d3q

(2π)3
f(εk−q)W

T (q, ω − εk−q),

(4)

ΣCOH,T (k, ω) =

∫

d3q

(2π)3

∫

∞

0

dω′
D(q, ω′)

ω − εk−q − ω′ + iδ
.

(5)

The COHSEX approximation to the quasi-particle self-
energy, is then defined as the statically screened approx-
imation to the on-shell GW self-energy Σ(k,Ek), where
the quasi-particle energy satisfies Ek = εk + Σ(k,Ek).
The bosonic spectral function D(q, ω) becomes small at
large q; if this decay is sufficiently rapid, then since
Ek ≈ k2/2 one can to a good approximation replace
ω− εk−q ≈ 0 in W in Eq. (4) and (5).12 Then, using the
spectral representation of W , the static COH and SEX
approximations, which are independent of frequency ω,
can be denoted with a subscript k and given by

ΣSEX
k = −

∫

d3q

(2π)3
f(εk−q)W

T (q, 0), (6)

ΣCOH
k =

1

2

∫

d3q

(2π)3
WT

p (q, 0), (7)

where f(ε) = θ(µ− ε) is the zero-temperature Fermi fac-
tor. The factor 1/2 is due to the anti-symmetry of D(ω)
about ω = 0, and has been attributed to the adiabatic
turn on of the screened interaction.12 Their sum is re-
ferred to as the static COHSEX self-energy

ΣCOHSEX,T
k ≡ ΣCOH,T

k +ΣSEX,T
k . (8)

This approximation is often used as an efficient method
for obtaining quasiparticle corrections ∆k = Ek − εk to
DFT single-particle energies εk, since it obviates the ne-
cessity of calculating dynamic screening. Indeed, the cal-
culation of the dynamically screened Coulomb interac-
tion W is by far the most computationally demanding

part of GW calculations, where typically of O(102) fre-
quency points are required for converged results for the
fully dynamic quasi-particle self energy with ω = Ek

from Eq. (4) and (5).12 Thus the static approximation
can reduce the computational cost immensely. Neverthe-
less the static COHSEX approximation turns out to be
fairly rough, and cannot be relied on, e.g. for accurate
calculations of band gaps, as discussed below. Recently,
Kang and Hybertsen,16 have investigated the errors in
the static COHSEX approximation at T = 0 by compar-
ing each contribution to the corresponding term in the
full GW quasiparticle energy. They found that while the
static SEX approximation is generally a good approxi-
mation to the fully dynamic SEX, the static Coulomb
hole approximation yields errors of order 10-20% to the
fully dynamic COH terms for the occupied states. In ad-
dition, they suggest a method for correcting the static
COH term which give significant improvements for both
occupied and low lying unoccupied states.

B. Finite-temperature

We now derive the finite temperature generalization
of the static COHSEX approximation to the GW quasi-
particle self-energy. Our treatment follows mutatis, mu-

tandis, from the zero-temperature theory with FT gen-
eralizations of GT

0 , WT and ΣT . Additional details
are given in the Appendix. To this end, we replace
the time-ordered quantities in Eq. (1) with Matsubara
quantities,18

ΣM (k, iω) = −kBT

∫

d3q

(2π)3

∑

neven

GM
0 (k + q, iω + iωn)

× WM (q, iωn). (9)

Then taking the analytic continuation to the real-ω axis,
the fully dynamic FT retarded self-energy ΣR in the GW
approximation is given by19

ΣR(k, ω, T ) =

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)×

×

[

f(ǫk−q) +N(ω′)

ω + ω′ − ǫk−q + iδ
+

1− f(ǫk−q) +N(ω′)

ω − ω′ − ǫk−q + iδ

]

,(10)

where f(ε) = 1/[eβ(ε−µ)+1] is the Fermi factor, µ = µ(T )
the chemical potential, and N(ω) = 1/[eβω − 1] the Bose
factor, each with implicit temperature and electron den-
sity dependence, β = 1/kBT and n = N/V = 3/4πr3s
in the thermodynamic limit. The static exchange term
is given by Σx(k, T ) =

∫

[d3q/(2π)3]f(ǫk−q)vq . The
spectral function D has implicit temperature dependence
from that of the RPA dielectric function ǫ(q, ω, T ),

ǫ(q, ω, T ) = 1 + 2vq

∫

d3k

(2π)3
f(εk+q)− f(εk)

ω − εk+q + εk
, (11)

The imaginary part of ǫ(q, ω, T ) is analytic,20,21 and the
real part is calculated via a Kramers-Kronig transform.
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As in the T = 0 case, the fully dynamic self-energy at
finite temperature and it’s COH and SEX parts are ob-
tained by evaluating the poles of G0 and W respectively.
The SEX terms with the Fermi factor arise from G0,
while the COH terms with the Bose factors come from
the screened Coulomb interaction W . Separating these
contributions in the fully dynamic FT quasi-particle GW
retarded self-energy yields

ΣSEX,R(k, ω) =−

∫

d3q

(2π)3
f(εk−q)W

R(q, ω − εk−q)(12)

ΣCOH,R(k, ω) =

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)×

×

[

N(ω′)

ω + ω′ − εk−q + iδ
+

1 +N(ω′)

ω − ω′ − εk−q + iδ

]

. (13)

At finite T , Eq. (12) is identical in form to Eq. (4),
apart from implicit temperature dependence in f(ε) and
WM (q, ω). Eq. (13) reduces to Eq. (5) at T = 0; however,
the Bose factors N(ω) become increasingly important at
finite T . In the limit of static screening, we therefore ob-
tain the FT generalization of the COHSEX approxima-
tion. The real parts of the FT COHSEX approximation
to Σk are similar to those for T = 0 in Eq. (6) and (7)

ΣSEX
k (T ) = −

∫

d3q

(2π)3
f(εk−q)W

R(q, 0), (14)

Re
[

ΣCOH
k (T )

]

=
1

2

∫

d3q

(2π)3
WR

p (q, 0). (15)

As at T = 0 the static exchange term is given by
Σx(k, T ) =

∫

[d3q/(2π)3]f(εk−q)vq. However, in con-
trast to the zero temperature case, the static approxi-
mation for the FT COH term is complex valued, with a
negative imaginary part given by

Im
[

ΣCOH,R
k (T )

]

= −

∫

d3q

(2π)2
lim

ω→0+
N(ω)D(q, ω).

(16)
Note that at low frequency, Dq(ω) ∝ ω due to particle-
hole continuum excitations and N(ω) → kBT/ω mirrors
the high temperature behavior. Thus, the imaginary part
of the static COH contribution to Σ increases with tem-
perature. Explicit calculations, however, show that the
imaginary part of the static COH term is quite small at
all temperatures compared to the contribution from the
dynamic COHSEX term.

III. STATIC VS DYNAMIC COHSEX

As an illustration of the FT theory, we first compare
the static and fully dynamic SEX and COH contribution
to the quasi-particle GW self-energy on the energy shell
Σk = Σ(k,Ek) for the homogeneous electron gas (Fig. 1
top) from Eq. (11-14). For all cases the agreement be-
tween static and fully dynamic SEX contribution is quite
good, both at low and high k, and become increasingly

accurate with increasing temperature. On the other hand
the COH terms dominate the GW self-energy Σk for all k,
but there are substantial errors in making the static ap-
proximation at low temperatures, which become smaller
with increasing temperature. The dispersion of the fully
dynamic COH and SEX contributions largely cancels for
k < kF at low temperature. However, this cancelation
does not persist at higher temperatures (T/TF > 0.5),
where the dispersion of both contributions is positive. It
is important to note that the static COH contribution
ΣCOH

k is actually constant, independent of k, and hence
entirely local. In contrast the dynamic COH terms be-
come strongly momentum dependent beyond a cross-over
point kp = [2(ωp + εF )]

1/2, corresponding to the onset
of plasmon-excitations, with the real part approaching
zero asymptotically at high momenta and the imaginary
part becoming large. Thus for unoccupied states at high
k > kp dynamic corrections to the COHSEX approxima-
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FIG. 1. (Color online) Results for the SEX (top) and COH
(bottom) contributions to the static (dashed) and full dy-
namic (solid) quasiparticle self-energy vs k/kF at various tem-
peratures T/TF for the homogeneous electron gas for rs = 2.0:
(from blue to red) the curves denote T/TF =0.01, 0.5, 1.0, and
2.0. Note that the COH contribution is always significantly
larger in magnitude than the SEX and persists to higher k/kF ,
while the SEX becomes for unoccupied states above kF .
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tion are essential, and necessary to account for the sub-
stantial broadening of the high energy unoccupied states.

This behavior is illustrated in Fig. 2 with a compar-
ison between the static total static COHSEX and and
fully dynamic self-energy for various densities rs = 1, 2, 3
and 4, and T/TF = 0.01 and 1. Note also that the static
approximation exhibits considerably less variation with
respect to rs, k, and T than the fully dynamic results.
At high T , the dispersion in the quasi-particle self-energy
Σk is also fairly well represented by the total static COH-
SEX for k < kp, and has a much smoother variation with
temperature than the low T behavior. For comparison
we also show the FT-DFT exchange-correlation poten-
tial vxc for rs = 4. As expected, the value of vxc is
nearly identical to the quasiparticle energy correction at
the k = kF . However, at high T, the Fermi surface broad-
ens and ceases to be a precisely defined concept, and the
chemical potential can even lie below the bottom of the

-1.0

-0.8

-0.6

-0.4

-0.2

 0  0.5  1  1.5  2  2.5  3

R
e 

Σ 
(H

ar
tr

ee
)

k / kf

-0.2

-0.4

-0.6

-0.8

-1.0
 0  0.5  1  1.5  2  2.5  3

R
e 

Σ 
(H

ar
tr

ee
)

k / kf

FIG. 2. (Color online) The real part of static COHSEX ap-
proximation (dashed) vs fully dynamic self-energy (solid) for
various densities: (from blue to orange) rs =1.0, 2.0, 3.0,
4.0 at T/TF = 0.01 (top) and 1.0 (bottom). Note that the
high temperature behavior is considerably smoother than near
T = 0 and the change in behavior beyond about k = kp re-
flecting the onset of plasmon excitations. For reference the
LDA-vxc(T )

5,17 for each rs are added as circles at kF .

band. Thus at high T , vxc(T ) is no longer equivalent to
the quasiparticle correction at the Fermi level. Although
the static COHSEX approximation captures much of the
quasi-particle correction to the DFT, significant errors
remain, especially for excited states at high k > kp. We
show in Fig. 3 the imaginary part of the quasi-particle
self-energy |Im∆k = ImΣk| vs temperature from the
COH (solid) and SEX (dashed) contributions at various
temperatures. Unlike the fully dynamic results, the static
COHSEX has zero imaginary part at T = 0 , while at
finite T , the COH term alone contributes, resulting in a
value of ≈ −0.02i H at T/TF = 4, i.e., about 10% of the
GW self-energy.
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FIG. 3. (Color online) Fully dynamic COH (solid) and SEX
(dashed) contributions to the imaginary part of the quasipar-
ticle correction to the DFT energy εk vs k/kF for rs = 4.0,
for various temperatures: (from blue to red) T/TF =0.01, 0.5,
1.0, and 2.0. Note that the dominant contribution comes from
the COH terms, while the dynamic contributions to the SEX
from particle-hole excitations are significant only near kF

IV. ANALYSIS

In an effort to better understand the static COH-
SEX approximation and dynamic corrections to the GW
self energy, we now present a brief analysis. Physi-
cally the GW approximation describes the quasi-particle
self-energy due to a dynamically screened exchange-
correlation hole. The separation into COH and SEX
terms arises naturally in the GW approximation from the
poles of W and those of G0 respectively. The static ap-
proximations then amount to replacing the frequency ar-
gument ofW (q, Ek−εk−q) with zero. Thus the static FT
screened Coulomb interaction W (q, 0) = 4π/[q2 + κ(T )2]
has a temperature dependent screening constant κ(T )
that varies from the Thomas-Fermi value at T = 0 to
the Debye-Hückel limit at high T .3,17 The FT behavior
of the loss function L(q, ω) = |Im ǫ−1(q, ω)| is illustrated
in Fig. 4. At high temperature, higher energy plasmons
contribute less to the full COH due to the broadening.
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FIG. 4. (Color online) The electron energy-loss function
L(q, ω) = |Im ǫ−1(q, ω)| for rs = 2.0 at various tempera-
tures: (from blue to red) T/TF =0.01, 0.5, 1.0, and 2.0 for
momentum q/kF = 0.5 (top) and 2.0 (bottom).

By examining Eq. (15), the full COH gets closer to the
static COH as the blue-shifted plasmons contributes less
to adiabatic accumulation of the Coulomb hole from Wp.
Why is the static approximation so good for the SEX

term, while at best only fair for the COH term and only
for the occupied levels? In an attempt to answer this
question, we examine Eq. (12) and (13) in the limit of
zero momentum and low temperature, as investigated in
detail e.g., by Lundqvist.22 for the T = 0 case. For the
SEX term, the Fermi function and the screened Coulomb
potential have the same argument q2/2, up to a sign. As
a result, the frequency argument in W (q, ω) is limited
to ω < ǫF , and hence the substantial variation of W
near the plasmon excitation energy ωp - which is usu-
ally larger than the Fermi energy ǫF for low to normal
(rs ≈ 2 − 6) densities - is never accessed. At high mo-
menta k/kF ≫ 1, the Fermi function acts to ensure that
q/kF must also be large for any significant contribution.
Consequently the frequency argument of W is large only
when the momentum is also large. This suppresses the
matrix element in the total sinceW (q, ω) ∝ 1/q2 for large
q. Consequently dynamic corrections are small for the

 0
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FIG. 5. Real (solid) and imaginary (dashed) parts of the
renormalization constant Zk vs k/kF for rs=4.0 at (blue to
red) T/TF =0.01, 0.5, 1.0, and 2.0.

SEX term. In contrast, the static COH term in Eq. (13)
has no limitations on the arguments of W (q, ω). Phys-
ically, the dynamic contributions to the SEX arise only
from low energy excitations, e.g., the particle-hole con-
tinuum. In contrast the dynamic COH term includes ex-
citations at all energies and its dynamic contributions are
dominated by plasmon-excitations and to a much lesser
extent particle-hole excitations. These effects are evident
in the imaginary part of the self-energy (Fig. 3), where
ImΣSEX(k,Ek) is limited to momenta near or below kF ,
while that for ΣCOH(k,Ek) is appreciable even beyond
the onset of plasmon excitations kp. Another conse-
quence of the static approximation is that the COH con-
tribution is completely local, i.e., k-independent. This
is a drastic approximation, and fails to account for the
substantial variation of the self-energy for k > kp due to
plasmon excitations.
Although the COHSEX approximation is perhaps most

useful for estimates of the quasi-particle self energy, it
is interesting to consider other corrections to the quasi-
particle approximation at finite T . These are reflected
for example, in the the renormalization factor Zk =
[1−∂Σ(k, ω)/∂ω]−1

ω=εk. Since deviations of Zk from unity
correspond to the fraction of satellites in the spectral
function, Zk provides a diagnostic of the validity of the
quasiparticle approximation. For a more detailed analy-
sis and illustrations of the behavior of the finite-T spec-
tral function, we refer the reader to Ref17 and 23. Fig. (5)
shows the renormalization factor as a function of k for
rs = 4.0 and T/TF =0.01, 0.5, 1.0, and 2.0. Clearly the
quasiparticle approximation becomes increasingly valid
for very high energy states well above the plasmon fre-
quency εk ≫ ωp. However, this is the range for which
the static COH has the largest errors. Since deviations
of Zk from unity correspond to the fraction of satellites
in the spectral function, Zk provides a diagnostic of the
validity of the quasiparticle approximation. For a more
detailed analysis and illustrations of the behavior of the
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FIG. 6. (Color online) Dynamic correction to COHSEX self-
energy Σ(k,Ek)−ΣCOHSEX

k at the Fermi level kF as a func-
tion of rs: from blue to red, the curves denote T/TF =0.01,
0.5, 1.0, and 2.0.

finite-T spectral function, we refer the reader to Refs.
17 and 23. Note in addition that the renormalization
constant is Zk ≈ 0.75 for rs = 4, even at high T/TF ,
indicating that the quasiparticle energy correction is re-
duced in magnitude compared to that calculated at the
bare energy. This suggests that errors in the static COH-
SEX approximation of order 20% may well be a best case
scenario. Thus while the renormalization constant shows
the importance of satellites in the single particle spec-
trum, it is not a good diagnostic for the quality of the
static approximation to the quasiparticle energies.
Finally, Fig. 6 shows the magnitude of the dynamic cor-

rections to the static COHSEX self-energy at the Fermi
momentum as a function of rs. These results show that
for all temperatures, the dynamic correction is smoothly
decreasing (increasing) with increasing rs for T > (<)TF .
This behavior suggests that a simple additive correction
to the DFT exchange correlation potential may be a rea-
sonable approximation to correct the static COHSEX ap-
proximation for states 0 < k < kp.

V. SUMMARY AND CONCLUSIONS

We have generalized the COHSEX approximation to
the GW self-energy to finite temperatures, with an ex-
plicit treatment of both the COH and SEX contributions.
We find that the FT COHSEX approximation is similar
in many-respects to that for T = 0. Formally the sep-
aration of the fully dynamic GW self-energy into COH
and SEX terms and their definitions are similar to their
counterparts at T = 0, apart from explicit temperature
dependence in their ingredients. The static SEX approx-
imation continues to be a very good approximation to
the fully dynamic SEX over a broad range of densities,
temperatures, and momenta, but is only substantial for

occupied levels below about kF . The COH term is gen-
erally much larger than the SEX and persists to higher
energies, with a cross-over at the onset of plasmon exci-
tations at k = kp. While the static COH approximation
is only fair for mostly occupied and low-lying unoccu-
pied states k < kp at low temperture, it completely fails
to describe dynamic effects in the ΣCOH(k,Ek) at high
k > kp. This behavior is similar to that in the analysis
by Kang and Hybertsen for the T = 0 case.16 However, a
key difference for finite-T is that the static COHSEX ap-
proximation becomes complex valued, even at the Fermi
level, with an imaginary part that grows with temper-
ature. While these deficiencies can be remedied for the
nominally occupied states, e.g., by generalizing the ex-
tended COHSEX approximation16 to finite temperature,
the static COH approximation still retains it’s unphys-
ical spatial locality, independent of k. This limitation
has the consequence that at high T , equilibrium prop-
erties will be increasingly error-prone since they depend
on the high momentum behavior of the electrons. Never-
theless, the static COHSEX approximation does provide
a fair approximation of corrections to DFT for quasi-
particle energies with typical errors of about 10-20%.
While this degree of accuracy provides rough estimates
of quasi-particle corrections to DFT, dynamic corrections
are always important.
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Appendix A: Derivation of static COHSEX

approximation

In this section, we present some additional details of
the derivation of the static FT COHSEX approximation
from the fully dynamic FT quasi-particle COHSEX self-
energy. Starting from Eq. (12) and (13) and using the
Sokhotski-Plemelj formula, we can separate the COH
term into real and imaginary parts as

Re[ΣCOH(k, ω)] = P

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)×

×

[

N(ω′)

ω + ω′ − εk−q

+
1 +N(ω′)

ω − ω′ − εk−q

]

(A1)

Im[ΣCOH(k, ω)] = −π

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)×

×

[

N(ω′)δ(ω + ω′ − εk−q)+

+ [1 +N(ω′)] δ(ω − ω′ − εk−q)

]

, (A2)

where P denotes the principal value. To further simplify
Eq. (A2), we use the anti-symmetric property of D(q, ω)
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and N(−ω) = −1−N(ω), so that

Im[ΣCOH(k, ω)] = −π

∫

d3q

(2π)3

[

D(q, εk−q − ω)×

N(εk−q − ω)θ(εk−q − ω)+

D(q, ω − εk−q)×
[

1 +N(ω − εk−q)
]

θ(ω − εk−q)

]

= −π

∫

d3q

(2π)3
[

D(q, εk−q − ω)N(εk−q − ω)
]

. (A3)

In the limit of static screening (ω − ε → 0+), the imagi-
nary part is found by evaluating D(q, ω) and N(ω) at low
frequency: D(q, ω) ∝ ω due to particle-hole continuum
excitations, and N(ω) → kBT/ω because kBT is large
compared to ω → 0+ for T > 0. On the other hand, the
Bose factors in the real part cancel identically for all ω′

after taking the static limit, so we end up with the same
form as in the zero temperature limit, up to the temper-
ature dependence of the screened coulomb interaction.
Therefore, the FT static COHSEX becomes

Re[ΣSEX(k)] = −

∫

d3q

(2π)3
f(εk−q)Re[WM (q, 0)], (A4)

Re[ΣCOH(k)] = P

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)×

×

[

N(ω′)

ω′
+

1+N(ω′)

−ω′

]

= P

∫

∞

0

dω′

∫

d3q

(2π)3
D(q, ω′)

−ω′

=
1

2

∫

d3q

(2π)3
Wp(q, 0). (A5)

Im[ΣSEX(k)] = −

∫

d3q

(2π)3
f(εk−q)Im[W (q, 0)] = 0,

(A6)

Im[ΣCOH(k)] = −π

∫

d3q

(2π)3
lim

ω′
→0+

D(q, ω′)N(ω′)

= −πkBT

∫

d3q

(2π)3
α(q), (A7)

where α(q) = dD(q, ω)/dω|ω=0 is the proportionality
constant. While the imaginary part of the static COH
is linear in temperature, it is relatively small compared
to the fully dynamic FT quasi-particle self-energy. To
complete the derivation, we then use the following rela-
tions to convert the retarded static COHSEX results into
time-ordered quantities

Re[GR(k, ω)] = Re[GT (k, ω)], (A8)

Im[GR(k, ω)] = coth(ω/2T ) Im[GT (k, ω)]. (A9)
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19 P. B. Allen and B. Mitrović, in Solid State Physics, Vol. 37,

edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Aca-
demic Press, 1982) pp. 1–92.

20 F. C. Khanna and H. R. Glyde, Can. J. Phys. 54, 648
(1976).

21 N. R. Arista and W. Brandt, Phys. Rev. A 29, 1471 (1984).
22 B. Lundqvist, Phys. kondens. Materie 6, 206 (1967).
23 J. J. Kas, J. J. Rehr, and L. Reining, Phys. Rev. B 90,

085112 (2014).


